Fine-Grained Lung Cancer Classification from PET and CT Images Based on Multidimensional Attention Mechanism
Lung cancer ranks among the most common types of cancer. Noninvasive computer-aided diagnosis can enable large-scale rapid screening of potential patients with lung cancer. Deep learning methods have already been applied for the automatic diagnosis of lung cancer in the past. Due to restrictions cau...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
20.01.2020
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lung cancer ranks among the most common types of cancer. Noninvasive computer-aided diagnosis can enable large-scale rapid screening of potential patients with lung cancer. Deep learning methods have already been applied for the automatic diagnosis of lung cancer in the past. Due to restrictions caused by single modality images of dataset as well as the lack of approaches that allow for a reliable extraction of fine-grained features from different imaging modalities, research regarding the automated diagnosis of lung cancer based on noninvasive clinical images requires further study. In this paper, we present a deep learning architecture that combines the fine-grained feature from PET and CT images that allow for the noninvasive diagnosis of lung cancer. The multidimensional (regarding the channel as well as spatial dimensions) attention mechanism is used to effectively reduce feature noise when extracting fine-grained features from each imaging modality. We conduct a comparative analysis of the two aspects of feature fusion and attention mechanism through quantitative evaluation metrics and the visualization of deep learning process. In our experiments, we obtained an area under the ROC curve of 0.92 (balanced accuracy = 0.72) and a more focused network attention which shows the effective extraction of the fine-grained feature from each imaging modality. |
---|---|
AbstractList | Lung cancer ranks among the most common types of cancer. Noninvasive computer-aided diagnosis can enable large-scale rapid screening of potential patients with lung cancer. Deep learning methods have already been applied for the automatic diagnosis of lung cancer in the past. Due to restrictions caused by single modality images of dataset as well as the lack of approaches that allow for a reliable extraction of fine-grained features from different imaging modalities, research regarding the automated diagnosis of lung cancer based on noninvasive clinical images requires further study. In this paper, we present a deep learning architecture that combines the fine-grained feature from PET and CT images that allow for the noninvasive diagnosis of lung cancer. The multidimensional (regarding the channel as well as spatial dimensions) attention mechanism is used to effectively reduce feature noise when extracting fine-grained features from each imaging modality. We conduct a comparative analysis of the two aspects of feature fusion and attention mechanism through quantitative evaluation metrics and the visualization of deep learning process. In our experiments, we obtained an area under the ROC curve of 0.92 (balanced accuracy = 0.72) and a more focused network attention which shows the effective extraction of the fine-grained feature from each imaging modality. |
Audience | Academic |
Author | Hai, Jinjin Xu, Junling Qin, RuoXi Jiang, Lingyun Yan, Bin Wang, Zhenzhen Chen, Jian Qiao, Kai Shi, Dapeng |
Author_xml | – sequence: 1 fullname: Yan, Bin – sequence: 2 fullname: Shi, Dapeng – sequence: 3 fullname: Chen, Jian – sequence: 4 fullname: Hai, Jinjin – sequence: 5 fullname: Qiao, Kai – sequence: 6 fullname: Jiang, Lingyun – sequence: 7 fullname: Wang, Zhenzhen – sequence: 8 fullname: Qin, RuoXi – sequence: 9 fullname: Xu, Junling |
BookMark | eNqNkk1v1DAQhiNUJNrCjTOyxBHS2k5sx8clastKW8FhOVuz_th6ldjFzgrx7_FuigqIL_kw1vh539F45qw6CTHYqnpJ8AUhjF1STPElJ6zhTDypTgmWssaM8pPDXfCaik48q85y3mGMJW_EaTVc-2DrmwQlGLTahy3qIWibUD9Azt55DZOPAbkUR_Txao0gGNSv0XKErc3oHeSiK--3-2Hyxo825ILDgBbTZMNRemv1HQSfx-fVUwdDti8e4nn16fpq3b-vVx9ulv1iVWvG8VSDcdpIzUnXdRKoaTtuSnsCONbQWYfJhrVgwBnMu42UxJpGC2powzZWNKI5r5azr4mwU_fJj5C-qgheHRMxbRWkyevBKl08mq6xBAxvRbsBgkFSIE5ws6GtLl6vZ6_7FD_vbZ7ULu5TaTCrUg9jwiXFj9QWiqkPLk4J9OizVouOEoFZaeavFKeUlR7Zgbr4DVWOsaPXZeLOl_xPtv8l-LECnQU6xZyTdUr76TjmIvSDIlgd9kkd9kk97FMRvf1F9P1j_4C_mfE7Hwx88f-iX820LYx18EiTlopWNt8AB-7f3w |
CitedBy_id | crossref_primary_10_1016_j_bspc_2025_107542 crossref_primary_10_1016_j_eswa_2024_123156 crossref_primary_10_52756_10_52756_ijerr_2023_v31spl_002 crossref_primary_10_3390_app13010507 crossref_primary_10_1016_j_bspc_2021_103443 crossref_primary_10_3389_fpubh_2022_894920 crossref_primary_10_1016_j_bspc_2023_104866 crossref_primary_10_1016_j_media_2022_102470 crossref_primary_10_1007_s11042_023_14581_0 crossref_primary_10_7717_peerj_cs_1996 crossref_primary_10_1109_JBHI_2021_3058293 crossref_primary_10_3233_JIFS_231145 crossref_primary_10_3390_electronics12020403 crossref_primary_10_3390_jimaging10100239 crossref_primary_10_1002_ima_23193 crossref_primary_10_1016_j_bspc_2023_105151 crossref_primary_10_1155_2022_2384830 crossref_primary_10_18006_2023_11_2__226_235 crossref_primary_10_1007_s12672_025_02115_z crossref_primary_10_1155_2022_4185835 crossref_primary_10_1002_ima_22684 crossref_primary_10_1038_s41598_025_85139_3 crossref_primary_10_1007_s11042_024_19211_x crossref_primary_10_1016_j_bspc_2024_107479 crossref_primary_10_1108_IJICC_07_2024_0328 crossref_primary_10_1007_s11042_023_17110_1 crossref_primary_10_3390_app14146186 crossref_primary_10_1016_j_eswa_2022_117006 crossref_primary_10_1515_comp_2020_0145 crossref_primary_10_1109_TETCI_2022_3171311 crossref_primary_10_1155_2022_4608145 crossref_primary_10_1007_s11760_022_02464_0 crossref_primary_10_1016_j_compbiomed_2022_106363 crossref_primary_10_1016_j_engappai_2022_105490 |
Cites_doi | 10.1118/1.4948498 10.1007/s11548-019-01981-7 10.3390/genes9080382 10.1038/srep26286 10.1007/s11548-019-01979-1 10.1007/s11042-018-6535-y 10.1155/2017/4067832 10.1038/s41591-018-0107-6 10.3322/caac.20107 10.1109/TPAMI.2012.59 10.1016/j.future.2018.10.009 10.1016/s0140-6736(99)06093-6 10.1148/radiol.2016151829 10.1007/s11548-018-1835-2 10.22038/AOJNMB.2018.12014 10.3322/caac.21442 |
ContentType | Journal Article |
Copyright | Copyright © 2020 RuoXi Qin et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 RuoXi Qin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2020 RuoXi Qin et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 RuoXi Qin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO AHMDM RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2020/6153657 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete قاعدة العلوم الإنسانية - e-Marefa Humanities Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-0526 |
Editor | Gómez, Sergio |
Editor_xml | – sequence: 1 givenname: Sergio surname: Gómez fullname: Gómez, Sergio |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_cd06383e1ad6474ba10a92a1f76db24c A821705188 A622555758 10_1155_2020_6153657 1142749 |
GeographicLocations | United States Connecticut |
GeographicLocations_xml | – name: United States – name: Connecticut |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2018YFC0114500 |
GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3R3 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACBWZ ACCFJ ACSCC ACXQS ADBBV ADIZJ ADJCN ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFKRA AFPKN AFZJQ AHFXO AHMDM AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCNDV BDRZF BENPR BFHJK BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DU5 DWQXO EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LH4 LP6 LP7 LW6 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC WYUIH XBAML XG1 XPP XSW XV2 ~IA ~WT RHU RHW AAYXX ACCMX AMVHM CITATION ICD PHGZM PHGZT PMFND 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c560t-adfcd9c618889a2d486d1557a60ca8ef01b54adafd068b991ed3c72d235be7373 |
IEDL.DBID | BENPR |
ISSN | 1076-2787 |
IngestDate | Wed Aug 27 01:07:29 EDT 2025 Fri Jul 25 21:03:03 EDT 2025 Tue Jun 17 21:58:03 EDT 2025 Tue Jun 17 22:02:50 EDT 2025 Tue Jun 10 21:01:32 EDT 2025 Tue Jun 10 21:01:28 EDT 2025 Tue Jul 01 02:01:59 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Sun Jun 02 18:54:57 EDT 2024 Thu Nov 28 18:50:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-adfcd9c618889a2d486d1557a60ca8ef01b54adafd068b991ed3c72d235be7373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7057-9562 0000-0002-3767-8152 0000-0002-2135-8752 0000-0002-2561-7475 0000-0003-0836-8179 0000-0001-8268-559X |
OpenAccessLink | https://dx.doi.org/10.1155/2020/6153657 |
PQID | 2350016920 |
PQPubID | 2029978 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cd06383e1ad6474ba10a92a1f76db24c proquest_journals_2350016920 gale_infotracmisc_A821705188 gale_infotracmisc_A622555758 gale_infotracacademiconefile_A821705188 gale_infotracacademiconefile_A622555758 crossref_citationtrail_10_1155_2020_6153657 crossref_primary_10_1155_2020_6153657 hindawi_primary_10_1155_2020_6153657 emarefa_primary_1142749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-20 |
PublicationDateYYYYMMDD | 2020-01-20 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 11 22 12 13 14 15 28 29 (16) 2016 (3) 2016; 893 1 2 4 (24) 2013; 35 8 9 10 21 |
References_xml | – ident: 13 doi: 10.1118/1.4948498 – ident: 21 doi: 10.1007/s11548-019-01981-7 – ident: 15 doi: 10.3390/genes9080382 – ident: 8 doi: 10.1038/srep26286 – ident: 22 doi: 10.1007/s11548-019-01979-1 – ident: 29 doi: 10.1007/s11042-018-6535-y – ident: 10 doi: 10.1155/2017/4067832 – volume: 893 start-page: 1 volume-title: Lung cancer statistics year: 2016 ident: 3 – ident: 28 doi: 10.1038/s41591-018-0107-6 – ident: 1 doi: 10.3322/caac.20107 – start-page: 212 volume-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients year: 2016 ident: 16 – volume: 35 start-page: 221 year: 2013 ident: 24 publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/TPAMI.2012.59 – ident: 12 doi: 10.1016/j.future.2018.10.009 – ident: 4 doi: 10.1016/s0140-6736(99)06093-6 – ident: 9 doi: 10.1148/radiol.2016151829 – ident: 11 doi: 10.1007/s11548-018-1835-2 – ident: 14 doi: 10.22038/AOJNMB.2018.12014 – ident: 2 doi: 10.3322/caac.21442 |
SSID | ssj0009637 |
Score | 2.4033413 |
Snippet | Lung cancer ranks among the most common types of cancer. Noninvasive computer-aided diagnosis can enable large-scale rapid screening of potential patients with... |
SourceID | doaj proquest gale crossref hindawi emarefa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Cable television broadcasting industry Cancer Classification Computed tomography CT imaging Deep learning Diagnosis Diagnostic imaging Feature extraction Image classification Lung cancer Machine learning Medical imaging Medical imaging equipment Medical prognosis Mortality Noise Noise control Noise reduction Oncology, Experimental Positron emission Rankings Tomography |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6kIOiD2HqLrmUeKioSmkzmkjxul26ruOLDFvo2zC200K7SRPz7njOZrFu07EsfNznZJOf-hZnvEHLAlBFFy1TunFc5tww_NHmWs8ZCfCnnisjAt_gmT8_4l3NxvjHqC9eEDfTAg-IOnceiWoXSeMkVt6YsTMNM2SqchMQdZl-oeSOYGul2ZWTLBGwjcwY-OS55FwLRfnGIbY7EkrRRjCJnf9yYa-C3WefohxeIjn9f_pOtYwmaPyVPUu9Ip8Mz75IHYbVHHi_WxKvdHtlNsdrRD4lQ-uMzcjWHVjI_wWEQwdOvEN50hsa-oXEkJi4WivahuNeEfj9eUrPydLakn68h23T0CCqdp3A-7tb1OA9g4PKg074flkvSRcAtxJfd9XNyNj9ezk7zNGUhd9Dt9LnxrfONkyVg4cYwz2vpQU_KyMKZOrRFaQU33rRgiNpCOxl85RTzrBI2qEpVL8jO6scqvCLUMuMdIDAeLKAUKwHKWVfX0nJoFIyQGfk0qlu7REGOkzCudIQiQmg0jk7Gyci7tfTPgXrjDrkjtNxaBgmz4wFwI53cSG9zo4y8THb_e6-SA2RvMvIe_UBjwMPDOpP2LcArI3WWnkpIiaAvUW-VrBmSF4GiMzK5JQkh7W790f9Ob1x9kFxyi14mo7_qlJg6DVbDLr9hxev7UNsb8ghvid-kWDEhO_3Nr_AWurTe7seA_AORIDF9 priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF7RSkhwQLS8DAHtoQgQsliv92Ef06ghIII4pFJuq31ZVGoDqo34-8xsNimhoHJ0PHacee18zs43hBxxbSXruC69D7oUjuOLpsBL3jqIL-09Swx8889qdio-LuUykyT11__Ch9UO4Tl7h3WJknqP7IGDISifLa-4dVWixgQgo0oODrjZ3_7HtTsrTyLoT124Fo7tNiHf_opQ-OfZtdSc1pvpfXIvF4p0vLbsAbkVV4fk7nzLstofkoMcmD19ndmj3zwg51OoG8v3OPkhBvoJYplO0LKXNM2_xJ1ByRgUG0vol5MFtatAJwv64QJSS0-PYVkLFM6n1tyA5P9r4g46Hob13kg6j9gvfNZfPCSn05PFZFbmkQqlh9JmKG3ofGi9qgD4tpYH0agAetJWMW-b2LHKSWGD7QJTjYPaMYbaax54LV3Uta4fkf3Vt1V8QqjjNniAWyI6gCROAW5zvmmUE1AVWKkK8najbuMz3ziOvTg3CXdIadA4JhunIC-30t_XPBv_kDtGy21lkB07fQAeY3KwGR-wEKtjZYMSWjhbMdtyW3Uap2cJX5DH2e5X31UJwOdtQV6hHxiMbnhYb3OTAvxk5MkyYwX5D_QlmxslG45MRaDogox2JCF-_c6N_nb6t6uPskveoJfRxl9NzkK9AathSd9y9vT_7vKM3MFDfMXE2YjsD5c_4nMougb3IoXcL_D0HmY priority: 102 providerName: Hindawi Publishing |
Title | Fine-Grained Lung Cancer Classification from PET and CT Images Based on Multidimensional Attention Mechanism |
URI | https://search.emarefa.net/detail/BIM-1142749 https://dx.doi.org/10.1155/2020/6153657 https://www.proquest.com/docview/2350016920 https://doaj.org/article/cd06383e1ad6474ba10a92a1f76db24c |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYJiR4QGzACJTKD0OAULTEsZ3kCbVVu4LoNE2d1LfIX4FJWzuaIP597ly33cTHXiq1vqaNz3e-38X3O0KOWK5EUrM8NsbmMdcME02WxazUYF-5MYln4JucyvEF_zITs5Bwa8KxyrVP9I7aLgzmyI9ZJjA8KVny6eZHjF2j8OlqaKGxQ_bABRcAvvb6w9Oz8y3trvSsmYBxZMxgba6PvguBqD85xnBH4tZ0a1Py3P2-QFfBe7Xx1Q-_I0r-dfmH1_Zb0egpeRJiSNpbKX2fPHDzA_J4siFgbQ7IfrDZhr4PxNIfnpGrEYSU8Qk2hXCWfgUzpwNU-pL61ph4aMjriWLNCT0bTqmaWzqY0s_X4HUa2ocdz1IY91W7FvsCrDg9aK9tV8cm6cRhKfFlc_2cXIyG08E4Dt0WYgNRTxsrWxtbGpkCJi4Vs7yQFuYpVzIxqnB1kmrBlVW1TWShIax0NjM5s6AY7fIsz16Q3fli7l4SqpmyBpAYdxrQipYA6bQpCqk5BAxKyIh8XE93ZQIVOXbEuKo8JBGiQuVUQTkRebuRvllRcPxDro-a28ggcbb_YLH8VgU7rIzFGC1zqbKS51yrNFElU2mdY2MtbiJyGPS-_a2UA3QvI_IO10GFhg9_1qhQvwC3jBRaVU-Ca4T5EsW9kgVDEiOY6Ih07kiCaZs7F_rb8K1vH4Ulec-8dNbrtQoOqqm25vTq_8OvySO8GGadWNIhu-3yp3sDcViru2SnGJ10g8l1fTYDXs_Hs99L2izi |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEQIOiJZXIIAPrQBVq-56vfbuAaE0NE1oUnFIpd4Wv9JWapOSDar4U_xGZhxv0opHTz0mnjhez9vr-YaQDSZVFo-YjIyxMuKa4UGTZRErNOiXNCb2CHyDA9E95F-OsqMV8quuhcFrlbVN9IbaTgyekW-zNMPwpGDxp4vvEXaNwrerdQuNuVjsu5-XkLJVH3ufgb-bjHV2h-1uFLoKRAa8-yxSdmRsYUQCuV-hmOW5sOBUpRKxUbkbxYnOuLJqZGORawifnE2NZBYWoJ1MZQrz3iF3eZoWqFF5Z28J8is8RidkVCJioAn1RfsswzOGeBuDK4GO8IoL9J0CfDmwgs9q4RnunWBOfnn6h4_wjq_zmDwKESttzUVsjay48Tp5OFjAvVbrZC1YiIq-DzDWH56Qsw4EsNEetqBwlvbBqNA2itiU-kaceEXJSwXFChf6dXdI1djS9pD2zsHGVXQH_KulMO5rhC12IZgjiNDWbDa_pEkHDguXT6vzp-TwVrjwjKyOJ2P3glDNlDWQ93GnITfSAhJIbfJcaA7hicpEg2zV212aAHyO_TfOSp8AZVmJzCkDcxpkc0F9MQf8-AfdDnJuQYMw3f6LyfS4DFpfGosRYeoSZQWXXKskVgVTyUhiGy9uGuR54PvyvxLOJC8a5B3KQYlmBhZrVKiWgEdGwK6yJcAQw35l-Y2UOUPIJNjoBmleowRDYq5N9LfhK7_eCCJ5w740a3ktgzmsyqXyvvz_8Ftyvzsc9Mt-72D_FXmAE-N5F4ubZHU2_eFeQwQ402-82lHy7bb1_Dcs3WZu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine-Grained+Lung+Cancer+Classification+from+PET+and+CT+Images+Based+on+Multidimensional+Attention+Mechanism&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Qin%2C+RuoXi&rft.au=Wang%2C+Zhenzhen&rft.au=Jiang%2C+LingYun&rft.au=Qiao%2C+Kai&rft.date=2020-01-20&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F6153657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |