LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios

In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH f...

Full description

Saved in:
Bibliographic Details
Published inComputational economics Vol. 63; no. 4; pp. 1511 - 1542
Main Authors García-Medina, Andrés, Aguayo-Moreno, Ester
Format Journal Article
LanguageEnglish
Published Netherlands Springer 01.04.2024
Springer Nature B.V
Springer US
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM-GARCH versions under the Diebold-Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market.
AbstractList In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM–GARCH versions under the Diebold–Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market.
In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM-GARCH versions under the Diebold-Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market.In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM-GARCH versions under the Diebold-Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market.
In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM–GARCH versions under the Diebold–Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market.
Audience Academic
Author García-Medina, Andrés
Aguayo-Moreno, Ester
Author_xml – sequence: 1
  givenname: Andrés
  orcidid: 0000-0002-2198-880X
  surname: García-Medina
  fullname: García-Medina, Andrés
– sequence: 2
  givenname: Ester
  surname: Aguayo-Moreno
  fullname: Aguayo-Moreno, Ester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37362593$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuEzEUtVARTQM_wAJZYsNmih8z9niFoggapFRUUGBpefxoXTl26vEgZcc_8Id8CQ5pEXSBvLB0fe659_icE3AUU7QAPMfoFCPEX48YMdw2iNAGI8pp0z8CM9xx0gjB2yMwQ4LwhiMhjsHJON4ghDpMyBNwXMGMdILOwNf1p8vzn99_nC0-LldwtRuyN_A8GRugSxmWawsvsjVeF58iTA5-SUEVH3zZQR_hMu-2JekpZxv1Dl6kXFwKPo1PwWOnwmif3d1z8Pnd28vlqll_OHu_XKwb3TFUGsURdT1p-cC4cbWGndGmE6znxOGh1diY1hnOGBGdY66j_WAtQ4p1nHLH6Ry8OfBup2FjjbaxZBXkNvuNyjuZlJf_vkR_La_SN1l_EFOKaGV4dceQ0-1kxyI3ftQ2BBVtmkZJeooI7kW7H_byAfQmTTlWfZKilpCOkR5V1OkBdaWClT66VAfreozdeF0tdL7WF1xU04ioW8zBi781_Fn-3qUK6A8AndM4Zuuk9kXtHanMPlQtezlcHgIhayDk70DIvraSB6337P9p-gVN-rgZ
CitedBy_id crossref_primary_10_1111_exsy_13738
crossref_primary_10_1007_s10614_024_10827_7
crossref_primary_10_3389_fpubh_2024_1365942
crossref_primary_10_1109_ACCESS_2023_3330156
crossref_primary_10_1007_s10614_024_10785_0
crossref_primary_10_1007_s10614_024_10754_7
crossref_primary_10_1002_agr_22000
crossref_primary_10_1007_s10614_023_10532_x
crossref_primary_10_1007_s41870_025_02472_6
crossref_primary_10_1057_s41599_023_02042_w
crossref_primary_10_1007_s10614_023_10466_4
crossref_primary_10_1016_j_engappai_2025_110397
crossref_primary_10_3390_jrfm17120567
crossref_primary_10_1007_s42979_024_02902_5
crossref_primary_10_1007_s10614_024_10694_2
crossref_primary_10_1109_ACCESS_2024_3417449
crossref_primary_10_1007_s41870_024_01953_4
crossref_primary_10_1007_s10614_024_10676_4
crossref_primary_10_1186_s40854_023_00520_3
crossref_primary_10_3390_math12111677
Cites_doi 10.3390/e23121582
10.1007/978-3-540-71297-8_9
10.1111/j.1540-6261.1993.tb05128.x
10.3390/jrfm10040017
10.1145/2830556.2830562
10.1080/00036846.2015.1096004
10.1016/j.chaos.2018.11.014
10.1080/07350015.1996.10524672
10.1257/jep.15.4.157
10.1093/rfs/hhaa009
10.1080/07350015.1995.10524599
10.1016/j.knosys.2021.107994
10.1016/j.ejor.2017.11.054
10.1002/fut.3990110509
10.1371/journal.pone.0194889
10.1111/j.1540-6261.1990.tb05088.x
10.1002/jae.842
10.1080/713665670
10.1162/neco.1997.9.8.1735
10.1111/j.1467-9965.1994.tb00057.x
10.1016/j.eswa.2017.12.004
10.1016/j.eswa.2018.05.011
10.1016/j.frl.2018.07.011
10.1016/j.frl.2015.10.008
10.1007/s10479-021-04311-w
10.1016/j.physa.2022.127158
10.1016/0304-4076(86)90063-1
10.1016/0304-405X(94)00821-H
10.2307/2938260
10.3905/jpm.1994.409501
10.1016/j.frl.2017.10.012
10.1198/073500102288618487
10.1016/j.ijforecast.2018.09.005
10.1016/j.ijforecast.2019.04.014
10.2307/1925546
10.1016/j.eswa.2018.03.002
10.1080/07350015.2014.983236
10.1016/S0169-7161(96)14007-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright Springer Nature B.V. Apr 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
– notice: Copyright Springer Nature B.V. Apr 2024
DBID AAYXX
CITATION
NPM
3V.
7WY
7WZ
7XB
87Z
8AO
8BJ
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FQK
FRNLG
F~G
GNUQQ
HCIFZ
JBE
JQ2
K60
K6~
K7-
L.-
M0C
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s10614-023-10373-8
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ABI/INFORM Global (Corporate)

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Business
EISSN 1572-9974
EndPage 1542
ExternalDocumentID PMC10013303
A791032901
37362593
10_1007_s10614_023_10373_8
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: A1-S-43514
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3R3
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
6J9
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHQT
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACSTC
ACYUM
ACZOJ
ADFRT
ADHHG
ADHIR
ADIMF
ADIYS
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
B-.
BA0
BAAKF
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EOH
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IBB
IEA
IHE
IJ-
IKXTQ
IOF
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
OAM
OVD
P19
P2P
P62
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R-Y
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
YLTOR
Z45
ZMTXR
ZYFGU
~A9
~EX
-4X
-57
-5G
-BR
-EM
ADINQ
GQ6
GROUPED_ABI_INFORM_COMPLETE
NPM
O9J
Z81
Z83
Z86
Z88
Z8U
Z8W
Z92
AEIIB
PMFND
3V.
7XB
8BJ
8FK
ABRTQ
AZQEC
FQK
GNUQQ
JBE
JQ2
L.-
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c560t-a703f8247b67dfc561fdcd596872f1b4c1dd4fd766295f6f538bee60a65737f73
IEDL.DBID BENPR
ISSN 0927-7099
1572-9974
IngestDate Thu Aug 21 18:37:36 EDT 2025
Fri Jul 11 00:08:19 EDT 2025
Sat Aug 23 13:55:55 EDT 2025
Tue Jun 10 20:59:25 EDT 2025
Thu Jan 02 22:52:53 EST 2025
Tue Jul 01 05:06:15 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Cryptocurrencies
GARCH–LSTM models
Volatility
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-a703f8247b67dfc561fdcd596872f1b4c1dd4fd766295f6f538bee60a65737f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2198-880X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10013303
PMID 37362593
PQID 3042256280
PQPubID 36414
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10013303
proquest_miscellaneous_2830218947
proquest_journals_3042256280
gale_infotracacademiconefile_A791032901
pubmed_primary_37362593
crossref_citationtrail_10_1007_s10614_023_10373_8
crossref_primary_10_1007_s10614_023_10373_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Dordrecht
– name: New York
PublicationTitle Computational economics
PublicationTitleAlternate Comput Econ
PublicationYear 2024
Publisher Springer
Springer Nature B.V
Springer US
Publisher_xml – name: Springer
– name: Springer Nature B.V
– name: Springer US
References I Goodfellow (10373_CR20) 2016
FX Diebold (10373_CR9) 2015; 33
R Engle (10373_CR14) 2001; 15
AC Harvey (10373_CR22) 1996; 14
IV Pustokhina (10373_CR38) 2021
10373_CR11
S Gu (10373_CR21) 2020; 33
S Banik (10373_CR1) 2022; 239
LR Glosten (10373_CR19) 1993; 48
S Lahmiri (10373_CR29) 2019; 118
M Najand (10373_CR34) 1991; 11
L Bauwens (10373_CR3) 2006; 21
A García-Medina (10373_CR17) 2021; 23
WF Sharpe (10373_CR41) 1994; 21
S Makridakis (10373_CR32) 2020; 36
DB Nelson (10373_CR36) 1991; 59
SJ Taylor (10373_CR43) 1994; 4
R Cont (10373_CR8) 2001; 1
L Hentschel (10373_CR23) 1995; 39
W Mensi (10373_CR33) 2019; 29
S Makridakis (10373_CR31) 2018; 13
FX Diebold (10373_CR10) 1995; 13
R Engle (10373_CR15) 2002; 20
S Hochreiter (10373_CR24) 1997; 9
10373_CR42
T Bollerslev (10373_CR4) 1986; 31
T Fischer (10373_CR16) 2018; 270
E Jondeau (10373_CR25) 2007
DS Kambouroudis (10373_CR26) 2016; 48
V D’Amato (10373_CR13) 2022; 596
J Chu (10373_CR7) 2017; 10
AH Dyhrberg (10373_CR12) 2016; 16
10373_CR18
10373_CR5
W Kristjanpoller (10373_CR28) 2018; 109
CG Lamoureux (10373_CR30) 1990; 45
10373_CR39
DG Baur (10373_CR2) 2018; 25
10373_CR35
Y Peng (10373_CR37) 2018; 97
L Catania (10373_CR6) 2019; 35
T Roncalli (10373_CR40) 2013
HY Kim (10373_CR27) 2018; 103
References_xml – volume: 23
  start-page: 1582
  issue: 12
  year: 2021
  ident: 10373_CR17
  publication-title: Entropy
  doi: 10.3390/e23121582
– ident: 10373_CR42
  doi: 10.1007/978-3-540-71297-8_9
– volume: 48
  start-page: 1779
  issue: 5
  year: 1993
  ident: 10373_CR19
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1993.tb05128.x
– volume: 10
  start-page: 17
  issue: 4
  year: 2017
  ident: 10373_CR7
  publication-title: Journal of Risk and Financial Management
  doi: 10.3390/jrfm10040017
– ident: 10373_CR11
  doi: 10.1145/2830556.2830562
– volume: 48
  start-page: 1210
  issue: 13
  year: 2016
  ident: 10373_CR26
  publication-title: Applied Economics
  doi: 10.1080/00036846.2015.1096004
– volume: 118
  start-page: 35
  year: 2019
  ident: 10373_CR29
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2018.11.014
– volume: 14
  start-page: 429
  issue: 4
  year: 1996
  ident: 10373_CR22
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.1996.10524672
– volume: 15
  start-page: 157
  issue: 4
  year: 2001
  ident: 10373_CR14
  publication-title: Journal of Economic Perspectives
  doi: 10.1257/jep.15.4.157
– volume: 33
  start-page: 2223
  issue: 5
  year: 2020
  ident: 10373_CR21
  publication-title: The Review of Financial Studies
  doi: 10.1093/rfs/hhaa009
– volume: 13
  start-page: 253
  issue: 3
  year: 1995
  ident: 10373_CR10
  publication-title: Journal of Business and Economic Statistics
  doi: 10.1080/07350015.1995.10524599
– volume: 239
  year: 2022
  ident: 10373_CR1
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107994
– volume: 270
  start-page: 654
  issue: 2
  year: 2018
  ident: 10373_CR16
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.11.054
– volume: 11
  start-page: 613
  issue: 5
  year: 1991
  ident: 10373_CR34
  publication-title: The Journal of Futures Markets (1986–1998)
  doi: 10.1002/fut.3990110509
– volume: 13
  start-page: 0194889
  issue: 3
  year: 2018
  ident: 10373_CR31
  publication-title: PloS One
  doi: 10.1371/journal.pone.0194889
– ident: 10373_CR35
– volume: 45
  start-page: 221
  issue: 1
  year: 1990
  ident: 10373_CR30
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1990.tb05088.x
– volume: 21
  start-page: 79
  issue: 1
  year: 2006
  ident: 10373_CR3
  publication-title: Journal of Applied Econometrics
  doi: 10.1002/jae.842
– volume: 1
  start-page: 223
  year: 2001
  ident: 10373_CR8
  publication-title: Quantitative Finance
  doi: 10.1080/713665670
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10373_CR24
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 4
  start-page: 183
  year: 1994
  ident: 10373_CR43
  publication-title: Mathematical Finance
  doi: 10.1111/j.1467-9965.1994.tb00057.x
– volume: 97
  start-page: 177
  year: 2018
  ident: 10373_CR37
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.12.004
– volume: 109
  start-page: 1
  year: 2018
  ident: 10373_CR28
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.05.011
– volume: 29
  start-page: 222
  year: 2019
  ident: 10373_CR33
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2018.07.011
– volume-title: Deep learning
  year: 2016
  ident: 10373_CR20
– volume: 16
  start-page: 85
  year: 2016
  ident: 10373_CR12
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2015.10.008
– year: 2021
  ident: 10373_CR38
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-021-04311-w
– volume: 596
  year: 2022
  ident: 10373_CR13
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2022.127158
– volume-title: Introduction to risk parity and budgeting
  year: 2013
  ident: 10373_CR40
– volume: 31
  start-page: 307
  issue: 3
  year: 1986
  ident: 10373_CR4
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(86)90063-1
– volume: 39
  start-page: 71
  issue: 1
  year: 1995
  ident: 10373_CR23
  publication-title: Journal of Financial Economics
  doi: 10.1016/0304-405X(94)00821-H
– ident: 10373_CR39
– volume: 59
  start-page: 347
  issue: 2
  year: 1991
  ident: 10373_CR36
  publication-title: Econometrica: Journal of the Econometric Society
  doi: 10.2307/2938260
– volume: 21
  start-page: 49
  issue: 1
  year: 1994
  ident: 10373_CR41
  publication-title: Journal of Portfolio Management
  doi: 10.3905/jpm.1994.409501
– volume-title: Financial modeling under non-Gaussian distributions
  year: 2007
  ident: 10373_CR25
– volume: 25
  start-page: 103
  year: 2018
  ident: 10373_CR2
  publication-title: Finance Research Letters
  doi: 10.1016/j.frl.2017.10.012
– volume: 20
  start-page: 339
  issue: 3
  year: 2002
  ident: 10373_CR15
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1198/073500102288618487
– volume: 35
  start-page: 485
  issue: 2
  year: 2019
  ident: 10373_CR6
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2018.09.005
– volume: 36
  start-page: 54
  issue: 1
  year: 2020
  ident: 10373_CR32
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2019.04.014
– ident: 10373_CR5
  doi: 10.2307/1925546
– volume: 103
  start-page: 25
  year: 2018
  ident: 10373_CR27
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.03.002
– volume: 33
  start-page: 1
  issue: 1
  year: 2015
  ident: 10373_CR9
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.2014.983236
– ident: 10373_CR18
  doi: 10.1016/S0169-7161(96)14007-4
SSID ssj0005122
Score 2.492171
Snippet In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH)...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1511
SubjectTerms Artificial neural networks
Autoregressive models
Capital
Crypto-currencies
Digital currencies
Forecasts and trends
Investment analysis
Machine learning
Multilayer perceptrons
Neural networks
Pandemics
Portfolios
Risk reduction
Short term memory
Time series
Variants
Volatility
Title LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios
URI https://www.ncbi.nlm.nih.gov/pubmed/37362593
https://www.proquest.com/docview/3042256280
https://www.proquest.com/docview/2830218947
https://pubmed.ncbi.nlm.nih.gov/PMC10013303
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6xTgJeEAwYgTEZCYkHZNEkju08oTGtqxCbJthgb5Fjx6JSlZSme-gb_4F_yC_hLnXalYe9xklk3dl3n3133wG8ldLkmfIxd0YoPKBoz3NZDbkROZ6f0T8ZR7XDZ-dyfCU-X2fX4cKtDWmVvU3sDLVrLN2Rf6BjN7rnRA8_zn5x6hpF0dXQQmMHdtEEaz2A3U8n5xdfN0ke8SqOkCeKKwRDoWwmFM-ha-LoszjVyqVcb7mm_w30LQ-1nT15yx2NHsOjgCPZ0UrxT-BeVe_B_T6NfQ8e9BXH7VP48eXb5dnf339OKTLExksq0mLUBG3KELIyhIDsYk4BG1ISazz73lCGHAF0NqnZ8Xw5WzS2I3KyS0a5p76ZTpr2GVyNTi6Pxzw0VOAWgc2CG9zeXidClVI5j89i76zLcqlV4uNS2Ng54Z2SMskzLz0aw7Kq5NDITKXKq_Q5DOqmrl4A8yors9iJFOGAsNKYZJjYVEhvh9KqMokg7mVZ2MA2Tk0vpsWGJ5nkX6D8i07-hY7g_fqb2Ypr486335GKCtqI-GdrQj0Bzo8orYojlRNZIOKdCA56LRZhh7bFZj1F8GY9jHuLAiamrpqbtujI0WKdCxXB_krp64nhHOjomEagt5bD-gXi7d4eqSc_O_5uor1KETq8vHter-AhCjWkCR3AYDG_qV4jAlqUh7CjR6eHYbH_AyAUAzI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlEuCMpfoICRQByQRX4cOzkgVBW2W7pbIbGF3kxix2KlVbLsboX2xjvwHjwUT8JMfna7HHrrNU4sazz2N5OZ-QbghZRZGisXcJsJhQ5K4ngqC59nIkX_GfEps1Q7PDyR_VPx8Sw-24I_XS0MpVV2d2J9UdvK0D_yN-R2IzyHif9u-oNT1yiKrnYtNBq1OC6WP9Flm789eo_7-zIMex9GB33edhXgBtF9wTPUcZeEQuVSWYfPAmeNjVOZqNAFuTCBtcJZJWWYxk46vBHyopB-JmMVKacinPcaXBcRIjlVpvcO1yklQRO1SEPFFZpebZFOW6qHQMgRITlV5kU82QDC_-HgAh5u5mpeAL_ebbjVWq1sv1GzO7BVlLtwo0ua34Wdrr55fhe-Dj6Phn9__T6kOBTrL6kkjFHLtQlDA5mhwck-zSg8RCrBKse-VJSPR-4AG5fsYLacLipT00aZJaNMV1dNxtX8HpxeiaDvw3ZZlcVDYE7FeRxYEaHxIYzMstAPTSSkM740Kg89CDpZatNym1OLjYleszKT_DXKX9fy14kHr1ffTBtmj0vffkVbpOnY48wma6sXcH1EoKX3VUrUhGhdebDX7aJu74O5XmuvB89Xw3iSKTyTlUV1Ptc1FVuQpEJ58KDZ9NXCcA3kqEYeJBvqsHqBWMI3R8rx95otnEi2IjRUHl2-rmew0x8NB3pwdHL8GG6igNsEpT3YXszOiydoey3yp7XCM_h21SfsH7yHPd4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVCpcEJQ_lwKLBOKAVvXvrn1AqLQNKW2jCFrobbHXXjVSZIc4FcqNd-BteByehJl4nTQceuvVf1rNzs4345n5BuCVEGkSSePxPA0lBiix4YkoXJ6GCcbPiE9pTr3DJ33ROws_nUfna_Cn7YWhssrWJs4NdV5p-ke-Q2E3wrMfuzvGlkUM9rvvxz84TZCiTGs7TqNRkaNi9hPDt_rd4T7u9Wvf7x6c7vW4nTDANSL9lKeo7yb2Q5kJmRu85plc51EiYukbLwu1l-ehyaUQfhIZYdA6ZEUh3FREMpBGBvjdW7AuKSrqwPqHg_7g87LAxGtyGIkvuURHzLbs2MY9hEWOeMmpTy_g8Qos_g8OV9BxtXLzChR278Fd68Oy3Ubp7sNaUW7CRltCvwm3227n-gF8O_5yevL31--PlJVivRk1iDEawDZi6C4zdD_ZYELJIlIQVhn2taLqPAoO2LBke5PZeFrpOYmUnjGqezXVaFjVD-HsRkT9CDplVRZPgBkZZZGXhwG6IqEWaeq7vg5CYbQrtMx8B7xWlkpbpnMauDFSS45mkr9C-au5_FXswNvFO-OG5-Pap9_QFikyAvhlndpeBlwf0WmpXZkQUSH6Wg5st7uorHWo1VKXHXi5uI3nmpI1aVlUl7WaE7N5cRJKBx43m75YGK6BwtbAgXhFHRYPEGf46p1yeDHnDifKrQDdlq3r1_UCNvB0qePD_tFTuIPytdVK29CZTi6LZ-iITbPnVuMZfL_pQ_YP-VxDcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSTM%E2%80%93GARCH+Hybrid+Model+for+the+Prediction+of+Volatility+in+Cryptocurrency+Portfolios&rft.jtitle=Computational+economics&rft.au=Garc%C3%ADa-Medina%2C+Andr%C3%A9s&rft.au=Aguayo-Moreno%2C+Ester&rft.date=2024-04-01&rft.issn=0927-7099&rft.eissn=1572-9974&rft.volume=63&rft.issue=4&rft.spage=1511&rft.epage=1542&rft_id=info:doi/10.1007%2Fs10614-023-10373-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10614_023_10373_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7099&client=summon