An ontology-guided semantic data integration framework to support integrative data analysis of cancer survival
Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to...
Saved in:
Published in | BMC medical informatics and decision making Vol. 18; no. Suppl 2; p. 41 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
23.07.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to simultaneously study as much risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets addressing key data integration challenges.
Following best practices in ontology engineering, we created the Ontology for Cancer Research Variables (OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the global-as-view data integration approach, we created mapping axioms to link the data elements in different sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and transform data in relational databases using semantic queries into a pooled dataset according to the downstream multi-level Integrative Data Analysis (IDA) needs.
Based on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers, (2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking patients to contextual and environmental factors through geographic variables, (4) being able to document the data manipulation and integration processes clearly in the ontologies.
Using an ontology-based data integration approach not only standardizes the definitions of data variables through a common, controlled vocabulary, but also makes the semantic relationships among variables from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity in variable selection, extraction and integration processes and thus improve reproducibility of the IDA. |
---|---|
AbstractList | BACKGROUNDCancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to simultaneously study as much risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets addressing key data integration challenges. METHODSFollowing best practices in ontology engineering, we created the Ontology for Cancer Research Variables (OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the global-as-view data integration approach, we created mapping axioms to link the data elements in different sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and transform data in relational databases using semantic queries into a pooled dataset according to the downstream multi-level Integrative Data Analysis (IDA) needs. RESULTSBased on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers, (2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking patients to contextual and environmental factors through geographic variables, (4) being able to document the data manipulation and integration processes clearly in the ontologies. CONCLUSIONSUsing an ontology-based data integration approach not only standardizes the definitions of data variables through a common, controlled vocabulary, but also makes the semantic relationships among variables from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity in variable selection, extraction and integration processes and thus improve reproducibility of the IDA. Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to simultaneously study as much risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets addressing key data integration challenges. Following best practices in ontology engineering, we created the Ontology for Cancer Research Variables (OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the global-as-view data integration approach, we created mapping axioms to link the data elements in different sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and transform data in relational databases using semantic queries into a pooled dataset according to the downstream multi-level Integrative Data Analysis (IDA) needs. Based on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers, (2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking patients to contextual and environmental factors through geographic variables, (4) being able to document the data manipulation and integration processes clearly in the ontologies. Using an ontology-based data integration approach not only standardizes the definitions of data variables through a common, controlled vocabulary, but also makes the semantic relationships among variables from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity in variable selection, extraction and integration processes and thus improve reproducibility of the IDA. Abstract Background Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on individual-level factors due to limited data availability from a single data source. There is a need to integrate data from different sources to simultaneously study as much risk factors as possible. Thus, we proposed an ontology-based approach to integrate heterogeneous datasets addressing key data integration challenges. Methods Following best practices in ontology engineering, we created the Ontology for Cancer Research Variables (OCRV) adapting existing semantic resources such as the National Cancer Institute (NCI) Thesaurus. Using the global-as-view data integration approach, we created mapping axioms to link the data elements in different sources to OCRV. Implemented upon the Ontop platform, we built a data integration pipeline to query, extract, and transform data in relational databases using semantic queries into a pooled dataset according to the downstream multi-level Integrative Data Analysis (IDA) needs. Results Based on our use cases in the cancer survival IDA, we created tailored ontological structures in OCRV to facilitate the data integration tasks. Specifically, we created a flexible framework addressing key integration challenges: (1) using a shared, controlled vocabulary to make data understandable to both human and computers, (2) explicitly modeling the semantic relationships makes it possible to compute and reason with the data, (3) linking patients to contextual and environmental factors through geographic variables, (4) being able to document the data manipulation and integration processes clearly in the ontologies. Conclusions Using an ontology-based data integration approach not only standardizes the definitions of data variables through a common, controlled vocabulary, but also makes the semantic relationships among variables from different sources explicit and clear to all users of the same datasets. Such an approach resolves the ambiguity in variable selection, extraction and integration processes and thus improve reproducibility of the IDA. |
ArticleNumber | 41 |
Audience | Academic |
Author | Li, Qian Modave, François Bian, Jiang Guo, Yi Zhang, Hansi George, Thomas J Shenkman, Elizabeth |
Author_xml | – sequence: 1 givenname: Hansi surname: Zhang fullname: Zhang, Hansi organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA – sequence: 2 givenname: Yi surname: Guo fullname: Guo, Yi organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA – sequence: 3 givenname: Qian surname: Li fullname: Li, Qian organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA – sequence: 4 givenname: Thomas J surname: George fullname: George, Thomas J organization: Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA – sequence: 5 givenname: Elizabeth surname: Shenkman fullname: Shenkman, Elizabeth organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA – sequence: 6 givenname: François surname: Modave fullname: Modave, François organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA – sequence: 7 givenname: Jiang surname: Bian fullname: Bian, Jiang email: bianjiang@ufl.edu organization: Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Clinical and Translational Research Building Suite 3228, 2004 Mowry Road, PO Box 100219, Gainesville, FL, 32610-0219, USA. bianjiang@ufl.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30066664$$D View this record in MEDLINE/PubMed |
BookMark | eNptUk1v1DAQjVAR_YAfwAVF4sIlxWM7dnxBWlVQKlXiAmdr4jjBS2IvdrLV_nu83dJ2EePD2OP33mhG77w48cHbongL5BKgER8TUAVQEWgqIpio-IviDLiklVBcnjy7nxbnKa0JAdmw-lVxyggROfhZ4Ve-DH4OYxh21bC4znZlshP62ZmywxlL52c7RJxd8GUfcbJ3If4q51CmZbMJcX4CbO2BgR7HXXKpDH1p0BsbMzZu3RbH18XLHsdk3zzki-LHl8_fr75Wt9-ub65Wt5WpBZmrvgVjBKJlDagGgQnR5jcBxhuGiDm1AC1Qyq2Sdc07yzvCGsoldJwCuyhuDrpdwLXeRDdh3OmATt8XQhw0xjziaDUoLrK0VbwlvKWtIshzDyJ4LWta26z16aC1WdrJdsb6OeJ4JHr8491PPYStFkQoKUQW-PAgEMPvxaZZTy4ZO47obViSpqSBmnNKZIa-_we6DkvM-9yjFOFK5nhCDZgHcL4Pua_Zi-pVzWUNjCiaUZf_QeXT2cmZ7KTe5foRAQ4EE0NK0faPMwLRe8Ppg-F0NpzeG07zzHn3fDmPjL8OY38AKd7SAQ |
CitedBy_id | crossref_primary_10_1007_s10115_023_01974_8 crossref_primary_10_1016_j_envc_2021_100064 crossref_primary_10_1155_2020_8865808 crossref_primary_10_1093_jamia_ocaa176 crossref_primary_10_1002_int_22300 crossref_primary_10_3390_app14114679 crossref_primary_10_1289_EHP7215 crossref_primary_10_1186_s12911_018_0624_8 crossref_primary_10_1016_j_ijmedinf_2020_104332 crossref_primary_10_1186_s12911_020_01270_3 crossref_primary_10_1016_j_ijmedinf_2022_104834 crossref_primary_10_1007_s00607_020_00837_2 crossref_primary_10_1093_database_baz106 crossref_primary_10_3390_computers10100128 crossref_primary_10_2196_30308 crossref_primary_10_1016_j_heliyon_2022_e10710 crossref_primary_10_1515_reveh_2019_0089 crossref_primary_10_1186_s12911_020_01311_x crossref_primary_10_1109_ACCESS_2021_3106116 crossref_primary_10_3390_cancers14081906 crossref_primary_10_1002_cpe_5814 |
Cites_doi | 10.1186/s12859-015-0559-3 10.7551/mitpress/9780262527811.001.0001 10.1001/jama.2014.17322 10.15265/IY-2017-030 10.1371/journal.pone.0116656 10.1016/S1359-6446(05)03504-X 10.1109/BIBM.2017.8217849 10.1158/1055-9965.EPI-17-0439 10.1145/1041410.1041421 10.1197/jamia.M3031 10.1186/1471-2105-12-98 10.3233/SW-2011-0025 10.1002/0470028173.ch2 10.3233/SW-160217 10.1186/s40709-015-0032-5 10.2147/CLEP.S146395 10.1093/bioinformatics/bti1026 10.1136/amiajnl-2013-002577 10.1016/j.lungcan.2017.11.024 10.1186/s12874-016-0255-7 10.1007/s10549-016-3974-x 10.1186/1471-2105-8-S3-S4 10.1197/jamia.M1506 10.1002/cncr.30744 10.3322/caac.21387 10.1186/1471-2105-8-S3-S5 10.1002/lary.27050 10.1016/j.jbi.2008.01.008 10.1093/nar/gkr469 10.1145/2757001.2757003 10.1177/1090198111418634 10.1002/cam4.1277 10.1016/j.lungcan.2010.08.015 10.1006/knac.1993.1008 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2018 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12911-018-0636-4 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Healthcare Administration Database PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Advanced Technologies Database with Aerospace ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1472-6947 |
EndPage | 41 |
ExternalDocumentID | oai_doaj_org_article_19466a0e94b04b2b90a43aa06457525e A547513092 10_1186_s12911_018_0636_4 30066664 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001427 |
GroupedDBID | --- -A0 0R~ 23N 2WC 3V. 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0N M0T M1P M48 M7P M~E NPM O5R O5S OK1 P2P P62 PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION ABVAZ AFGXO AFNRJ 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c560t-fb1cc6aae38198a1366bc6a013483aaa348b11b1224e97554de4d0382471d4213 |
IEDL.DBID | RPM |
ISSN | 1472-6947 |
IngestDate | Tue Oct 22 15:11:00 EDT 2024 Tue Sep 17 21:21:39 EDT 2024 Fri Oct 25 02:32:18 EDT 2024 Sat Nov 09 10:49:28 EST 2024 Thu Feb 22 23:50:48 EST 2024 Fri Feb 02 03:57:04 EST 2024 Thu Sep 12 16:49:57 EDT 2024 Wed Oct 16 00:50:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 2 |
Keywords | Integrative data analysis Semantic web Semantic data integration Ontology Cancer survival |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-fb1cc6aae38198a1366bc6a013483aaa348b11b1224e97554de4d0382471d4213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069766/ |
PMID | 30066664 |
PQID | 2090497777 |
PQPubID | 42572 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19466a0e94b04b2b90a43aa06457525e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6069766 proquest_miscellaneous_2081544207 proquest_journals_2090497777 gale_infotracmisc_A547513092 gale_infotracacademiconefile_A547513092 crossref_primary_10_1186_s12911_018_0636_4 pubmed_primary_30066664 |
PublicationCentury | 2000 |
PublicationDate | 2018-07-23 |
PublicationDateYYYYMMDD | 2018-07-23 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC medical informatics and decision making |
PublicationTitleAlternate | BMC Med Inform Decis Mak |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | NF Noy (636_CR24) 2004; 33 L Marenco (636_CR31) 2009; 16 MW Vetterlein (636_CR6) 2017; 123 A-K Kock-Schoppenhauer (636_CR40) 2017; 235 636_CR28 SP Gardner (636_CR15) 2005; 10 636_CR23 636_CR62 TR Gruber (636_CR19) 1993; 5 636_CR61 636_CR20 636_CR60 J Iqbal (636_CR8) 2015; 313 R Iachan (636_CR53) 2016; 16 D Calvanese (636_CR55) 2017; 8 SD Golden (636_CR5) 2012; 39 C Liang (636_CR39) 2015; 216 636_CR38 SA Khan (636_CR13) 2018; 115 636_CR33 636_CR35 HY Lam (636_CR29) 2007; 8 S Mate (636_CR37) 2015; 10 B Chisham (636_CR32) 2011; 12 F Dhombres (636_CR25) 2017; 26 K-H Cheung (636_CR27) 2005; 21 LG Eng (636_CR9) 2016; 160 S Shao (636_CR7) 2018; 27 636_CR1 636_CR3 636_CR4 636_CR48 636_CR47 636_CR49 V Lapatas (636_CR17) 2015; 22 636_CR46 636_CR45 636_CR42 636_CR41 C Tao (636_CR43) 2012 RL Siegel (636_CR2) 2017; 67 MA Musen (636_CR57) 2015; 1 C Pang (636_CR34) 2015; 22 AK Smith (636_CR30) 2007; 8 TR Gruber (636_CR18) 1994; 1994 H Wache (636_CR22) 2001 L Marenco (636_CR26) 2004; 11 C Tao (636_CR44) 2010; 2010 636_CR59 636_CR14 636_CR58 636_CR11 636_CR54 636_CR12 636_CR56 636_CR51 636_CR50 CB Smith (636_CR10) 2011; 72 636_CR52 N Guarino (636_CR21) 1998 C Goble (636_CR16) 2008; 41 J-F Ethier (636_CR36) 2014; 54 |
References_xml | – ident: 636_CR38 doi: 10.1186/s12859-015-0559-3 – ident: 636_CR51 – ident: 636_CR59 – ident: 636_CR35 doi: 10.7551/mitpress/9780262527811.001.0001 – volume: 313 start-page: 165 year: 2015 ident: 636_CR8 publication-title: JAMA doi: 10.1001/jama.2014.17322 contributor: fullname: J Iqbal – volume: 26 start-page: 148 year: 2017 ident: 636_CR25 publication-title: Yearb Med Inform doi: 10.15265/IY-2017-030 contributor: fullname: F Dhombres – volume: 10 year: 2015 ident: 636_CR37 publication-title: PLoS One doi: 10.1371/journal.pone.0116656 contributor: fullname: S Mate – volume: 1994 start-page: 258 year: 1994 ident: 636_CR18 publication-title: Proc of KR contributor: fullname: TR Gruber – volume: 10 start-page: 1001 year: 2005 ident: 636_CR15 publication-title: Drug Discov Today doi: 10.1016/S1359-6446(05)03504-X contributor: fullname: SP Gardner – ident: 636_CR41 doi: 10.1109/BIBM.2017.8217849 – ident: 636_CR60 – ident: 636_CR1 – volume: 27 start-page: 50 year: 2018 ident: 636_CR7 publication-title: Cancer Epidemiol Biomark Prev doi: 10.1158/1055-9965.EPI-17-0439 contributor: fullname: S Shao – ident: 636_CR45 – volume: 33 start-page: 65 year: 2004 ident: 636_CR24 publication-title: ACM SIGMOD Rec doi: 10.1145/1041410.1041421 contributor: fullname: NF Noy – volume: 16 start-page: 723 year: 2009 ident: 636_CR31 publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M3031 contributor: fullname: L Marenco – ident: 636_CR49 – volume: 12 start-page: 98 year: 2011 ident: 636_CR32 publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-12-98 contributor: fullname: B Chisham – ident: 636_CR54 – ident: 636_CR58 doi: 10.3233/SW-2011-0025 – ident: 636_CR50 – ident: 636_CR33 – ident: 636_CR42 doi: 10.1002/0470028173.ch2 – volume: 8 start-page: 471 year: 2017 ident: 636_CR55 publication-title: Semantic Web doi: 10.3233/SW-160217 contributor: fullname: D Calvanese – volume: 216 start-page: 1051 year: 2015 ident: 636_CR39 publication-title: Stud Health Technol Inform. contributor: fullname: C Liang – volume: 22 start-page: 9 year: 2015 ident: 636_CR17 publication-title: J Biol Res Thessalon Greece doi: 10.1186/s40709-015-0032-5 contributor: fullname: V Lapatas – ident: 636_CR14 doi: 10.2147/CLEP.S146395 – volume: 235 start-page: 131 year: 2017 ident: 636_CR40 publication-title: Stud Health Technol Inform contributor: fullname: A-K Kock-Schoppenhauer – volume: 21 start-page: i85 issue: Suppl 1 year: 2005 ident: 636_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1026 contributor: fullname: K-H Cheung – volume: 22 start-page: 65 year: 2015 ident: 636_CR34 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002577 contributor: fullname: C Pang – ident: 636_CR23 – volume: 115 start-page: 97 year: 2018 ident: 636_CR13 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2017.11.024 contributor: fullname: SA Khan – volume-title: Formal ontology in information systems: proceedings of the 1st international conference June 6–8, 1998, Trento, Italy. 1st edition. Amsterdam, the Netherlands year: 1998 ident: 636_CR21 contributor: fullname: N Guarino – ident: 636_CR48 – ident: 636_CR61 – volume: 16 start-page: 155 year: 2016 ident: 636_CR53 publication-title: BMC Med Res Methodol doi: 10.1186/s12874-016-0255-7 contributor: fullname: R Iachan – volume: 2010 start-page: 787 year: 2010 ident: 636_CR44 publication-title: AMIA Annu Symp Proc AMIA Symp AMIA Symp contributor: fullname: C Tao – ident: 636_CR28 – volume: 160 start-page: 145 year: 2016 ident: 636_CR9 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-016-3974-x contributor: fullname: LG Eng – volume: 8 start-page: S4 issue: Suppl 3 year: 2007 ident: 636_CR29 publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-8-S3-S4 contributor: fullname: HY Lam – volume: 11 start-page: 523 year: 2004 ident: 636_CR26 publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M1506 contributor: fullname: L Marenco – volume: 123 start-page: 3241 year: 2017 ident: 636_CR6 publication-title: Cancer doi: 10.1002/cncr.30744 contributor: fullname: MW Vetterlein – ident: 636_CR3 – ident: 636_CR20 – volume: 67 start-page: 7 year: 2017 ident: 636_CR2 publication-title: CA Cancer J Clin doi: 10.3322/caac.21387 contributor: fullname: RL Siegel – ident: 636_CR47 – volume: 8 start-page: S5 issue: Suppl 3 year: 2007 ident: 636_CR30 publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-8-S3-S5 contributor: fullname: AK Smith – ident: 636_CR62 – ident: 636_CR12 doi: 10.1002/lary.27050 – ident: 636_CR52 – volume: 41 start-page: 687 year: 2008 ident: 636_CR16 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2008.01.008 contributor: fullname: C Goble – ident: 636_CR56 doi: 10.1093/nar/gkr469 – volume: 54 start-page: 16 year: 2014 ident: 636_CR36 publication-title: Methods Inf Med contributor: fullname: J-F Ethier – volume-title: In IJCAI’01 workshop. On ontologies and information sharing year: 2001 ident: 636_CR22 contributor: fullname: H Wache – volume: 1 start-page: 4 year: 2015 ident: 636_CR57 publication-title: AI Matters doi: 10.1145/2757001.2757003 contributor: fullname: MA Musen – ident: 636_CR4 – volume: 39 start-page: 364 year: 2012 ident: 636_CR5 publication-title: Health Educ Behav Off Publ Soc Public Health Educ doi: 10.1177/1090198111418634 contributor: fullname: SD Golden – ident: 636_CR11 doi: 10.1002/cam4.1277 – volume: 72 start-page: 160 year: 2011 ident: 636_CR10 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2010.08.015 contributor: fullname: CB Smith – volume: 5 start-page: 199 year: 1993 ident: 636_CR19 publication-title: Knowl Acquis doi: 10.1006/knac.1993.1008 contributor: fullname: TR Gruber – ident: 636_CR46 – volume-title: Time event ontology year: 2012 ident: 636_CR43 contributor: fullname: C Tao |
SSID | ssj0017835 |
Score | 2.4455867 |
Snippet | Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily focused on... BackgroundCancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily... BACKGROUNDCancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have primarily... Abstract Background Cancer is the second leading cause of death in the United States, exceeded only by heart disease. Extant cancer survival analyses have... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 41 |
SubjectTerms | Axioms Cancer Cancer survival Cardiovascular diseases Census of Population Commuting Computer simulation Computers Coronary artery disease Data analysis Data integration Data mining Data processing Databases, Factual Datasets Electronic health records Environmental factors Female Hazardous materials Health risk assessment Heart diseases Humans Information Storage and Retrieval Integration Integrative data analysis Lung cancer Male Mapping Medical prognosis Medical research Medicare Methods Neoplasms Oncology Ontology Organic chemicals Relational data bases Reproducibility Reproducibility of Results Risk analysis Risk factors Semantic data integration Semantic web Semantics Smoking Surveillance Survival Survival Analysis Systems Integration Technology application Thesauri Vocabularies & taxonomies Vocabulary, Controlled |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlh5JLaJuX2zSoUCgERGxZlu3jpjQshfbUhdyEJMvJHuoN2d3-_n5jy5s1OfRSg_HaGq-teWhmrPFnxj5LC01wdSsgXCQoLsvolxIy8wiuvbN-QPv8qecL9f2uuNv71BfVhA3wwAPjrjMCQLdpqJVLlcPfplbl1hLMWlnIIvSjb1qPyVScP6DnGXEOM6v09RperX9_rBJwyVqoiRfqwfpfDsl7PmlaL7nngG7fsKMYOfLZcMdv2avQvWOvf8S58WPWzTpOYAT0mFzcb5dNaPg6_Abnlp5TISgfoSEgCt6ORVl8s-Lr7SOF4c8Ef8Jwho2QJXzVck_68QRaDC5QzxO2uP326-tcxK8pCI-oZiNal3mvrQ2Uo1U2y7V22EcIqCow1GIDSTmaaQt1iSijCapJ80rCfTVKZvkpO-hWXThnvAmwW6xByVY1ikDpkcWVBS6k2tK7hF2N3DWPA2iG6ZONSptBFAaiMCQKoxJ2Q_zfERLedX8AWmCiFph_aUHCvpD0DFklRORtfLkA90v4VmZWqLKAu65lwi4mlLAmP20e5W-iNa-NTGskUiWWhH3aNdOZVKHWhdWWaCoCNpIpaM4Gddl1KafATmt0tZwo0qTP05Zu-dBjfSO_RMCo3_8PJn1gh7I3gVLI_IIdbJ624SNCqo277K3nLy1HHCY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56gvgi_rZ6SgRBEIJtmqbtk6ziegj65MG9hSRNz324dt3u-vf7TZvuXRFcWLbdTGmSmcnMZJIvjL2VFpLg6laAuQhQXJbRlRIy83CuvbN-Qvv8oc_O1beL4iJOuA1xWeU8Jo4DddN7miNHkF7DmS3x-bj9LejUKMquxiM0brM7mUQR7RRffz1mEWhWI2Yys0p_GGDbxl1klYBh1kItbNEI2f_vwHzDMi1XTd4wQ-sH7H70H_lqYvhDdit0j9jd7zFD_ph1q44TJAFNlovLw6YJDR_CFfpv4zktB-UzQAQYwtt5aRbf93w4bMkZvyb4E6YnbAQu4X3LPUnJDrQYYiCkT9j5-svPz2cinqkgPHybvWhd5r22NlCkVtks19rhHo6gqnJrLX7AL0f5tlCX8DWaoJo0rySMWKNklj9lJ13fheeMNwHai29QslWNImh6xHJlgReptvQuYe_n3jXbCTrDjCFHpc3ECgNWGGKFUQn7RP1_JCTU6_GPfndpohKZjMDwbRpq5VLlIGKpVag0Qe6VhSxCwt4R9wzpJljkbdxigPoSypVZFaosYLRrmbDTBSV0yi-LZ_6bqNODuZbAhL05FtOTtE6tC_2BaCqCN5IpaJ5N4nJsUk7undZoarkQpEWblyXd5teI-I0oE26jfvH_ar1k9-Qo3KWQ-Sk72e8O4RVcpr17PerFX10HFOE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1ta9RAEB5qhdIv4rupVVYQBCGabDab3AeRUyxF0E8e9Nuyu9nUA03qvUj99z6Tl2uD9eC4y-3sJdl5JjOTnTxL9FJaIMHN6hjKRYLi0pS_qVimHsG1d9b3bJ9f9elCfT7Lz_ZoXN5qGMD1jakdrye1WP14c_nrz3sY_LvO4Ev9dg2f1T0dVsZwuDpWt-i2VEjUuZJPXU0q8E2OYWLzxm6HdJCxC9ZaTbxUR-b_7yX7ms-a1lNec1And-nOEFmKeQ-Fe7QXmvt08GWYO39AzbwRTFbAt9Hj8-2yCpVYh58Y2aUXXCgqRuoIqErUY9GW2LRivb3gEboS-B36HnagNBFtLTzjZwVZXHwA34e0OPn07eNpPKy2EHtEPZu4dqn32trAOVxp00xrh22EiKrMrLX4gCYdz8SFWYEopAqqSrJSwr1VSqbZI9pv2iY8IVEF2DXeQclaVYpJ65HlFTl2pOrCu4hej6NrLnpSDdMlI6U2vVYMtGJYK0ZF9IHHfyfIfNjdD-3q3AzmZVKmybdJmCmXKAfwJVbhoJmMr8hlHiJ6xdozjCOoyNvh4QMcL_NfmXmuihzufCYjOp5Iwtr8tHnUvxnBamQyQ6JV4BXRi10z9-QKtia0W5YpmfhIJpB53MNld0oj6iIqJkCanPO0pVl-77jAkX8ioNRH__3Pp3QoO4gXscyOaX-z2oZniKM27nlnHX8BVqoXkA priority: 102 providerName: Scholars Portal |
Title | An ontology-guided semantic data integration framework to support integrative data analysis of cancer survival |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30066664 https://www.proquest.com/docview/2090497777 https://search.proquest.com/docview/2081544207 https://pubmed.ncbi.nlm.nih.gov/PMC6069766 https://doaj.org/article/19466a0e94b04b2b90a43aa06457525e |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdtB2Nfxt5z1wUNBoOBG1uWXx-T0qwMUkpZIeyLkGS5Cyx2yKN__37nR1azbwtEdqITlnV3vjvp9DNjn4WGJJi89MFcBCgmDOlM-iK0cK6t0bZF-7xOru7k90W8OGJxvxemSdq3Znle_V6dV8tfTW7lemXHfZ7Y-GZ-AacbVjQZH7NjCGgfondLBzSV0S1fhlky3sKgNVvHMh_WOPHpRTwRGdokkQNb1ED2__tgfmSZhlmTj8zQ7AV73vmPfNL28yU7ctUr9nTerZC_ZtWk4gRJQJPl_v1-WbiCb90K47e0nNJBeQ8QAYbwsk_N4ruab_drcsb_Ejy4toXugEt4XXJLUrIBLR4xENI37G52-ePiyu_eqeBb-DY7vzShtYnWjiK1TIdRkhj8hiMos0hrjQP4ZWi9zeUpfI3CySKIMgEjVkgRRm_ZSVVX7j3jhYP24uukKGUhCZoesVwa40KyTK3x2Nd-dNW6hc5QTciRJarligJXFHFFSY9NafwPhIR63fxRb-5Vx3sVEhi-DlwuTSANRCzQEp0myL00FrHz2BfiniLdBIus7rYYoL-EcqUmsUxjGO1ceOxsQAmdssPqnv-q0-mtEkGOcCrFx2OfDtXUkvLUKlfviSYjeCMRgOZdKy6HW-qlzmPpQJAG9zysgQI0iN-dwJ_-d8sP7JloVCD1RXTGTnabvfsIb2pnRtChRYoym30bsSfTy-ub21EzM4FyLjOUt9Ofo0bH_gC1LCQR |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgSLAXxG8CA4yEhIQUkTiOkzyhgigFtj1t0t4s23FGH0i6puXv57vE7RYhUalqUl8U23fnu_PZnxl7JwwkwVZNDOYiQLFpSlcyFqmDc-2scSPa56lanMsfF_lFmHDrw7LK3Zg4DNR152iOHEF6BWe2wOfT6iqmU6MouxqO0LjN7sgMtpp2is-_7bMINKsRMplpqT72sG3DLrIyhmFWsZzYogGy_9-B-YZlmq6avGGG5g_Y_eA_8tnI8Ifslm8fsbsnIUP-mLWzlhMkAU2Wx5fbZe1r3vvf6L-l47QclO8AIsAQ3uyWZvFNx_vtipzxa4I_fnzCBOAS3jXckZSsQYshBkL6hJ3Pv559WcThTIXYwbfZxI1NnVPGeIrUSpNmSlncwxGUZWaMwQ_4ZSnf5qsCvkbtZZ1kpYARq6VIs6fsoO1a_5zx2kN78fVSNLKWBE2PWK7I8SLZFM5G7MOud_VqhM7QQ8hRKj2yQoMVmlihZcQ-U__vCQn1evijW1_qoEQ6JTB8k_hK2kRaiFhiJCpNkHtFLnIfsffEPU26CRY5E7YYoL6EcqVnuSxyGO1KROxoQgmdctPiHf910OleX0tgxN7ui-lJWqfW-m5LNCXBG4kENM9Gcdk3KSP3Tik0tZgI0qTN05J2-WtA_EaUCbdRvfh_td6we4uzk2N9_P3050t2KAZBL2KRHbGDzXrrX8F92tjXg478BV_jF8M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkCZe-GZkDDASEhJSmsRxnOSxDKrxsWkPTJp4sWzHGRVrUrUpD_z13OWjNPC2SlGb-qzGvd_57uLLzwBvuEYkmLz0UbmYoJgook_C55HF4NoabTu2zzN5ciE-XyaXO1t9tUX71swn1fViUs1_tLWVy4UNhjqx4Pz0GINu9KIyWBZlcBvuoM2GckjU-wUEuqHRL2JGmQzW6NbaB8gyH32y9Gk7npjcrZRi5JFa4v7_p-cd_zSundxxRrP78H0YRleD8nOyaczE_v6H4fFG43wA9_oQlU07kYdwy1WPYP-0X4R_DNW0YsR6QPfj_avNvHAFW7sFqmhuGVWcsoGDAnXOyqH6izU1W2-WFO__Ffjluh6650ZhdcksAXGFsjiLoR08gYvZx2_HJ36_bYNvMXxq_NJE1kqtHSWDmY5iKQ2eY6wpslhrjW8ICUNLei5PMZwpnCjCOOPoJwvBo_gp7FV15Z4BKxxOEHg4wUtRCGK_x3QxTfCHRJla48G7QXVq2bFzqDaryaTqVK5Q5YpUroQH70m5W0Ei1m6_qFdXqv_bVUR8-zp0uTChMIjiUAu8aGL1SxOeOA_eEjQUmT_q3-r-KQa8XiLSUtNEpAnGBTn34GgkiWZrx80DuFQ_bawVD3PM2FJ8efB620w9qRSucvWGZDJiUOIhyhx0WNwOaYC0B-kIpaMxj1sQey2peI-1wxv3fAX75x9m6uunsy_P4S5vTS31eXwEe81q415g7NaYl62V_gGevkJK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ontology-guided+semantic+data+integration+framework+to+support+integrative+data+analysis+of+cancer+survival&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Zhang%2C+Hansi&rft.au=Guo%2C+Yi&rft.au=Li%2C+Qian&rft.au=George%2C+Thomas+J&rft.date=2018-07-23&rft.eissn=1472-6947&rft.volume=18&rft.issue=Suppl+2&rft.spage=41&rft_id=info:doi/10.1186%2Fs12911-018-0636-4&rft_id=info%3Apmid%2F30066664&rft.externalDocID=30066664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |