LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios
In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH f...
Saved in:
Published in | Computational economics Vol. 63; no. 4; pp. 1511 - 1542 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Springer
01.04.2024
Springer Nature B.V Springer US |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM-GARCH versions under the Diebold-Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market. |
---|---|
AbstractList | In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM–GARCH versions under the Diebold–Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market. In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM-GARCH versions under the Diebold-Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market.In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM-GARCH versions under the Diebold-Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market. In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH) models, multilayer perceptron (MLP), long short-term memory (LSTM), and hybrid models of the type LSTM and GARCH, where parameters of the GARCH family are included as features of LSTM models. The study period covered the scenario of the World Health Organization pandemic declaration around March 2020 at hourly frequency. We have found that the different variants of deep neural network models outperform those of the GARCH family in the sense of the hetorerocedastic error, and absolute and squared error (HSE). Under the sharpe ratio, the volatility forecasting of a uniform portfolio at long horizons systematically outperforms the stablecoin Tether, which is considered here as the risk-free asset. Also, including transaction volume helps reduce the value at risk or loss probability for the uniform portfolio. Moreover, in a minimum variance portfolio, it is observed that before the pandemic declaration, a large proportion of the capital was allocated to bitcoin (BTC). In contrast, after March 2020, the portfolio is more diversified with short positions for BTC. Moreover, the MLP models give the best predictive results, although not statistically different in accuracy compared to the LSTM and LSTM–GARCH versions under the Diebold–Mariano test. In sum, MLP models outperform most stylised financial models and are less computationally expensive than more complex neural networks. Therefore, simple learning models are suggested in highly non-linear time series volatility forecasts as it is the cryptocurrency market. |
Audience | Academic |
Author | García-Medina, Andrés Aguayo-Moreno, Ester |
Author_xml | – sequence: 1 givenname: Andrés orcidid: 0000-0002-2198-880X surname: García-Medina fullname: García-Medina, Andrés – sequence: 2 givenname: Ester surname: Aguayo-Moreno fullname: Aguayo-Moreno, Ester |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37362593$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuEzEUtVARTQM_wAJZYsNmih8z9niFoggapFRUUGBpefxoXTl26vEgZcc_8Id8CQ5pEXSBvLB0fe659_icE3AUU7QAPMfoFCPEX48YMdw2iNAGI8pp0z8CM9xx0gjB2yMwQ4LwhiMhjsHJON4ghDpMyBNwXMGMdILOwNf1p8vzn99_nC0-LldwtRuyN_A8GRugSxmWawsvsjVeF58iTA5-SUEVH3zZQR_hMu-2JekpZxv1Dl6kXFwKPo1PwWOnwmif3d1z8Pnd28vlqll_OHu_XKwb3TFUGsURdT1p-cC4cbWGndGmE6znxOGh1diY1hnOGBGdY66j_WAtQ4p1nHLH6Ry8OfBup2FjjbaxZBXkNvuNyjuZlJf_vkR_La_SN1l_EFOKaGV4dceQ0-1kxyI3ftQ2BBVtmkZJeooI7kW7H_byAfQmTTlWfZKilpCOkR5V1OkBdaWClT66VAfreozdeF0tdL7WF1xU04ioW8zBi781_Fn-3qUK6A8AndM4Zuuk9kXtHanMPlQtezlcHgIhayDk70DIvraSB6337P9p-gVN-rgZ |
CitedBy_id | crossref_primary_10_1111_exsy_13738 crossref_primary_10_1007_s10614_024_10827_7 crossref_primary_10_3389_fpubh_2024_1365942 crossref_primary_10_1109_ACCESS_2023_3330156 crossref_primary_10_1007_s10614_024_10785_0 crossref_primary_10_1007_s10614_024_10754_7 crossref_primary_10_1002_agr_22000 crossref_primary_10_1007_s10614_023_10532_x crossref_primary_10_1007_s41870_025_02472_6 crossref_primary_10_1057_s41599_023_02042_w crossref_primary_10_1007_s10614_023_10466_4 crossref_primary_10_1016_j_engappai_2025_110397 crossref_primary_10_3390_jrfm17120567 crossref_primary_10_1007_s42979_024_02902_5 crossref_primary_10_1007_s10614_024_10694_2 crossref_primary_10_1109_ACCESS_2024_3417449 crossref_primary_10_1007_s41870_024_01953_4 crossref_primary_10_1007_s10614_024_10676_4 crossref_primary_10_1186_s40854_023_00520_3 crossref_primary_10_3390_math12111677 |
Cites_doi | 10.3390/e23121582 10.1007/978-3-540-71297-8_9 10.1111/j.1540-6261.1993.tb05128.x 10.3390/jrfm10040017 10.1145/2830556.2830562 10.1080/00036846.2015.1096004 10.1016/j.chaos.2018.11.014 10.1080/07350015.1996.10524672 10.1257/jep.15.4.157 10.1093/rfs/hhaa009 10.1080/07350015.1995.10524599 10.1016/j.knosys.2021.107994 10.1016/j.ejor.2017.11.054 10.1002/fut.3990110509 10.1371/journal.pone.0194889 10.1111/j.1540-6261.1990.tb05088.x 10.1002/jae.842 10.1080/713665670 10.1162/neco.1997.9.8.1735 10.1111/j.1467-9965.1994.tb00057.x 10.1016/j.eswa.2017.12.004 10.1016/j.eswa.2018.05.011 10.1016/j.frl.2018.07.011 10.1016/j.frl.2015.10.008 10.1007/s10479-021-04311-w 10.1016/j.physa.2022.127158 10.1016/0304-4076(86)90063-1 10.1016/0304-405X(94)00821-H 10.2307/2938260 10.3905/jpm.1994.409501 10.1016/j.frl.2017.10.012 10.1198/073500102288618487 10.1016/j.ijforecast.2018.09.005 10.1016/j.ijforecast.2019.04.014 10.2307/1925546 10.1016/j.eswa.2018.03.002 10.1080/07350015.2014.983236 10.1016/S0169-7161(96)14007-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer Copyright Springer Nature B.V. Apr 2024 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer – notice: Copyright Springer Nature B.V. Apr 2024 |
DBID | AAYXX CITATION NPM 3V. 7WY 7WZ 7XB 87Z 8AO 8BJ 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FQK FRNLG F~G GNUQQ HCIFZ JBE JQ2 K60 K6~ K7- L.- M0C P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s10614-023-10373-8 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) ProQuest Pharma Collection International Bibliography of the Social Sciences (IBSS) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea International Bibliography of the Social Sciences Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ABI/INFORM Global (Corporate) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Business |
EISSN | 1572-9974 |
EndPage | 1542 |
ExternalDocumentID | PMC10013303 A791032901 37362593 10_1007_s10614_023_10373_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: A1-S-43514 |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3R3 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 6J9 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHQT ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACREN ACSNA ACSTC ACYUM ACZOJ ADFRT ADHHG ADHIR ADIMF ADIYS ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYQZM AZFZN B-. BA0 BAAKF BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EOH ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IBB IEA IHE IJ- IKXTQ IOF ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I OAM OVD P19 P2P P62 P9M PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R-Y R4E R89 R9I RHV RNI ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 YLTOR Z45 ZMTXR ZYFGU ~A9 ~EX -4X -57 -5G -BR -EM ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE NPM O9J Z81 Z83 Z86 Z88 Z8U Z8W Z92 AEIIB PMFND 3V. 7XB 8BJ 8FK ABRTQ AZQEC FQK GNUQQ JBE JQ2 L.- PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c560t-a703f8247b67dfc561fdcd596872f1b4c1dd4fd766295f6f538bee60a65737f73 |
IEDL.DBID | BENPR |
ISSN | 0927-7099 1572-9974 |
IngestDate | Thu Aug 21 18:37:36 EDT 2025 Fri Jul 11 00:08:19 EDT 2025 Sat Aug 23 13:55:55 EDT 2025 Tue Jun 10 20:59:25 EDT 2025 Thu Jan 02 22:52:53 EST 2025 Tue Jul 01 05:06:15 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Cryptocurrencies GARCH–LSTM models Volatility |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-a703f8247b67dfc561fdcd596872f1b4c1dd4fd766295f6f538bee60a65737f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2198-880X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10013303 |
PMID | 37362593 |
PQID | 3042256280 |
PQPubID | 36414 |
PageCount | 32 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10013303 proquest_miscellaneous_2830218947 proquest_journals_3042256280 gale_infotracacademiconefile_A791032901 pubmed_primary_37362593 crossref_citationtrail_10_1007_s10614_023_10373_8 crossref_primary_10_1007_s10614_023_10373_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Dordrecht – name: New York |
PublicationTitle | Computational economics |
PublicationTitleAlternate | Comput Econ |
PublicationYear | 2024 |
Publisher | Springer Springer Nature B.V Springer US |
Publisher_xml | – name: Springer – name: Springer Nature B.V – name: Springer US |
References | I Goodfellow (10373_CR20) 2016 FX Diebold (10373_CR9) 2015; 33 R Engle (10373_CR14) 2001; 15 AC Harvey (10373_CR22) 1996; 14 IV Pustokhina (10373_CR38) 2021 10373_CR11 S Gu (10373_CR21) 2020; 33 S Banik (10373_CR1) 2022; 239 LR Glosten (10373_CR19) 1993; 48 S Lahmiri (10373_CR29) 2019; 118 M Najand (10373_CR34) 1991; 11 L Bauwens (10373_CR3) 2006; 21 A García-Medina (10373_CR17) 2021; 23 WF Sharpe (10373_CR41) 1994; 21 S Makridakis (10373_CR32) 2020; 36 DB Nelson (10373_CR36) 1991; 59 SJ Taylor (10373_CR43) 1994; 4 R Cont (10373_CR8) 2001; 1 L Hentschel (10373_CR23) 1995; 39 W Mensi (10373_CR33) 2019; 29 S Makridakis (10373_CR31) 2018; 13 FX Diebold (10373_CR10) 1995; 13 R Engle (10373_CR15) 2002; 20 S Hochreiter (10373_CR24) 1997; 9 10373_CR42 T Bollerslev (10373_CR4) 1986; 31 T Fischer (10373_CR16) 2018; 270 E Jondeau (10373_CR25) 2007 DS Kambouroudis (10373_CR26) 2016; 48 V D’Amato (10373_CR13) 2022; 596 J Chu (10373_CR7) 2017; 10 AH Dyhrberg (10373_CR12) 2016; 16 10373_CR18 10373_CR5 W Kristjanpoller (10373_CR28) 2018; 109 CG Lamoureux (10373_CR30) 1990; 45 10373_CR39 DG Baur (10373_CR2) 2018; 25 10373_CR35 Y Peng (10373_CR37) 2018; 97 L Catania (10373_CR6) 2019; 35 T Roncalli (10373_CR40) 2013 HY Kim (10373_CR27) 2018; 103 |
References_xml | – volume: 23 start-page: 1582 issue: 12 year: 2021 ident: 10373_CR17 publication-title: Entropy doi: 10.3390/e23121582 – ident: 10373_CR42 doi: 10.1007/978-3-540-71297-8_9 – volume: 48 start-page: 1779 issue: 5 year: 1993 ident: 10373_CR19 publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1993.tb05128.x – volume: 10 start-page: 17 issue: 4 year: 2017 ident: 10373_CR7 publication-title: Journal of Risk and Financial Management doi: 10.3390/jrfm10040017 – ident: 10373_CR11 doi: 10.1145/2830556.2830562 – volume: 48 start-page: 1210 issue: 13 year: 2016 ident: 10373_CR26 publication-title: Applied Economics doi: 10.1080/00036846.2015.1096004 – volume: 118 start-page: 35 year: 2019 ident: 10373_CR29 publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2018.11.014 – volume: 14 start-page: 429 issue: 4 year: 1996 ident: 10373_CR22 publication-title: Journal of Business & Economic Statistics doi: 10.1080/07350015.1996.10524672 – volume: 15 start-page: 157 issue: 4 year: 2001 ident: 10373_CR14 publication-title: Journal of Economic Perspectives doi: 10.1257/jep.15.4.157 – volume: 33 start-page: 2223 issue: 5 year: 2020 ident: 10373_CR21 publication-title: The Review of Financial Studies doi: 10.1093/rfs/hhaa009 – volume: 13 start-page: 253 issue: 3 year: 1995 ident: 10373_CR10 publication-title: Journal of Business and Economic Statistics doi: 10.1080/07350015.1995.10524599 – volume: 239 year: 2022 ident: 10373_CR1 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107994 – volume: 270 start-page: 654 issue: 2 year: 2018 ident: 10373_CR16 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.11.054 – volume: 11 start-page: 613 issue: 5 year: 1991 ident: 10373_CR34 publication-title: The Journal of Futures Markets (1986–1998) doi: 10.1002/fut.3990110509 – volume: 13 start-page: 0194889 issue: 3 year: 2018 ident: 10373_CR31 publication-title: PloS One doi: 10.1371/journal.pone.0194889 – ident: 10373_CR35 – volume: 45 start-page: 221 issue: 1 year: 1990 ident: 10373_CR30 publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1990.tb05088.x – volume: 21 start-page: 79 issue: 1 year: 2006 ident: 10373_CR3 publication-title: Journal of Applied Econometrics doi: 10.1002/jae.842 – volume: 1 start-page: 223 year: 2001 ident: 10373_CR8 publication-title: Quantitative Finance doi: 10.1080/713665670 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10373_CR24 publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 4 start-page: 183 year: 1994 ident: 10373_CR43 publication-title: Mathematical Finance doi: 10.1111/j.1467-9965.1994.tb00057.x – volume: 97 start-page: 177 year: 2018 ident: 10373_CR37 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.12.004 – volume: 109 start-page: 1 year: 2018 ident: 10373_CR28 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.05.011 – volume: 29 start-page: 222 year: 2019 ident: 10373_CR33 publication-title: Finance Research Letters doi: 10.1016/j.frl.2018.07.011 – volume-title: Deep learning year: 2016 ident: 10373_CR20 – volume: 16 start-page: 85 year: 2016 ident: 10373_CR12 publication-title: Finance Research Letters doi: 10.1016/j.frl.2015.10.008 – year: 2021 ident: 10373_CR38 publication-title: Annals of Operations Research doi: 10.1007/s10479-021-04311-w – volume: 596 year: 2022 ident: 10373_CR13 publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2022.127158 – volume-title: Introduction to risk parity and budgeting year: 2013 ident: 10373_CR40 – volume: 31 start-page: 307 issue: 3 year: 1986 ident: 10373_CR4 publication-title: Journal of Econometrics doi: 10.1016/0304-4076(86)90063-1 – volume: 39 start-page: 71 issue: 1 year: 1995 ident: 10373_CR23 publication-title: Journal of Financial Economics doi: 10.1016/0304-405X(94)00821-H – ident: 10373_CR39 – volume: 59 start-page: 347 issue: 2 year: 1991 ident: 10373_CR36 publication-title: Econometrica: Journal of the Econometric Society doi: 10.2307/2938260 – volume: 21 start-page: 49 issue: 1 year: 1994 ident: 10373_CR41 publication-title: Journal of Portfolio Management doi: 10.3905/jpm.1994.409501 – volume-title: Financial modeling under non-Gaussian distributions year: 2007 ident: 10373_CR25 – volume: 25 start-page: 103 year: 2018 ident: 10373_CR2 publication-title: Finance Research Letters doi: 10.1016/j.frl.2017.10.012 – volume: 20 start-page: 339 issue: 3 year: 2002 ident: 10373_CR15 publication-title: Journal of Business & Economic Statistics doi: 10.1198/073500102288618487 – volume: 35 start-page: 485 issue: 2 year: 2019 ident: 10373_CR6 publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2018.09.005 – volume: 36 start-page: 54 issue: 1 year: 2020 ident: 10373_CR32 publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2019.04.014 – ident: 10373_CR5 doi: 10.2307/1925546 – volume: 103 start-page: 25 year: 2018 ident: 10373_CR27 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.03.002 – volume: 33 start-page: 1 issue: 1 year: 2015 ident: 10373_CR9 publication-title: Journal of Business & Economic Statistics doi: 10.1080/07350015.2014.983236 – ident: 10373_CR18 doi: 10.1016/S0169-7161(96)14007-4 |
SSID | ssj0005122 |
Score | 2.492171 |
Snippet | In the present work, the volatility of the leading cryptocurrencies is predicted through generalised autoregressive conditional heteroskedasticity (GARCH)... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1511 |
SubjectTerms | Artificial neural networks Autoregressive models Capital Crypto-currencies Digital currencies Forecasts and trends Investment analysis Machine learning Multilayer perceptrons Neural networks Pandemics Portfolios Risk reduction Short term memory Time series Variants Volatility |
Title | LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37362593 https://www.proquest.com/docview/3042256280 https://www.proquest.com/docview/2830218947 https://pubmed.ncbi.nlm.nih.gov/PMC10013303 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6xTgJeEAwYgTEZCYkHZNEkju08oTGtqxCbJthgb5Fjx6JSlZSme-gb_4F_yC_hLnXalYe9xklk3dl3n3133wG8ldLkmfIxd0YoPKBoz3NZDbkROZ6f0T8ZR7XDZ-dyfCU-X2fX4cKtDWmVvU3sDLVrLN2Rf6BjN7rnRA8_zn5x6hpF0dXQQmMHdtEEaz2A3U8n5xdfN0ke8SqOkCeKKwRDoWwmFM-ha-LoszjVyqVcb7mm_w30LQ-1nT15yx2NHsOjgCPZ0UrxT-BeVe_B_T6NfQ8e9BXH7VP48eXb5dnf339OKTLExksq0mLUBG3KELIyhIDsYk4BG1ISazz73lCGHAF0NqnZ8Xw5WzS2I3KyS0a5p76ZTpr2GVyNTi6Pxzw0VOAWgc2CG9zeXidClVI5j89i76zLcqlV4uNS2Ng54Z2SMskzLz0aw7Kq5NDITKXKq_Q5DOqmrl4A8yors9iJFOGAsNKYZJjYVEhvh9KqMokg7mVZ2MA2Tk0vpsWGJ5nkX6D8i07-hY7g_fqb2Ypr486335GKCtqI-GdrQj0Bzo8orYojlRNZIOKdCA56LRZhh7bFZj1F8GY9jHuLAiamrpqbtujI0WKdCxXB_krp64nhHOjomEagt5bD-gXi7d4eqSc_O_5uor1KETq8vHter-AhCjWkCR3AYDG_qV4jAlqUh7CjR6eHYbH_AyAUAzI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlEuCMpfoICRQByQRX4cOzkgVBW2W7pbIbGF3kxix2KlVbLsboX2xjvwHjwUT8JMfna7HHrrNU4sazz2N5OZ-QbghZRZGisXcJsJhQ5K4ngqC59nIkX_GfEps1Q7PDyR_VPx8Sw-24I_XS0MpVV2d2J9UdvK0D_yN-R2IzyHif9u-oNT1yiKrnYtNBq1OC6WP9Flm789eo_7-zIMex9GB33edhXgBtF9wTPUcZeEQuVSWYfPAmeNjVOZqNAFuTCBtcJZJWWYxk46vBHyopB-JmMVKacinPcaXBcRIjlVpvcO1yklQRO1SEPFFZpebZFOW6qHQMgRITlV5kU82QDC_-HgAh5u5mpeAL_ebbjVWq1sv1GzO7BVlLtwo0ua34Wdrr55fhe-Dj6Phn9__T6kOBTrL6kkjFHLtQlDA5mhwck-zSg8RCrBKse-VJSPR-4AG5fsYLacLipT00aZJaNMV1dNxtX8HpxeiaDvw3ZZlcVDYE7FeRxYEaHxIYzMstAPTSSkM740Kg89CDpZatNym1OLjYleszKT_DXKX9fy14kHr1ffTBtmj0vffkVbpOnY48wma6sXcH1EoKX3VUrUhGhdebDX7aJu74O5XmuvB89Xw3iSKTyTlUV1Ptc1FVuQpEJ58KDZ9NXCcA3kqEYeJBvqsHqBWMI3R8rx95otnEi2IjRUHl2-rmew0x8NB3pwdHL8GG6igNsEpT3YXszOiydoey3yp7XCM_h21SfsH7yHPd4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVCpcEJQ_lwKLBOKAVvXvrn1AqLQNKW2jCFrobbHXXjVSZIc4FcqNd-BteByehJl4nTQceuvVf1rNzs4345n5BuCVEGkSSePxPA0lBiix4YkoXJ6GCcbPiE9pTr3DJ33ROws_nUfna_Cn7YWhssrWJs4NdV5p-ke-Q2E3wrMfuzvGlkUM9rvvxz84TZCiTGs7TqNRkaNi9hPDt_rd4T7u9Wvf7x6c7vW4nTDANSL9lKeo7yb2Q5kJmRu85plc51EiYukbLwu1l-ehyaUQfhIZYdA6ZEUh3FREMpBGBvjdW7AuKSrqwPqHg_7g87LAxGtyGIkvuURHzLbs2MY9hEWOeMmpTy_g8Qos_g8OV9BxtXLzChR278Fd68Oy3Ubp7sNaUW7CRltCvwm3227n-gF8O_5yevL31--PlJVivRk1iDEawDZi6C4zdD_ZYELJIlIQVhn2taLqPAoO2LBke5PZeFrpOYmUnjGqezXVaFjVD-HsRkT9CDplVRZPgBkZZZGXhwG6IqEWaeq7vg5CYbQrtMx8B7xWlkpbpnMauDFSS45mkr9C-au5_FXswNvFO-OG5-Pap9_QFikyAvhlndpeBlwf0WmpXZkQUSH6Wg5st7uorHWo1VKXHXi5uI3nmpI1aVlUl7WaE7N5cRJKBx43m75YGK6BwtbAgXhFHRYPEGf46p1yeDHnDifKrQDdlq3r1_UCNvB0qePD_tFTuIPytdVK29CZTi6LZ-iITbPnVuMZfL_pQ_YP-VxDcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LSTM%E2%80%93GARCH+Hybrid+Model+for+the+Prediction+of+Volatility+in+Cryptocurrency+Portfolios&rft.jtitle=Computational+economics&rft.au=Garc%C3%ADa-Medina%2C+Andr%C3%A9s&rft.au=Aguayo-Moreno%2C+Ester&rft.date=2024-04-01&rft.issn=0927-7099&rft.eissn=1572-9974&rft.volume=63&rft.issue=4&rft.spage=1511&rft.epage=1542&rft_id=info:doi/10.1007%2Fs10614-023-10373-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10614_023_10373_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7099&client=summon |