Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model
Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention...
Saved in:
Published in | Journal of translational medicine Vol. 15; no. 1; pp. 209 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
16.10.2017
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale.
In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity.
To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa.
Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA . |
---|---|
AbstractList | [...]the final prediction matrix based on this graph-based diffusion method (say GS) can be constructed by jointing n m column vectors of s? as follow: [ Equation Omitted - see PDF ] (13) Combined recommendation model for microbe-disease associations Recent research in the field of recommendation system has demonstrated that the ensemble strategy can improve the performance of basic prediction model in some case [41-43]. [...]the comparison results demonstrated the effectiveness of our hybrid approach as well as the introduction of other different similarity information (see Fig. 2). [...]66.7% (4/6) samples were found to be consistent with our assumption that diseases tend to be associated with similar microbes. [...]NGRHMDA yielded reliable results with AUCs of 0.9111 and 0.9023 ± 0.0031 in the evaluation frameworks of LOOCV and fivefold CV, respectively, which fully demonstrated the effectiveness of the proposed model. Abstract Background Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe–disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. Methods In this work, we developed a new computational model for predicting microbe–disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe–disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. Results To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe–disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. Conclusions Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe–disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA . Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA . Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale.BACKGROUNDAccumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale.In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity.METHODSIn this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity.To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa.RESULTSTo evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa.Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA .CONCLUSIONSCompared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA . |
ArticleNumber | 209 |
Audience | Academic |
Author | Yan, Gui-Ying Huang, Zhi-An Zhang, Shanwen You, Zhu-Hong Huang, Yu-An Chen, Xing |
Author_xml | – sequence: 1 givenname: Yu-An surname: Huang fullname: Huang, Yu-An – sequence: 2 givenname: Zhu-Hong surname: You fullname: You, Zhu-Hong – sequence: 3 givenname: Xing surname: Chen fullname: Chen, Xing – sequence: 4 givenname: Zhi-An surname: Huang fullname: Huang, Zhi-An – sequence: 5 givenname: Shanwen surname: Zhang fullname: Zhang, Shanwen – sequence: 6 givenname: Gui-Ying surname: Yan fullname: Yan, Gui-Ying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29037244$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstu1DAUhiNURC_wAGxQJDZsUmzHl3iDVFVcKlWCBawtxz7OeJTYg51pxQbxDrwhT4JnpgOdCpRFopPv_yzb_2l1FGKAqnqO0TnGHX-dMZFcNAiLBreINuJRdYKpkA3rBD-6931cnea8RIhQRuWT6phI1ApC6Un1_VMC683sY6ijqydvUuzh14-f1mfQGWqdczRebwGX4lTPC6h9mGFIep8K4IdFH1Otg63LfLWob_28qE0cR13mBbyBOoGJ0wTB7nJTtDA-rR47PWZ4dvc-q768e_v58kNz_fH91eXFdWMYR3PTW0qJpM4AMNbijgF0QB1Gsu8I5cTYviXQG00p6wxHBJsWeiEQBocE5u1ZdbXz2qiXapX8pNM3FbVX20FMg9Jp9mYEhRi2xlApSVH3kstO9K7l0FMHrbOmuN7sXKt1P4E1EOakxwPp4Z_gF2qIN4pxSjGiRfDqTpDi1zXkWU0-GyhnFSCus8KSEYw6StqCvnyALuM6hXJUheKlBLIo_1KDLhvwwcWyrtlI1QXDiHHJ-YY6_wdVHgvl2kuznC_zg8CL-xv9s8N9ewogdkApTc4JnDJ-3t5uMftRYaQ2PVW7nqrSU7XpqRIliR8k9_L_Z34D8mnsSw |
CitedBy_id | crossref_primary_10_1109_TCBB_2018_2883041 crossref_primary_10_1109_TCBB_2019_2926716 crossref_primary_10_3390_microorganisms12091828 crossref_primary_10_1109_TCBB_2021_3116318 crossref_primary_10_1039_D1MO00237F crossref_primary_10_3389_fgene_2019_00849 crossref_primary_10_3389_fmicb_2019_01578 crossref_primary_10_1016_j_compbiomed_2022_105503 crossref_primary_10_1186_s12859_023_05411_z crossref_primary_10_1093_bib_bbae481 crossref_primary_10_1111_jcmm_18553 crossref_primary_10_1038_s41598_024_71837_x crossref_primary_10_1109_ACCESS_2018_2851751 crossref_primary_10_1186_s12918_018_0664_9 crossref_primary_10_1109_TCBB_2022_3180903 crossref_primary_10_1093_bib_bbaa157 crossref_primary_10_1093_bib_bbaa158 crossref_primary_10_1016_j_future_2022_04_012 crossref_primary_10_1109_TCBB_2021_3133006 crossref_primary_10_3389_fmicb_2019_00291 crossref_primary_10_1109_TCBB_2020_2986459 crossref_primary_10_2478_am_2023_0006 crossref_primary_10_1109_TCBB_2020_3018138 crossref_primary_10_3389_fgene_2019_00758 crossref_primary_10_1038_s41598_021_83966_8 crossref_primary_10_1109_TCBB_2021_3082183 crossref_primary_10_1109_TCBB_2019_2907626 crossref_primary_10_1186_s12859_019_3066_0 crossref_primary_10_1186_s12920_018_0429_8 crossref_primary_10_3389_fmicb_2020_592430 crossref_primary_10_1016_j_compbiomed_2021_105119 crossref_primary_10_1049_cje_2020_00_212 crossref_primary_10_1016_j_ygeno_2020_07_044 crossref_primary_10_3389_fmicb_2021_685549 crossref_primary_10_3389_fmicb_2023_1216811 crossref_primary_10_1093_bib_bbaa146 crossref_primary_10_1093_bioinformatics_btaa1080 crossref_primary_10_3389_fmicb_2022_1077111 crossref_primary_10_3389_fmicb_2019_00827 crossref_primary_10_3389_fmicb_2019_00826 crossref_primary_10_1093_bib_bbae584 crossref_primary_10_1093_bib_bbac080 crossref_primary_10_3389_fgene_2021_666575 crossref_primary_10_3389_fmicb_2022_740382 crossref_primary_10_1038_s41598_025_91230_6 crossref_primary_10_3389_fbioe_2020_00831 crossref_primary_10_1111_jcmm_18571 crossref_primary_10_1016_j_csbr_2024_100005 crossref_primary_10_3389_fmicb_2022_834982 crossref_primary_10_1111_jcmm_18255 crossref_primary_10_1093_bib_bbaf075 crossref_primary_10_1016_j_bspc_2024_107004 crossref_primary_10_3389_fphar_2023_1132012 crossref_primary_10_1109_TCBB_2021_3132611 crossref_primary_10_3389_fmicb_2018_02762 crossref_primary_10_1186_s12967_022_03757_1 crossref_primary_10_3389_fmicb_2018_03336 crossref_primary_10_3389_fmicb_2018_02560 crossref_primary_10_3389_fmicb_2018_02440 crossref_primary_10_3389_fgene_2020_00083 crossref_primary_10_3389_fmicb_2018_02320 crossref_primary_10_3389_fmicb_2019_00676 crossref_primary_10_3389_fmicb_2020_00579 crossref_primary_10_1007_s12539_022_00514_2 crossref_primary_10_1109_TCBB_2022_3228617 crossref_primary_10_1109_TCBB_2022_3146176 crossref_primary_10_1016_j_fbio_2024_104091 crossref_primary_10_3389_fmicb_2021_650056 crossref_primary_10_1186_s12967_021_02732_6 crossref_primary_10_1186_s13099_023_00535_2 crossref_primary_10_3389_fmicb_2019_00684 crossref_primary_10_3389_fmicb_2023_1303585 crossref_primary_10_3389_fmicb_2018_00296 crossref_primary_10_3389_fmicb_2023_1159076 crossref_primary_10_1109_JBHI_2022_3229473 crossref_primary_10_1109_TCYB_2020_3026652 |
Cites_doi | 10.1007/978-3-319-29659-3 10.1038/nature11209 10.1038/nature08821 10.2217/fmb.09.125 10.1038/nature06247 10.1145/963770.963774 10.1371/journal.pone.0058977 10.1038/nature06244 10.1104/pp.71.4.916 10.1586/ers.12.40 10.1111/j.1600-051X.1998.tb02419.x 10.1093/bib/bbw005 10.1038/nature10213 10.1126/scitranslmed.3003081 10.1126/science.1198719 10.1056/NEJMoa043802 10.1101/gr.131029.111 10.1164/rccm.201111-2075OC 10.1038/nature07540 10.1007/s11280-014-0307-z 10.1038/nature11234 10.1007/3-540-36233-9_15 10.1007/s12088-012-0304-9 10.1038/nature12820 10.1373/clinchem.2014.221770 10.1038/nrmicro2974 10.1038/ncomms11535 10.1371/journal.pone.0090731 10.1046/j.1365-2230.2000.00575.x 10.1016/j.cell.2014.08.032 10.1016/j.jpeds.2009.06.063 10.1371/journal.pone.0002719 10.1145/2339530.2339732 10.1038/srep34850 10.1371/journal.pone.0020647 10.1016/j.ins.2010.07.024 10.1007/978-3-319-26350-2_12 10.1145/511446.511513 10.1023/A:1021240730564 10.1145/1639714.1639735 10.1038/nature06246 10.1038/ismej.2014.114 10.1038/ncomms5212 10.1371/journal.pone.0016393 10.1093/jn/137.3.781S |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 The Author(s) 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 – notice: The Author(s) 2017 |
DBID | AAYXX CITATION NPM 3V. 7T5 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12967-017-1304-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1479-5876 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_051dcc4992824b96987bf36eb4fe3fdc PMC5644104 A510569661 29037244 10_1186_s12967_017_1304_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 61772531 – fundername: ; grantid: No. 61572506; 61702424 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 NPM PMFND 7T5 7XB 8FK AHSBF AZQEC DWQXO H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c560t-bd44294fcee553185ee8e4f109b82462cdb32ebca4458c6021c3eb7701ef07163 |
IEDL.DBID | M48 |
ISSN | 1479-5876 |
IngestDate | Wed Aug 27 01:23:07 EDT 2025 Thu Aug 21 13:31:05 EDT 2025 Fri Jul 11 15:25:56 EDT 2025 Sat Jul 26 00:15:23 EDT 2025 Tue Jun 17 21:55:19 EDT 2025 Tue Jun 10 20:46:16 EDT 2025 Wed Feb 19 02:43:53 EST 2025 Tue Jul 01 03:51:09 EDT 2025 Thu Apr 24 22:53:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-bd44294fcee553185ee8e4f109b82462cdb32ebca4458c6021c3eb7701ef07163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12967-017-1304-7 |
PMID | 29037244 |
PQID | 1961189441 |
PQPubID | 43076 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_051dcc4992824b96987bf36eb4fe3fdc pubmedcentral_primary_oai_pubmedcentral_nih_gov_5644104 proquest_miscellaneous_1952108423 proquest_journals_1961189441 gale_infotracmisc_A510569661 gale_infotracacademiconefile_A510569661 pubmed_primary_29037244 crossref_citationtrail_10_1186_s12967_017_1304_7 crossref_primary_10_1186_s12967_017_1304_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-16 |
PublicationDateYYYYMMDD | 2017-10-16 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of translational medicine |
PublicationTitleAlternate | J Transl Med |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | AL Kau (1304_CR4) 2011; 474 PJ Turnbaugh (1304_CR7) 2007; 449 MA Sze (1304_CR28) 2012; 185 X Zhou (1304_CR36) 2014; 5 L Rup (1304_CR5) 2012; 52 ER Davenport (1304_CR12) 2014; 9 MS Donia (1304_CR14) 2014; 158 Q Zou (1304_CR46) 2015; 2015 V Mai (1304_CR22) 2011; 6 R Burke (1304_CR42) 2002; 12 MR Mason (1304_CR13) 2015; 9 DN Fredricks (1304_CR19) 2005; 353 S Socransky (1304_CR27) 1998; 25 LA David (1304_CR10) 2014; 505 I Sobhani (1304_CR21) 2011; 6 L Skov (1304_CR26) 2000; 25 1304_CR43 1304_CR40 UM Singh-Blom (1304_CR47) 2013; 8 T Hofmann (1304_CR45) 2004; 22 1304_CR44 J Qin (1304_CR18) 2010; 464 BD Muegge (1304_CR11) 2011; 332 W Ma (1304_CR33) 2016; 18 HH Kong (1304_CR24) 2012; 22 EA Nothnagel (1304_CR15) 1983; 71 R Medzhitov (1304_CR16) 2007; 449 M Mshvildadze (1304_CR23) 2010; 156 C Taube (1304_CR20) 2012; 6 N Kumar (1304_CR9) 2016; 6 DE Sturdevant (1304_CR31) 2010; 5 P Shah (1304_CR6) 2016; 7 Z Gao (1304_CR25) 2008; 3 R Patel (1304_CR29) 2015; 61 AP Bhavsar (1304_CR8) 2007; 449 F Sommer (1304_CR1) 2013; 11 1304_CR39 Consortium HMP (1304_CR3) 2012; 486 B Corthésy (1304_CR30) 2007; 137 C Nathan (1304_CR32) 2012; 4 1304_CR38 BA Methé (1304_CR2) 2012; 486 1304_CR35 W Yao (1304_CR37) 2015; 18 PJ Turnbaugh (1304_CR17) 2009; 457 AB Barragáns-Martínez (1304_CR41) 2010; 180 1304_CR34 27713560 - Sci Rep. 2016 Oct 07;6:34850 17311975 - J Nutr. 2007 Mar;137(3 Suppl 2):781S-90S 27168102 - Nat Commun. 2016 May 11;7:11535 17943119 - Nature. 2007 Oct 18;449(7164):827-34 21674011 - PLoS One. 2011;6(6):e20647 16662929 - Plant Physiol. 1983 Apr;71(4):916-26 24967666 - Nat Commun. 2014 Jun 26;5:4212 22427533 - Am J Respir Crit Care Med. 2012 May 15;185(10):1073-80 23650495 - PLoS One. 2013 May 01;8(5):e58977 21677749 - Nature. 2011 Jun 15;474(7351):327-36 19043404 - Nature. 2009 Jan 22;457(7228):480-4 25278500 - Clin Chem. 2015 Jan;61(1):100-11 10671976 - Clin Exp Dermatol. 2000 Jan;25(1):57-61 26883326 - Brief Bioinform. 2017 Jan;18(1):85-97 24336217 - Nature. 2014 Jan 23;505(7484):559-63 22971068 - Expert Rev Respir Med. 2012 Aug;6(4):441-9 22699609 - Nature. 2012 Jun 13;486(7402):207-14 26273645 - Biomed Res Int. 2015;2015:810514 17943116 - Nature. 2007 Oct 18;449(7164):804-10 25012901 - ISME J. 2015 Jan;9(1):268-72 20143945 - Future Microbiol. 2010 Feb;5(2):205-19 18648509 - PLoS One. 2008 Jul 23;3(7):e2719 9495612 - J Clin Periodontol. 1998 Feb;25(2):134-44 22310478 - Genome Res. 2012 May;22(5):850-9 17943118 - Nature. 2007 Oct 18;449(7164):819-26 20203603 - Nature. 2010 Mar 4;464(7285):59-65 16267321 - N Engl J Med. 2005 Nov 3;353(18):1899-911 21596990 - Science. 2011 May 20;332(6032):970-4 23997318 - Indian J Microbiol. 2012 Sep;52(3):315 24618913 - PLoS One. 2014 Mar 11;9(3):e90731 21297998 - PLoS One. 2011 Jan 27;6(1):e16393 23435359 - Nat Rev Microbiol. 2013 Apr;11(4):227-38 22745440 - Sci Transl Med. 2012 Jun 27;4(140):140sr2 25215495 - Cell. 2014 Sep 11;158(6):1402-1414 19783002 - J Pediatr. 2010 Jan;156(1):20-5 |
References_xml | – ident: 1304_CR34 doi: 10.1007/978-3-319-29659-3 – volume: 486 start-page: 215 issue: 7402 year: 2012 ident: 1304_CR2 publication-title: Nature doi: 10.1038/nature11209 – volume: 464 start-page: 59 issue: 7285 year: 2010 ident: 1304_CR18 publication-title: Nature doi: 10.1038/nature08821 – volume: 5 start-page: 205 issue: 2 year: 2010 ident: 1304_CR31 publication-title: Futur Microbiol doi: 10.2217/fmb.09.125 – volume: 449 start-page: 827 issue: 7164 year: 2007 ident: 1304_CR8 publication-title: Nature doi: 10.1038/nature06247 – volume: 22 start-page: 89 issue: 1 year: 2004 ident: 1304_CR45 publication-title: ACM Trans Inf Syst (TOIS) doi: 10.1145/963770.963774 – volume: 8 start-page: e58977 issue: 5 year: 2013 ident: 1304_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0058977 – volume: 449 start-page: 804 issue: 7164 year: 2007 ident: 1304_CR7 publication-title: Nature doi: 10.1038/nature06244 – volume: 71 start-page: 916 issue: 4 year: 1983 ident: 1304_CR15 publication-title: Plant Physiol doi: 10.1104/pp.71.4.916 – volume: 6 start-page: 441 issue: 4 year: 2012 ident: 1304_CR20 publication-title: Expert Rev Respir Med doi: 10.1586/ers.12.40 – volume: 25 start-page: 134 issue: 2 year: 1998 ident: 1304_CR27 publication-title: J Clin Periodontol doi: 10.1111/j.1600-051X.1998.tb02419.x – ident: 1304_CR35 – volume: 18 start-page: 85 year: 2016 ident: 1304_CR33 publication-title: Brief Bioinform doi: 10.1093/bib/bbw005 – volume: 474 start-page: 327 issue: 7351 year: 2011 ident: 1304_CR4 publication-title: Nature doi: 10.1038/nature10213 – volume: 4 start-page: 140sr142 issue: 140 year: 2012 ident: 1304_CR32 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3003081 – volume: 332 start-page: 970 issue: 6032 year: 2011 ident: 1304_CR11 publication-title: Science doi: 10.1126/science.1198719 – volume: 353 start-page: 1899 issue: 18 year: 2005 ident: 1304_CR19 publication-title: N Engl J Med doi: 10.1056/NEJMoa043802 – volume: 22 start-page: 850 issue: 5 year: 2012 ident: 1304_CR24 publication-title: Genome Res doi: 10.1101/gr.131029.111 – volume: 185 start-page: 1073 issue: 10 year: 2012 ident: 1304_CR28 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201111-2075OC – volume: 457 start-page: 480 issue: 7228 year: 2009 ident: 1304_CR17 publication-title: Nature doi: 10.1038/nature07540 – volume: 18 start-page: 1351 issue: 5 year: 2015 ident: 1304_CR37 publication-title: World Wide Web doi: 10.1007/s11280-014-0307-z – volume: 486 start-page: 207 issue: 7402 year: 2012 ident: 1304_CR3 publication-title: Nature doi: 10.1038/nature11234 – ident: 1304_CR38 doi: 10.1007/3-540-36233-9_15 – volume: 52 start-page: 315 year: 2012 ident: 1304_CR5 publication-title: Indian J Microbiol doi: 10.1007/s12088-012-0304-9 – volume: 505 start-page: 559 issue: 7484 year: 2014 ident: 1304_CR10 publication-title: Nature doi: 10.1038/nature12820 – volume: 61 start-page: 100 issue: 1 year: 2015 ident: 1304_CR29 publication-title: Clin Chem doi: 10.1373/clinchem.2014.221770 – volume: 11 start-page: 227 issue: 4 year: 2013 ident: 1304_CR1 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2974 – volume: 7 start-page: 11535 year: 2016 ident: 1304_CR6 publication-title: Nat Commun doi: 10.1038/ncomms11535 – volume: 9 start-page: e90731 issue: 3 year: 2014 ident: 1304_CR12 publication-title: PLoS ONE doi: 10.1371/journal.pone.0090731 – volume: 25 start-page: 57 issue: 1 year: 2000 ident: 1304_CR26 publication-title: Clin Exp Dermatol doi: 10.1046/j.1365-2230.2000.00575.x – volume: 158 start-page: 1402 issue: 6 year: 2014 ident: 1304_CR14 publication-title: Cell doi: 10.1016/j.cell.2014.08.032 – volume: 156 start-page: 20 issue: 1 year: 2010 ident: 1304_CR23 publication-title: J Pediatr doi: 10.1016/j.jpeds.2009.06.063 – volume: 3 start-page: e2719 issue: 7 year: 2008 ident: 1304_CR25 publication-title: PLoS ONE doi: 10.1371/journal.pone.0002719 – ident: 1304_CR44 doi: 10.1145/2339530.2339732 – volume: 6 start-page: 34850 year: 2016 ident: 1304_CR9 publication-title: Sci Rep doi: 10.1038/srep34850 – volume: 6 start-page: e20647 issue: 6 year: 2011 ident: 1304_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0020647 – volume: 180 start-page: 4290 issue: 22 year: 2010 ident: 1304_CR41 publication-title: Inf Sci doi: 10.1016/j.ins.2010.07.024 – ident: 1304_CR39 doi: 10.1007/978-3-319-26350-2_12 – ident: 1304_CR40 doi: 10.1145/511446.511513 – volume: 12 start-page: 331 issue: 4 year: 2002 ident: 1304_CR42 publication-title: User Model User-Adap Inter doi: 10.1023/A:1021240730564 – ident: 1304_CR43 doi: 10.1145/1639714.1639735 – volume: 449 start-page: 819 issue: 7164 year: 2007 ident: 1304_CR16 publication-title: Nature doi: 10.1038/nature06246 – volume: 9 start-page: 268 issue: 1 year: 2015 ident: 1304_CR13 publication-title: ISME J doi: 10.1038/ismej.2014.114 – volume: 2015 start-page: 810514 year: 2015 ident: 1304_CR46 publication-title: BioMed Res Int – volume: 5 start-page: 4212 year: 2014 ident: 1304_CR36 publication-title: Nat Commun doi: 10.1038/ncomms5212 – volume: 6 start-page: e16393 issue: 1 year: 2011 ident: 1304_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0016393 – volume: 137 start-page: 781S issue: 3 year: 2007 ident: 1304_CR30 publication-title: J Nutr doi: 10.1093/jn/137.3.781S – reference: 24967666 - Nat Commun. 2014 Jun 26;5:4212 – reference: 27713560 - Sci Rep. 2016 Oct 07;6:34850 – reference: 20143945 - Future Microbiol. 2010 Feb;5(2):205-19 – reference: 24618913 - PLoS One. 2014 Mar 11;9(3):e90731 – reference: 23650495 - PLoS One. 2013 May 01;8(5):e58977 – reference: 21674011 - PLoS One. 2011;6(6):e20647 – reference: 9495612 - J Clin Periodontol. 1998 Feb;25(2):134-44 – reference: 25012901 - ISME J. 2015 Jan;9(1):268-72 – reference: 22745440 - Sci Transl Med. 2012 Jun 27;4(140):140sr2 – reference: 10671976 - Clin Exp Dermatol. 2000 Jan;25(1):57-61 – reference: 22310478 - Genome Res. 2012 May;22(5):850-9 – reference: 21677749 - Nature. 2011 Jun 15;474(7351):327-36 – reference: 18648509 - PLoS One. 2008 Jul 23;3(7):e2719 – reference: 23997318 - Indian J Microbiol. 2012 Sep;52(3):315 – reference: 26883326 - Brief Bioinform. 2017 Jan;18(1):85-97 – reference: 19043404 - Nature. 2009 Jan 22;457(7228):480-4 – reference: 25278500 - Clin Chem. 2015 Jan;61(1):100-11 – reference: 26273645 - Biomed Res Int. 2015;2015:810514 – reference: 17943119 - Nature. 2007 Oct 18;449(7164):827-34 – reference: 16662929 - Plant Physiol. 1983 Apr;71(4):916-26 – reference: 22427533 - Am J Respir Crit Care Med. 2012 May 15;185(10):1073-80 – reference: 17943116 - Nature. 2007 Oct 18;449(7164):804-10 – reference: 22699609 - Nature. 2012 Jun 13;486(7402):207-14 – reference: 17311975 - J Nutr. 2007 Mar;137(3 Suppl 2):781S-90S – reference: 25215495 - Cell. 2014 Sep 11;158(6):1402-1414 – reference: 21596990 - Science. 2011 May 20;332(6032):970-4 – reference: 22971068 - Expert Rev Respir Med. 2012 Aug;6(4):441-9 – reference: 21297998 - PLoS One. 2011 Jan 27;6(1):e16393 – reference: 19783002 - J Pediatr. 2010 Jan;156(1):20-5 – reference: 16267321 - N Engl J Med. 2005 Nov 3;353(18):1899-911 – reference: 17943118 - Nature. 2007 Oct 18;449(7164):819-26 – reference: 24336217 - Nature. 2014 Jan 23;505(7484):559-63 – reference: 27168102 - Nat Commun. 2016 May 11;7:11535 – reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65 – reference: 23435359 - Nat Rev Microbiol. 2013 Apr;11(4):227-38 |
SSID | ssj0024549 |
Score | 2.4792936 |
Snippet | Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases.... [...]the final prediction matrix based on this graph-based diffusion method (say GS) can be constructed by jointing n m column vectors of s? as follow: [... Abstract Background Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 209 |
SubjectTerms | Chronic obstructive pulmonary disease Collaboration Data mining Homeostasis Immune system International conferences Knowledge discovery Management Microorganisms Neighborhoods Psoriasis Recommender systems Skin Social networks World Wide Web |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pi9UwEA-yB_Ei_rfuKhEEQQjbNmnSHldxWYQVDy7sLTTpFAVfn-y-9Sj7HfyGfhJ_06bPVwS9eCtNAslk_vwmmcwI8cLApJRVMMq4mhQsPmSui7WCGgyt63PqHL9GPn1vT87Mu_PqfKfUF8eETemBJ8Idgmm6GIHL4RuY0Fj4yKHXloLpSfddZO0Lmzc7U3OWPbg96Q6zqO3hJaya5RBLp6CzjXILKzQm6_9TJe_YpGW85I4BOr4jbifkKI-mGd8VN2i4J26eprvx--L7hwv-ZkLLdS9XHGkX6Of1j3QHI9vfOyH5VYkE9pNzuog0auCTUrCFbIdOjsmsJZ_Uyh12-UaSvejVilI9JjlW03kgzo7ffnxzolJ1BRWBcjYqdAa2yPSwklXFb6iJajJ9kTcBlLZl7IIuOVTKmKqOFlggagrO5QX1wCVWPxR7w3qgx0ISQE7XVPgZgzEtYwytW4q6qALcLcpEPlPbx5R6nCtgfPGjC1JbP22Qxwbx_ZrxLhOvtkO-Tnk3_tb5NW_htiOnzB5_gJF8YiT_L0bKxEtmAM-CjcnFNr1PwBI5RZY_Yihq4R0WmThY9IRAxmXzzEI-KYRLD0WHuTcAn5l4vm3mkRzkNtD6ivsAS-U1AG4mHk0ct11S2eTaAYplwi14cbHmZcvw-dOYLrxiyJubJ_-DSPviVjlKUa4KeyD2NhdX9BSobBOejQL4C_-cNn8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0BPFF_LbnKREEQQjXjzRJn-QUj0M48cGDfQtNMlXhtj1393zyj7-ZbvajCPdWmgSaztdvMpMZgHeKTEpZeyWVsSjJ4pPMxWAlqUHfmi7HaPg28vk3fXahvs7qWTpwW6a0yo1OHBV1HAKfkR8TpxAWbsh6f7z6I7lrFEdXUwuNu3CPS5cxV5vZzuFS5PykSGZh9fGSbJvmREsjSXMraSa2aCzZ_79i3rNM06zJPTN0-ggeJvwoTtYEfwx3sH8C989ThPwp_Pu-4Gf-3WLoxJzz7TzKFIcR7Y4agm-WCMJ_YlMyIq3p-bSUWEO0fRRjQWvBp7Vij2X-omBPej7H1JNJjB11nsHF6Zcfn89k6rAgAyGdlfRRkT1SHVnKuuZ71IgWVVfkjbel0mWIvio5XUqp2gZNeCBU6I3JC-wIm-jqORz0Q48vQSABndjU9DJ4pVrGGVXVYqiK2pPLhRnkm3_tQio_zl0wLt3ohljt1uRxRB6OsSlnMviwXXK1rr1x2-RPTMDtRC6bPb4YFj9dkkJHGiiGQE4eOZrKN7qxxneVRq86rLoYMnjP5Hcs3PRxoU13FGiLXCbLnTAc1eQhFhkcTWaSUIbp8IaBXFIKS7dj4Qzebod5JSe69Thc8xzCU7klkJvBizW_bbdUNnllCI5lYCacONnzdKT__WssGV4z7M3V4e2f9QoelKN05LLQR3CwWlzja8JcK_9mFKwbEUArnQ priority: 102 providerName: ProQuest |
Title | Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29037244 https://www.proquest.com/docview/1961189441 https://www.proquest.com/docview/1952108423 https://pubmed.ncbi.nlm.nih.gov/PMC5644104 https://doaj.org/article/051dcc4992824b96987bf36eb4fe3fdc |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_6AeKL-O1qPSIIgrC6H9kk-yDSk5YiXCnFg8OXsMlmVejt6fVa2pfi_-B_6F_iTC57vcXigy_HscnAZufrN8lkBuAlR5eSFYbHXCoXo8dHnautitEMmko2iasl3UYeHYqDMf84KSYb0LW3Ch_w9MbQjvpJjecnby5-XL5HhX_nFV6Jt6foswQlUMoYLTKP5SZso2OS1NBgxNV16T2MhcLB5o1kVBi4THKJHq_npXwx_79N9prP6udTrjmo_btwJyBLtrsUhXuw4dr7cGsUzs4fwNXRnP4TI9isYVPKxDPu989f4YyGVdecYnTrhCE2ZF05iUDV0k4qig2r2pr5YteMdnLZmjidO0ZR9nTqQr8m5rvtPITx_t6nDwdx6L4QW0RBi9jUHH0Vb9CLFgXdsXZOOd6kSWlUxkVma5NnlErFeaGsQKxgc2ekTFLXIG4R-SPYametewLMIQiqywIfWsN5RRgkzytn87QwGI65CJLua2sbSpNTh4wT7UMUJfSSVxp5RedvXMsIXq9Ivi_rcvxr8pBYuJpIJbX9g9n8iw4aqtE61dZiAIhBKDelKJU0TS6c4Y3Lm9pG8IoEQJMo4svZKtxfwCVSCS29S1BVYPSYRrDTm4kKa_vDnQjpTt41GkJ89xLBaQQvVsNESUlwrZud0RzEWolCABzB46XErZbUCW4EsieLvTX3R9pvX3058YIgccKf_jflM7ideS1K4lTswNZifuaeI1RbmAFsyokcwPZw7_DoeOA3PAZeKfH3ePj5D_r8Qio |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviGcbKGAkEBKS1TwcOzkgVB7VlnYrDq20NxM7DiCxSdndgpD4TfxGZhJndyOk3npbxfYqzjy-Gc94BuC5QEiJUyO4UJnjiPgoc6XNOKpBU6gqdKWi28jjEzk6Ex8n6WQD_vZ3YSitsteJraIuG0tn5HvIKWgL54jeb85_cOoaRdHVvoVGxxZH7vcvdNnmrw_fI31fxPHBh9N3I-67CnCL6L7gphSog0WF6JCmdHfYucyJKgpzk8VCxrY0SUwpQkKkmZWIgTZxRqkwchXisUzwf6_BdQTekJw9NVk5eAKdLR85jTK5N0cslZTYqTgiheBqgH1ti4D_gWANCYdZmmuwd3Abbnl7le13DHYHNlx9F26MfUT-Hvz5NKPfRF7WVGxK-X3GcR_3YcWK-oxusjC0N1lfosKvqel0FlmRFXXJ2gLajE6H2RqL_nSMPPfp1PkeUKzt4HMfzq7k2z-Azbqp3Q4wh4ZVmaf40BohCrJrkqRwNolSgy6eCyDsv7W2vtw5dd34rlu3J5O6I49G8lBMT2gVwKvlkvOu1sdlk98SAZcTqUx3-6CZfdFe6jVqvNJadCrRsRUml3mmTJVIZ0Tlkqq0Abwk8mtSJvhytvB3InCLVJZL75P5K9EjjQLYHcxEJWCHwz0Daa-E5nolMgE8Ww7TSkqsq11zQXPQfgszNKoD2O74bbmlOA8TheZfAGrAiYM9D0fqb1_bEuUpmdmheHj5az2Fm6PT8bE-Pjw5egRbcSspIY_kLmwuZhfuMdp7C_OkFTIGn69aqv8BO79oKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+microbe%E2%80%93disease+association+from+the+integration+of+neighbor+and+graph+with+collaborative+recommendation+model&rft.jtitle=Journal+of+translational+medicine&rft.au=Huang%2C+Yu-An&rft.au=You%2C+Zhu-Hong&rft.au=Chen%2C+Xing&rft.au=Huang%2C+Zhi-An&rft.date=2017-10-16&rft.pub=BioMed+Central&rft.eissn=1479-5876&rft.volume=15&rft_id=info:doi/10.1186%2Fs12967-017-1304-7&rft_id=info%3Apmid%2F29037244&rft.externalDocID=PMC5644104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon |