The release and trans-synaptic transmission of Tau via exosomes
Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agent...
Saved in:
Published in | Molecular neurodegeneration Vol. 12; no. 1; p. 5 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
13.01.2017
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes.
Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau.
We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells.
Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. |
---|---|
AbstractList | Background Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Methods Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. Results We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Conclusion Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. Background Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Methods Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. Results We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Conclusion Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. Keywords: Tau, Alzheimer disease, Exosomes, Spreading BACKGROUNDTau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes.METHODSExosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau.RESULTSWe show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells.CONCLUSIONOur study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. |
ArticleNumber | 5 |
Audience | Academic |
Author | Tepper, Katharina Wang, Yipeng Kaniyappan, Senthilvelrajan Maetzler, Walter Mandelkow, Eckhard Irsen, Stephan Mandelkow, Eva-Maria Balaji, Varun Krüger, Lars Chandupatla, RamReddy Schneider, Anja |
Author_xml | – sequence: 1 givenname: Yipeng surname: Wang fullname: Wang, Yipeng – sequence: 2 givenname: Varun surname: Balaji fullname: Balaji, Varun – sequence: 3 givenname: Senthilvelrajan surname: Kaniyappan fullname: Kaniyappan, Senthilvelrajan – sequence: 4 givenname: Lars surname: Krüger fullname: Krüger, Lars – sequence: 5 givenname: Stephan surname: Irsen fullname: Irsen, Stephan – sequence: 6 givenname: Katharina surname: Tepper fullname: Tepper, Katharina – sequence: 7 givenname: RamReddy surname: Chandupatla fullname: Chandupatla, RamReddy – sequence: 8 givenname: Walter surname: Maetzler fullname: Maetzler, Walter – sequence: 9 givenname: Anja surname: Schneider fullname: Schneider, Anja – sequence: 10 givenname: Eckhard surname: Mandelkow fullname: Mandelkow, Eckhard – sequence: 11 givenname: Eva-Maria surname: Mandelkow fullname: Mandelkow, Eva-Maria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28086931$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Ustu1TAUtFARfcAHsEGR2LBJOSe2k3gDqipakCqxuawtxzluXSX2JU4q7t_j6LbQViDL8mtm7PGZY3YQYiDG3iKcIrb1x4QcKlEC1rkLXu5esCNsJJTIq_rg0fyQHad0CyAaAPmKHVYttLXieMQ-b26omGggk6gwoS_myYRUpl0w29nb_XL0KfkYiuiKjVmKO28K-hVTHCm9Zi-dGRK9uR9P2I-LL5vzr-XV98tv52dXpZU1zGXX8soaAmtF7yRXouscICounDLConWd6g0aY9uusdCQcgqopUZQ25Pp-An7tNfdLt1IvaWQXzbo7eRHM-10NF4_PQn-Rl_HOy0r3lSyzgIf7gWm-HOhNOvsytIwmEBxSTr_J0qoGg4Z-v4Z9DYuU8j2VpREUErhX9S1GUj74GK-166i-ky0IKWqcb329B-o3Hoavc3ldD7vPyG8e2z0j8OHkmVAswfYKaY0kdPWz2bO9cnKftAIeg2H3odD53DoNRx6l5n4jPkg_n_Ob73lvA8 |
CitedBy_id | crossref_primary_10_1089_ars_2017_7265 crossref_primary_10_3390_ijms19030663 crossref_primary_10_1016_j_tins_2018_03_006 crossref_primary_10_3389_fnins_2021_738442 crossref_primary_10_1016_j_cej_2024_150210 crossref_primary_10_1016_j_nbd_2020_104820 crossref_primary_10_3389_fncel_2022_979856 crossref_primary_10_3390_md23030091 crossref_primary_10_1186_s13024_020_00389_1 crossref_primary_10_1038_nrneurol_2017_162 crossref_primary_10_1186_s40478_019_0664_z crossref_primary_10_3389_fnmol_2020_569818 crossref_primary_10_1016_j_arr_2021_101321 crossref_primary_10_1016_j_jbc_2022_101766 crossref_primary_10_18632_aging_203883 crossref_primary_10_2174_1567205016666190321155422 crossref_primary_10_1016_j_jbc_2021_101482 crossref_primary_10_1002_imo2_33 crossref_primary_10_3390_ijms21186859 crossref_primary_10_3389_fcell_2021_635104 crossref_primary_10_3233_JAD_180776 crossref_primary_10_3390_ijms23031371 crossref_primary_10_3390_ijms241713161 crossref_primary_10_3389_fnagi_2018_00024 crossref_primary_10_1097_WCO_0000000000000502 crossref_primary_10_1016_j_bbih_2021_100242 crossref_primary_10_1038_s41467_021_22501_9 crossref_primary_10_1016_j_bbih_2021_100243 crossref_primary_10_1007_s13139_018_0550_9 crossref_primary_10_1038_s41598_022_11582_1 crossref_primary_10_1002_alz_12978 crossref_primary_10_2174_1570159X18666200525020259 crossref_primary_10_3389_fncel_2022_955511 crossref_primary_10_3390_cells12010063 crossref_primary_10_1021_acschembio_0c00311 crossref_primary_10_1016_j_bbamem_2021_183841 crossref_primary_10_1016_j_nbd_2018_07_003 crossref_primary_10_3389_fnmol_2019_00107 crossref_primary_10_1038_s41467_021_25855_2 crossref_primary_10_1096_fj_202401704R crossref_primary_10_1155_2021_9965564 crossref_primary_10_3389_fphar_2021_670158 crossref_primary_10_1038_s41598_024_75406_0 crossref_primary_10_1186_s12951_021_01070_5 crossref_primary_10_1002_elps_201800526 crossref_primary_10_3233_JAD_170953 crossref_primary_10_3389_fnins_2019_00442 crossref_primary_10_3233_JAD_170959 crossref_primary_10_33611_trs_2023_003 crossref_primary_10_1186_s40035_023_00375_9 crossref_primary_10_1016_j_prp_2024_155451 crossref_primary_10_1021_acschemneuro_0c00531 crossref_primary_10_3389_fneur_2023_1287545 crossref_primary_10_1002_ana_25406 crossref_primary_10_1089_neu_2021_0241 crossref_primary_10_1038_s41598_018_38146_6 crossref_primary_10_1002_bmb_21472 crossref_primary_10_3390_biomedicines10081800 crossref_primary_10_3389_fnmol_2020_00101 crossref_primary_10_3390_brainsci8090162 crossref_primary_10_3389_fnins_2019_00698 crossref_primary_10_1038_s41593_022_01191_6 crossref_primary_10_3389_fnagi_2018_00395 crossref_primary_10_1016_j_neuint_2020_104919 crossref_primary_10_1080_14728222_2020_1737012 crossref_primary_10_3389_fncel_2021_645233 crossref_primary_10_1016_j_cjac_2025_100509 crossref_primary_10_1155_2022_3356467 crossref_primary_10_1111_febs_17150 crossref_primary_10_1007_s00018_019_03349_1 crossref_primary_10_1007_s12035_022_02809_3 crossref_primary_10_1016_j_neubiorev_2021_02_027 crossref_primary_10_1016_j_arr_2023_101924 crossref_primary_10_1016_j_bbcan_2024_189189 crossref_primary_10_1016_j_mcn_2017_03_003 crossref_primary_10_3389_fcell_2021_653815 crossref_primary_10_3390_cells9112485 crossref_primary_10_1016_j_cca_2019_07_012 crossref_primary_10_1016_j_celrep_2021_110287 crossref_primary_10_1111_febs_16055 crossref_primary_10_1016_j_celrep_2018_04_056 crossref_primary_10_3390_antiox12071373 crossref_primary_10_3390_cells12222652 crossref_primary_10_1016_j_neuint_2017_07_002 crossref_primary_10_1007_s00401_022_02426_3 crossref_primary_10_1007_s00018_018_2823_y crossref_primary_10_1016_j_conb_2020_03_013 crossref_primary_10_1016_j_ejcb_2022_151270 crossref_primary_10_1186_s13024_019_0354_0 crossref_primary_10_1021_acschemneuro_0c00426 crossref_primary_10_26508_lsa_202101055 crossref_primary_10_3748_wjg_v29_i39_5435 crossref_primary_10_1016_j_biopsych_2021_05_025 crossref_primary_10_1016_j_neuron_2018_06_003 crossref_primary_10_3389_fnagi_2021_765395 crossref_primary_10_1002_cbic_201800288 crossref_primary_10_1016_j_neuroscience_2020_11_006 crossref_primary_10_1002_dneu_22712 crossref_primary_10_3389_fcell_2022_793388 crossref_primary_10_2147_NSS_S310351 crossref_primary_10_1186_s40478_022_01331_w crossref_primary_10_1038_s41591_024_02937_4 crossref_primary_10_3233_JAD_221279 crossref_primary_10_3390_ijms19030645 crossref_primary_10_3390_ijms22179207 crossref_primary_10_1016_j_celrep_2018_03_021 crossref_primary_10_3389_fnins_2017_00667 crossref_primary_10_3233_JAD_210268 crossref_primary_10_3389_fnmol_2023_1225533 crossref_primary_10_1038_s41380_020_0738_0 crossref_primary_10_1016_j_arr_2023_101916 crossref_primary_10_1016_j_arr_2021_101558 crossref_primary_10_1186_s40035_018_0139_3 crossref_primary_10_1002_alz_12518 crossref_primary_10_3389_fnins_2019_00649 crossref_primary_10_3390_biomedicines9020190 crossref_primary_10_1016_j_heliyon_2024_e38959 crossref_primary_10_1016_j_autrev_2020_102664 crossref_primary_10_3233_JAD_191034 crossref_primary_10_3390_ijms25094969 crossref_primary_10_4103_1673_5374_266908 crossref_primary_10_1002_alz_12452 crossref_primary_10_1038_s41380_018_0342_8 crossref_primary_10_1016_j_trci_2018_10_007 crossref_primary_10_1002_alz_12453 crossref_primary_10_1016_j_mito_2017_12_007 crossref_primary_10_1093_brain_awaa457 crossref_primary_10_1007_s40336_020_00371_3 crossref_primary_10_3390_ijms251810068 crossref_primary_10_1111_jnc_16108 crossref_primary_10_1126_sciadv_abg6677 crossref_primary_10_1007_s11064_022_03701_1 crossref_primary_10_1016_j_nbd_2019_104518 crossref_primary_10_3389_fnagi_2021_682115 crossref_primary_10_1038_s41419_024_06458_3 crossref_primary_10_1038_s41598_021_98142_1 crossref_primary_10_3390_ijms232415940 crossref_primary_10_1038_s41380_021_01350_4 crossref_primary_10_1007_s13530_019_0392_6 crossref_primary_10_2174_1566524019666190917125917 crossref_primary_10_7554_eLife_47209 crossref_primary_10_1111_jnc_15144 crossref_primary_10_3389_fnagi_2020_00096 crossref_primary_10_1016_j_conb_2024_102857 crossref_primary_10_1016_j_neuint_2017_12_009 crossref_primary_10_1515_bmc_2018_0001 crossref_primary_10_1038_s41598_019_45676_0 crossref_primary_10_3390_ijms24043061 crossref_primary_10_1002_glia_24469 crossref_primary_10_1186_s40478_021_01141_6 crossref_primary_10_1111_cns_13970 crossref_primary_10_3389_fncel_2019_00017 crossref_primary_10_1016_j_neuron_2024_06_029 crossref_primary_10_1038_s41593_024_01801_5 crossref_primary_10_3390_antiox11020416 crossref_primary_10_3233_JAD_200529 crossref_primary_10_1186_s12943_019_1085_0 crossref_primary_10_3389_fmolb_2021_671458 crossref_primary_10_14336_AD_2020_0908 crossref_primary_10_1007_s12035_022_02945_w crossref_primary_10_4103_1673_5374_375320 crossref_primary_10_1146_annurev_cellbio_100617_062636 crossref_primary_10_2147_CIA_S240400 crossref_primary_10_1016_j_mad_2019_111175 crossref_primary_10_1093_braincomms_fcae442 crossref_primary_10_3389_fnins_2024_1400413 crossref_primary_10_1016_j_jbc_2024_107433 crossref_primary_10_4103_1673_5374_343882 crossref_primary_10_4103_0366_6999_220313 crossref_primary_10_1016_j_colsurfb_2024_113938 crossref_primary_10_31083_j_jin2311197 crossref_primary_10_3390_cancers12020298 crossref_primary_10_3390_ijms251910797 crossref_primary_10_1002_alz_13535 crossref_primary_10_15252_embj_2020106320 crossref_primary_10_1016_j_pneurobio_2019_101644 crossref_primary_10_2217_rme_2022_0212 crossref_primary_10_1523_JNEUROSCI_1590_19_2019 crossref_primary_10_3389_fnagi_2022_974414 crossref_primary_10_1016_j_neulet_2021_136004 crossref_primary_10_3390_jcm12051883 crossref_primary_10_1016_j_drudis_2022_103340 crossref_primary_10_3390_cells11030462 crossref_primary_10_1016_j_trsl_2022_08_008 crossref_primary_10_1523_JNEUROSCI_0275_18_2018 crossref_primary_10_3390_biomedicines11020355 crossref_primary_10_1016_j_neures_2018_08_005 crossref_primary_10_1016_j_addr_2021_05_006 crossref_primary_10_1002_alz_12371 crossref_primary_10_1007_s12264_023_01115_9 crossref_primary_10_3389_fncel_2018_00317 crossref_primary_10_1002_jex2_55 crossref_primary_10_3389_fnagi_2021_790863 crossref_primary_10_3389_fneur_2022_1063298 crossref_primary_10_3390_biom10111487 crossref_primary_10_1111_cas_13697 crossref_primary_10_1186_s13024_020_00391_7 crossref_primary_10_3390_ijms21228819 crossref_primary_10_1016_j_ymthe_2021_04_020 crossref_primary_10_1080_20013078_2020_1766822 crossref_primary_10_3390_neuroglia1010010 crossref_primary_10_1186_s13024_024_00703_1 crossref_primary_10_1523_JNEUROSCI_1170_24_2024 crossref_primary_10_1038_s41598_019_43607_7 crossref_primary_10_1038_s42003_025_07499_w crossref_primary_10_1016_j_pneurobio_2017_12_003 crossref_primary_10_1016_j_neuint_2022_105307 crossref_primary_10_3389_fncel_2018_00323 crossref_primary_10_1016_j_tins_2022_02_004 crossref_primary_10_12677_ACM_2022_123275 crossref_primary_10_3390_biom10071079 crossref_primary_10_3389_fnagi_2018_00370 crossref_primary_10_3390_cimb44120421 crossref_primary_10_1162_netn_a_00103 crossref_primary_10_1016_j_pneurobio_2022_102270 crossref_primary_10_3389_fnagi_2022_834775 crossref_primary_10_1186_s13062_023_00387_5 crossref_primary_10_1515_mr_2023_0071 crossref_primary_10_47184_tev_2023_01_03 crossref_primary_10_1038_s41435_020_00113_5 crossref_primary_10_33218_prnano2_3_070819_1 crossref_primary_10_3897_rrpharmacology_6_52098 crossref_primary_10_1371_journal_pone_0220007 crossref_primary_10_3389_fneur_2020_573324 crossref_primary_10_1016_j_neurobiolaging_2021_01_003 crossref_primary_10_3390_cells9071618 crossref_primary_10_3390_ijms23094789 crossref_primary_10_1111_jnc_16294 crossref_primary_10_20517_and_2023_20 crossref_primary_10_1016_j_celrep_2018_10_078 crossref_primary_10_1016_j_omtm_2019_06_005 crossref_primary_10_7554_eLife_58744 crossref_primary_10_1038_s41582_020_0333_7 crossref_primary_10_1038_s41580_024_00753_9 crossref_primary_10_1074_jbc_RA120_013325 crossref_primary_10_1093_procel_pwae026 crossref_primary_10_1038_s41467_021_25060_1 crossref_primary_10_1021_acs_molpharmaceut_0c00245 crossref_primary_10_1007_s00018_020_03619_3 crossref_primary_10_3389_fnagi_2020_00265 crossref_primary_10_3389_fmolb_2023_1254834 crossref_primary_10_3390_ijms26062491 crossref_primary_10_1016_j_freeradbiomed_2017_08_028 crossref_primary_10_7554_eLife_78360 crossref_primary_10_3389_fcell_2021_735888 crossref_primary_10_1042_BST20210203 crossref_primary_10_1186_s13024_024_00786_w crossref_primary_10_1007_s00702_019_02028_6 crossref_primary_10_1038_s41467_024_46554_8 crossref_primary_10_1186_s12916_023_02910_x crossref_primary_10_1016_j_ymthe_2023_05_012 crossref_primary_10_3389_fcell_2022_912118 crossref_primary_10_3389_fnmol_2021_630808 crossref_primary_10_1002_jev2_12340 crossref_primary_10_3389_fnagi_2020_00011 crossref_primary_10_1002_jev2_12114 crossref_primary_10_1186_s12974_023_02853_3 crossref_primary_10_1016_j_nbd_2018_12_006 crossref_primary_10_3233_JAD_170278 crossref_primary_10_3389_fnins_2022_936897 crossref_primary_10_1007_s12035_023_03730_z crossref_primary_10_3389_fcell_2021_790479 crossref_primary_10_1016_j_nbd_2024_106663 crossref_primary_10_1177_10738584211001753 crossref_primary_10_1016_j_jneumeth_2024_110137 crossref_primary_10_3390_brainsci10110858 crossref_primary_10_1016_j_nbd_2023_106141 crossref_primary_10_1186_s13024_022_00560_w crossref_primary_10_1007_s12031_023_02143_w crossref_primary_10_1007_s00018_021_03942_3 crossref_primary_10_1021_acs_analchem_7b04519 crossref_primary_10_1007_s11356_024_35195_5 crossref_primary_10_1007_s00401_020_02254_3 crossref_primary_10_3389_fnins_2021_781722 crossref_primary_10_3389_fnagi_2019_00271 crossref_primary_10_3390_cancers13010084 crossref_primary_10_1016_j_bios_2019_111329 crossref_primary_10_3390_pharmaceutics15092364 crossref_primary_10_3390_cells11121943 crossref_primary_10_1134_S0006297923040028 crossref_primary_10_1074_jbc_RA120_013553 crossref_primary_10_1007_s00401_019_02122_9 crossref_primary_10_3390_ijms241915023 crossref_primary_10_1111_ejn_16625 crossref_primary_10_1111_jnc_14471 crossref_primary_10_3390_brainsci11020258 crossref_primary_10_3389_fcell_2021_707268 crossref_primary_10_3390_ijms21238948 crossref_primary_10_1016_j_bbrc_2018_03_209 crossref_primary_10_1016_j_expneurol_2021_113756 crossref_primary_10_1093_pnasnexus_pgad282 crossref_primary_10_1016_j_molmed_2020_03_012 crossref_primary_10_1016_j_molcel_2018_07_016 crossref_primary_10_3389_fnins_2019_01274 crossref_primary_10_1016_j_isci_2020_101456 crossref_primary_10_1111_jcmm_18554 crossref_primary_10_3389_fphar_2023_1112743 crossref_primary_10_1016_j_pneurobio_2018_06_006 crossref_primary_10_1016_j_celrep_2023_112063 crossref_primary_10_1016_j_toxicon_2023_107110 crossref_primary_10_1038_s41374_021_00644_z crossref_primary_10_1186_s40035_024_00432_x crossref_primary_10_1186_s40478_021_01245_z crossref_primary_10_1016_j_bj_2018_01_003 crossref_primary_10_1093_brain_awad361 crossref_primary_10_1016_j_ijbiomac_2024_135826 crossref_primary_10_1007_s00401_024_02744_8 crossref_primary_10_3389_fnins_2022_1042865 crossref_primary_10_3389_fncel_2022_984690 crossref_primary_10_3389_fonc_2022_781820 crossref_primary_10_1016_j_neulet_2019_04_022 crossref_primary_10_3390_cells9091959 crossref_primary_10_1038_s41467_018_06783_0 crossref_primary_10_3390_biom12091164 crossref_primary_10_1016_j_cell_2021_12_041 crossref_primary_10_1002_jev2_12383 crossref_primary_10_3390_ijms21083028 crossref_primary_10_1002_jev2_12398 crossref_primary_10_1186_s40478_020_01018_0 crossref_primary_10_3390_ijms19071947 crossref_primary_10_1016_j_jneumeth_2018_09_032 crossref_primary_10_3389_fnmol_2023_1187300 crossref_primary_10_1523_JNEUROSCI_1418_17_2017 crossref_primary_10_1111_jnc_15112 crossref_primary_10_3389_fnmol_2023_1287510 crossref_primary_10_1111_bph_16212 crossref_primary_10_3389_fnmol_2021_788695 crossref_primary_10_3390_pharmaceutics15061738 crossref_primary_10_14336_AD_2024_03019 crossref_primary_10_1002_jev2_12154 crossref_primary_10_1002_jev2_12397 crossref_primary_10_4103_1673_5374_320972 crossref_primary_10_1186_s40478_021_01246_y crossref_primary_10_1007_s00259_024_06637_6 crossref_primary_10_3389_fncel_2021_743353 crossref_primary_10_1002_pro_5078 crossref_primary_10_1016_j_neuint_2024_105880 crossref_primary_10_1016_j_semcdb_2021_05_013 crossref_primary_10_1038_s41598_021_92433_3 crossref_primary_10_1039_C9LC01010F crossref_primary_10_1002_alz_12089 crossref_primary_10_3389_fimmu_2019_01139 crossref_primary_10_1016_j_pneurobio_2018_12_005 crossref_primary_10_1126_scitranslmed_adp2564 crossref_primary_10_1515_revneuro_2019_0001 crossref_primary_10_3390_v16010072 crossref_primary_10_1186_s40478_018_0514_4 crossref_primary_10_1126_sciadv_abm4295 crossref_primary_10_1016_j_biocel_2023_106475 crossref_primary_10_3389_fnagi_2022_932541 crossref_primary_10_17816_KMJ567814 crossref_primary_10_1007_s10544_017_0254_4 crossref_primary_10_2147_JIR_S466821 crossref_primary_10_1093_brain_awac083 crossref_primary_10_1021_acschemneuro_8b00003 crossref_primary_10_3389_fnins_2023_1157652 crossref_primary_10_1002_btm2_10231 crossref_primary_10_1111_jcmm_18477 crossref_primary_10_1186_s40478_019_0754_y crossref_primary_10_1007_s00018_019_03132_2 crossref_primary_10_1097_WCO_0000000000000581 crossref_primary_10_1038_s41583_021_00531_y crossref_primary_10_1016_j_neures_2019_07_007 crossref_primary_10_1038_s41467_023_37304_3 crossref_primary_10_1159_000505851 crossref_primary_10_1093_cercor_bhaf053 crossref_primary_10_1038_s41467_023_37840_y crossref_primary_10_12677_acm_2024_1492563 crossref_primary_10_3233_JPD_212562 crossref_primary_10_3389_fncel_2018_00080 crossref_primary_10_1016_j_neuron_2017_11_028 crossref_primary_10_1007_s10571_020_00926_y crossref_primary_10_20517_evcna_2023_44 crossref_primary_10_1111_bph_15813 crossref_primary_10_4103_1673_5374_379036 crossref_primary_10_1002_adhm_202002119 crossref_primary_10_1016_j_envpol_2021_117816 crossref_primary_10_1016_j_brainresbull_2024_111046 crossref_primary_10_1021_acschemneuro_8b00387 crossref_primary_10_1074_jbc_RA118_001784 crossref_primary_10_3389_fnins_2023_1196007 crossref_primary_10_1002_jnr_24794 crossref_primary_10_3389_fnins_2019_01258 crossref_primary_10_3389_fnmol_2020_00079 crossref_primary_10_1007_s00401_019_02054_4 crossref_primary_10_1038_s41598_018_24904_z crossref_primary_10_1016_j_biomaterials_2018_05_012 crossref_primary_10_1016_j_biopha_2023_115853 crossref_primary_10_3389_fnmol_2023_1182573 crossref_primary_10_1016_j_nbd_2022_105651 crossref_primary_10_1002_jev2_70043 crossref_primary_10_1186_s40035_022_00326_w crossref_primary_10_1016_j_envres_2021_112316 crossref_primary_10_1002_1873_3468_70022 crossref_primary_10_3389_fneur_2019_01266 crossref_primary_10_1093_brain_awad024 crossref_primary_10_1007_s00441_022_03620_1 crossref_primary_10_1186_s40035_024_00429_6 crossref_primary_10_3389_fnagi_2023_1209115 crossref_primary_10_1523_JNEUROSCI_0766_20_2021 crossref_primary_10_1016_j_neuropharm_2019_107842 crossref_primary_10_3390_ijms25169004 crossref_primary_10_1016_j_semcdb_2021_12_002 crossref_primary_10_3390_ijms19092834 crossref_primary_10_1002_ibra_12090 crossref_primary_10_1038_s41598_019_46311_8 crossref_primary_10_1002_dad2_12001 crossref_primary_10_20517_evcna_2023_66 crossref_primary_10_3233_JAD_179942 crossref_primary_10_3389_fneur_2020_590754 crossref_primary_10_1172_JCI165523 crossref_primary_10_1001_jamaneurol_2018_2505 crossref_primary_10_1002_adma_202002440 crossref_primary_10_1128_jvi_01076_24 crossref_primary_10_1093_hmg_ddz255 crossref_primary_10_1016_j_na_2024_113714 crossref_primary_10_1016_j_nbd_2020_105031 crossref_primary_10_31857_S0320972523040024 crossref_primary_10_1007_s40263_019_00613_7 crossref_primary_10_1523_ENEURO_0092_22_2022 crossref_primary_10_3892_ijmm_2022_5206 crossref_primary_10_1093_brain_awae174 crossref_primary_10_3389_fnagi_2022_899944 crossref_primary_10_1186_s12929_018_0457_x crossref_primary_10_1128_mbio_01522_24 crossref_primary_10_1186_s40478_017_0488_7 crossref_primary_10_3390_biomedicines10092147 crossref_primary_10_3390_ijms221910794 crossref_primary_10_3233_ADR_200191 crossref_primary_10_1016_j_expneurol_2022_114183 crossref_primary_10_1016_j_tins_2019_02_007 crossref_primary_10_1007_s12035_017_0821_y crossref_primary_10_3389_fnins_2023_1268360 crossref_primary_10_3390_ijms24010675 crossref_primary_10_1186_s13195_023_01182_0 crossref_primary_10_1038_s41467_023_44374_w crossref_primary_10_1007_s00018_024_05225_z crossref_primary_10_1007_s00401_019_02108_7 crossref_primary_10_2147_IJN_S310357 crossref_primary_10_3389_fnmol_2020_586731 crossref_primary_10_1021_acschemneuro_8b00469 crossref_primary_10_1007_s12031_021_01943_2 crossref_primary_10_1242_jcs_250449 crossref_primary_10_1016_j_bbamcr_2021_118971 crossref_primary_10_3389_fnins_2019_01339 crossref_primary_10_3390_life11010028 crossref_primary_10_1007_s11481_017_9768_z crossref_primary_10_1089_dna_2021_0485 crossref_primary_10_4103_1673_5374_385853 crossref_primary_10_1016_j_neuint_2021_104988 crossref_primary_10_1007_s11011_019_00516_y crossref_primary_10_3390_cells12121623 crossref_primary_10_1007_s12035_018_1448_3 crossref_primary_10_1523_JNEUROSCI_1494_22_2023 crossref_primary_10_3390_ijms24054561 crossref_primary_10_1016_j_ymthe_2021_09_020 crossref_primary_10_1186_s40478_017_0467_z crossref_primary_10_3390_ijms22031365 crossref_primary_10_1007_s00401_019_02087_9 crossref_primary_10_1038_s41596_021_00551_z crossref_primary_10_3389_fnhum_2024_1352118 crossref_primary_10_1016_j_neuroscience_2018_04_003 crossref_primary_10_3389_fnins_2019_01347 crossref_primary_10_1186_s40478_024_01748_5 crossref_primary_10_1038_s41551_020_00643_3 |
Cites_doi | 10.1016/j.jsb.2005.07.007 10.1016/j.neuron.2011.11.033 10.1016/j.freeradbiomed.2012.11.014 10.1038/ncb1901 10.1007/s004010050508 10.1016/j.mcn.2005.12.003 10.1101/cshperspect.a006247 10.1073/pnas.0703676104 10.1016/j.febslet.2011.11.022 10.1371/journal.pone.0100760 10.1038/nrm2617 10.1186/2051-5960-2-14 10.1002/0471143030.cb0322s30 10.1523/JNEUROSCI.3192-13.2014 10.1016/j.mcn.2010.11.004 10.1073/pnas.1630428100 10.1038/embor.2013.15 10.1371/journal.pone.0008577 10.1074/jbc.M507753200 10.1126/science.6474172 10.1073/pnas.0308413101 10.1016/j.celrep.2015.04.043 10.1159/000334915 10.1074/jbc.M111.277061 10.1371/journal.pone.0031302 10.1042/BST20120266 10.1242/jcs.074088 10.1016/j.neuron.2013.01.013 10.1212/WNL.34.7.939 10.1016/j.str.2015.01.015 10.1074/jbc.M112.394528 10.1074/jbc.M808759200 10.1038/nn.4132 10.1074/jbc.M110.209296 10.3233/JAD-2010-1273 10.1016/j.jalz.2014.06.008 10.1083/jcb.201506084 10.1523/JNEUROSCI.2569-11.2011 10.1093/brain/awv346 10.1371/journal.pone.0139233 10.1111/ejn.12229 10.1073/pnas.1521230113 10.1016/j.neuron.2013.07.046 10.1074/jbc.M112.380642 10.1007/BF00308809 10.1371/journal.pone.0062402 10.1523/JNEUROSCI.0387-15.2015 10.1007/s00401-010-0789-4 10.1006/jsbi.1997.3919 10.1186/1750-1326-7-42 10.1016/j.cell.2006.10.030 10.1007/s00401-015-1408-1 10.1084/jem.20131685 10.1093/hmg/ddp367 10.1093/hmg/dds317 10.1371/journal.pbio.1001604 10.1073/pnas.0603838103 10.1016/j.neurobiolaging.2012.10.024 10.1038/ncomms9490 10.1016/j.ceb.2004.06.003 10.1074/jbc.M111.323279 10.3402/jev.v3.24641 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 The Author(s). 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 – notice: The Author(s). 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1186/s13024-016-0143-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1750-1326 |
EndPage | 5 |
ExternalDocumentID | PMC5237256 4312170691 A480559616 28086931 10_1186_s13024_016_0143_y |
Genre | Journal Article |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HH5 HMCUK HYE IAO IHR INH INR IPY ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7TK 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c560t-b832cae0cc4df5394bbf011934f9a4c1cfb9da1aac8b7c07e9f90e8e74e8deab3 |
IEDL.DBID | 7X7 |
ISSN | 1750-1326 |
IngestDate | Thu Aug 21 18:20:44 EDT 2025 Fri Jul 11 15:35:24 EDT 2025 Fri Jul 25 07:41:40 EDT 2025 Tue Jun 17 21:44:01 EDT 2025 Tue Jun 10 20:37:20 EDT 2025 Thu Apr 03 06:50:12 EDT 2025 Tue Jul 01 01:59:03 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Tau Exosomes Alzheimer disease Spreading |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-b832cae0cc4df5394bbf011934f9a4c1cfb9da1aac8b7c07e9f90e8e74e8deab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1865109991?pq-origsite=%requestingapplication% |
PMID | 28086931 |
PQID | 1865109991 |
PQPubID | 55149 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5237256 proquest_miscellaneous_1861502730 proquest_journals_1865109991 gale_infotracmisc_A480559616 gale_infotracacademiconefile_A480559616 pubmed_primary_28086931 crossref_citationtrail_10_1186_s13024_016_0143_y crossref_primary_10_1186_s13024_016_0143_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-13 |
PublicationDateYYYYMMDD | 2017-01-13 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular neurodegeneration |
PublicationTitleAlternate | Mol Neurodegener |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | H Braak (143_CR3) 2011; 121 B Fevrier (143_CR21) 2004; 16 D Simon (143_CR26) 2012; 10 J Kowal (143_CR20) 2016; 113 W Heusermann (143_CR54) 2016; 213 B Fevrier (143_CR25) 2004; 101 J Faure (143_CR29) 2006; 31 DN Mastronarde (143_CR37) 1997; 120 NV Mohamed (143_CR18) 2013; 37 S Calafate (143_CR56) 2015; 11 MH Yan (143_CR5) 2013; 62 F Clavaguera (143_CR17) 2009; 11 DL Castillo-Carranza (143_CR59) 2014; 34 C d'Abramo (143_CR58) 2013; 8 BT Hyman (143_CR7) 1984; 225 143_CR47 M Kunadt (143_CR23) 2015; 129 A Calignon de (143_CR9) 2012; 73 TC Gamblin (143_CR40) 2003; 100 V Palanisamy (143_CR42) 2010; 5 C Korkut (143_CR22) 2013; 77 JW Wu (143_CR16) 2013; 288 D Simon (143_CR27) 2012; 586 YP Wang (143_CR38) 2007; 104 L Liu (143_CR8) 2012; 7 S Dujardin (143_CR44) 2014; 2 H Braak (143_CR4) 1996; 92 DN Mastronarde (143_CR35) 2005; 152 A Stuendl (143_CR34) 2016; 139 S Takamori (143_CR46) 2006; 127 G Lugli (143_CR52) 2015; 10 L Rajendran (143_CR24) 2006; 103 143_CR32 D Kanmert (143_CR50) 2015; 35 Y Wang (143_CR45) 2009; 18 K Yanamandra (143_CR60) 2013; 80 KM Danzer (143_CR53) 2012; 7 B Frost (143_CR14) 2009; 284 S Saman (143_CR28) 2012; 287 M Chivet (143_CR19) 2013; 41 S Dujardin (143_CR41) 2014; 9 M Gunkel (143_CR36) 2015; 23 W Kim (143_CR48) 2010; 19 G Lachenal (143_CR39) 2011; 46 143_CR61 K Yamada (143_CR10) 2011; 31 AM Pooler (143_CR11) 2013; 14 Y Lee (143_CR43) 2012; 21 EM Mandelkow (143_CR1) 2012; 2 K Yamada (143_CR13) 2014; 211 C Fruhbeis (143_CR6) 2013; 11 CM Karch (143_CR12) 2012; 287 JL Guo (143_CR15) 2011; 286 L Messing (143_CR31) 2013; 34 S Takeda (143_CR57) 2015; 6 G McKhann (143_CR33) 1984; 34 H Braak (143_CR2) 1991; 82 D Fitzner (143_CR62) 2011; 124 MS Fiandaca (143_CR51) 2015; 11 I Santa-Maria (143_CR49) 2012; 287 H Asai (143_CR55) 2015; 18 I Khlistunova (143_CR30) 2006; 281 23158765 - Neurobiol Aging. 2013 May;34(5):1343-54 16246844 - J Biol Chem. 2006 Jan 13;281(2):1205-14 8841666 - Acta Neuropathol. 1996 Aug;92(2):197-201 22138183 - FEBS Lett. 2012 Jan 2;586(1):47-54 6610841 - Neurology. 1984 Jul;34(7):939-44 23522040 - Neuron. 2013 Mar 20;77(6):1039-46 19282288 - J Biol Chem. 2009 May 8;284(19):12845-52 20110609 - J Alzheimers Dis. 2010;19(2):647-64 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13 26224867 - J Neurosci. 2015 Jul 29;35(30):10851-65 23638068 - PLoS One. 2013 Apr 29;8(4):e62402 22872698 - Hum Mol Genet. 2012 Oct 15;21(R1):R125-34 25981034 - Cell Rep. 2015 May 26;11(8):1176-83 24647946 - J Neurosci. 2014 Mar 19;34(12):4260-72 24534188 - J Exp Med. 2014 Mar 10;211(3):387-93 16837572 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11172-7 26426747 - PLoS One. 2015 Oct 01;10(10):e0139233 26647156 - Brain. 2016 Feb;139(Pt 2):481-94 21242314 - J Cell Sci. 2011 Feb 1;124(Pt 3):447-58 1759558 - Acta Neuropathol. 1991;82(4):239-59 23188818 - J Biol Chem. 2013 Jan 18;288(3):1856-70 22762014 - Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247 21917794 - J Neurosci. 2011 Sep 14;31(37):13110-7 12888622 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10032-7 22920859 - Mol Neurodegener. 2012 Aug 24;7:42 17110340 - Cell. 2006 Nov 17;127(4):831-46 23874151 - PLoS Biol. 2013 Jul;11(7):e1001604 19654187 - Hum Mol Genet. 2009 Nov 1;18(21):4153-70 26436904 - Nat Neurosci. 2015 Nov;18(11):1584-93 17535890 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10252-7 16446100 - Mol Cell Neurosci. 2006 Apr;31(4):642-8 25130657 - Alzheimers Dement. 2015 Jun;11(6):600-7.e1 15261674 - Curr Opin Cell Biol. 2004 Aug;16(4):415-21 20052414 - PLoS One. 2010 Jan 05;5(1):e8577 23356290 - Biochem Soc Trans. 2013 Feb 1;41(1):241-4 21111824 - Mol Cell Neurosci. 2011 Feb;46(2):409-18 19122676 - Nat Rev Mol Cell Biol. 2009 Feb;10(2):148-55 22269430 - Neurodegener Dis. 2012;10(1-4):73-5 22496370 - J Biol Chem. 2012 Jun 8;287(24):20522-33 26858453 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77 22312444 - PLoS One. 2012;7(2):e31302 24075978 - Neuron. 2013 Oct 16;80(2):402-14 16182563 - J Struct Biol. 2005 Oct;152(1):36-51 25778619 - Acta Neuropathol. 2015 May;129(5):695-713 25143819 - J Extracell Vesicles. 2014 Aug 04;3:null 22365544 - Neuron. 2012 Feb 23;73(4):685-97 25728926 - Structure. 2015 Apr 7;23 (4):628-38 27114500 - J Cell Biol. 2016 Apr 25;213(2):173-84 23412472 - EMBO Rep. 2013 Apr;14(4):389-94 24971751 - PLoS One. 2014 Jun 27;9(6):e100760 9441937 - J Struct Biol. 1997 Dec;120(3):343-52 6474172 - Science. 1984 Sep 14;225(4667):1168-70 23105105 - J Biol Chem. 2012 Dec 14;287(51):42751-62 21170538 - Acta Neuropathol. 2011 Feb;121(2):171-81 23773063 - Eur J Neurosci. 2013 Jun;37(12):1939-48 26458742 - Nat Commun. 2015 Oct 13;6:8490 22057275 - J Biol Chem. 2012 Feb 3;287(6):3842-9 15210972 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9683-8 23200807 - Free Radic Biol Med. 2013 Sep;62:90-101 21372138 - J Biol Chem. 2011 Apr 29;286(17):15317-31 24479894 - Acta Neuropathol Commun. 2014 Jan 30;2:14 18228490 - Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22 |
References_xml | – volume: 152 start-page: 36 year: 2005 ident: 143_CR35 publication-title: J Struct Biol doi: 10.1016/j.jsb.2005.07.007 – volume: 73 start-page: 685 year: 2012 ident: 143_CR9 publication-title: Neuron doi: 10.1016/j.neuron.2011.11.033 – volume: 62 start-page: 90 year: 2013 ident: 143_CR5 publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2012.11.014 – volume: 11 start-page: 909 year: 2009 ident: 143_CR17 publication-title: Nat Cell Biol doi: 10.1038/ncb1901 – volume: 92 start-page: 197 year: 1996 ident: 143_CR4 publication-title: Acta Neuropathol doi: 10.1007/s004010050508 – volume: 31 start-page: 642 year: 2006 ident: 143_CR29 publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2005.12.003 – volume: 2 start-page: a006247 year: 2012 ident: 143_CR1 publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a006247 – volume: 104 start-page: 10252 year: 2007 ident: 143_CR38 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0703676104 – volume: 586 start-page: 47 year: 2012 ident: 143_CR27 publication-title: FEBS Lett doi: 10.1016/j.febslet.2011.11.022 – volume: 9 start-page: e100760 year: 2014 ident: 143_CR41 publication-title: PLoS One doi: 10.1371/journal.pone.0100760 – ident: 143_CR47 doi: 10.1038/nrm2617 – volume: 2 start-page: 14 year: 2014 ident: 143_CR44 publication-title: Acta Neuropathol Commun doi: 10.1186/2051-5960-2-14 – ident: 143_CR32 doi: 10.1002/0471143030.cb0322s30 – volume: 34 start-page: 4260 year: 2014 ident: 143_CR59 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3192-13.2014 – volume: 46 start-page: 409 year: 2011 ident: 143_CR39 publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2010.11.004 – volume: 100 start-page: 10032 year: 2003 ident: 143_CR40 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1630428100 – volume: 14 start-page: 389 year: 2013 ident: 143_CR11 publication-title: EMBO Rep doi: 10.1038/embor.2013.15 – volume: 5 start-page: e8577 year: 2010 ident: 143_CR42 publication-title: PLoS One doi: 10.1371/journal.pone.0008577 – volume: 281 start-page: 1205 year: 2006 ident: 143_CR30 publication-title: J Biol Chem doi: 10.1074/jbc.M507753200 – volume: 225 start-page: 1168 year: 1984 ident: 143_CR7 publication-title: Science doi: 10.1126/science.6474172 – volume: 101 start-page: 9683 year: 2004 ident: 143_CR25 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0308413101 – volume: 11 start-page: 1176 year: 2015 ident: 143_CR56 publication-title: Cell Rep doi: 10.1016/j.celrep.2015.04.043 – volume: 10 start-page: 73 year: 2012 ident: 143_CR26 publication-title: Neurodegener Dis doi: 10.1159/000334915 – volume: 287 start-page: 3842 year: 2012 ident: 143_CR28 publication-title: J Biol Chem doi: 10.1074/jbc.M111.277061 – volume: 7 start-page: e31302 year: 2012 ident: 143_CR8 publication-title: PLoS One doi: 10.1371/journal.pone.0031302 – volume: 41 start-page: 241 year: 2013 ident: 143_CR19 publication-title: Biochem Soc Trans doi: 10.1042/BST20120266 – volume: 124 start-page: 447 year: 2011 ident: 143_CR62 publication-title: J Cell Sci doi: 10.1242/jcs.074088 – volume: 77 start-page: 1039 year: 2013 ident: 143_CR22 publication-title: Neuron doi: 10.1016/j.neuron.2013.01.013 – volume: 34 start-page: 939 year: 1984 ident: 143_CR33 publication-title: Neurology doi: 10.1212/WNL.34.7.939 – volume: 23 start-page: 628 year: 2015 ident: 143_CR36 publication-title: Structure doi: 10.1016/j.str.2015.01.015 – volume: 288 start-page: 1856 year: 2013 ident: 143_CR16 publication-title: J Biol Chem doi: 10.1074/jbc.M112.394528 – volume: 284 start-page: 12845 year: 2009 ident: 143_CR14 publication-title: J Biol Chem doi: 10.1074/jbc.M808759200 – volume: 18 start-page: 1584 year: 2015 ident: 143_CR55 publication-title: Nat Neurosci doi: 10.1038/nn.4132 – volume: 286 start-page: 15317 year: 2011 ident: 143_CR15 publication-title: J Biol Chem doi: 10.1074/jbc.M110.209296 – volume: 19 start-page: 647 year: 2010 ident: 143_CR48 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2010-1273 – volume: 11 start-page: 600 year: 2015 ident: 143_CR51 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2014.06.008 – volume: 213 start-page: 173 year: 2016 ident: 143_CR54 publication-title: J Cell Biol doi: 10.1083/jcb.201506084 – volume: 31 start-page: 13110 year: 2011 ident: 143_CR10 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2569-11.2011 – volume: 139 start-page: 481 year: 2016 ident: 143_CR34 publication-title: Brain doi: 10.1093/brain/awv346 – volume: 10 start-page: e0139233 year: 2015 ident: 143_CR52 publication-title: PLoS One doi: 10.1371/journal.pone.0139233 – volume: 37 start-page: 1939 year: 2013 ident: 143_CR18 publication-title: Eur J Neurosci doi: 10.1111/ejn.12229 – volume: 113 start-page: E968 year: 2016 ident: 143_CR20 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1521230113 – volume: 80 start-page: 402 year: 2013 ident: 143_CR60 publication-title: Neuron doi: 10.1016/j.neuron.2013.07.046 – volume: 287 start-page: 42751 year: 2012 ident: 143_CR12 publication-title: J Biol Chem doi: 10.1074/jbc.M112.380642 – volume: 82 start-page: 239 year: 1991 ident: 143_CR2 publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume: 8 start-page: e62402 year: 2013 ident: 143_CR58 publication-title: PLoS One doi: 10.1371/journal.pone.0062402 – volume: 35 start-page: 10851 year: 2015 ident: 143_CR50 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0387-15.2015 – volume: 121 start-page: 171 year: 2011 ident: 143_CR3 publication-title: Acta Neuropathol doi: 10.1007/s00401-010-0789-4 – volume: 120 start-page: 343 year: 1997 ident: 143_CR37 publication-title: J Struct Biol doi: 10.1006/jsbi.1997.3919 – volume: 7 start-page: 42 year: 2012 ident: 143_CR53 publication-title: Mol Neurodegener doi: 10.1186/1750-1326-7-42 – volume: 127 start-page: 831 year: 2006 ident: 143_CR46 publication-title: Cell doi: 10.1016/j.cell.2006.10.030 – volume: 129 start-page: 695 year: 2015 ident: 143_CR23 publication-title: Acta Neuropathol doi: 10.1007/s00401-015-1408-1 – volume: 211 start-page: 387 year: 2014 ident: 143_CR13 publication-title: J Exp Med doi: 10.1084/jem.20131685 – volume: 18 start-page: 4153 year: 2009 ident: 143_CR45 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp367 – volume: 21 start-page: R125 year: 2012 ident: 143_CR43 publication-title: Hum Mol Genet doi: 10.1093/hmg/dds317 – volume: 11 start-page: e1001604 year: 2013 ident: 143_CR6 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001604 – volume: 103 start-page: 11172 year: 2006 ident: 143_CR24 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0603838103 – volume: 34 start-page: 1343 year: 2013 ident: 143_CR31 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2012.10.024 – volume: 6 start-page: 8490 year: 2015 ident: 143_CR57 publication-title: Nat Commun doi: 10.1038/ncomms9490 – volume: 16 start-page: 415 year: 2004 ident: 143_CR21 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2004.06.003 – volume: 287 start-page: 20522 year: 2012 ident: 143_CR49 publication-title: J Biol Chem doi: 10.1074/jbc.M111.323279 – ident: 143_CR61 doi: 10.3402/jev.v3.24641 – reference: 22365544 - Neuron. 2012 Feb 23;73(4):685-97 – reference: 19282288 - J Biol Chem. 2009 May 8;284(19):12845-52 – reference: 23188818 - J Biol Chem. 2013 Jan 18;288(3):1856-70 – reference: 20110609 - J Alzheimers Dis. 2010;19(2):647-64 – reference: 19122676 - Nat Rev Mol Cell Biol. 2009 Feb;10(2):148-55 – reference: 23522040 - Neuron. 2013 Mar 20;77(6):1039-46 – reference: 26224867 - J Neurosci. 2015 Jul 29;35(30):10851-65 – reference: 8841666 - Acta Neuropathol. 1996 Aug;92(2):197-201 – reference: 22762014 - Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247 – reference: 19654187 - Hum Mol Genet. 2009 Nov 1;18(21):4153-70 – reference: 17110340 - Cell. 2006 Nov 17;127(4):831-46 – reference: 23158765 - Neurobiol Aging. 2013 May;34(5):1343-54 – reference: 25778619 - Acta Neuropathol. 2015 May;129(5):695-713 – reference: 23773063 - Eur J Neurosci. 2013 Jun;37(12):1939-48 – reference: 20052414 - PLoS One. 2010 Jan 05;5(1):e8577 – reference: 16246844 - J Biol Chem. 2006 Jan 13;281(2):1205-14 – reference: 26436904 - Nat Neurosci. 2015 Nov;18(11):1584-93 – reference: 23638068 - PLoS One. 2013 Apr 29;8(4):e62402 – reference: 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13 – reference: 22057275 - J Biol Chem. 2012 Feb 3;287(6):3842-9 – reference: 24479894 - Acta Neuropathol Commun. 2014 Jan 30;2:14 – reference: 23874151 - PLoS Biol. 2013 Jul;11(7):e1001604 – reference: 27114500 - J Cell Biol. 2016 Apr 25;213(2):173-84 – reference: 9441937 - J Struct Biol. 1997 Dec;120(3):343-52 – reference: 22138183 - FEBS Lett. 2012 Jan 2;586(1):47-54 – reference: 22496370 - J Biol Chem. 2012 Jun 8;287(24):20522-33 – reference: 15210972 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9683-8 – reference: 21372138 - J Biol Chem. 2011 Apr 29;286(17):15317-31 – reference: 26858453 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77 – reference: 21170538 - Acta Neuropathol. 2011 Feb;121(2):171-81 – reference: 15261674 - Curr Opin Cell Biol. 2004 Aug;16(4):415-21 – reference: 26426747 - PLoS One. 2015 Oct 01;10(10):e0139233 – reference: 16837572 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11172-7 – reference: 22312444 - PLoS One. 2012;7(2):e31302 – reference: 23356290 - Biochem Soc Trans. 2013 Feb 1;41(1):241-4 – reference: 1759558 - Acta Neuropathol. 1991;82(4):239-59 – reference: 25143819 - J Extracell Vesicles. 2014 Aug 04;3:null – reference: 24971751 - PLoS One. 2014 Jun 27;9(6):e100760 – reference: 6474172 - Science. 1984 Sep 14;225(4667):1168-70 – reference: 18228490 - Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22 – reference: 22872698 - Hum Mol Genet. 2012 Oct 15;21(R1):R125-34 – reference: 22920859 - Mol Neurodegener. 2012 Aug 24;7:42 – reference: 16182563 - J Struct Biol. 2005 Oct;152(1):36-51 – reference: 12888622 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10032-7 – reference: 23200807 - Free Radic Biol Med. 2013 Sep;62:90-101 – reference: 26458742 - Nat Commun. 2015 Oct 13;6:8490 – reference: 25981034 - Cell Rep. 2015 May 26;11(8):1176-83 – reference: 21111824 - Mol Cell Neurosci. 2011 Feb;46(2):409-18 – reference: 6610841 - Neurology. 1984 Jul;34(7):939-44 – reference: 21242314 - J Cell Sci. 2011 Feb 1;124(Pt 3):447-58 – reference: 22269430 - Neurodegener Dis. 2012;10(1-4):73-5 – reference: 25728926 - Structure. 2015 Apr 7;23 (4):628-38 – reference: 23105105 - J Biol Chem. 2012 Dec 14;287(51):42751-62 – reference: 21917794 - J Neurosci. 2011 Sep 14;31(37):13110-7 – reference: 24647946 - J Neurosci. 2014 Mar 19;34(12):4260-72 – reference: 23412472 - EMBO Rep. 2013 Apr;14(4):389-94 – reference: 25130657 - Alzheimers Dement. 2015 Jun;11(6):600-7.e1 – reference: 16446100 - Mol Cell Neurosci. 2006 Apr;31(4):642-8 – reference: 24534188 - J Exp Med. 2014 Mar 10;211(3):387-93 – reference: 26647156 - Brain. 2016 Feb;139(Pt 2):481-94 – reference: 24075978 - Neuron. 2013 Oct 16;80(2):402-14 – reference: 17535890 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10252-7 |
SSID | ssj0047005 |
Score | 2.61055 |
Snippet | Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the... Background Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later... BACKGROUNDTau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5 |
SubjectTerms | Adult Aged Aged, 80 and over Alzheimer Disease - pathology Alzheimer's disease Animals Care and treatment Cryoelectron Microscopy Disease Progression Enzyme-Linked Immunosorbent Assay Exosomes - metabolism Female Flow Cytometry Fluorescent Antibody Technique Genetic aspects Humans Male Mice Microfluidic Analytical Techniques Microscopy, Atomic Force Middle Aged Neurons Neurons - metabolism Physiological aspects Protein Transport Rats Synaptic transmission Tau proteins tau Proteins - metabolism Tauopathies - metabolism Tauopathies - pathology |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Na9VAcKj14kXU-hFbZQVREFaTt5tkc5DyEEsR6qkPelv2EwttUpv3pPn3nUnyQiOlxzAzyTIfOzO7kxmAj7lSUbnc8wJ9CZd55rn1ZcHJu5oYcEM09IPzye_ieCV_neVnO7AdbzUysL03taN5Uqvri683f7tDNPjvvcGr4ltLl29US0G5sRS8ewSP0TGVNNDgRE6XCrJEjRsvNu8lm7mm_zfoOx5qXj15xx0dPYOnYxzJloPgn8NOqF_A3rLGHPqyY59YX9nZH5nvwSHqAqPhKOixmKk9W5OD4m1XG9ww3PCI8qaDM9ZEdmo27N-5YeGmaZvL0L6E1dHP0x_HfBycwB2yeM0tmqkzIXVO-piLSlobqbebkLEy0mUu2sqbzBinbOnSMlSxSoMKpQzKB2PFK9itmzq8ASYW0QkXnEeApN77yoVYCWvS6JW0eQLplmfajV3FabjFhe6zC1Xogc2aKsmIzbpL4MtEcjW01HgI-TMJQpMC4HudGf8awNVR4yq9lCrFpKjIigQOZpjINjcHb0Wpt1qm8ZN51sfICXyYwERJpWd1aDY9DgbNGOWlCbweJD8te6EwI6wEUpcznZgQqHn3HFKf_-mbeOcLUaJBvH14WfvwZEFxRJrxTBzA7vp6E95hFLS273vdvgUs1wZj priority: 102 providerName: Scholars Portal |
Title | The release and trans-synaptic transmission of Tau via exosomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28086931 https://www.proquest.com/docview/1865109991 https://www.proquest.com/docview/1861502730 https://pubmed.ncbi.nlm.nih.gov/PMC5237256 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcNH2xRdR60dsPVYQBWFpcrtJNk8lSks5aBFt4d7CfmKhTaq5K96_d2azFxsf-pIQZjcsM7PztbMzhHzIpfTS5JYVoEuYyDPLtC0LhtpVeQcCUeEF57Pz4vRSLJb5Mgbc-phWuZWJQVDbzmCM_DCTRZ4Fc-bo9hfDrlF4uhpbaDwmu1i6DLm6XI4OlyiBxeJJJkw_7PGQDnMu0IcWnG0muuh_iXxPJU3TJe_pn5Nn5Gk0HGk9UPo5eeTaF2SvbsFpvtnQjzSkcoYY-R45AuJT7IYCKoqq1tIVaiTWb1oFEsIMn0BgjJTRztMLtaZ3V4q6P13f3bj-Jbk8Ob74espipwRmAKcrpmFfGuVSY4T1Oa-E1h6LuXHhKyVMZryurMqUMlKXJi1d5avUSVcKJ61Tmr8iO23XujeE8rk33DhjASCw2L40zldcq9RbKXSekHSLs8bEMuLYzeK6Ce6ELJoBzQ2mjiGam01CPo9TbocaGg8N_oSEaHB_wX-NitcEYHVYqaqphUzBCyqyIiEHk5GANjMFb0nZxH3ZN_-4KCHvRzDOxFyz1nXrMAasZDDr0oS8Hig_LnsuwQWsOMwuJzwxDsBq3VNIe_UzVO0Gj7-EHfD24WXtkydzNBzSjGX8gOysfq_dOzB7VnoWeHtGdut68WMB7y_H59--z0IQAZ5nQv4FL3kINA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFAeWRUsBIPCQkq0nsJM4BVSug2tLHaSvtzTh-iEo0ackukD_Fb2QmLxoOvfW4sp21xp_nm7HHM4S8TqT00iSWpcAlTCSRZYXNUobsqr0DhajxgfPxSTo_FV-WyXKD_BnewmBY5aATW0VtK4Nn5LuRTJOoNWf2Li4ZVo3C29WhhEYHi0PX_AKXrf5w8AnW900c739efJyzvqoAM_D_K1YAho12oTHC-oTnoig8Jj7jwudamMj4Irc60trIIjNh5nKfh066TDhpnS44fPcWuQ3EG6Kzly1HB09kAOn-5hSmu1vjpSDGeKDPLjhrJtz3PwNcocBpeOYVvtu_T-71hiqddch6QDZc-ZBszUpw0s8b-pa2oaPtmfwW2QOwUay-ApRIdWnpChmQ1U2pQSOZ7icACk_maOXpQq_pzzNN3e-qrs5d_Yic3ogMH5PNsirdU0J57A03zlhoEJjcXxrnc17o0FspiiQg4SAzZfq05Vg947tq3ReZqk7MCkPVUMyqCcj7cchFl7Pjus7vcCEU7mf4rtH9swSYHWbGUjMhQ_C60igNyM6kJ4jNTJuHpVS9HqjVP9QG5NXYjCMxtq101brtA1Y5mJFhQJ50Kz9OO5bgcuYcRmcTTIwdMDv4tKU8-9ZmCU9insGO275-Wi_Jnfni-EgdHZwcPiN3YzRawohFfIdsrn6s3XMwuVbFixbnlHy96Y31F885QzY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+release+and+trans-synaptic+transmission+of+Tau+via+exosomes&rft.jtitle=Molecular+neurodegeneration&rft.au=Wang%2C+Yipeng&rft.au=Balaji%2C+Varun&rft.au=Kaniyappan%2C+Senthilvelrajan&rft.au=Kruger%2C+Lars&rft.date=2017-01-13&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=12&rft_id=info:doi/10.1186%2Fs13024-016-0143-y&rft.externalDocID=4312170691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon |