An ontology-guided semantic data integration framework to support integrative data analysis of cancer survival

Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 18; no. Suppl 2; p. 41
Main Authors Zhang, Hansi, Guo, Yi, Li, Qian, George, Thomas J, Shenkman, Elizabeth, Modave, François, Bian, Jiang
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 23.07.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to simultaneously study as much risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets addressing key data integration challenges. Following best practices in ontology engineering, we created the Ontology for Cancer Research Variables (OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the global-as-view data integration approach, we created mapping axioms to link the data elements in different sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and transform data in relational databases using semantic queries into a pooled dataset according to the downstream multi-level Integrative Data Analysis (IDA) needs. Based on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers, (2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking patients to contextual and environmental factors through geographic variables, (4) being able to document the data manipulation and integration processes clearly in the ontologies. Using an ontology-based data integration approach not only standardizes the definitions of data variables through a common, controlled vocabulary, but also makes the semantic relationships among variables from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity in variable selection, extraction and integration processes and thus improve reproducibility of the IDA.
AbstractList BACKGROUNDCancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to simultaneously study as much risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets addressing key data integration challenges. METHODSFollowing best practices in ontology engineering, we created the Ontology for Cancer Research Variables (OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the global-as-view data integration approach, we created mapping axioms to link the data elements in different sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and transform data in relational databases using semantic queries into a pooled dataset according to the downstream multi-level Integrative Data Analysis (IDA) needs. RESULTSBased on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers, (2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking patients to contextual and environmental factors through geographic variables, (4) being able to document the data manipulation and integration processes clearly in the ontologies. CONCLUSIONSUsing an ontology-based data integration approach not only standardizes the definitions of data variables through a common, controlled vocabulary, but also makes the semantic relationships among variables from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity in variable selection, extraction and integration processes and thus improve reproducibility of the IDA.
Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to simultaneously study as much risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets addressing key data integration challenges. Following best practices in ontology engineering, we created the Ontology for Cancer Research Variables (OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the global-as-view data integration approach, we created mapping axioms to link the data elements in different sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and transform data in relational databases using semantic queries into a pooled dataset according to the downstream multi-level Integrative Data Analysis (IDA) needs. Based on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers, (2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking patients to contextual and environmental factors through geographic variables, (4) being able to document the data manipulation and integration processes clearly in the ontologies. Using an ontology-based data integration approach not only standardizes the definitions of data variables through a common, controlled vocabulary, but also makes the semantic relationships among variables from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity in variable selection, extraction and integration processes and thus improve reproducibility of the IDA.
Abstract Background Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to simultaneously study as much risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets addressing key data integration challenges. Methods Following best practices in ontology engineering, we created the Ontology for Cancer Research Variables (OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the global-as-view data integration approach, we created mapping axioms to link the data elements in different sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and transform data in relational databases using semantic queries into a pooled dataset according to the downstream multi-level Integrative Data Analysis (IDA) needs. Results Based on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers, (2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking patients to contextual and environmental factors through geographic variables, (4) being able to document the data manipulation and integration processes clearly in the ontologies. Conclusions Using an ontology-based data integration approach not only standardizes the definitions of data variables through a common, controlled vocabulary, but also makes the semantic relationships among variables from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity in variable selection, extraction and integration processes and thus improve reproducibility of the IDA.
ArticleNumber 41
Audience Academic
Author Li, Qian
Modave, François
Bian, Jiang
Guo, Yi
Zhang, Hansi
George, Thomas J
Shenkman, Elizabeth
Author_xml – sequence: 1
  givenname: Hansi
  surname: Zhang
  fullname: Zhang, Hansi
  organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA
– sequence: 2
  givenname: Yi
  surname: Guo
  fullname: Guo, Yi
  organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA
– sequence: 3
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA
– sequence: 4
  givenname: Thomas J
  surname: George
  fullname: George, Thomas J
  organization: Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
– sequence: 5
  givenname: Elizabeth
  surname: Shenkman
  fullname: Shenkman, Elizabeth
  organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA
– sequence: 6
  givenname: François
  surname: Modave
  fullname: Modave, François
  organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA
– sequence: 7
  givenname: Jiang
  surname: Bian
  fullname: Bian, Jiang
  email: bianjiang@ufl.edu
  organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA. bianjiang@ufl.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30066664$$D View this record in MEDLINE/PubMed
BookMark eNptUk1v1DAQjVAR_YAfwAVF4sIlxWM7dnxBWlVQKlXiAmdr4jjBS2IvdrLV_nu83dJ2EePD2OP33mhG77w48cHbongL5BKgER8TUAVQEWgqIpio-IviDLiklVBcnjy7nxbnKa0JAdmw-lVxyggROfhZ4Ve-DH4OYxh21bC4znZlshP62ZmywxlL52c7RJxd8GUfcbJ3If4q51CmZbMJcX4CbO2BgR7HXXKpDH1p0BsbMzZu3RbH18XLHsdk3zzki-LHl8_fr75Wt9-ub65Wt5WpBZmrvgVjBKJlDagGgQnR5jcBxhuGiDm1AC1Qyq2Sdc07yzvCGsoldJwCuyhuDrpdwLXeRDdh3OmATt8XQhw0xjziaDUoLrK0VbwlvKWtIshzDyJ4LWta26z16aC1WdrJdsb6OeJ4JHr8491PPYStFkQoKUQW-PAgEMPvxaZZTy4ZO47obViSpqSBmnNKZIa-_we6DkvM-9yjFOFK5nhCDZgHcL4Pua_Zi-pVzWUNjCiaUZf_QeXT2cmZ7KTe5foRAQ4EE0NK0faPMwLRe8Ppg-F0NpzeG07zzHn3fDmPjL8OY38AKd7SAQ
CitedBy_id crossref_primary_10_1007_s10115_023_01974_8
crossref_primary_10_1016_j_envc_2021_100064
crossref_primary_10_1155_2020_8865808
crossref_primary_10_1093_jamia_ocaa176
crossref_primary_10_1002_int_22300
crossref_primary_10_3390_app14114679
crossref_primary_10_1289_EHP7215
crossref_primary_10_1186_s12911_018_0624_8
crossref_primary_10_1016_j_ijmedinf_2020_104332
crossref_primary_10_1186_s12911_020_01270_3
crossref_primary_10_1016_j_ijmedinf_2022_104834
crossref_primary_10_1007_s00607_020_00837_2
crossref_primary_10_1093_database_baz106
crossref_primary_10_3390_computers10100128
crossref_primary_10_2196_30308
crossref_primary_10_1016_j_heliyon_2022_e10710
crossref_primary_10_1515_reveh_2019_0089
crossref_primary_10_1186_s12911_020_01311_x
crossref_primary_10_1109_ACCESS_2021_3106116
crossref_primary_10_3390_cancers14081906
crossref_primary_10_1002_cpe_5814
Cites_doi 10.1186/s12859-015-0559-3
10.7551/mitpress/9780262527811.001.0001
10.1001/jama.2014.17322
10.15265/IY-2017-030
10.1371/journal.pone.0116656
10.1016/S1359-6446(05)03504-X
10.1109/BIBM.2017.8217849
10.1158/1055-9965.EPI-17-0439
10.1145/1041410.1041421
10.1197/jamia.M3031
10.1186/1471-2105-12-98
10.3233/SW-2011-0025
10.1002/0470028173.ch2
10.3233/SW-160217
10.1186/s40709-015-0032-5
10.2147/CLEP.S146395
10.1093/bioinformatics/bti1026
10.1136/amiajnl-2013-002577
10.1016/j.lungcan.2017.11.024
10.1186/s12874-016-0255-7
10.1007/s10549-016-3974-x
10.1186/1471-2105-8-S3-S4
10.1197/jamia.M1506
10.1002/cncr.30744
10.3322/caac.21387
10.1186/1471-2105-8-S3-S5
10.1002/lary.27050
10.1016/j.jbi.2008.01.008
10.1093/nar/gkr469
10.1145/2757001.2757003
10.1177/1090198111418634
10.1002/cam4.1277
10.1016/j.lungcan.2010.08.015
10.1006/knac.1993.1008
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12911-018-0636-4
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Advanced Technologies Database with Aerospace
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 41
ExternalDocumentID oai_doaj_org_article_19466a0e94b04b2b90a43aa06457525e
A547513092
10_1186_s12911_018_0636_4
30066664
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001427
GroupedDBID ---
-A0
0R~
23N
2WC
3V.
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0N
M0T
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ABVAZ
AFGXO
AFNRJ
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c560t-fb1cc6aae38198a1366bc6a013483aaa348b11b1224e97554de4d0382471d4213
IEDL.DBID RPM
ISSN 1472-6947
IngestDate Tue Oct 22 15:11:00 EDT 2024
Tue Sep 17 21:21:39 EDT 2024
Fri Oct 25 02:32:18 EDT 2024
Sat Nov 09 10:49:28 EST 2024
Thu Feb 22 23:50:48 EST 2024
Fri Feb 02 03:57:04 EST 2024
Thu Sep 12 16:49:57 EDT 2024
Wed Oct 16 00:50:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 2
Keywords Integrative data analysis
Semantic web
Semantic data integration
Ontology
Cancer survival
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-fb1cc6aae38198a1366bc6a013483aaa348b11b1224e97554de4d0382471d4213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069766/
PMID 30066664
PQID 2090497777
PQPubID 42572
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_19466a0e94b04b2b90a43aa06457525e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6069766
proquest_miscellaneous_2081544207
proquest_journals_2090497777
gale_infotracmisc_A547513092
gale_infotracacademiconefile_A547513092
crossref_primary_10_1186_s12911_018_0636_4
pubmed_primary_30066664
PublicationCentury 2000
PublicationDate 2018-07-23
PublicationDateYYYYMMDD 2018-07-23
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-23
  day: 23
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC medical informatics and decision making
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References NF Noy (636_CR24) 2004; 33
L Marenco (636_CR31) 2009; 16
MW Vetterlein (636_CR6) 2017; 123
A-K Kock-Schoppenhauer (636_CR40) 2017; 235
636_CR28
SP Gardner (636_CR15) 2005; 10
636_CR23
636_CR62
TR Gruber (636_CR19) 1993; 5
636_CR61
636_CR20
636_CR60
J Iqbal (636_CR8) 2015; 313
R Iachan (636_CR53) 2016; 16
D Calvanese (636_CR55) 2017; 8
SD Golden (636_CR5) 2012; 39
C Liang (636_CR39) 2015; 216
636_CR38
SA Khan (636_CR13) 2018; 115
636_CR33
636_CR35
HY Lam (636_CR29) 2007; 8
S Mate (636_CR37) 2015; 10
B Chisham (636_CR32) 2011; 12
F Dhombres (636_CR25) 2017; 26
K-H Cheung (636_CR27) 2005; 21
LG Eng (636_CR9) 2016; 160
S Shao (636_CR7) 2018; 27
636_CR1
636_CR3
636_CR4
636_CR48
636_CR47
636_CR49
V Lapatas (636_CR17) 2015; 22
636_CR46
636_CR45
636_CR42
636_CR41
C Tao (636_CR43) 2012
RL Siegel (636_CR2) 2017; 67
MA Musen (636_CR57) 2015; 1
C Pang (636_CR34) 2015; 22
AK Smith (636_CR30) 2007; 8
TR Gruber (636_CR18) 1994; 1994
H Wache (636_CR22) 2001
L Marenco (636_CR26) 2004; 11
C Tao (636_CR44) 2010; 2010
636_CR59
636_CR14
636_CR58
636_CR11
636_CR54
636_CR12
636_CR56
636_CR51
636_CR50
CB Smith (636_CR10) 2011; 72
636_CR52
N Guarino (636_CR21) 1998
C Goble (636_CR16) 2008; 41
J-F Ethier (636_CR36) 2014; 54
References_xml – ident: 636_CR38
  doi: 10.1186/s12859-015-0559-3
– ident: 636_CR51
– ident: 636_CR59
– ident: 636_CR35
  doi: 10.7551/mitpress/9780262527811.001.0001
– volume: 313
  start-page: 165
  year: 2015
  ident: 636_CR8
  publication-title: JAMA
  doi: 10.1001/jama.2014.17322
  contributor:
    fullname: J Iqbal
– volume: 26
  start-page: 148
  year: 2017
  ident: 636_CR25
  publication-title: Yearb Med Inform
  doi: 10.15265/IY-2017-030
  contributor:
    fullname: F Dhombres
– volume: 10
  year: 2015
  ident: 636_CR37
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0116656
  contributor:
    fullname: S Mate
– volume: 1994
  start-page: 258
  year: 1994
  ident: 636_CR18
  publication-title: Proc of KR
  contributor:
    fullname: TR Gruber
– volume: 10
  start-page: 1001
  year: 2005
  ident: 636_CR15
  publication-title: Drug Discov Today
  doi: 10.1016/S1359-6446(05)03504-X
  contributor:
    fullname: SP Gardner
– ident: 636_CR41
  doi: 10.1109/BIBM.2017.8217849
– ident: 636_CR60
– ident: 636_CR1
– volume: 27
  start-page: 50
  year: 2018
  ident: 636_CR7
  publication-title: Cancer Epidemiol Biomark Prev
  doi: 10.1158/1055-9965.EPI-17-0439
  contributor:
    fullname: S Shao
– ident: 636_CR45
– volume: 33
  start-page: 65
  year: 2004
  ident: 636_CR24
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/1041410.1041421
  contributor:
    fullname: NF Noy
– volume: 16
  start-page: 723
  year: 2009
  ident: 636_CR31
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M3031
  contributor:
    fullname: L Marenco
– ident: 636_CR49
– volume: 12
  start-page: 98
  year: 2011
  ident: 636_CR32
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-12-98
  contributor:
    fullname: B Chisham
– ident: 636_CR54
– ident: 636_CR58
  doi: 10.3233/SW-2011-0025
– ident: 636_CR50
– ident: 636_CR33
– ident: 636_CR42
  doi: 10.1002/0470028173.ch2
– volume: 8
  start-page: 471
  year: 2017
  ident: 636_CR55
  publication-title: Semantic Web
  doi: 10.3233/SW-160217
  contributor:
    fullname: D Calvanese
– volume: 216
  start-page: 1051
  year: 2015
  ident: 636_CR39
  publication-title: Stud Health Technol Inform.
  contributor:
    fullname: C Liang
– volume: 22
  start-page: 9
  year: 2015
  ident: 636_CR17
  publication-title: J Biol Res Thessalon Greece
  doi: 10.1186/s40709-015-0032-5
  contributor:
    fullname: V Lapatas
– ident: 636_CR14
  doi: 10.2147/CLEP.S146395
– volume: 235
  start-page: 131
  year: 2017
  ident: 636_CR40
  publication-title: Stud Health Technol Inform
  contributor:
    fullname: A-K Kock-Schoppenhauer
– volume: 21
  start-page: i85
  issue: Suppl 1
  year: 2005
  ident: 636_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1026
  contributor:
    fullname: K-H Cheung
– volume: 22
  start-page: 65
  year: 2015
  ident: 636_CR34
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2013-002577
  contributor:
    fullname: C Pang
– ident: 636_CR23
– volume: 115
  start-page: 97
  year: 2018
  ident: 636_CR13
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2017.11.024
  contributor:
    fullname: SA Khan
– volume-title: Formal ontology in information systems: proceedings of the 1st international conference June 6–8, 1998, Trento, Italy. 1st edition. Amsterdam, the Netherlands
  year: 1998
  ident: 636_CR21
  contributor:
    fullname: N Guarino
– ident: 636_CR48
– ident: 636_CR61
– volume: 16
  start-page: 155
  year: 2016
  ident: 636_CR53
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-016-0255-7
  contributor:
    fullname: R Iachan
– volume: 2010
  start-page: 787
  year: 2010
  ident: 636_CR44
  publication-title: AMIA Annu Symp Proc AMIA Symp AMIA Symp
  contributor:
    fullname: C Tao
– ident: 636_CR28
– volume: 160
  start-page: 145
  year: 2016
  ident: 636_CR9
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-016-3974-x
  contributor:
    fullname: LG Eng
– volume: 8
  start-page: S4
  issue: Suppl 3
  year: 2007
  ident: 636_CR29
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-8-S3-S4
  contributor:
    fullname: HY Lam
– volume: 11
  start-page: 523
  year: 2004
  ident: 636_CR26
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M1506
  contributor:
    fullname: L Marenco
– volume: 123
  start-page: 3241
  year: 2017
  ident: 636_CR6
  publication-title: Cancer
  doi: 10.1002/cncr.30744
  contributor:
    fullname: MW Vetterlein
– ident: 636_CR3
– ident: 636_CR20
– volume: 67
  start-page: 7
  year: 2017
  ident: 636_CR2
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21387
  contributor:
    fullname: RL Siegel
– ident: 636_CR47
– volume: 8
  start-page: S5
  issue: Suppl 3
  year: 2007
  ident: 636_CR30
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-8-S3-S5
  contributor:
    fullname: AK Smith
– ident: 636_CR62
– ident: 636_CR12
  doi: 10.1002/lary.27050
– ident: 636_CR52
– volume: 41
  start-page: 687
  year: 2008
  ident: 636_CR16
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2008.01.008
  contributor:
    fullname: C Goble
– ident: 636_CR56
  doi: 10.1093/nar/gkr469
– volume: 54
  start-page: 16
  year: 2014
  ident: 636_CR36
  publication-title: Methods Inf Med
  contributor:
    fullname: J-F Ethier
– volume-title: In IJCAI’01 workshop. On ontologies and information sharing
  year: 2001
  ident: 636_CR22
  contributor:
    fullname: H Wache
– volume: 1
  start-page: 4
  year: 2015
  ident: 636_CR57
  publication-title: AI Matters
  doi: 10.1145/2757001.2757003
  contributor:
    fullname: MA Musen
– ident: 636_CR4
– volume: 39
  start-page: 364
  year: 2012
  ident: 636_CR5
  publication-title: Health Educ Behav Off Publ Soc Public Health Educ
  doi: 10.1177/1090198111418634
  contributor:
    fullname: SD Golden
– ident: 636_CR11
  doi: 10.1002/cam4.1277
– volume: 72
  start-page: 160
  year: 2011
  ident: 636_CR10
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2010.08.015
  contributor:
    fullname: CB Smith
– volume: 5
  start-page: 199
  year: 1993
  ident: 636_CR19
  publication-title: Knowl Acquis
  doi: 10.1006/knac.1993.1008
  contributor:
    fullname: TR Gruber
– ident: 636_CR46
– volume-title: Time event ontology
  year: 2012
  ident: 636_CR43
  contributor:
    fullname: C Tao
SSID ssj0017835
Score 2.4455867
Snippet Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on...
BackgroundCancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily...
BACKGROUNDCancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily...
Abstract Background Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 41
SubjectTerms Axioms
Cancer
Cancer survival
Cardiovascular diseases
Census of Population
Commuting
Computer simulation
Computers
Coronary artery disease
Data analysis
Data integration
Data mining
Data processing
Databases, Factual
Datasets
Electronic health records
Environmental factors
Female
Hazardous materials
Health risk assessment
Heart diseases
Humans
Information Storage and Retrieval
Integration
Integrative data analysis
Lung cancer
Male
Mapping
Medical prognosis
Medical research
Medicare
Methods
Neoplasms
Oncology
Ontology
Organic chemicals
Relational data bases
Reproducibility
Reproducibility of Results
Risk analysis
Risk factors
Semantic data integration
Semantic web
Semantics
Smoking
Surveillance
Survival
Survival Analysis
Systems Integration
Technology application
Thesauri
Vocabularies & taxonomies
Vocabulary, Controlled
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlh5JLaJuX2zSoUCgERGxZlu3jpjQshfbUhdyEJMvJHuoN2d3-_n5jy5s1OfRSg_HaGq-teWhmrPFnxj5LC01wdSsgXCQoLsvolxIy8wiuvbN-QPv8qecL9f2uuNv71BfVhA3wwAPjrjMCQLdpqJVLlcPfplbl1hLMWlnIIvSjb1qPyVScP6DnGXEOM6v09RperX9_rBJwyVqoiRfqwfpfDsl7PmlaL7nngG7fsKMYOfLZcMdv2avQvWOvf8S58WPWzTpOYAT0mFzcb5dNaPg6_Abnlp5TISgfoSEgCt6ORVl8s-Lr7SOF4c8Ef8Jwho2QJXzVck_68QRaDC5QzxO2uP326-tcxK8pCI-oZiNal3mvrQ2Uo1U2y7V22EcIqCow1GIDSTmaaQt1iSijCapJ80rCfTVKZvkpO-hWXThnvAmwW6xByVY1ikDpkcWVBS6k2tK7hF2N3DWPA2iG6ZONSptBFAaiMCQKoxJ2Q_zfERLedX8AWmCiFph_aUHCvpD0DFklRORtfLkA90v4VmZWqLKAu65lwi4mlLAmP20e5W-iNa-NTGskUiWWhH3aNdOZVKHWhdWWaCoCNpIpaM4Gddl1KafATmt0tZwo0qTP05Zu-dBjfSO_RMCo3_8PJn1gh7I3gVLI_IIdbJ624SNCqo277K3nLy1HHCY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56gvgi_rZ6SgRBEIJtmqbtk6ziegj65MG9hSRNz324dt3u-vf7TZvuXRFcWLbdTGmSmcnMZJIvjL2VFpLg6laAuQhQXJbRlRIy83CuvbN-Qvv8oc_O1beL4iJOuA1xWeU8Jo4DddN7miNHkF7DmS3x-bj9LejUKMquxiM0brM7mUQR7RRffz1mEWhWI2Yys0p_GGDbxl1klYBh1kItbNEI2f_vwHzDMi1XTd4wQ-sH7H70H_lqYvhDdit0j9jd7zFD_ph1q44TJAFNlovLw6YJDR_CFfpv4zktB-UzQAQYwtt5aRbf93w4bMkZvyb4E6YnbAQu4X3LPUnJDrQYYiCkT9j5-svPz2cinqkgPHybvWhd5r22NlCkVtks19rhHo6gqnJrLX7AL0f5tlCX8DWaoJo0rySMWKNklj9lJ13fheeMNwHai29QslWNImh6xHJlgReptvQuYe_n3jXbCTrDjCFHpc3ECgNWGGKFUQn7RP1_JCTU6_GPfndpohKZjMDwbRpq5VLlIGKpVag0Qe6VhSxCwt4R9wzpJljkbdxigPoSypVZFaosYLRrmbDTBSV0yi-LZ_6bqNODuZbAhL05FtOTtE6tC_2BaCqCN5IpaJ5N4nJsUk7undZoarkQpEWblyXd5teI-I0oE26jfvH_ar1k9-Qo3KWQ-Sk72e8O4RVcpr17PerFX10HFOE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ta9RAEB5qhdIv4rupVVYQBCGabDab3AeRUyxF0E8e9Nuyu9nUA03qvUj99z6Tl2uD9eC4y-3sJdl5JjOTnTxL9FJaIMHN6hjKRYLi0pS_qVimHsG1d9b3bJ9f9elCfT7Lz_ZoXN5qGMD1jakdrye1WP14c_nrz3sY_LvO4Ev9dg2f1T0dVsZwuDpWt-i2VEjUuZJPXU0q8E2OYWLzxm6HdJCxC9ZaTbxUR-b_7yX7ms-a1lNec1And-nOEFmKeQ-Fe7QXmvt08GWYO39AzbwRTFbAt9Hj8-2yCpVYh58Y2aUXXCgqRuoIqErUY9GW2LRivb3gEboS-B36HnagNBFtLTzjZwVZXHwA34e0OPn07eNpPKy2EHtEPZu4dqn32trAOVxp00xrh22EiKrMrLX4gCYdz8SFWYEopAqqSrJSwr1VSqbZI9pv2iY8IVEF2DXeQclaVYpJ65HlFTl2pOrCu4hej6NrLnpSDdMlI6U2vVYMtGJYK0ZF9IHHfyfIfNjdD-3q3AzmZVKmybdJmCmXKAfwJVbhoJmMr8hlHiJ6xdozjCOoyNvh4QMcL_NfmXmuihzufCYjOp5Iwtr8tHnUvxnBamQyQ6JV4BXRi10z9-QKtia0W5YpmfhIJpB53MNld0oj6iIqJkCanPO0pVl-77jAkX8ioNRH__3Pp3QoO4gXscyOaX-z2oZniKM27nlnHX8BVqoXkA
  priority: 102
  providerName: Scholars Portal
Title An ontology-guided semantic data integration framework to support integrative data analysis of cancer survival
URI https://www.ncbi.nlm.nih.gov/pubmed/30066664
https://www.proquest.com/docview/2090497777
https://search.proquest.com/docview/2081544207
https://pubmed.ncbi.nlm.nih.gov/PMC6069766
https://doaj.org/article/19466a0e94b04b2b90a43aa06457525e
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdtB2Nfxt5z1wUNBoOBG1uWXx-T0qwMUkpZIeyLkGS5Cyx2yKN__37nR1azbwtEdqITlnV3vjvp9DNjn4WGJJi89MFcBCgmDOlM-iK0cK6t0bZF-7xOru7k90W8OGJxvxemSdq3Znle_V6dV8tfTW7lemXHfZ7Y-GZ-AacbVjQZH7NjCGgfondLBzSV0S1fhlky3sKgNVvHMh_WOPHpRTwRGdokkQNb1ED2__tgfmSZhlmTj8zQ7AV73vmPfNL28yU7ctUr9nTerZC_ZtWk4gRJQJPl_v1-WbiCb90K47e0nNJBeQ8QAYbwsk_N4ruab_drcsb_Ejy4toXugEt4XXJLUrIBLR4xENI37G52-ePiyu_eqeBb-DY7vzShtYnWjiK1TIdRkhj8hiMos0hrjQP4ZWi9zeUpfI3CySKIMgEjVkgRRm_ZSVVX7j3jhYP24uukKGUhCZoesVwa40KyTK3x2Nd-dNW6hc5QTciRJarligJXFHFFSY9NafwPhIR63fxRb-5Vx3sVEhi-DlwuTSANRCzQEp0myL00FrHz2BfiniLdBIus7rYYoL-EcqUmsUxjGO1ceOxsQAmdssPqnv-q0-mtEkGOcCrFx2OfDtXUkvLUKlfviSYjeCMRgOZdKy6HW-qlzmPpQJAG9zysgQI0iN-dwJ_-d8sP7JloVCD1RXTGTnabvfsIb2pnRtChRYoym30bsSfTy-ub21EzM4FyLjOUt9Ofo0bH_gC1LCQR
link.rule.ids 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgSLAXxG8CA4yEhIQUkTiOkzyhgigFtj1t0t4s23FGH0i6puXv57vE7RYhUalqUl8U23fnu_PZnxl7JwwkwVZNDOYiQLFpSlcyFqmDc-2scSPa56lanMsfF_lFmHDrw7LK3Zg4DNR152iOHEF6BWe2wOfT6iqmU6MouxqO0LjN7sgMtpp2is-_7bMINKsRMplpqT72sG3DLrIyhmFWsZzYogGy_9-B-YZlmq6avGGG5g_Y_eA_8tnI8Ifslm8fsbsnIUP-mLWzlhMkAU2Wx5fbZe1r3vvf6L-l47QclO8AIsAQ3uyWZvFNx_vtipzxa4I_fnzCBOAS3jXckZSsQYshBkL6hJ3Pv559WcThTIXYwbfZxI1NnVPGeIrUSpNmSlncwxGUZWaMwQ_4ZSnf5qsCvkbtZZ1kpYARq6VIs6fsoO1a_5zx2kN78fVSNLKWBE2PWK7I8SLZFM5G7MOud_VqhM7QQ8hRKj2yQoMVmlihZcQ-U__vCQn1evijW1_qoEQ6JTB8k_hK2kRaiFhiJCpNkHtFLnIfsffEPU26CRY5E7YYoL6EcqVnuSxyGO1KROxoQgmdctPiHf910OleX0tgxN7ui-lJWqfW-m5LNCXBG4kENM9Gcdk3KSP3Tik0tZgI0qTN05J2-WtA_EaUCbdRvfh_td6we4uzk2N9_P3050t2KAZBL2KRHbGDzXrrX8F92tjXg478BV_jF8M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkCZe-GZkDDASEhJSmsRxnOSxDKrxsWkPTJp4sWzHGRVrUrUpD_z13OWjNPC2SlGb-qzGvd_57uLLzwBvuEYkmLz0UbmYoJgook_C55HF4NoabTu2zzN5ciE-XyaXO1t9tUX71swn1fViUs1_tLWVy4UNhjqx4Pz0GINu9KIyWBZlcBvuoM2GckjU-wUEuqHRL2JGmQzW6NbaB8gyH32y9Gk7npjcrZRi5JFa4v7_p-cd_zSundxxRrP78H0YRleD8nOyaczE_v6H4fFG43wA9_oQlU07kYdwy1WPYP-0X4R_DNW0YsR6QPfj_avNvHAFW7sFqmhuGVWcsoGDAnXOyqH6izU1W2-WFO__Ffjluh6650ZhdcksAXGFsjiLoR08gYvZx2_HJ36_bYNvMXxq_NJE1kqtHSWDmY5iKQ2eY6wpslhrjW8ICUNLei5PMZwpnCjCOOPoJwvBo_gp7FV15Z4BKxxOEHg4wUtRCGK_x3QxTfCHRJla48G7QXVq2bFzqDaryaTqVK5Q5YpUroQH70m5W0Ei1m6_qFdXqv_bVUR8-zp0uTChMIjiUAu8aGL1SxOeOA_eEjQUmT_q3-r-KQa8XiLSUtNEpAnGBTn34GgkiWZrx80DuFQ_bawVD3PM2FJ8efB620w9qRSucvWGZDJiUOIhyhx0WNwOaYC0B-kIpaMxj1sQey2peI-1wxv3fAX75x9m6uunsy_P4S5vTS31eXwEe81q415g7NaYl62V_gGevkJK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ontology-guided+semantic+data+integration+framework+to+support+integrative+data+analysis+of+cancer+survival&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Zhang%2C+Hansi&rft.au=Guo%2C+Yi&rft.au=Li%2C+Qian&rft.au=George%2C+Thomas+J&rft.date=2018-07-23&rft.eissn=1472-6947&rft.volume=18&rft.issue=Suppl+2&rft.spage=41&rft_id=info:doi/10.1186%2Fs12911-018-0636-4&rft_id=info%3Apmid%2F30066664&rft.externalDocID=30066664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon