The release and trans-synaptic transmission of Tau via exosomes

Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agent...

Full description

Saved in:
Bibliographic Details
Published inMolecular neurodegeneration Vol. 12; no. 1; p. 5
Main Authors Wang, Yipeng, Balaji, Varun, Kaniyappan, Senthilvelrajan, Krüger, Lars, Irsen, Stephan, Tepper, Katharina, Chandupatla, RamReddy, Maetzler, Walter, Schneider, Anja, Mandelkow, Eckhard, Mandelkow, Eva-Maria
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 13.01.2017
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies.
AbstractList Background Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Methods Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. Results We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Conclusion Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies.
Background Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Methods Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. Results We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Conclusion Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. Keywords: Tau, Alzheimer disease, Exosomes, Spreading
BACKGROUNDTau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes.METHODSExosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau.RESULTSWe show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells.CONCLUSIONOur study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies.
Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies.
Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages ("Braak stages"). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies.
ArticleNumber 5
Audience Academic
Author Tepper, Katharina
Wang, Yipeng
Kaniyappan, Senthilvelrajan
Maetzler, Walter
Mandelkow, Eckhard
Irsen, Stephan
Mandelkow, Eva-Maria
Balaji, Varun
Krüger, Lars
Chandupatla, RamReddy
Schneider, Anja
Author_xml – sequence: 1
  givenname: Yipeng
  surname: Wang
  fullname: Wang, Yipeng
– sequence: 2
  givenname: Varun
  surname: Balaji
  fullname: Balaji, Varun
– sequence: 3
  givenname: Senthilvelrajan
  surname: Kaniyappan
  fullname: Kaniyappan, Senthilvelrajan
– sequence: 4
  givenname: Lars
  surname: Krüger
  fullname: Krüger, Lars
– sequence: 5
  givenname: Stephan
  surname: Irsen
  fullname: Irsen, Stephan
– sequence: 6
  givenname: Katharina
  surname: Tepper
  fullname: Tepper, Katharina
– sequence: 7
  givenname: RamReddy
  surname: Chandupatla
  fullname: Chandupatla, RamReddy
– sequence: 8
  givenname: Walter
  surname: Maetzler
  fullname: Maetzler, Walter
– sequence: 9
  givenname: Anja
  surname: Schneider
  fullname: Schneider, Anja
– sequence: 10
  givenname: Eckhard
  surname: Mandelkow
  fullname: Mandelkow, Eckhard
– sequence: 11
  givenname: Eva-Maria
  surname: Mandelkow
  fullname: Mandelkow, Eva-Maria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28086931$$D View this record in MEDLINE/PubMed
BookMark eNp1Ustu1TAUtFARfcAHsEGR2LBJOSe2k3gDqipakCqxuawtxzluXSX2JU4q7t_j6LbQViDL8mtm7PGZY3YQYiDG3iKcIrb1x4QcKlEC1rkLXu5esCNsJJTIq_rg0fyQHad0CyAaAPmKHVYttLXieMQ-b26omGggk6gwoS_myYRUpl0w29nb_XL0KfkYiuiKjVmKO28K-hVTHCm9Zi-dGRK9uR9P2I-LL5vzr-XV98tv52dXpZU1zGXX8soaAmtF7yRXouscICounDLConWd6g0aY9uusdCQcgqopUZQ25Pp-An7tNfdLt1IvaWQXzbo7eRHM-10NF4_PQn-Rl_HOy0r3lSyzgIf7gWm-HOhNOvsytIwmEBxSTr_J0qoGg4Z-v4Z9DYuU8j2VpREUErhX9S1GUj74GK-166i-ky0IKWqcb329B-o3Hoavc3ldD7vPyG8e2z0j8OHkmVAswfYKaY0kdPWz2bO9cnKftAIeg2H3odD53DoNRx6l5n4jPkg_n_Ob73lvA8
CitedBy_id crossref_primary_10_1089_ars_2017_7265
crossref_primary_10_3390_ijms19030663
crossref_primary_10_1016_j_tins_2018_03_006
crossref_primary_10_3389_fnins_2021_738442
crossref_primary_10_1016_j_cej_2024_150210
crossref_primary_10_1016_j_nbd_2020_104820
crossref_primary_10_3389_fncel_2022_979856
crossref_primary_10_3390_md23030091
crossref_primary_10_1186_s13024_020_00389_1
crossref_primary_10_1038_nrneurol_2017_162
crossref_primary_10_1186_s40478_019_0664_z
crossref_primary_10_3389_fnmol_2020_569818
crossref_primary_10_1016_j_arr_2021_101321
crossref_primary_10_1016_j_jbc_2022_101766
crossref_primary_10_18632_aging_203883
crossref_primary_10_2174_1567205016666190321155422
crossref_primary_10_1016_j_jbc_2021_101482
crossref_primary_10_1002_imo2_33
crossref_primary_10_3390_ijms21186859
crossref_primary_10_3389_fcell_2021_635104
crossref_primary_10_3233_JAD_180776
crossref_primary_10_3390_ijms23031371
crossref_primary_10_3390_ijms241713161
crossref_primary_10_3389_fnagi_2018_00024
crossref_primary_10_1097_WCO_0000000000000502
crossref_primary_10_1016_j_bbih_2021_100242
crossref_primary_10_1038_s41467_021_22501_9
crossref_primary_10_1016_j_bbih_2021_100243
crossref_primary_10_1007_s13139_018_0550_9
crossref_primary_10_1038_s41598_022_11582_1
crossref_primary_10_1002_alz_12978
crossref_primary_10_2174_1570159X18666200525020259
crossref_primary_10_3389_fncel_2022_955511
crossref_primary_10_3390_cells12010063
crossref_primary_10_1021_acschembio_0c00311
crossref_primary_10_1016_j_bbamem_2021_183841
crossref_primary_10_1016_j_nbd_2018_07_003
crossref_primary_10_3389_fnmol_2019_00107
crossref_primary_10_1038_s41467_021_25855_2
crossref_primary_10_1096_fj_202401704R
crossref_primary_10_1155_2021_9965564
crossref_primary_10_3389_fphar_2021_670158
crossref_primary_10_1038_s41598_024_75406_0
crossref_primary_10_1186_s12951_021_01070_5
crossref_primary_10_1002_elps_201800526
crossref_primary_10_3233_JAD_170953
crossref_primary_10_3389_fnins_2019_00442
crossref_primary_10_3233_JAD_170959
crossref_primary_10_33611_trs_2023_003
crossref_primary_10_1186_s40035_023_00375_9
crossref_primary_10_1016_j_prp_2024_155451
crossref_primary_10_1021_acschemneuro_0c00531
crossref_primary_10_3389_fneur_2023_1287545
crossref_primary_10_1002_ana_25406
crossref_primary_10_1089_neu_2021_0241
crossref_primary_10_1038_s41598_018_38146_6
crossref_primary_10_1002_bmb_21472
crossref_primary_10_3390_biomedicines10081800
crossref_primary_10_3389_fnmol_2020_00101
crossref_primary_10_3390_brainsci8090162
crossref_primary_10_3389_fnins_2019_00698
crossref_primary_10_1038_s41593_022_01191_6
crossref_primary_10_3389_fnagi_2018_00395
crossref_primary_10_1016_j_neuint_2020_104919
crossref_primary_10_1080_14728222_2020_1737012
crossref_primary_10_3389_fncel_2021_645233
crossref_primary_10_1016_j_cjac_2025_100509
crossref_primary_10_1155_2022_3356467
crossref_primary_10_1111_febs_17150
crossref_primary_10_1007_s00018_019_03349_1
crossref_primary_10_1007_s12035_022_02809_3
crossref_primary_10_1016_j_neubiorev_2021_02_027
crossref_primary_10_1016_j_arr_2023_101924
crossref_primary_10_1016_j_bbcan_2024_189189
crossref_primary_10_1016_j_mcn_2017_03_003
crossref_primary_10_3389_fcell_2021_653815
crossref_primary_10_3390_cells9112485
crossref_primary_10_1016_j_cca_2019_07_012
crossref_primary_10_1016_j_celrep_2021_110287
crossref_primary_10_1111_febs_16055
crossref_primary_10_1016_j_celrep_2018_04_056
crossref_primary_10_3390_antiox12071373
crossref_primary_10_3390_cells12222652
crossref_primary_10_1016_j_neuint_2017_07_002
crossref_primary_10_1007_s00401_022_02426_3
crossref_primary_10_1007_s00018_018_2823_y
crossref_primary_10_1016_j_conb_2020_03_013
crossref_primary_10_1016_j_ejcb_2022_151270
crossref_primary_10_1186_s13024_019_0354_0
crossref_primary_10_1021_acschemneuro_0c00426
crossref_primary_10_26508_lsa_202101055
crossref_primary_10_3748_wjg_v29_i39_5435
crossref_primary_10_1016_j_biopsych_2021_05_025
crossref_primary_10_1016_j_neuron_2018_06_003
crossref_primary_10_3389_fnagi_2021_765395
crossref_primary_10_1002_cbic_201800288
crossref_primary_10_1016_j_neuroscience_2020_11_006
crossref_primary_10_1002_dneu_22712
crossref_primary_10_3389_fcell_2022_793388
crossref_primary_10_2147_NSS_S310351
crossref_primary_10_1186_s40478_022_01331_w
crossref_primary_10_1038_s41591_024_02937_4
crossref_primary_10_3233_JAD_221279
crossref_primary_10_3390_ijms19030645
crossref_primary_10_3390_ijms22179207
crossref_primary_10_1016_j_celrep_2018_03_021
crossref_primary_10_3389_fnins_2017_00667
crossref_primary_10_3233_JAD_210268
crossref_primary_10_3389_fnmol_2023_1225533
crossref_primary_10_1038_s41380_020_0738_0
crossref_primary_10_1016_j_arr_2023_101916
crossref_primary_10_1016_j_arr_2021_101558
crossref_primary_10_1186_s40035_018_0139_3
crossref_primary_10_1002_alz_12518
crossref_primary_10_3389_fnins_2019_00649
crossref_primary_10_3390_biomedicines9020190
crossref_primary_10_1016_j_heliyon_2024_e38959
crossref_primary_10_1016_j_autrev_2020_102664
crossref_primary_10_3233_JAD_191034
crossref_primary_10_3390_ijms25094969
crossref_primary_10_4103_1673_5374_266908
crossref_primary_10_1002_alz_12452
crossref_primary_10_1038_s41380_018_0342_8
crossref_primary_10_1016_j_trci_2018_10_007
crossref_primary_10_1002_alz_12453
crossref_primary_10_1016_j_mito_2017_12_007
crossref_primary_10_1093_brain_awaa457
crossref_primary_10_1007_s40336_020_00371_3
crossref_primary_10_3390_ijms251810068
crossref_primary_10_1111_jnc_16108
crossref_primary_10_1126_sciadv_abg6677
crossref_primary_10_1007_s11064_022_03701_1
crossref_primary_10_1016_j_nbd_2019_104518
crossref_primary_10_3389_fnagi_2021_682115
crossref_primary_10_1038_s41419_024_06458_3
crossref_primary_10_1038_s41598_021_98142_1
crossref_primary_10_3390_ijms232415940
crossref_primary_10_1038_s41380_021_01350_4
crossref_primary_10_1007_s13530_019_0392_6
crossref_primary_10_2174_1566524019666190917125917
crossref_primary_10_7554_eLife_47209
crossref_primary_10_1111_jnc_15144
crossref_primary_10_3389_fnagi_2020_00096
crossref_primary_10_1016_j_conb_2024_102857
crossref_primary_10_1016_j_neuint_2017_12_009
crossref_primary_10_1515_bmc_2018_0001
crossref_primary_10_1038_s41598_019_45676_0
crossref_primary_10_3390_ijms24043061
crossref_primary_10_1002_glia_24469
crossref_primary_10_1186_s40478_021_01141_6
crossref_primary_10_1111_cns_13970
crossref_primary_10_3389_fncel_2019_00017
crossref_primary_10_1016_j_neuron_2024_06_029
crossref_primary_10_1038_s41593_024_01801_5
crossref_primary_10_3390_antiox11020416
crossref_primary_10_3233_JAD_200529
crossref_primary_10_1186_s12943_019_1085_0
crossref_primary_10_3389_fmolb_2021_671458
crossref_primary_10_14336_AD_2020_0908
crossref_primary_10_1007_s12035_022_02945_w
crossref_primary_10_4103_1673_5374_375320
crossref_primary_10_1146_annurev_cellbio_100617_062636
crossref_primary_10_2147_CIA_S240400
crossref_primary_10_1016_j_mad_2019_111175
crossref_primary_10_1093_braincomms_fcae442
crossref_primary_10_3389_fnins_2024_1400413
crossref_primary_10_1016_j_jbc_2024_107433
crossref_primary_10_4103_1673_5374_343882
crossref_primary_10_4103_0366_6999_220313
crossref_primary_10_1016_j_colsurfb_2024_113938
crossref_primary_10_31083_j_jin2311197
crossref_primary_10_3390_cancers12020298
crossref_primary_10_3390_ijms251910797
crossref_primary_10_1002_alz_13535
crossref_primary_10_15252_embj_2020106320
crossref_primary_10_1016_j_pneurobio_2019_101644
crossref_primary_10_2217_rme_2022_0212
crossref_primary_10_1523_JNEUROSCI_1590_19_2019
crossref_primary_10_3389_fnagi_2022_974414
crossref_primary_10_1016_j_neulet_2021_136004
crossref_primary_10_3390_jcm12051883
crossref_primary_10_1016_j_drudis_2022_103340
crossref_primary_10_3390_cells11030462
crossref_primary_10_1016_j_trsl_2022_08_008
crossref_primary_10_1523_JNEUROSCI_0275_18_2018
crossref_primary_10_3390_biomedicines11020355
crossref_primary_10_1016_j_neures_2018_08_005
crossref_primary_10_1016_j_addr_2021_05_006
crossref_primary_10_1002_alz_12371
crossref_primary_10_1007_s12264_023_01115_9
crossref_primary_10_3389_fncel_2018_00317
crossref_primary_10_1002_jex2_55
crossref_primary_10_3389_fnagi_2021_790863
crossref_primary_10_3389_fneur_2022_1063298
crossref_primary_10_3390_biom10111487
crossref_primary_10_1111_cas_13697
crossref_primary_10_1186_s13024_020_00391_7
crossref_primary_10_3390_ijms21228819
crossref_primary_10_1016_j_ymthe_2021_04_020
crossref_primary_10_1080_20013078_2020_1766822
crossref_primary_10_3390_neuroglia1010010
crossref_primary_10_1186_s13024_024_00703_1
crossref_primary_10_1523_JNEUROSCI_1170_24_2024
crossref_primary_10_1038_s41598_019_43607_7
crossref_primary_10_1038_s42003_025_07499_w
crossref_primary_10_1016_j_pneurobio_2017_12_003
crossref_primary_10_1016_j_neuint_2022_105307
crossref_primary_10_3389_fncel_2018_00323
crossref_primary_10_1016_j_tins_2022_02_004
crossref_primary_10_12677_ACM_2022_123275
crossref_primary_10_3390_biom10071079
crossref_primary_10_3389_fnagi_2018_00370
crossref_primary_10_3390_cimb44120421
crossref_primary_10_1162_netn_a_00103
crossref_primary_10_1016_j_pneurobio_2022_102270
crossref_primary_10_3389_fnagi_2022_834775
crossref_primary_10_1186_s13062_023_00387_5
crossref_primary_10_1515_mr_2023_0071
crossref_primary_10_47184_tev_2023_01_03
crossref_primary_10_1038_s41435_020_00113_5
crossref_primary_10_33218_prnano2_3_070819_1
crossref_primary_10_3897_rrpharmacology_6_52098
crossref_primary_10_1371_journal_pone_0220007
crossref_primary_10_3389_fneur_2020_573324
crossref_primary_10_1016_j_neurobiolaging_2021_01_003
crossref_primary_10_3390_cells9071618
crossref_primary_10_3390_ijms23094789
crossref_primary_10_1111_jnc_16294
crossref_primary_10_20517_and_2023_20
crossref_primary_10_1016_j_celrep_2018_10_078
crossref_primary_10_1016_j_omtm_2019_06_005
crossref_primary_10_7554_eLife_58744
crossref_primary_10_1038_s41582_020_0333_7
crossref_primary_10_1038_s41580_024_00753_9
crossref_primary_10_1074_jbc_RA120_013325
crossref_primary_10_1093_procel_pwae026
crossref_primary_10_1038_s41467_021_25060_1
crossref_primary_10_1021_acs_molpharmaceut_0c00245
crossref_primary_10_1007_s00018_020_03619_3
crossref_primary_10_3389_fnagi_2020_00265
crossref_primary_10_3389_fmolb_2023_1254834
crossref_primary_10_3390_ijms26062491
crossref_primary_10_1016_j_freeradbiomed_2017_08_028
crossref_primary_10_7554_eLife_78360
crossref_primary_10_3389_fcell_2021_735888
crossref_primary_10_1042_BST20210203
crossref_primary_10_1186_s13024_024_00786_w
crossref_primary_10_1007_s00702_019_02028_6
crossref_primary_10_1038_s41467_024_46554_8
crossref_primary_10_1186_s12916_023_02910_x
crossref_primary_10_1016_j_ymthe_2023_05_012
crossref_primary_10_3389_fcell_2022_912118
crossref_primary_10_3389_fnmol_2021_630808
crossref_primary_10_1002_jev2_12340
crossref_primary_10_3389_fnagi_2020_00011
crossref_primary_10_1002_jev2_12114
crossref_primary_10_1186_s12974_023_02853_3
crossref_primary_10_1016_j_nbd_2018_12_006
crossref_primary_10_3233_JAD_170278
crossref_primary_10_3389_fnins_2022_936897
crossref_primary_10_1007_s12035_023_03730_z
crossref_primary_10_3389_fcell_2021_790479
crossref_primary_10_1016_j_nbd_2024_106663
crossref_primary_10_1177_10738584211001753
crossref_primary_10_1016_j_jneumeth_2024_110137
crossref_primary_10_3390_brainsci10110858
crossref_primary_10_1016_j_nbd_2023_106141
crossref_primary_10_1186_s13024_022_00560_w
crossref_primary_10_1007_s12031_023_02143_w
crossref_primary_10_1007_s00018_021_03942_3
crossref_primary_10_1021_acs_analchem_7b04519
crossref_primary_10_1007_s11356_024_35195_5
crossref_primary_10_1007_s00401_020_02254_3
crossref_primary_10_3389_fnins_2021_781722
crossref_primary_10_3389_fnagi_2019_00271
crossref_primary_10_3390_cancers13010084
crossref_primary_10_1016_j_bios_2019_111329
crossref_primary_10_3390_pharmaceutics15092364
crossref_primary_10_3390_cells11121943
crossref_primary_10_1134_S0006297923040028
crossref_primary_10_1074_jbc_RA120_013553
crossref_primary_10_1007_s00401_019_02122_9
crossref_primary_10_3390_ijms241915023
crossref_primary_10_1111_ejn_16625
crossref_primary_10_1111_jnc_14471
crossref_primary_10_3390_brainsci11020258
crossref_primary_10_3389_fcell_2021_707268
crossref_primary_10_3390_ijms21238948
crossref_primary_10_1016_j_bbrc_2018_03_209
crossref_primary_10_1016_j_expneurol_2021_113756
crossref_primary_10_1093_pnasnexus_pgad282
crossref_primary_10_1016_j_molmed_2020_03_012
crossref_primary_10_1016_j_molcel_2018_07_016
crossref_primary_10_3389_fnins_2019_01274
crossref_primary_10_1016_j_isci_2020_101456
crossref_primary_10_1111_jcmm_18554
crossref_primary_10_3389_fphar_2023_1112743
crossref_primary_10_1016_j_pneurobio_2018_06_006
crossref_primary_10_1016_j_celrep_2023_112063
crossref_primary_10_1016_j_toxicon_2023_107110
crossref_primary_10_1038_s41374_021_00644_z
crossref_primary_10_1186_s40035_024_00432_x
crossref_primary_10_1186_s40478_021_01245_z
crossref_primary_10_1016_j_bj_2018_01_003
crossref_primary_10_1093_brain_awad361
crossref_primary_10_1016_j_ijbiomac_2024_135826
crossref_primary_10_1007_s00401_024_02744_8
crossref_primary_10_3389_fnins_2022_1042865
crossref_primary_10_3389_fncel_2022_984690
crossref_primary_10_3389_fonc_2022_781820
crossref_primary_10_1016_j_neulet_2019_04_022
crossref_primary_10_3390_cells9091959
crossref_primary_10_1038_s41467_018_06783_0
crossref_primary_10_3390_biom12091164
crossref_primary_10_1016_j_cell_2021_12_041
crossref_primary_10_1002_jev2_12383
crossref_primary_10_3390_ijms21083028
crossref_primary_10_1002_jev2_12398
crossref_primary_10_1186_s40478_020_01018_0
crossref_primary_10_3390_ijms19071947
crossref_primary_10_1016_j_jneumeth_2018_09_032
crossref_primary_10_3389_fnmol_2023_1187300
crossref_primary_10_1523_JNEUROSCI_1418_17_2017
crossref_primary_10_1111_jnc_15112
crossref_primary_10_3389_fnmol_2023_1287510
crossref_primary_10_1111_bph_16212
crossref_primary_10_3389_fnmol_2021_788695
crossref_primary_10_3390_pharmaceutics15061738
crossref_primary_10_14336_AD_2024_03019
crossref_primary_10_1002_jev2_12154
crossref_primary_10_1002_jev2_12397
crossref_primary_10_4103_1673_5374_320972
crossref_primary_10_1186_s40478_021_01246_y
crossref_primary_10_1007_s00259_024_06637_6
crossref_primary_10_3389_fncel_2021_743353
crossref_primary_10_1002_pro_5078
crossref_primary_10_1016_j_neuint_2024_105880
crossref_primary_10_1016_j_semcdb_2021_05_013
crossref_primary_10_1038_s41598_021_92433_3
crossref_primary_10_1039_C9LC01010F
crossref_primary_10_1002_alz_12089
crossref_primary_10_3389_fimmu_2019_01139
crossref_primary_10_1016_j_pneurobio_2018_12_005
crossref_primary_10_1126_scitranslmed_adp2564
crossref_primary_10_1515_revneuro_2019_0001
crossref_primary_10_3390_v16010072
crossref_primary_10_1186_s40478_018_0514_4
crossref_primary_10_1126_sciadv_abm4295
crossref_primary_10_1016_j_biocel_2023_106475
crossref_primary_10_3389_fnagi_2022_932541
crossref_primary_10_17816_KMJ567814
crossref_primary_10_1007_s10544_017_0254_4
crossref_primary_10_2147_JIR_S466821
crossref_primary_10_1093_brain_awac083
crossref_primary_10_1021_acschemneuro_8b00003
crossref_primary_10_3389_fnins_2023_1157652
crossref_primary_10_1002_btm2_10231
crossref_primary_10_1111_jcmm_18477
crossref_primary_10_1186_s40478_019_0754_y
crossref_primary_10_1007_s00018_019_03132_2
crossref_primary_10_1097_WCO_0000000000000581
crossref_primary_10_1038_s41583_021_00531_y
crossref_primary_10_1016_j_neures_2019_07_007
crossref_primary_10_1038_s41467_023_37304_3
crossref_primary_10_1159_000505851
crossref_primary_10_1093_cercor_bhaf053
crossref_primary_10_1038_s41467_023_37840_y
crossref_primary_10_12677_acm_2024_1492563
crossref_primary_10_3233_JPD_212562
crossref_primary_10_3389_fncel_2018_00080
crossref_primary_10_1016_j_neuron_2017_11_028
crossref_primary_10_1007_s10571_020_00926_y
crossref_primary_10_20517_evcna_2023_44
crossref_primary_10_1111_bph_15813
crossref_primary_10_4103_1673_5374_379036
crossref_primary_10_1002_adhm_202002119
crossref_primary_10_1016_j_envpol_2021_117816
crossref_primary_10_1016_j_brainresbull_2024_111046
crossref_primary_10_1021_acschemneuro_8b00387
crossref_primary_10_1074_jbc_RA118_001784
crossref_primary_10_3389_fnins_2023_1196007
crossref_primary_10_1002_jnr_24794
crossref_primary_10_3389_fnins_2019_01258
crossref_primary_10_3389_fnmol_2020_00079
crossref_primary_10_1007_s00401_019_02054_4
crossref_primary_10_1038_s41598_018_24904_z
crossref_primary_10_1016_j_biomaterials_2018_05_012
crossref_primary_10_1016_j_biopha_2023_115853
crossref_primary_10_3389_fnmol_2023_1182573
crossref_primary_10_1016_j_nbd_2022_105651
crossref_primary_10_1002_jev2_70043
crossref_primary_10_1186_s40035_022_00326_w
crossref_primary_10_1016_j_envres_2021_112316
crossref_primary_10_1002_1873_3468_70022
crossref_primary_10_3389_fneur_2019_01266
crossref_primary_10_1093_brain_awad024
crossref_primary_10_1007_s00441_022_03620_1
crossref_primary_10_1186_s40035_024_00429_6
crossref_primary_10_3389_fnagi_2023_1209115
crossref_primary_10_1523_JNEUROSCI_0766_20_2021
crossref_primary_10_1016_j_neuropharm_2019_107842
crossref_primary_10_3390_ijms25169004
crossref_primary_10_1016_j_semcdb_2021_12_002
crossref_primary_10_3390_ijms19092834
crossref_primary_10_1002_ibra_12090
crossref_primary_10_1038_s41598_019_46311_8
crossref_primary_10_1002_dad2_12001
crossref_primary_10_20517_evcna_2023_66
crossref_primary_10_3233_JAD_179942
crossref_primary_10_3389_fneur_2020_590754
crossref_primary_10_1172_JCI165523
crossref_primary_10_1001_jamaneurol_2018_2505
crossref_primary_10_1002_adma_202002440
crossref_primary_10_1128_jvi_01076_24
crossref_primary_10_1093_hmg_ddz255
crossref_primary_10_1016_j_na_2024_113714
crossref_primary_10_1016_j_nbd_2020_105031
crossref_primary_10_31857_S0320972523040024
crossref_primary_10_1007_s40263_019_00613_7
crossref_primary_10_1523_ENEURO_0092_22_2022
crossref_primary_10_3892_ijmm_2022_5206
crossref_primary_10_1093_brain_awae174
crossref_primary_10_3389_fnagi_2022_899944
crossref_primary_10_1186_s12929_018_0457_x
crossref_primary_10_1128_mbio_01522_24
crossref_primary_10_1186_s40478_017_0488_7
crossref_primary_10_3390_biomedicines10092147
crossref_primary_10_3390_ijms221910794
crossref_primary_10_3233_ADR_200191
crossref_primary_10_1016_j_expneurol_2022_114183
crossref_primary_10_1016_j_tins_2019_02_007
crossref_primary_10_1007_s12035_017_0821_y
crossref_primary_10_3389_fnins_2023_1268360
crossref_primary_10_3390_ijms24010675
crossref_primary_10_1186_s13195_023_01182_0
crossref_primary_10_1038_s41467_023_44374_w
crossref_primary_10_1007_s00018_024_05225_z
crossref_primary_10_1007_s00401_019_02108_7
crossref_primary_10_2147_IJN_S310357
crossref_primary_10_3389_fnmol_2020_586731
crossref_primary_10_1021_acschemneuro_8b00469
crossref_primary_10_1007_s12031_021_01943_2
crossref_primary_10_1242_jcs_250449
crossref_primary_10_1016_j_bbamcr_2021_118971
crossref_primary_10_3389_fnins_2019_01339
crossref_primary_10_3390_life11010028
crossref_primary_10_1007_s11481_017_9768_z
crossref_primary_10_1089_dna_2021_0485
crossref_primary_10_4103_1673_5374_385853
crossref_primary_10_1016_j_neuint_2021_104988
crossref_primary_10_1007_s11011_019_00516_y
crossref_primary_10_3390_cells12121623
crossref_primary_10_1007_s12035_018_1448_3
crossref_primary_10_1523_JNEUROSCI_1494_22_2023
crossref_primary_10_3390_ijms24054561
crossref_primary_10_1016_j_ymthe_2021_09_020
crossref_primary_10_1186_s40478_017_0467_z
crossref_primary_10_3390_ijms22031365
crossref_primary_10_1007_s00401_019_02087_9
crossref_primary_10_1038_s41596_021_00551_z
crossref_primary_10_3389_fnhum_2024_1352118
crossref_primary_10_1016_j_neuroscience_2018_04_003
crossref_primary_10_3389_fnins_2019_01347
crossref_primary_10_1186_s40478_024_01748_5
crossref_primary_10_1038_s41551_020_00643_3
Cites_doi 10.1016/j.jsb.2005.07.007
10.1016/j.neuron.2011.11.033
10.1016/j.freeradbiomed.2012.11.014
10.1038/ncb1901
10.1007/s004010050508
10.1016/j.mcn.2005.12.003
10.1101/cshperspect.a006247
10.1073/pnas.0703676104
10.1016/j.febslet.2011.11.022
10.1371/journal.pone.0100760
10.1038/nrm2617
10.1186/2051-5960-2-14
10.1002/0471143030.cb0322s30
10.1523/JNEUROSCI.3192-13.2014
10.1016/j.mcn.2010.11.004
10.1073/pnas.1630428100
10.1038/embor.2013.15
10.1371/journal.pone.0008577
10.1074/jbc.M507753200
10.1126/science.6474172
10.1073/pnas.0308413101
10.1016/j.celrep.2015.04.043
10.1159/000334915
10.1074/jbc.M111.277061
10.1371/journal.pone.0031302
10.1042/BST20120266
10.1242/jcs.074088
10.1016/j.neuron.2013.01.013
10.1212/WNL.34.7.939
10.1016/j.str.2015.01.015
10.1074/jbc.M112.394528
10.1074/jbc.M808759200
10.1038/nn.4132
10.1074/jbc.M110.209296
10.3233/JAD-2010-1273
10.1016/j.jalz.2014.06.008
10.1083/jcb.201506084
10.1523/JNEUROSCI.2569-11.2011
10.1093/brain/awv346
10.1371/journal.pone.0139233
10.1111/ejn.12229
10.1073/pnas.1521230113
10.1016/j.neuron.2013.07.046
10.1074/jbc.M112.380642
10.1007/BF00308809
10.1371/journal.pone.0062402
10.1523/JNEUROSCI.0387-15.2015
10.1007/s00401-010-0789-4
10.1006/jsbi.1997.3919
10.1186/1750-1326-7-42
10.1016/j.cell.2006.10.030
10.1007/s00401-015-1408-1
10.1084/jem.20131685
10.1093/hmg/ddp367
10.1093/hmg/dds317
10.1371/journal.pbio.1001604
10.1073/pnas.0603838103
10.1016/j.neurobiolaging.2012.10.024
10.1038/ncomms9490
10.1016/j.ceb.2004.06.003
10.1074/jbc.M111.323279
10.3402/jev.v3.24641
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s). 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1186/s13024-016-0143-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1750-1326
EndPage 5
ExternalDocumentID PMC5237256
4312170691
A480559616
28086931
10_1186_s13024_016_0143_y
Genre Journal Article
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HH5
HMCUK
HYE
IAO
IHR
INH
INR
IPY
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7TK
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c560t-b832cae0cc4df5394bbf011934f9a4c1cfb9da1aac8b7c07e9f90e8e74e8deab3
IEDL.DBID 7X7
ISSN 1750-1326
IngestDate Thu Aug 21 18:20:44 EDT 2025
Fri Jul 11 15:35:24 EDT 2025
Fri Jul 25 07:41:40 EDT 2025
Tue Jun 17 21:44:01 EDT 2025
Tue Jun 10 20:37:20 EDT 2025
Thu Apr 03 06:50:12 EDT 2025
Tue Jul 01 01:59:03 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tau
Exosomes
Alzheimer disease
Spreading
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-b832cae0cc4df5394bbf011934f9a4c1cfb9da1aac8b7c07e9f90e8e74e8deab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1865109991?pq-origsite=%requestingapplication%
PMID 28086931
PQID 1865109991
PQPubID 55149
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5237256
proquest_miscellaneous_1861502730
proquest_journals_1865109991
gale_infotracmisc_A480559616
gale_infotracacademiconefile_A480559616
pubmed_primary_28086931
crossref_citationtrail_10_1186_s13024_016_0143_y
crossref_primary_10_1186_s13024_016_0143_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-13
PublicationDateYYYYMMDD 2017-01-13
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Molecular neurodegeneration
PublicationTitleAlternate Mol Neurodegener
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References H Braak (143_CR3) 2011; 121
B Fevrier (143_CR21) 2004; 16
D Simon (143_CR26) 2012; 10
J Kowal (143_CR20) 2016; 113
W Heusermann (143_CR54) 2016; 213
B Fevrier (143_CR25) 2004; 101
J Faure (143_CR29) 2006; 31
DN Mastronarde (143_CR37) 1997; 120
NV Mohamed (143_CR18) 2013; 37
S Calafate (143_CR56) 2015; 11
MH Yan (143_CR5) 2013; 62
F Clavaguera (143_CR17) 2009; 11
DL Castillo-Carranza (143_CR59) 2014; 34
C d'Abramo (143_CR58) 2013; 8
BT Hyman (143_CR7) 1984; 225
143_CR47
M Kunadt (143_CR23) 2015; 129
A Calignon de (143_CR9) 2012; 73
TC Gamblin (143_CR40) 2003; 100
V Palanisamy (143_CR42) 2010; 5
C Korkut (143_CR22) 2013; 77
JW Wu (143_CR16) 2013; 288
D Simon (143_CR27) 2012; 586
YP Wang (143_CR38) 2007; 104
L Liu (143_CR8) 2012; 7
S Dujardin (143_CR44) 2014; 2
H Braak (143_CR4) 1996; 92
DN Mastronarde (143_CR35) 2005; 152
A Stuendl (143_CR34) 2016; 139
S Takamori (143_CR46) 2006; 127
G Lugli (143_CR52) 2015; 10
L Rajendran (143_CR24) 2006; 103
143_CR32
D Kanmert (143_CR50) 2015; 35
Y Wang (143_CR45) 2009; 18
K Yanamandra (143_CR60) 2013; 80
KM Danzer (143_CR53) 2012; 7
B Frost (143_CR14) 2009; 284
S Saman (143_CR28) 2012; 287
M Chivet (143_CR19) 2013; 41
S Dujardin (143_CR41) 2014; 9
M Gunkel (143_CR36) 2015; 23
W Kim (143_CR48) 2010; 19
G Lachenal (143_CR39) 2011; 46
143_CR61
K Yamada (143_CR10) 2011; 31
AM Pooler (143_CR11) 2013; 14
Y Lee (143_CR43) 2012; 21
EM Mandelkow (143_CR1) 2012; 2
K Yamada (143_CR13) 2014; 211
C Fruhbeis (143_CR6) 2013; 11
CM Karch (143_CR12) 2012; 287
JL Guo (143_CR15) 2011; 286
L Messing (143_CR31) 2013; 34
S Takeda (143_CR57) 2015; 6
G McKhann (143_CR33) 1984; 34
H Braak (143_CR2) 1991; 82
D Fitzner (143_CR62) 2011; 124
MS Fiandaca (143_CR51) 2015; 11
I Santa-Maria (143_CR49) 2012; 287
H Asai (143_CR55) 2015; 18
I Khlistunova (143_CR30) 2006; 281
23158765 - Neurobiol Aging. 2013 May;34(5):1343-54
16246844 - J Biol Chem. 2006 Jan 13;281(2):1205-14
8841666 - Acta Neuropathol. 1996 Aug;92(2):197-201
22138183 - FEBS Lett. 2012 Jan 2;586(1):47-54
6610841 - Neurology. 1984 Jul;34(7):939-44
23522040 - Neuron. 2013 Mar 20;77(6):1039-46
19282288 - J Biol Chem. 2009 May 8;284(19):12845-52
20110609 - J Alzheimers Dis. 2010;19(2):647-64
19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13
26224867 - J Neurosci. 2015 Jul 29;35(30):10851-65
23638068 - PLoS One. 2013 Apr 29;8(4):e62402
22872698 - Hum Mol Genet. 2012 Oct 15;21(R1):R125-34
25981034 - Cell Rep. 2015 May 26;11(8):1176-83
24647946 - J Neurosci. 2014 Mar 19;34(12):4260-72
24534188 - J Exp Med. 2014 Mar 10;211(3):387-93
16837572 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11172-7
26426747 - PLoS One. 2015 Oct 01;10(10):e0139233
26647156 - Brain. 2016 Feb;139(Pt 2):481-94
21242314 - J Cell Sci. 2011 Feb 1;124(Pt 3):447-58
1759558 - Acta Neuropathol. 1991;82(4):239-59
23188818 - J Biol Chem. 2013 Jan 18;288(3):1856-70
22762014 - Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247
21917794 - J Neurosci. 2011 Sep 14;31(37):13110-7
12888622 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10032-7
22920859 - Mol Neurodegener. 2012 Aug 24;7:42
17110340 - Cell. 2006 Nov 17;127(4):831-46
23874151 - PLoS Biol. 2013 Jul;11(7):e1001604
19654187 - Hum Mol Genet. 2009 Nov 1;18(21):4153-70
26436904 - Nat Neurosci. 2015 Nov;18(11):1584-93
17535890 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10252-7
16446100 - Mol Cell Neurosci. 2006 Apr;31(4):642-8
25130657 - Alzheimers Dement. 2015 Jun;11(6):600-7.e1
15261674 - Curr Opin Cell Biol. 2004 Aug;16(4):415-21
20052414 - PLoS One. 2010 Jan 05;5(1):e8577
23356290 - Biochem Soc Trans. 2013 Feb 1;41(1):241-4
21111824 - Mol Cell Neurosci. 2011 Feb;46(2):409-18
19122676 - Nat Rev Mol Cell Biol. 2009 Feb;10(2):148-55
22269430 - Neurodegener Dis. 2012;10(1-4):73-5
22496370 - J Biol Chem. 2012 Jun 8;287(24):20522-33
26858453 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77
22312444 - PLoS One. 2012;7(2):e31302
24075978 - Neuron. 2013 Oct 16;80(2):402-14
16182563 - J Struct Biol. 2005 Oct;152(1):36-51
25778619 - Acta Neuropathol. 2015 May;129(5):695-713
25143819 - J Extracell Vesicles. 2014 Aug 04;3:null
22365544 - Neuron. 2012 Feb 23;73(4):685-97
25728926 - Structure. 2015 Apr 7;23 (4):628-38
27114500 - J Cell Biol. 2016 Apr 25;213(2):173-84
23412472 - EMBO Rep. 2013 Apr;14(4):389-94
24971751 - PLoS One. 2014 Jun 27;9(6):e100760
9441937 - J Struct Biol. 1997 Dec;120(3):343-52
6474172 - Science. 1984 Sep 14;225(4667):1168-70
23105105 - J Biol Chem. 2012 Dec 14;287(51):42751-62
21170538 - Acta Neuropathol. 2011 Feb;121(2):171-81
23773063 - Eur J Neurosci. 2013 Jun;37(12):1939-48
26458742 - Nat Commun. 2015 Oct 13;6:8490
22057275 - J Biol Chem. 2012 Feb 3;287(6):3842-9
15210972 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9683-8
23200807 - Free Radic Biol Med. 2013 Sep;62:90-101
21372138 - J Biol Chem. 2011 Apr 29;286(17):15317-31
24479894 - Acta Neuropathol Commun. 2014 Jan 30;2:14
18228490 - Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22
References_xml – volume: 152
  start-page: 36
  year: 2005
  ident: 143_CR35
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2005.07.007
– volume: 73
  start-page: 685
  year: 2012
  ident: 143_CR9
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.033
– volume: 62
  start-page: 90
  year: 2013
  ident: 143_CR5
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2012.11.014
– volume: 11
  start-page: 909
  year: 2009
  ident: 143_CR17
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1901
– volume: 92
  start-page: 197
  year: 1996
  ident: 143_CR4
  publication-title: Acta Neuropathol
  doi: 10.1007/s004010050508
– volume: 31
  start-page: 642
  year: 2006
  ident: 143_CR29
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2005.12.003
– volume: 2
  start-page: a006247
  year: 2012
  ident: 143_CR1
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a006247
– volume: 104
  start-page: 10252
  year: 2007
  ident: 143_CR38
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0703676104
– volume: 586
  start-page: 47
  year: 2012
  ident: 143_CR27
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2011.11.022
– volume: 9
  start-page: e100760
  year: 2014
  ident: 143_CR41
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0100760
– ident: 143_CR47
  doi: 10.1038/nrm2617
– volume: 2
  start-page: 14
  year: 2014
  ident: 143_CR44
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/2051-5960-2-14
– ident: 143_CR32
  doi: 10.1002/0471143030.cb0322s30
– volume: 34
  start-page: 4260
  year: 2014
  ident: 143_CR59
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3192-13.2014
– volume: 46
  start-page: 409
  year: 2011
  ident: 143_CR39
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2010.11.004
– volume: 100
  start-page: 10032
  year: 2003
  ident: 143_CR40
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1630428100
– volume: 14
  start-page: 389
  year: 2013
  ident: 143_CR11
  publication-title: EMBO Rep
  doi: 10.1038/embor.2013.15
– volume: 5
  start-page: e8577
  year: 2010
  ident: 143_CR42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008577
– volume: 281
  start-page: 1205
  year: 2006
  ident: 143_CR30
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M507753200
– volume: 225
  start-page: 1168
  year: 1984
  ident: 143_CR7
  publication-title: Science
  doi: 10.1126/science.6474172
– volume: 101
  start-page: 9683
  year: 2004
  ident: 143_CR25
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0308413101
– volume: 11
  start-page: 1176
  year: 2015
  ident: 143_CR56
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.04.043
– volume: 10
  start-page: 73
  year: 2012
  ident: 143_CR26
  publication-title: Neurodegener Dis
  doi: 10.1159/000334915
– volume: 287
  start-page: 3842
  year: 2012
  ident: 143_CR28
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.277061
– volume: 7
  start-page: e31302
  year: 2012
  ident: 143_CR8
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0031302
– volume: 41
  start-page: 241
  year: 2013
  ident: 143_CR19
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20120266
– volume: 124
  start-page: 447
  year: 2011
  ident: 143_CR62
  publication-title: J Cell Sci
  doi: 10.1242/jcs.074088
– volume: 77
  start-page: 1039
  year: 2013
  ident: 143_CR22
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.013
– volume: 34
  start-page: 939
  year: 1984
  ident: 143_CR33
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– volume: 23
  start-page: 628
  year: 2015
  ident: 143_CR36
  publication-title: Structure
  doi: 10.1016/j.str.2015.01.015
– volume: 288
  start-page: 1856
  year: 2013
  ident: 143_CR16
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.394528
– volume: 284
  start-page: 12845
  year: 2009
  ident: 143_CR14
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M808759200
– volume: 18
  start-page: 1584
  year: 2015
  ident: 143_CR55
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4132
– volume: 286
  start-page: 15317
  year: 2011
  ident: 143_CR15
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.209296
– volume: 19
  start-page: 647
  year: 2010
  ident: 143_CR48
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2010-1273
– volume: 11
  start-page: 600
  year: 2015
  ident: 143_CR51
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2014.06.008
– volume: 213
  start-page: 173
  year: 2016
  ident: 143_CR54
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201506084
– volume: 31
  start-page: 13110
  year: 2011
  ident: 143_CR10
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2569-11.2011
– volume: 139
  start-page: 481
  year: 2016
  ident: 143_CR34
  publication-title: Brain
  doi: 10.1093/brain/awv346
– volume: 10
  start-page: e0139233
  year: 2015
  ident: 143_CR52
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0139233
– volume: 37
  start-page: 1939
  year: 2013
  ident: 143_CR18
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.12229
– volume: 113
  start-page: E968
  year: 2016
  ident: 143_CR20
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1521230113
– volume: 80
  start-page: 402
  year: 2013
  ident: 143_CR60
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.046
– volume: 287
  start-page: 42751
  year: 2012
  ident: 143_CR12
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.380642
– volume: 82
  start-page: 239
  year: 1991
  ident: 143_CR2
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00308809
– volume: 8
  start-page: e62402
  year: 2013
  ident: 143_CR58
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062402
– volume: 35
  start-page: 10851
  year: 2015
  ident: 143_CR50
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0387-15.2015
– volume: 121
  start-page: 171
  year: 2011
  ident: 143_CR3
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-010-0789-4
– volume: 120
  start-page: 343
  year: 1997
  ident: 143_CR37
  publication-title: J Struct Biol
  doi: 10.1006/jsbi.1997.3919
– volume: 7
  start-page: 42
  year: 2012
  ident: 143_CR53
  publication-title: Mol Neurodegener
  doi: 10.1186/1750-1326-7-42
– volume: 127
  start-page: 831
  year: 2006
  ident: 143_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.030
– volume: 129
  start-page: 695
  year: 2015
  ident: 143_CR23
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-015-1408-1
– volume: 211
  start-page: 387
  year: 2014
  ident: 143_CR13
  publication-title: J Exp Med
  doi: 10.1084/jem.20131685
– volume: 18
  start-page: 4153
  year: 2009
  ident: 143_CR45
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp367
– volume: 21
  start-page: R125
  year: 2012
  ident: 143_CR43
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/dds317
– volume: 11
  start-page: e1001604
  year: 2013
  ident: 143_CR6
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001604
– volume: 103
  start-page: 11172
  year: 2006
  ident: 143_CR24
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0603838103
– volume: 34
  start-page: 1343
  year: 2013
  ident: 143_CR31
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2012.10.024
– volume: 6
  start-page: 8490
  year: 2015
  ident: 143_CR57
  publication-title: Nat Commun
  doi: 10.1038/ncomms9490
– volume: 16
  start-page: 415
  year: 2004
  ident: 143_CR21
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2004.06.003
– volume: 287
  start-page: 20522
  year: 2012
  ident: 143_CR49
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.323279
– ident: 143_CR61
  doi: 10.3402/jev.v3.24641
– reference: 22365544 - Neuron. 2012 Feb 23;73(4):685-97
– reference: 19282288 - J Biol Chem. 2009 May 8;284(19):12845-52
– reference: 23188818 - J Biol Chem. 2013 Jan 18;288(3):1856-70
– reference: 20110609 - J Alzheimers Dis. 2010;19(2):647-64
– reference: 19122676 - Nat Rev Mol Cell Biol. 2009 Feb;10(2):148-55
– reference: 23522040 - Neuron. 2013 Mar 20;77(6):1039-46
– reference: 26224867 - J Neurosci. 2015 Jul 29;35(30):10851-65
– reference: 8841666 - Acta Neuropathol. 1996 Aug;92(2):197-201
– reference: 22762014 - Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006247
– reference: 19654187 - Hum Mol Genet. 2009 Nov 1;18(21):4153-70
– reference: 17110340 - Cell. 2006 Nov 17;127(4):831-46
– reference: 23158765 - Neurobiol Aging. 2013 May;34(5):1343-54
– reference: 25778619 - Acta Neuropathol. 2015 May;129(5):695-713
– reference: 23773063 - Eur J Neurosci. 2013 Jun;37(12):1939-48
– reference: 20052414 - PLoS One. 2010 Jan 05;5(1):e8577
– reference: 16246844 - J Biol Chem. 2006 Jan 13;281(2):1205-14
– reference: 26436904 - Nat Neurosci. 2015 Nov;18(11):1584-93
– reference: 23638068 - PLoS One. 2013 Apr 29;8(4):e62402
– reference: 19503072 - Nat Cell Biol. 2009 Jul;11(7):909-13
– reference: 22057275 - J Biol Chem. 2012 Feb 3;287(6):3842-9
– reference: 24479894 - Acta Neuropathol Commun. 2014 Jan 30;2:14
– reference: 23874151 - PLoS Biol. 2013 Jul;11(7):e1001604
– reference: 27114500 - J Cell Biol. 2016 Apr 25;213(2):173-84
– reference: 9441937 - J Struct Biol. 1997 Dec;120(3):343-52
– reference: 22138183 - FEBS Lett. 2012 Jan 2;586(1):47-54
– reference: 22496370 - J Biol Chem. 2012 Jun 8;287(24):20522-33
– reference: 15210972 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9683-8
– reference: 21372138 - J Biol Chem. 2011 Apr 29;286(17):15317-31
– reference: 26858453 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77
– reference: 21170538 - Acta Neuropathol. 2011 Feb;121(2):171-81
– reference: 15261674 - Curr Opin Cell Biol. 2004 Aug;16(4):415-21
– reference: 26426747 - PLoS One. 2015 Oct 01;10(10):e0139233
– reference: 16837572 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11172-7
– reference: 22312444 - PLoS One. 2012;7(2):e31302
– reference: 23356290 - Biochem Soc Trans. 2013 Feb 1;41(1):241-4
– reference: 1759558 - Acta Neuropathol. 1991;82(4):239-59
– reference: 25143819 - J Extracell Vesicles. 2014 Aug 04;3:null
– reference: 24971751 - PLoS One. 2014 Jun 27;9(6):e100760
– reference: 6474172 - Science. 1984 Sep 14;225(4667):1168-70
– reference: 18228490 - Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22
– reference: 22872698 - Hum Mol Genet. 2012 Oct 15;21(R1):R125-34
– reference: 22920859 - Mol Neurodegener. 2012 Aug 24;7:42
– reference: 16182563 - J Struct Biol. 2005 Oct;152(1):36-51
– reference: 12888622 - Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10032-7
– reference: 23200807 - Free Radic Biol Med. 2013 Sep;62:90-101
– reference: 26458742 - Nat Commun. 2015 Oct 13;6:8490
– reference: 25981034 - Cell Rep. 2015 May 26;11(8):1176-83
– reference: 21111824 - Mol Cell Neurosci. 2011 Feb;46(2):409-18
– reference: 6610841 - Neurology. 1984 Jul;34(7):939-44
– reference: 21242314 - J Cell Sci. 2011 Feb 1;124(Pt 3):447-58
– reference: 22269430 - Neurodegener Dis. 2012;10(1-4):73-5
– reference: 25728926 - Structure. 2015 Apr 7;23 (4):628-38
– reference: 23105105 - J Biol Chem. 2012 Dec 14;287(51):42751-62
– reference: 21917794 - J Neurosci. 2011 Sep 14;31(37):13110-7
– reference: 24647946 - J Neurosci. 2014 Mar 19;34(12):4260-72
– reference: 23412472 - EMBO Rep. 2013 Apr;14(4):389-94
– reference: 25130657 - Alzheimers Dement. 2015 Jun;11(6):600-7.e1
– reference: 16446100 - Mol Cell Neurosci. 2006 Apr;31(4):642-8
– reference: 24534188 - J Exp Med. 2014 Mar 10;211(3):387-93
– reference: 26647156 - Brain. 2016 Feb;139(Pt 2):481-94
– reference: 24075978 - Neuron. 2013 Oct 16;80(2):402-14
– reference: 17535890 - Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10252-7
SSID ssj0047005
Score 2.61055
Snippet Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the...
Background Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later...
BACKGROUNDTau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5
SubjectTerms Adult
Aged
Aged, 80 and over
Alzheimer Disease - pathology
Alzheimer's disease
Animals
Care and treatment
Cryoelectron Microscopy
Disease Progression
Enzyme-Linked Immunosorbent Assay
Exosomes - metabolism
Female
Flow Cytometry
Fluorescent Antibody Technique
Genetic aspects
Humans
Male
Mice
Microfluidic Analytical Techniques
Microscopy, Atomic Force
Middle Aged
Neurons
Neurons - metabolism
Physiological aspects
Protein Transport
Rats
Synaptic transmission
Tau proteins
tau Proteins - metabolism
Tauopathies - metabolism
Tauopathies - pathology
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Na9VAcKj14kXU-hFbZQVREFaTt5tkc5DyEEsR6qkPelv2EwttUpv3pPn3nUnyQiOlxzAzyTIfOzO7kxmAj7lSUbnc8wJ9CZd55rn1ZcHJu5oYcEM09IPzye_ieCV_neVnO7AdbzUysL03taN5Uqvri683f7tDNPjvvcGr4ltLl29US0G5sRS8ewSP0TGVNNDgRE6XCrJEjRsvNu8lm7mm_zfoOx5qXj15xx0dPYOnYxzJloPgn8NOqF_A3rLGHPqyY59YX9nZH5nvwSHqAqPhKOixmKk9W5OD4m1XG9ww3PCI8qaDM9ZEdmo27N-5YeGmaZvL0L6E1dHP0x_HfBycwB2yeM0tmqkzIXVO-piLSlobqbebkLEy0mUu2sqbzBinbOnSMlSxSoMKpQzKB2PFK9itmzq8ASYW0QkXnEeApN77yoVYCWvS6JW0eQLplmfajV3FabjFhe6zC1Xogc2aKsmIzbpL4MtEcjW01HgI-TMJQpMC4HudGf8awNVR4yq9lCrFpKjIigQOZpjINjcHb0Wpt1qm8ZN51sfICXyYwERJpWd1aDY9DgbNGOWlCbweJD8te6EwI6wEUpcznZgQqHn3HFKf_-mbeOcLUaJBvH14WfvwZEFxRJrxTBzA7vp6E95hFLS273vdvgUs1wZj
  priority: 102
  providerName: Scholars Portal
Title The release and trans-synaptic transmission of Tau via exosomes
URI https://www.ncbi.nlm.nih.gov/pubmed/28086931
https://www.proquest.com/docview/1865109991
https://www.proquest.com/docview/1861502730
https://pubmed.ncbi.nlm.nih.gov/PMC5237256
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcNH2xRdR60dsPVYQBWFpcrtJNk8lSks5aBFt4d7CfmKhTaq5K96_d2azFxsf-pIQZjcsM7PztbMzhHzIpfTS5JYVoEuYyDPLtC0LhtpVeQcCUeEF57Pz4vRSLJb5Mgbc-phWuZWJQVDbzmCM_DCTRZ4Fc-bo9hfDrlF4uhpbaDwmu1i6DLm6XI4OlyiBxeJJJkw_7PGQDnMu0IcWnG0muuh_iXxPJU3TJe_pn5Nn5Gk0HGk9UPo5eeTaF2SvbsFpvtnQjzSkcoYY-R45AuJT7IYCKoqq1tIVaiTWb1oFEsIMn0BgjJTRztMLtaZ3V4q6P13f3bj-Jbk8Ob74espipwRmAKcrpmFfGuVSY4T1Oa-E1h6LuXHhKyVMZryurMqUMlKXJi1d5avUSVcKJ61Tmr8iO23XujeE8rk33DhjASCw2L40zldcq9RbKXSekHSLs8bEMuLYzeK6Ce6ELJoBzQ2mjiGam01CPo9TbocaGg8N_oSEaHB_wX-NitcEYHVYqaqphUzBCyqyIiEHk5GANjMFb0nZxH3ZN_-4KCHvRzDOxFyz1nXrMAasZDDr0oS8Hig_LnsuwQWsOMwuJzwxDsBq3VNIe_UzVO0Gj7-EHfD24WXtkydzNBzSjGX8gOysfq_dOzB7VnoWeHtGdut68WMB7y_H59--z0IQAZ5nQv4FL3kINA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFAeWRUsBIPCQkq0nsJM4BVSug2tLHaSvtzTh-iEo0ackukD_Fb2QmLxoOvfW4sp21xp_nm7HHM4S8TqT00iSWpcAlTCSRZYXNUobsqr0DhajxgfPxSTo_FV-WyXKD_BnewmBY5aATW0VtK4Nn5LuRTJOoNWf2Li4ZVo3C29WhhEYHi0PX_AKXrf5w8AnW900c739efJyzvqoAM_D_K1YAho12oTHC-oTnoig8Jj7jwudamMj4Irc60trIIjNh5nKfh066TDhpnS44fPcWuQ3EG6Kzly1HB09kAOn-5hSmu1vjpSDGeKDPLjhrJtz3PwNcocBpeOYVvtu_T-71hiqddch6QDZc-ZBszUpw0s8b-pa2oaPtmfwW2QOwUay-ApRIdWnpChmQ1U2pQSOZ7icACk_maOXpQq_pzzNN3e-qrs5d_Yic3ogMH5PNsirdU0J57A03zlhoEJjcXxrnc17o0FspiiQg4SAzZfq05Vg947tq3ReZqk7MCkPVUMyqCcj7cchFl7Pjus7vcCEU7mf4rtH9swSYHWbGUjMhQ_C60igNyM6kJ4jNTJuHpVS9HqjVP9QG5NXYjCMxtq101brtA1Y5mJFhQJ50Kz9OO5bgcuYcRmcTTIwdMDv4tKU8-9ZmCU9insGO275-Wi_Jnfni-EgdHZwcPiN3YzRawohFfIdsrn6s3XMwuVbFixbnlHy96Y31F885QzY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+release+and+trans-synaptic+transmission+of+Tau+via+exosomes&rft.jtitle=Molecular+neurodegeneration&rft.au=Wang%2C+Yipeng&rft.au=Balaji%2C+Varun&rft.au=Kaniyappan%2C+Senthilvelrajan&rft.au=Kruger%2C+Lars&rft.date=2017-01-13&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=12&rft_id=info:doi/10.1186%2Fs13024-016-0143-y&rft.externalDocID=4312170691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon