Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model

Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 15; no. 1; pp. 209 - 11
Main Authors Huang, Yu-An, You, Zhu-Hong, Chen, Xing, Huang, Zhi-An, Zhang, Shanwen, Yan, Gui-Ying
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 16.10.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA .
AbstractList [...]the final prediction matrix based on this graph-based diffusion method (say GS) can be constructed by jointing n m column vectors of s? as follow: [ Equation Omitted - see PDF ] (13) Combined recommendation model for microbe-disease associations Recent research in the field of recommendation system has demonstrated that the ensemble strategy can improve the performance of basic prediction model in some case [41-43]. [...]the comparison results demonstrated the effectiveness of our hybrid approach as well as the introduction of other different similarity information (see Fig. 2). [...]66.7% (4/6) samples were found to be consistent with our assumption that diseases tend to be associated with similar microbes. [...]NGRHMDA yielded reliable results with AUCs of 0.9111 and 0.9023 ± 0.0031 in the evaluation frameworks of LOOCV and fivefold CV, respectively, which fully demonstrated the effectiveness of the proposed model.
Abstract Background Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe–disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. Methods In this work, we developed a new computational model for predicting microbe–disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe–disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. Results To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe–disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. Conclusions Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe–disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA .
Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA .
Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale.BACKGROUNDAccumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale.In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity.METHODSIn this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity.To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa.RESULTSTo evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa.Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA .CONCLUSIONSCompared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA .
ArticleNumber 209
Audience Academic
Author Yan, Gui-Ying
Huang, Zhi-An
Zhang, Shanwen
You, Zhu-Hong
Huang, Yu-An
Chen, Xing
Author_xml – sequence: 1
  givenname: Yu-An
  surname: Huang
  fullname: Huang, Yu-An
– sequence: 2
  givenname: Zhu-Hong
  surname: You
  fullname: You, Zhu-Hong
– sequence: 3
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
– sequence: 4
  givenname: Zhi-An
  surname: Huang
  fullname: Huang, Zhi-An
– sequence: 5
  givenname: Shanwen
  surname: Zhang
  fullname: Zhang, Shanwen
– sequence: 6
  givenname: Gui-Ying
  surname: Yan
  fullname: Yan, Gui-Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29037244$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUhiNURC_wAGxQJDZsUmzHl3iDVFVcKlWCBawtxz7OeJTYg51pxQbxDrwhT4JnpgOdCpRFopPv_yzb_2l1FGKAqnqO0TnGHX-dMZFcNAiLBreINuJRdYKpkA3rBD-6931cnea8RIhQRuWT6phI1ApC6Un1_VMC683sY6ijqydvUuzh14-f1mfQGWqdczRebwGX4lTPC6h9mGFIep8K4IdFH1Otg63LfLWob_28qE0cR13mBbyBOoGJ0wTB7nJTtDA-rR47PWZ4dvc-q768e_v58kNz_fH91eXFdWMYR3PTW0qJpM4AMNbijgF0QB1Gsu8I5cTYviXQG00p6wxHBJsWeiEQBocE5u1ZdbXz2qiXapX8pNM3FbVX20FMg9Jp9mYEhRi2xlApSVH3kstO9K7l0FMHrbOmuN7sXKt1P4E1EOakxwPp4Z_gF2qIN4pxSjGiRfDqTpDi1zXkWU0-GyhnFSCus8KSEYw6StqCvnyALuM6hXJUheKlBLIo_1KDLhvwwcWyrtlI1QXDiHHJ-YY6_wdVHgvl2kuznC_zg8CL-xv9s8N9ewogdkApTc4JnDJ-3t5uMftRYaQ2PVW7nqrSU7XpqRIliR8k9_L_Z34D8mnsSw
CitedBy_id crossref_primary_10_1109_TCBB_2018_2883041
crossref_primary_10_1109_TCBB_2019_2926716
crossref_primary_10_3390_microorganisms12091828
crossref_primary_10_1109_TCBB_2021_3116318
crossref_primary_10_1039_D1MO00237F
crossref_primary_10_3389_fgene_2019_00849
crossref_primary_10_3389_fmicb_2019_01578
crossref_primary_10_1016_j_compbiomed_2022_105503
crossref_primary_10_1186_s12859_023_05411_z
crossref_primary_10_1093_bib_bbae481
crossref_primary_10_1111_jcmm_18553
crossref_primary_10_1038_s41598_024_71837_x
crossref_primary_10_1109_ACCESS_2018_2851751
crossref_primary_10_1186_s12918_018_0664_9
crossref_primary_10_1109_TCBB_2022_3180903
crossref_primary_10_1093_bib_bbaa157
crossref_primary_10_1093_bib_bbaa158
crossref_primary_10_1016_j_future_2022_04_012
crossref_primary_10_1109_TCBB_2021_3133006
crossref_primary_10_3389_fmicb_2019_00291
crossref_primary_10_1109_TCBB_2020_2986459
crossref_primary_10_2478_am_2023_0006
crossref_primary_10_1109_TCBB_2020_3018138
crossref_primary_10_3389_fgene_2019_00758
crossref_primary_10_1038_s41598_021_83966_8
crossref_primary_10_1109_TCBB_2021_3082183
crossref_primary_10_1109_TCBB_2019_2907626
crossref_primary_10_1186_s12859_019_3066_0
crossref_primary_10_1186_s12920_018_0429_8
crossref_primary_10_3389_fmicb_2020_592430
crossref_primary_10_1016_j_compbiomed_2021_105119
crossref_primary_10_1049_cje_2020_00_212
crossref_primary_10_1016_j_ygeno_2020_07_044
crossref_primary_10_3389_fmicb_2021_685549
crossref_primary_10_3389_fmicb_2023_1216811
crossref_primary_10_1093_bib_bbaa146
crossref_primary_10_1093_bioinformatics_btaa1080
crossref_primary_10_3389_fmicb_2022_1077111
crossref_primary_10_3389_fmicb_2019_00827
crossref_primary_10_3389_fmicb_2019_00826
crossref_primary_10_1093_bib_bbae584
crossref_primary_10_1093_bib_bbac080
crossref_primary_10_3389_fgene_2021_666575
crossref_primary_10_3389_fmicb_2022_740382
crossref_primary_10_1038_s41598_025_91230_6
crossref_primary_10_3389_fbioe_2020_00831
crossref_primary_10_1111_jcmm_18571
crossref_primary_10_1016_j_csbr_2024_100005
crossref_primary_10_3389_fmicb_2022_834982
crossref_primary_10_1111_jcmm_18255
crossref_primary_10_1093_bib_bbaf075
crossref_primary_10_1016_j_bspc_2024_107004
crossref_primary_10_3389_fphar_2023_1132012
crossref_primary_10_1109_TCBB_2021_3132611
crossref_primary_10_3389_fmicb_2018_02762
crossref_primary_10_1186_s12967_022_03757_1
crossref_primary_10_3389_fmicb_2018_03336
crossref_primary_10_3389_fmicb_2018_02560
crossref_primary_10_3389_fmicb_2018_02440
crossref_primary_10_3389_fgene_2020_00083
crossref_primary_10_3389_fmicb_2018_02320
crossref_primary_10_3389_fmicb_2019_00676
crossref_primary_10_3389_fmicb_2020_00579
crossref_primary_10_1007_s12539_022_00514_2
crossref_primary_10_1109_TCBB_2022_3228617
crossref_primary_10_1109_TCBB_2022_3146176
crossref_primary_10_1016_j_fbio_2024_104091
crossref_primary_10_3389_fmicb_2021_650056
crossref_primary_10_1186_s12967_021_02732_6
crossref_primary_10_1186_s13099_023_00535_2
crossref_primary_10_3389_fmicb_2019_00684
crossref_primary_10_3389_fmicb_2023_1303585
crossref_primary_10_3389_fmicb_2018_00296
crossref_primary_10_3389_fmicb_2023_1159076
crossref_primary_10_1109_JBHI_2022_3229473
crossref_primary_10_1109_TCYB_2020_3026652
Cites_doi 10.1007/978-3-319-29659-3
10.1038/nature11209
10.1038/nature08821
10.2217/fmb.09.125
10.1038/nature06247
10.1145/963770.963774
10.1371/journal.pone.0058977
10.1038/nature06244
10.1104/pp.71.4.916
10.1586/ers.12.40
10.1111/j.1600-051X.1998.tb02419.x
10.1093/bib/bbw005
10.1038/nature10213
10.1126/scitranslmed.3003081
10.1126/science.1198719
10.1056/NEJMoa043802
10.1101/gr.131029.111
10.1164/rccm.201111-2075OC
10.1038/nature07540
10.1007/s11280-014-0307-z
10.1038/nature11234
10.1007/3-540-36233-9_15
10.1007/s12088-012-0304-9
10.1038/nature12820
10.1373/clinchem.2014.221770
10.1038/nrmicro2974
10.1038/ncomms11535
10.1371/journal.pone.0090731
10.1046/j.1365-2230.2000.00575.x
10.1016/j.cell.2014.08.032
10.1016/j.jpeds.2009.06.063
10.1371/journal.pone.0002719
10.1145/2339530.2339732
10.1038/srep34850
10.1371/journal.pone.0020647
10.1016/j.ins.2010.07.024
10.1007/978-3-319-26350-2_12
10.1145/511446.511513
10.1023/A:1021240730564
10.1145/1639714.1639735
10.1038/nature06246
10.1038/ismej.2014.114
10.1038/ncomms5212
10.1371/journal.pone.0016393
10.1093/jn/137.3.781S
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s) 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s) 2017
DBID AAYXX
CITATION
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12967-017-1304-7
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 11
ExternalDocumentID oai_doaj_org_article_051dcc4992824b96987bf36eb4fe3fdc
PMC5644104
A510569661
29037244
10_1186_s12967_017_1304_7
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 61772531
– fundername: ;
  grantid: No. 61572506; 61702424
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
NPM
PMFND
7T5
7XB
8FK
AHSBF
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c560t-bd44294fcee553185ee8e4f109b82462cdb32ebca4458c6021c3eb7701ef07163
IEDL.DBID M48
ISSN 1479-5876
IngestDate Wed Aug 27 01:23:07 EDT 2025
Thu Aug 21 13:31:05 EDT 2025
Fri Jul 11 15:25:56 EDT 2025
Sat Jul 26 00:15:23 EDT 2025
Tue Jun 17 21:55:19 EDT 2025
Tue Jun 10 20:46:16 EDT 2025
Wed Feb 19 02:43:53 EST 2025
Tue Jul 01 03:51:09 EDT 2025
Thu Apr 24 22:53:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-bd44294fcee553185ee8e4f109b82462cdb32ebca4458c6021c3eb7701ef07163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12967-017-1304-7
PMID 29037244
PQID 1961189441
PQPubID 43076
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_051dcc4992824b96987bf36eb4fe3fdc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5644104
proquest_miscellaneous_1952108423
proquest_journals_1961189441
gale_infotracmisc_A510569661
gale_infotracacademiconefile_A510569661
pubmed_primary_29037244
crossref_citationtrail_10_1186_s12967_017_1304_7
crossref_primary_10_1186_s12967_017_1304_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-16
PublicationDateYYYYMMDD 2017-10-16
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-16
  day: 16
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of translational medicine
PublicationTitleAlternate J Transl Med
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References AL Kau (1304_CR4) 2011; 474
PJ Turnbaugh (1304_CR7) 2007; 449
MA Sze (1304_CR28) 2012; 185
X Zhou (1304_CR36) 2014; 5
L Rup (1304_CR5) 2012; 52
ER Davenport (1304_CR12) 2014; 9
MS Donia (1304_CR14) 2014; 158
Q Zou (1304_CR46) 2015; 2015
V Mai (1304_CR22) 2011; 6
R Burke (1304_CR42) 2002; 12
MR Mason (1304_CR13) 2015; 9
DN Fredricks (1304_CR19) 2005; 353
S Socransky (1304_CR27) 1998; 25
LA David (1304_CR10) 2014; 505
I Sobhani (1304_CR21) 2011; 6
L Skov (1304_CR26) 2000; 25
1304_CR43
1304_CR40
UM Singh-Blom (1304_CR47) 2013; 8
T Hofmann (1304_CR45) 2004; 22
1304_CR44
J Qin (1304_CR18) 2010; 464
BD Muegge (1304_CR11) 2011; 332
W Ma (1304_CR33) 2016; 18
HH Kong (1304_CR24) 2012; 22
EA Nothnagel (1304_CR15) 1983; 71
R Medzhitov (1304_CR16) 2007; 449
M Mshvildadze (1304_CR23) 2010; 156
C Taube (1304_CR20) 2012; 6
N Kumar (1304_CR9) 2016; 6
DE Sturdevant (1304_CR31) 2010; 5
P Shah (1304_CR6) 2016; 7
Z Gao (1304_CR25) 2008; 3
R Patel (1304_CR29) 2015; 61
AP Bhavsar (1304_CR8) 2007; 449
F Sommer (1304_CR1) 2013; 11
1304_CR39
Consortium HMP (1304_CR3) 2012; 486
B Corthésy (1304_CR30) 2007; 137
C Nathan (1304_CR32) 2012; 4
1304_CR38
BA Methé (1304_CR2) 2012; 486
1304_CR35
W Yao (1304_CR37) 2015; 18
PJ Turnbaugh (1304_CR17) 2009; 457
AB Barragáns-Martínez (1304_CR41) 2010; 180
1304_CR34
27713560 - Sci Rep. 2016 Oct 07;6:34850
17311975 - J Nutr. 2007 Mar;137(3 Suppl 2):781S-90S
27168102 - Nat Commun. 2016 May 11;7:11535
17943119 - Nature. 2007 Oct 18;449(7164):827-34
21674011 - PLoS One. 2011;6(6):e20647
16662929 - Plant Physiol. 1983 Apr;71(4):916-26
24967666 - Nat Commun. 2014 Jun 26;5:4212
22427533 - Am J Respir Crit Care Med. 2012 May 15;185(10):1073-80
23650495 - PLoS One. 2013 May 01;8(5):e58977
21677749 - Nature. 2011 Jun 15;474(7351):327-36
19043404 - Nature. 2009 Jan 22;457(7228):480-4
25278500 - Clin Chem. 2015 Jan;61(1):100-11
10671976 - Clin Exp Dermatol. 2000 Jan;25(1):57-61
26883326 - Brief Bioinform. 2017 Jan;18(1):85-97
24336217 - Nature. 2014 Jan 23;505(7484):559-63
22971068 - Expert Rev Respir Med. 2012 Aug;6(4):441-9
22699609 - Nature. 2012 Jun 13;486(7402):207-14
26273645 - Biomed Res Int. 2015;2015:810514
17943116 - Nature. 2007 Oct 18;449(7164):804-10
25012901 - ISME J. 2015 Jan;9(1):268-72
20143945 - Future Microbiol. 2010 Feb;5(2):205-19
18648509 - PLoS One. 2008 Jul 23;3(7):e2719
9495612 - J Clin Periodontol. 1998 Feb;25(2):134-44
22310478 - Genome Res. 2012 May;22(5):850-9
17943118 - Nature. 2007 Oct 18;449(7164):819-26
20203603 - Nature. 2010 Mar 4;464(7285):59-65
16267321 - N Engl J Med. 2005 Nov 3;353(18):1899-911
21596990 - Science. 2011 May 20;332(6032):970-4
23997318 - Indian J Microbiol. 2012 Sep;52(3):315
24618913 - PLoS One. 2014 Mar 11;9(3):e90731
21297998 - PLoS One. 2011 Jan 27;6(1):e16393
23435359 - Nat Rev Microbiol. 2013 Apr;11(4):227-38
22745440 - Sci Transl Med. 2012 Jun 27;4(140):140sr2
25215495 - Cell. 2014 Sep 11;158(6):1402-1414
19783002 - J Pediatr. 2010 Jan;156(1):20-5
References_xml – ident: 1304_CR34
  doi: 10.1007/978-3-319-29659-3
– volume: 486
  start-page: 215
  issue: 7402
  year: 2012
  ident: 1304_CR2
  publication-title: Nature
  doi: 10.1038/nature11209
– volume: 464
  start-page: 59
  issue: 7285
  year: 2010
  ident: 1304_CR18
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 5
  start-page: 205
  issue: 2
  year: 2010
  ident: 1304_CR31
  publication-title: Futur Microbiol
  doi: 10.2217/fmb.09.125
– volume: 449
  start-page: 827
  issue: 7164
  year: 2007
  ident: 1304_CR8
  publication-title: Nature
  doi: 10.1038/nature06247
– volume: 22
  start-page: 89
  issue: 1
  year: 2004
  ident: 1304_CR45
  publication-title: ACM Trans Inf Syst (TOIS)
  doi: 10.1145/963770.963774
– volume: 8
  start-page: e58977
  issue: 5
  year: 2013
  ident: 1304_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0058977
– volume: 449
  start-page: 804
  issue: 7164
  year: 2007
  ident: 1304_CR7
  publication-title: Nature
  doi: 10.1038/nature06244
– volume: 71
  start-page: 916
  issue: 4
  year: 1983
  ident: 1304_CR15
  publication-title: Plant Physiol
  doi: 10.1104/pp.71.4.916
– volume: 6
  start-page: 441
  issue: 4
  year: 2012
  ident: 1304_CR20
  publication-title: Expert Rev Respir Med
  doi: 10.1586/ers.12.40
– volume: 25
  start-page: 134
  issue: 2
  year: 1998
  ident: 1304_CR27
  publication-title: J Clin Periodontol
  doi: 10.1111/j.1600-051X.1998.tb02419.x
– ident: 1304_CR35
– volume: 18
  start-page: 85
  year: 2016
  ident: 1304_CR33
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw005
– volume: 474
  start-page: 327
  issue: 7351
  year: 2011
  ident: 1304_CR4
  publication-title: Nature
  doi: 10.1038/nature10213
– volume: 4
  start-page: 140sr142
  issue: 140
  year: 2012
  ident: 1304_CR32
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3003081
– volume: 332
  start-page: 970
  issue: 6032
  year: 2011
  ident: 1304_CR11
  publication-title: Science
  doi: 10.1126/science.1198719
– volume: 353
  start-page: 1899
  issue: 18
  year: 2005
  ident: 1304_CR19
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043802
– volume: 22
  start-page: 850
  issue: 5
  year: 2012
  ident: 1304_CR24
  publication-title: Genome Res
  doi: 10.1101/gr.131029.111
– volume: 185
  start-page: 1073
  issue: 10
  year: 2012
  ident: 1304_CR28
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201111-2075OC
– volume: 457
  start-page: 480
  issue: 7228
  year: 2009
  ident: 1304_CR17
  publication-title: Nature
  doi: 10.1038/nature07540
– volume: 18
  start-page: 1351
  issue: 5
  year: 2015
  ident: 1304_CR37
  publication-title: World Wide Web
  doi: 10.1007/s11280-014-0307-z
– volume: 486
  start-page: 207
  issue: 7402
  year: 2012
  ident: 1304_CR3
  publication-title: Nature
  doi: 10.1038/nature11234
– ident: 1304_CR38
  doi: 10.1007/3-540-36233-9_15
– volume: 52
  start-page: 315
  year: 2012
  ident: 1304_CR5
  publication-title: Indian J Microbiol
  doi: 10.1007/s12088-012-0304-9
– volume: 505
  start-page: 559
  issue: 7484
  year: 2014
  ident: 1304_CR10
  publication-title: Nature
  doi: 10.1038/nature12820
– volume: 61
  start-page: 100
  issue: 1
  year: 2015
  ident: 1304_CR29
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2014.221770
– volume: 11
  start-page: 227
  issue: 4
  year: 2013
  ident: 1304_CR1
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2974
– volume: 7
  start-page: 11535
  year: 2016
  ident: 1304_CR6
  publication-title: Nat Commun
  doi: 10.1038/ncomms11535
– volume: 9
  start-page: e90731
  issue: 3
  year: 2014
  ident: 1304_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0090731
– volume: 25
  start-page: 57
  issue: 1
  year: 2000
  ident: 1304_CR26
  publication-title: Clin Exp Dermatol
  doi: 10.1046/j.1365-2230.2000.00575.x
– volume: 158
  start-page: 1402
  issue: 6
  year: 2014
  ident: 1304_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2014.08.032
– volume: 156
  start-page: 20
  issue: 1
  year: 2010
  ident: 1304_CR23
  publication-title: J Pediatr
  doi: 10.1016/j.jpeds.2009.06.063
– volume: 3
  start-page: e2719
  issue: 7
  year: 2008
  ident: 1304_CR25
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002719
– ident: 1304_CR44
  doi: 10.1145/2339530.2339732
– volume: 6
  start-page: 34850
  year: 2016
  ident: 1304_CR9
  publication-title: Sci Rep
  doi: 10.1038/srep34850
– volume: 6
  start-page: e20647
  issue: 6
  year: 2011
  ident: 1304_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020647
– volume: 180
  start-page: 4290
  issue: 22
  year: 2010
  ident: 1304_CR41
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.07.024
– ident: 1304_CR39
  doi: 10.1007/978-3-319-26350-2_12
– ident: 1304_CR40
  doi: 10.1145/511446.511513
– volume: 12
  start-page: 331
  issue: 4
  year: 2002
  ident: 1304_CR42
  publication-title: User Model User-Adap Inter
  doi: 10.1023/A:1021240730564
– ident: 1304_CR43
  doi: 10.1145/1639714.1639735
– volume: 449
  start-page: 819
  issue: 7164
  year: 2007
  ident: 1304_CR16
  publication-title: Nature
  doi: 10.1038/nature06246
– volume: 9
  start-page: 268
  issue: 1
  year: 2015
  ident: 1304_CR13
  publication-title: ISME J
  doi: 10.1038/ismej.2014.114
– volume: 2015
  start-page: 810514
  year: 2015
  ident: 1304_CR46
  publication-title: BioMed Res Int
– volume: 5
  start-page: 4212
  year: 2014
  ident: 1304_CR36
  publication-title: Nat Commun
  doi: 10.1038/ncomms5212
– volume: 6
  start-page: e16393
  issue: 1
  year: 2011
  ident: 1304_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016393
– volume: 137
  start-page: 781S
  issue: 3
  year: 2007
  ident: 1304_CR30
  publication-title: J Nutr
  doi: 10.1093/jn/137.3.781S
– reference: 24967666 - Nat Commun. 2014 Jun 26;5:4212
– reference: 27713560 - Sci Rep. 2016 Oct 07;6:34850
– reference: 20143945 - Future Microbiol. 2010 Feb;5(2):205-19
– reference: 24618913 - PLoS One. 2014 Mar 11;9(3):e90731
– reference: 23650495 - PLoS One. 2013 May 01;8(5):e58977
– reference: 21674011 - PLoS One. 2011;6(6):e20647
– reference: 9495612 - J Clin Periodontol. 1998 Feb;25(2):134-44
– reference: 25012901 - ISME J. 2015 Jan;9(1):268-72
– reference: 22745440 - Sci Transl Med. 2012 Jun 27;4(140):140sr2
– reference: 10671976 - Clin Exp Dermatol. 2000 Jan;25(1):57-61
– reference: 22310478 - Genome Res. 2012 May;22(5):850-9
– reference: 21677749 - Nature. 2011 Jun 15;474(7351):327-36
– reference: 18648509 - PLoS One. 2008 Jul 23;3(7):e2719
– reference: 23997318 - Indian J Microbiol. 2012 Sep;52(3):315
– reference: 26883326 - Brief Bioinform. 2017 Jan;18(1):85-97
– reference: 19043404 - Nature. 2009 Jan 22;457(7228):480-4
– reference: 25278500 - Clin Chem. 2015 Jan;61(1):100-11
– reference: 26273645 - Biomed Res Int. 2015;2015:810514
– reference: 17943119 - Nature. 2007 Oct 18;449(7164):827-34
– reference: 16662929 - Plant Physiol. 1983 Apr;71(4):916-26
– reference: 22427533 - Am J Respir Crit Care Med. 2012 May 15;185(10):1073-80
– reference: 17943116 - Nature. 2007 Oct 18;449(7164):804-10
– reference: 22699609 - Nature. 2012 Jun 13;486(7402):207-14
– reference: 17311975 - J Nutr. 2007 Mar;137(3 Suppl 2):781S-90S
– reference: 25215495 - Cell. 2014 Sep 11;158(6):1402-1414
– reference: 21596990 - Science. 2011 May 20;332(6032):970-4
– reference: 22971068 - Expert Rev Respir Med. 2012 Aug;6(4):441-9
– reference: 21297998 - PLoS One. 2011 Jan 27;6(1):e16393
– reference: 19783002 - J Pediatr. 2010 Jan;156(1):20-5
– reference: 16267321 - N Engl J Med. 2005 Nov 3;353(18):1899-911
– reference: 17943118 - Nature. 2007 Oct 18;449(7164):819-26
– reference: 24336217 - Nature. 2014 Jan 23;505(7484):559-63
– reference: 27168102 - Nat Commun. 2016 May 11;7:11535
– reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65
– reference: 23435359 - Nat Rev Microbiol. 2013 Apr;11(4):227-38
SSID ssj0024549
Score 2.4792936
Snippet Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases....
[...]the final prediction matrix based on this graph-based diffusion method (say GS) can be constructed by jointing n m column vectors of s? as follow: [...
Abstract Background Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 209
SubjectTerms Chronic obstructive pulmonary disease
Collaboration
Data mining
Homeostasis
Immune system
International conferences
Knowledge discovery
Management
Microorganisms
Neighborhoods
Psoriasis
Recommender systems
Skin
Social networks
World Wide Web
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pi9UwEA-yB_Ei_rfuKhEEQQjbNmnSHldxWYQVDy7sLTTpFAVfn-y-9Sj7HfyGfhJ_06bPVwS9eCtNAslk_vwmmcwI8cLApJRVMMq4mhQsPmSui7WCGgyt63PqHL9GPn1vT87Mu_PqfKfUF8eETemBJ8Idgmm6GIHL4RuY0Fj4yKHXloLpSfddZO0Lmzc7U3OWPbg96Q6zqO3hJaya5RBLp6CzjXILKzQm6_9TJe_YpGW85I4BOr4jbifkKI-mGd8VN2i4J26eprvx--L7hwv-ZkLLdS9XHGkX6Of1j3QHI9vfOyH5VYkE9pNzuog0auCTUrCFbIdOjsmsJZ_Uyh12-UaSvejVilI9JjlW03kgzo7ffnxzolJ1BRWBcjYqdAa2yPSwklXFb6iJajJ9kTcBlLZl7IIuOVTKmKqOFlggagrO5QX1wCVWPxR7w3qgx0ISQE7XVPgZgzEtYwytW4q6qALcLcpEPlPbx5R6nCtgfPGjC1JbP22Qxwbx_ZrxLhOvtkO-Tnk3_tb5NW_htiOnzB5_gJF8YiT_L0bKxEtmAM-CjcnFNr1PwBI5RZY_Yihq4R0WmThY9IRAxmXzzEI-KYRLD0WHuTcAn5l4vm3mkRzkNtD6ivsAS-U1AG4mHk0ct11S2eTaAYplwi14cbHmZcvw-dOYLrxiyJubJ_-DSPviVjlKUa4KeyD2NhdX9BSobBOejQL4C_-cNn8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0BPFF_LbnKREEQQjXjzRJn-QUj0M48cGDfQtNMlXhtj1393zyj7-ZbvajCPdWmgSaztdvMpMZgHeKTEpZeyWVsSjJ4pPMxWAlqUHfmi7HaPg28vk3fXahvs7qWTpwW6a0yo1OHBV1HAKfkR8TpxAWbsh6f7z6I7lrFEdXUwuNu3CPS5cxV5vZzuFS5PykSGZh9fGSbJvmREsjSXMraSa2aCzZ_79i3rNM06zJPTN0-ggeJvwoTtYEfwx3sH8C989ThPwp_Pu-4Gf-3WLoxJzz7TzKFIcR7Y4agm-WCMJ_YlMyIq3p-bSUWEO0fRRjQWvBp7Vij2X-omBPej7H1JNJjB11nsHF6Zcfn89k6rAgAyGdlfRRkT1SHVnKuuZ71IgWVVfkjbel0mWIvio5XUqp2gZNeCBU6I3JC-wIm-jqORz0Q48vQSABndjU9DJ4pVrGGVXVYqiK2pPLhRnkm3_tQio_zl0wLt3ohljt1uRxRB6OsSlnMviwXXK1rr1x2-RPTMDtRC6bPb4YFj9dkkJHGiiGQE4eOZrKN7qxxneVRq86rLoYMnjP5Hcs3PRxoU13FGiLXCbLnTAc1eQhFhkcTWaSUIbp8IaBXFIKS7dj4Qzebod5JSe69Thc8xzCU7klkJvBizW_bbdUNnllCI5lYCacONnzdKT__WssGV4z7M3V4e2f9QoelKN05LLQR3CwWlzja8JcK_9mFKwbEUArnQ
  priority: 102
  providerName: ProQuest
Title Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model
URI https://www.ncbi.nlm.nih.gov/pubmed/29037244
https://www.proquest.com/docview/1961189441
https://www.proquest.com/docview/1952108423
https://pubmed.ncbi.nlm.nih.gov/PMC5644104
https://doaj.org/article/051dcc4992824b96987bf36eb4fe3fdc
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_6AeKL-O1qPSIIgrC6H9kk-yDSk5YiXCnFg8OXsMlmVejt6fVa2pfi_-B_6F_iTC57vcXigy_HscnAZufrN8lkBuAlR5eSFYbHXCoXo8dHnautitEMmko2iasl3UYeHYqDMf84KSYb0LW3Ch_w9MbQjvpJjecnby5-XL5HhX_nFV6Jt6foswQlUMoYLTKP5SZso2OS1NBgxNV16T2MhcLB5o1kVBi4THKJHq_npXwx_79N9prP6udTrjmo_btwJyBLtrsUhXuw4dr7cGsUzs4fwNXRnP4TI9isYVPKxDPu989f4YyGVdecYnTrhCE2ZF05iUDV0k4qig2r2pr5YteMdnLZmjidO0ZR9nTqQr8m5rvtPITx_t6nDwdx6L4QW0RBi9jUHH0Vb9CLFgXdsXZOOd6kSWlUxkVma5NnlErFeaGsQKxgc2ekTFLXIG4R-SPYametewLMIQiqywIfWsN5RRgkzytn87QwGI65CJLua2sbSpNTh4wT7UMUJfSSVxp5RedvXMsIXq9Ivi_rcvxr8pBYuJpIJbX9g9n8iw4aqtE61dZiAIhBKDelKJU0TS6c4Y3Lm9pG8IoEQJMo4svZKtxfwCVSCS29S1BVYPSYRrDTm4kKa_vDnQjpTt41GkJ89xLBaQQvVsNESUlwrZud0RzEWolCABzB46XErZbUCW4EsieLvTX3R9pvX3058YIgccKf_jflM7ideS1K4lTswNZifuaeI1RbmAFsyokcwPZw7_DoeOA3PAZeKfH3ePj5D_r8Qio
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviGcbKGAkEBKS1TwcOzkgVB7VlnYrDq20NxM7DiCxSdndgpD4TfxGZhJndyOk3npbxfYqzjy-Gc94BuC5QEiJUyO4UJnjiPgoc6XNOKpBU6gqdKWi28jjEzk6Ex8n6WQD_vZ3YSitsteJraIuG0tn5HvIKWgL54jeb85_cOoaRdHVvoVGxxZH7vcvdNnmrw_fI31fxPHBh9N3I-67CnCL6L7gphSog0WF6JCmdHfYucyJKgpzk8VCxrY0SUwpQkKkmZWIgTZxRqkwchXisUzwf6_BdQTekJw9NVk5eAKdLR85jTK5N0cslZTYqTgiheBqgH1ti4D_gWANCYdZmmuwd3Abbnl7le13DHYHNlx9F26MfUT-Hvz5NKPfRF7WVGxK-X3GcR_3YcWK-oxusjC0N1lfosKvqel0FlmRFXXJ2gLajE6H2RqL_nSMPPfp1PkeUKzt4HMfzq7k2z-Azbqp3Q4wh4ZVmaf40BohCrJrkqRwNolSgy6eCyDsv7W2vtw5dd34rlu3J5O6I49G8lBMT2gVwKvlkvOu1sdlk98SAZcTqUx3-6CZfdFe6jVqvNJadCrRsRUml3mmTJVIZ0Tlkqq0Abwk8mtSJvhytvB3InCLVJZL75P5K9EjjQLYHcxEJWCHwz0Daa-E5nolMgE8Ww7TSkqsq11zQXPQfgszNKoD2O74bbmlOA8TheZfAGrAiYM9D0fqb1_bEuUpmdmheHj5az2Fm6PT8bE-Pjw5egRbcSspIY_kLmwuZhfuMdp7C_OkFTIGn69aqv8BO79oKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+microbe%E2%80%93disease+association+from+the+integration+of+neighbor+and+graph+with+collaborative+recommendation+model&rft.jtitle=Journal+of+translational+medicine&rft.au=Huang%2C+Yu-An&rft.au=You%2C+Zhu-Hong&rft.au=Chen%2C+Xing&rft.au=Huang%2C+Zhi-An&rft.date=2017-10-16&rft.pub=BioMed+Central&rft.eissn=1479-5876&rft.volume=15&rft_id=info:doi/10.1186%2Fs12967-017-1304-7&rft_id=info%3Apmid%2F29037244&rft.externalDocID=PMC5644104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon