Development of a biomarker mortality risk model in acute respiratory distress syndrome

There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our...

Full description

Saved in:
Bibliographic Details
Published inCritical care (London, England) Vol. 23; no. 1; pp. 410 - 8
Main Authors Bime, Christian, Casanova, Nancy, Oita, Radu C., Ndukum, Juliet, Lynn, Heather, Camp, Sara M., Lussier, Yves, Abraham, Ivo, Carter, Darrick, Miller, Edmund J., Mekontso-Dessap, Armand, Downs, Charles A., Garcia, Joe G. N.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 16.12.2019
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1364-8535
1466-609X
1364-8535
1466-609X
1366-609X
DOI10.1186/s13054-019-2697-x

Cover

Loading…
Abstract There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome. This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality. From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04). An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.
AbstractList There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome.BACKGROUNDThere is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome.This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality.METHODSThis is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality.From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04).RESULTSFrom eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04).An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.CONCLUSIONSAn adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.
There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome. This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality. From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04). An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.
There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome. This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality. From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04). An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.
Background There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome. Methods This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality. Results From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04). Conclusions An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.
Abstract Background There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome. Methods This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality. Results From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04). Conclusions An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.
Background There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome. Methods This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality. Results From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04). Conclusions An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization. Keywords: ARDS, Predictive analytics, Biomarkers, Mortality
ArticleNumber 410
Audience Academic
Author Bime, Christian
Miller, Edmund J.
Casanova, Nancy
Lynn, Heather
Camp, Sara M.
Ndukum, Juliet
Lussier, Yves
Mekontso-Dessap, Armand
Oita, Radu C.
Abraham, Ivo
Carter, Darrick
Garcia, Joe G. N.
Downs, Charles A.
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0003-4787-2685
  surname: Bime
  fullname: Bime, Christian
– sequence: 2
  givenname: Nancy
  surname: Casanova
  fullname: Casanova, Nancy
– sequence: 3
  givenname: Radu C.
  surname: Oita
  fullname: Oita, Radu C.
– sequence: 4
  givenname: Juliet
  surname: Ndukum
  fullname: Ndukum, Juliet
– sequence: 5
  givenname: Heather
  surname: Lynn
  fullname: Lynn, Heather
– sequence: 6
  givenname: Sara M.
  surname: Camp
  fullname: Camp, Sara M.
– sequence: 7
  givenname: Yves
  surname: Lussier
  fullname: Lussier, Yves
– sequence: 8
  givenname: Ivo
  surname: Abraham
  fullname: Abraham, Ivo
– sequence: 9
  givenname: Darrick
  surname: Carter
  fullname: Carter, Darrick
– sequence: 10
  givenname: Edmund J.
  surname: Miller
  fullname: Miller, Edmund J.
– sequence: 11
  givenname: Armand
  surname: Mekontso-Dessap
  fullname: Mekontso-Dessap, Armand
– sequence: 12
  givenname: Charles A.
  surname: Downs
  fullname: Downs, Charles A.
– sequence: 13
  givenname: Joe G. N.
  surname: Garcia
  fullname: Garcia, Joe G. N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31842964$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhSPUij7gB7BBkdiwSRs_4scGqSqvSpXYAFvL8WPwNIkH26k6_54bpoVOBfLCvtffPcmxzkl1MMXJVdUr1J4hJNh5RqTtaNMi2WAmeXP3rDpGhNFGdKQ7eHQ-qk5yXrct4oKR59URQYJiyehx9f29u3VD3IxuKnX0ta77EEedblyqx5iKHkLZ1inkGyitG-ow1drMxdXJ5U1IusS0rW3IBepc5-1kUxzdi-rQ6yG7l_f7afXt44evl5-b6y-fri4vrhvTsbY0mnnGuRVGWOoNloL3vbVSe-c71EuprWWy51gagpHpqGeOQMHBvKXEU3JaXe10bdRrtUkBfn2rog7qdyOmldKpBDM4JQxyutfcWsIp66mQlvbek45TC30NWu92Wpu5H5018CJJD3ui-zdT-KFW8VYxiRjuMAi8vRdI8efsclFjyMYNg55cnLPCBHNJMRIE0DdP0HWc0wRPtVACsxbIv9RKg4Ew-QjfNYuoumCoJQh1jAF19g8KlnVjMJAYH6C_N_D6sdE_Dh9SAQDfASbFnJPzyoSiS4iL7zAo1Kolf2qXPwX5U0v-1B1MoieTD-L_n_kF9G3eZw
CitedBy_id crossref_primary_10_3390_diagnostics11020332
crossref_primary_10_1134_S0022093024020285
crossref_primary_10_1093_pnasnexus_pgae173
crossref_primary_10_1016_j_heliyon_2025_e42146
crossref_primary_10_1097_NNR_0000000000000597
crossref_primary_10_1016_j_jtauto_2022_100181
crossref_primary_10_3390_metabo12070655
crossref_primary_10_1002_jcla_23488
crossref_primary_10_1186_s12890_022_02057_0
crossref_primary_10_3389_fphys_2023_1129413
crossref_primary_10_3390_ijms22010205
crossref_primary_10_3389_fphar_2021_808797
crossref_primary_10_1042_BSR20231934
crossref_primary_10_1016_S2213_2600_20_30124_7
crossref_primary_10_1165_rcmb_2022_0022ED
crossref_primary_10_3390_biomedicines12122924
crossref_primary_10_3390_diagnostics13213296
crossref_primary_10_1042_CS20201448
crossref_primary_10_1016_j_jaci_2020_07_009
crossref_primary_10_1016_j_pulmoe_2022_01_016
crossref_primary_10_3389_fphys_2022_916159
crossref_primary_10_1016_j_accpm_2021_100996
crossref_primary_10_1038_s41598_021_02100_w
crossref_primary_10_3390_ijms232315205
crossref_primary_10_1097_PCC_0000000000002570
crossref_primary_10_1183_13993003_02536_2020
crossref_primary_10_1016_j_ccm_2024_08_014
crossref_primary_10_1165_rcmb_2021_0357OC
crossref_primary_10_1186_s13063_023_07201_7
crossref_primary_10_1016_j_biopha_2023_116103
crossref_primary_10_31857_S0869813924040029
crossref_primary_10_3389_fmed_2022_1012827
crossref_primary_10_1038_s41598_021_98053_1
crossref_primary_10_1016_j_trsl_2020_06_010
crossref_primary_10_1016_j_trsl_2020_12_008
crossref_primary_10_3390_diagnostics11122259
crossref_primary_10_1038_s41598_021_04444_9
crossref_primary_10_1183_23120541_00121_2024
crossref_primary_10_1096_fj_202201972RR
crossref_primary_10_1515_med_2024_1076
crossref_primary_10_1007_s12024_022_00572_4
crossref_primary_10_1055_s_0040_1713422
crossref_primary_10_1016_j_pccm_2024_04_002
crossref_primary_10_1186_s10020_023_00760_0
crossref_primary_10_1097_CCE_0000000000000518
crossref_primary_10_1080_17476348_2023_2230883
crossref_primary_10_1165_rcmb_2019_0164OC
crossref_primary_10_1186_s12871_022_01718_1
crossref_primary_10_1016_j_trsl_2021_06_002
crossref_primary_10_1002_phar_2394
crossref_primary_10_1093_qjmed_hcac234
crossref_primary_10_1177_17534666231181262
crossref_primary_10_1017_dmp_2023_176
crossref_primary_10_3389_fimmu_2023_1268756
crossref_primary_10_1186_s40364_023_00519_z
Cites_doi 10.1016/S2213-2600(18)30177-2
10.1152/physrev.00037.2012
10.1602/neurorx.1.2.182
10.1038/nm.2678
10.1186/2110-5820-4-4
10.1164/rccm.200404-563OC
10.1001/jama.2016.0291
10.1378/chest.107.4.1062
10.1097/MCC.0b013e328334b151
10.1038/s41598-018-20994-x
10.1038/nmeth.4370
10.1164/rccm.201603-0645OC
10.1016/S2213-2600(14)70097-9
10.1165/rcmb.2017-0155OC
10.4103/0972-5229.190369
10.1152/ajplung.00378.2001
10.1002/path.1291
10.1155/2016/3501373
10.1164/rccm.201011-1802OC
10.2217/bmm.14.52
10.1002/cpt.136
10.1164/ajrccm.149.3.7509706
10.1056/NEJMoa062200
10.1164/ajrccm/138.3.720
10.1086/675991
10.1186/1471-2105-10-62
10.1165/rcmb.2012-0048OC
10.1097/01.CCM.0000155788.39101.7E
10.1152/ajplung.00010.2013
10.1136/jim-2016-000358
10.1186/s12950-018-0202-y
10.1097/PCC.0000000000001680
10.1186/s40635-018-0181-6
10.1152/ajplung.00277.2003
10.1097/00003246-198510000-00009
10.1097/CCM.0b013e3182257675
ContentType Journal Article
Copyright COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2019
Copyright_xml – notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13054-019-2697-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1364-8535
1466-609X
1366-609X
EndPage 8
ExternalDocumentID oai_doaj_org_article_8c1eaba7dd3746b489d4bff3574dabaa
PMC6916252
A610311566
31842964
10_1186_s13054_019_2697_x
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United Kingdom
Minneapolis Minnesota
United States--US
GeographicLocations_xml – name: United Kingdom
– name: Minneapolis Minnesota
– name: United States--US
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: P01 HL126609
– fundername: NHLBI NIH HHS
  grantid: K08 HL141623
– fundername: NHLBI NIH HHS
  grantid: R42 HL145930
– fundername: NHLBI NIH HHS
  grantid: R41 HL147769
– fundername: NHLBI NIH HHS
  grantid: P01 HL134610
– fundername: ;
  grantid: K08 HL141623; P01 HL126609; R41 HL147769; R42 HL145930
GroupedDBID ---
0R~
29F
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABUWG
ACGFS
ACJQM
ADBBV
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EBD
EBLON
EBS
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SJN
SMD
SOJ
SV3
TR2
U2A
UKHRP
WOQ
YOC
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
EJD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c560t-a6f677d8c8d4fc2987bbdd9afef51b99add69b729c321c54f6e329c7186d43f43
IEDL.DBID 7X7
ISSN 1364-8535
1466-609X
IngestDate Wed Aug 27 01:30:53 EDT 2025
Thu Aug 21 13:22:41 EDT 2025
Fri Jul 11 05:16:26 EDT 2025
Sat Jul 26 01:26:35 EDT 2025
Tue Jun 17 21:46:33 EDT 2025
Tue Jun 10 20:50:02 EDT 2025
Thu Apr 03 07:04:24 EDT 2025
Tue Jul 01 03:54:54 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biomarkers
Predictive analytics
Mortality
ARDS
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-a6f677d8c8d4fc2987bbdd9afef51b99add69b729c321c54f6e329c7186d43f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4787-2685
OpenAccessLink https://www.proquest.com/docview/2328260794?pq-origsite=%requestingapplication%
PMID 31842964
PQID 2328260794
PQPubID 44362
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_8c1eaba7dd3746b489d4bff3574dabaa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6916252
proquest_miscellaneous_2327942183
proquest_journals_2328260794
gale_infotracmisc_A610311566
gale_infotracacademiconefile_A610311566
pubmed_primary_31842964
crossref_citationtrail_10_1186_s13054_019_2697_x
crossref_primary_10_1186_s13054_019_2697_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-16
PublicationDateYYYYMMDD 2019-12-16
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-16
  day: 16
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Critical care (London, England)
PublicationTitleAlternate Crit Care
PublicationYear 2019
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References D Swaroopa (2697_CR2) 2016; 20
G Bellani (2697_CR1) 2016; 315
JF Murray (2697_CR6) 1988; 138
X Sun (2697_CR21) 2013; 305
AD Barker (2697_CR34) 2014; 8
LB Ware (2697_CR8) 2005; 33
M Krzywinski (2697_CR27) 2017; 14
CS Calfee (2697_CR9) 2014; 2
X Sun (2697_CR26) 2012; 47
JL Goldman (2697_CR11) 2014; 4
M Schivo (2697_CR35) 2017; 65
SE Wenzel (2697_CR36) 2012; 18
R Mayeux (2697_CR33) 2004; 1
HP Wiedemann (2697_CR23) 2006; 354
CS Calfee (2697_CR10) 2018; 6
S Amur (2697_CR32) 2015; 98
WA Knaus (2697_CR5) 1985; 13
N Hernandez-Pacheco (2697_CR17) 2018; 6
G Bernard (2697_CR24) 1994; 149
A Krupa (2697_CR13) 2004; 286
GU Meduri (2697_CR15) 1995; 107
KN Iskander (2697_CR37) 2013; 93
2697_CR29
C Calfee (2697_CR40) 2011; 183
M Jabaudon (2697_CR18) 2018; 8
MS Zinter (2697_CR22) 2016; 310
KN Kangelaris (2697_CR7) 2014; 4
KR Famous (2697_CR39) 2017; 195
R Blondonnet (2697_CR30) 2016; 2016
KN Lai (2697_CR16) 2003; 199
W Lutz (2697_CR19) 2004; 17
AK Kurdowska (2697_CR12) 2002; 282
RC Oita (2697_CR25) 2018; 59
VM Ranieri (2697_CR3) 2012; 307
MK Dahmer (2697_CR14) 2018; 19
S Spadaro (2697_CR31) 2019; 16
AJ Frank (2697_CR4) 2010; 16
SQ Ye (2697_CR20) 2005; 171
V Pihur (2697_CR28) 2009; 10
HR Wong (2697_CR38) 2011; 39
References_xml – volume: 6
  start-page: 691
  issue: 9
  year: 2018
  ident: 2697_CR10
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(18)30177-2
– volume: 310
  start-page: L224
  issue: 3
  year: 2016
  ident: 2697_CR22
  publication-title: Am J Phys Lung Cell Mol Phys
– volume: 93
  start-page: 1247
  issue: 3
  year: 2013
  ident: 2697_CR37
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00037.2012
– volume: 1
  start-page: 182
  issue: 2
  year: 2004
  ident: 2697_CR33
  publication-title: NeuroRx
  doi: 10.1602/neurorx.1.2.182
– volume: 18
  start-page: 716
  issue: 5
  year: 2012
  ident: 2697_CR36
  publication-title: Nat Med
  doi: 10.1038/nm.2678
– volume: 4
  start-page: 4
  issue: 1
  year: 2014
  ident: 2697_CR7
  publication-title: Ann Intensive Care
  doi: 10.1186/2110-5820-4-4
– volume: 171
  start-page: 361
  issue: 4
  year: 2005
  ident: 2697_CR20
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200404-563OC
– volume: 315
  start-page: 788
  issue: 8
  year: 2016
  ident: 2697_CR1
  publication-title: JAMA.
  doi: 10.1001/jama.2016.0291
– volume: 107
  start-page: 1062
  issue: 4
  year: 1995
  ident: 2697_CR15
  publication-title: Chest.
  doi: 10.1378/chest.107.4.1062
– volume: 16
  start-page: 62
  issue: 1
  year: 2010
  ident: 2697_CR4
  publication-title: Curr Opin Crit Care
  doi: 10.1097/MCC.0b013e328334b151
– volume: 8
  start-page: 2603
  issue: 1
  year: 2018
  ident: 2697_CR18
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20994-x
– volume: 17
  start-page: 245
  issue: 2
  year: 2004
  ident: 2697_CR19
  publication-title: Int J Occup Med Environ Health
– volume: 307
  start-page: 2526
  issue: 23
  year: 2012
  ident: 2697_CR3
  publication-title: JAMA.
– volume: 14
  start-page: 757
  year: 2017
  ident: 2697_CR27
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4370
– volume: 195
  start-page: 331
  issue: 3
  year: 2017
  ident: 2697_CR39
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201603-0645OC
– volume: 2
  start-page: 611
  issue: 8
  year: 2014
  ident: 2697_CR9
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(14)70097-9
– volume: 59
  start-page: 36
  issue: 1
  year: 2018
  ident: 2697_CR25
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2017-0155OC
– volume: 20
  start-page: 518
  issue: 9
  year: 2016
  ident: 2697_CR2
  publication-title: Indian J Crit Care Med
  doi: 10.4103/0972-5229.190369
– volume: 282
  start-page: L1092
  issue: 5
  year: 2002
  ident: 2697_CR12
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00378.2001
– volume: 199
  start-page: 496
  issue: 4
  year: 2003
  ident: 2697_CR16
  publication-title: J Pathol
  doi: 10.1002/path.1291
– volume: 2016
  start-page: 3501373
  year: 2016
  ident: 2697_CR30
  publication-title: Dis Markers
  doi: 10.1155/2016/3501373
– volume: 183
  start-page: 1660
  year: 2011
  ident: 2697_CR40
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201011-1802OC
– volume: 8
  start-page: 873
  issue: 6
  year: 2014
  ident: 2697_CR34
  publication-title: Biomark Med
  doi: 10.2217/bmm.14.52
– volume: 98
  start-page: 34
  issue: 1
  year: 2015
  ident: 2697_CR32
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.136
– volume: 149
  start-page: 818
  year: 1994
  ident: 2697_CR24
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.149.3.7509706
– volume: 354
  start-page: 2564
  issue: 24
  year: 2006
  ident: 2697_CR23
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa062200
– volume: 138
  start-page: 720
  issue: 3
  year: 1988
  ident: 2697_CR6
  publication-title: Am Rev Respir Dis
  doi: 10.1164/ajrccm/138.3.720
– volume: 4
  start-page: 280
  issue: 2
  year: 2014
  ident: 2697_CR11
  publication-title: Pulm Circ
  doi: 10.1086/675991
– volume: 10
  start-page: 62
  issue: 1
  year: 2009
  ident: 2697_CR28
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-62
– volume: 47
  start-page: 628
  issue: 5
  year: 2012
  ident: 2697_CR26
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2012-0048OC
– volume: 33
  start-page: S217
  issue: 3 Suppl
  year: 2005
  ident: 2697_CR8
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000155788.39101.7E
– volume: 305
  start-page: L467
  issue: 7
  year: 2013
  ident: 2697_CR21
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00010.2013
– volume: 65
  start-page: 953
  issue: 6
  year: 2017
  ident: 2697_CR35
  publication-title: J Invest Med
  doi: 10.1136/jim-2016-000358
– volume: 16
  start-page: 1
  issue: 1
  year: 2019
  ident: 2697_CR31
  publication-title: J Inflamm
  doi: 10.1186/s12950-018-0202-y
– volume: 19
  start-page: 930
  issue: 10
  year: 2018
  ident: 2697_CR14
  publication-title: Pediatr Crit Care Med
  doi: 10.1097/PCC.0000000000001680
– volume: 6
  start-page: 16
  issue: 1
  year: 2018
  ident: 2697_CR17
  publication-title: Intensive Care Med Exp
  doi: 10.1186/s40635-018-0181-6
– volume: 286
  start-page: L1105
  issue: 6
  year: 2004
  ident: 2697_CR13
  publication-title: Am J Physiol Lung cell Mol Physiol
  doi: 10.1152/ajplung.00277.2003
– volume: 13
  start-page: 818
  issue: 10
  year: 1985
  ident: 2697_CR5
  publication-title: Crit Care Med
  doi: 10.1097/00003246-198510000-00009
– ident: 2697_CR29
– volume: 39
  start-page: 2511
  issue: 11
  year: 2011
  ident: 2697_CR38
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3182257675
SSID ssj0017863
Score 2.5307832
Snippet There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective...
Background There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective...
Abstract Background There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 410
SubjectTerms Adult
Adult respiratory distress syndrome
Algorithms
APACHE
ARDS
Biological markers
Biomarkers
Biomarkers - analysis
Biomarkers - blood
Classification
Clinical trials
Critical care
Cytokines
Cytokines - analysis
Cytokines - blood
EDTA
Female
Humans
Interleukin 1 Receptor Antagonist Protein - analysis
Interleukin 1 Receptor Antagonist Protein - blood
Interleukin-1beta - analysis
Interleukin-1beta - blood
Interleukin-6 - analysis
Interleukin-6 - blood
Interleukin-8 - analysis
Interleukin-8 - blood
Interleukins
Intramolecular Oxidoreductases - analysis
Intramolecular Oxidoreductases - blood
Latent Class Analysis
Logistic Models
Macrophage Migration-Inhibitory Factors - analysis
Macrophage Migration-Inhibitory Factors - blood
Macrophages
Male
Medical prognosis
Medical research
Middle Aged
Mortality
Niacinamide
Nicotinamide Phosphoribosyltransferase - analysis
Nicotinamide Phosphoribosyltransferase - blood
Patients
Peptide Fragments - analysis
Peptide Fragments - blood
Phenotypes
Predictive analytics
Prognosis
Respiratory distress syndrome
Respiratory Distress Syndrome - blood
Respiratory Distress Syndrome - epidemiology
Respiratory Distress Syndrome - mortality
Risk assessment
Risk Assessment - methods
Risk Assessment - standards
Sepsis
Sphingosine-1-Phosphate Receptors - analysis
Sphingosine-1-Phosphate Receptors - blood
United Kingdom
Vesicular Transport Proteins - analysis
Vesicular Transport Proteins - blood
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC5kD-JFXJ_RVVoQBCHsJOlUdx93xWUR9OTK3pp-4oBmZHYG9udb1cmMEwS9eEy6E9KVenxNVX8F8AadMT0F2rql6FHLZFzttUGy-BBUkkqSX-Zqi894eSU_XvfXB62-uCZspAceBXeqQ5OcdyrGTkn0Upsofc5dr2Sk-wUaUczbbaam_IHS2E05zEbj6Q156p6rLUzdolH17SwKFbL-P13yQUya10seBKCLB3B_Qo7ibPziY7iThodw99OUG38EXw_qf8QqCyf4aD1X36zFjwKyCXALLiUXpf2NWA7Che0mifXvdLuIy_H0iNhRGTyGq4sPX95f1lPXhDoQetnUDjMqFXXQUebQGq28j9G4nHLfeGPIoaHxhKlD1zahlxlTRxcUozDKLsvuCRwNqyE9A4HB5IROkz9nGjl6Y79IyXBrjiZklSpY7KRow0Qpzp0tvtuytdBoR8FbErxlwdvbCt7tH_k58mn8bfI5_5r9RKbCLjdIQeykIPZfClLBW_6xlg2WPi646dwBLZGpr-wZcqcL3sZWcDKbSYYW5sM71bCTod9YAqS0QVuQV6vg9X6Yn-TitSGttmUOjTMWreDpqEn7JZFLlZz5rkDNdGy25vnIsPxWaMCRkH3bt8__h5BewL2WrYPstcETONqst-kloa2Nf1UM6xfSPyrC
  priority: 102
  providerName: Directory of Open Access Journals
Title Development of a biomarker mortality risk model in acute respiratory distress syndrome
URI https://www.ncbi.nlm.nih.gov/pubmed/31842964
https://www.proquest.com/docview/2328260794
https://www.proquest.com/docview/2327942183
https://pubmed.ncbi.nlm.nih.gov/PMC6916252
https://doaj.org/article/8c1eaba7dd3746b489d4bff3574dabaa
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEBZtAqUvoXfdposKhULBZG3LOp5KtiSEQkMJTVn6ImQd6UJrJ3tAfn5nZK2zppAXgy3J6JhLmtE3hHzgRqkaFG1egvbImVcmb6TiwPHWCs8EA7mM0Rbn_OySfZ3X83TgtkphlVuZGAW16yyekR-B5gdLeArk8_n6JsesUehdTSk0HpJ9hC7DkC4xHzZchZAxk1pRQV9ALdXJq1lIfrQC2V1j_IXKS65EfjvSSxG-_38hvaOlxhGUOyrp9Ak5SLYkPe4X_yl54Ntn5NG35C1_Tn7uRATRLlBD8bI9xuMs6d9odoMJTjG4nMaEOHTRUmM3a0-Xdw546hb9fRK6BTd4QS5PT358OctTHoXcgj2zzg0PXAgnrXQs2FJJ0TTOKRN8qItGKRBxXDVgZduqLGzNAvcVvIDW4o5VgVUvyV7btf41odyq4LmRIOERWA7-WE-9V5iso7BB-IxMt7OobQIZx1wXf3TcbEiu-4nXMPEaJ17fZuTT0OS6R9i4r_IMl2aoiODY8UO3vNKJ17S0hTeNEc5VgvGGSeVYE0JVC-bgu8nIR1xYjSwMnbMm3USAISIYlj7mmPsCN7YZORzVBNaz4-ItaejE-it9R6gZeT8UY0sMZ2t9t4l1oByt04y86ilpGBIIWYa-8IyIEY2NxjwuaRe_IzA4B1u_rMs393frLXlcIt0Dbxb8kOytlxv_DiyrdTOJ7DMh-7OT8-8Xk3g-Ac-L2a9_qGwlzg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTQJeEN8UBgQJhIRU7dqmSfOA0AabNradENrQ3kKaDzgJeuM-xPin-Bux-3G7Cmlve7wmqRrH9s8-OzbAS2GUyhFo4xTRI-ZembgslECJt1Z6LjnqZcq2GIm9E_7xND9dg7_dXRhKq-x0Yq2o3cTSf-SbiPxoCQ-Rfd6d_YqpaxRFV7sWGg1bHPg_v9Flm73d_4Dn-ypNd3eO3-_FbVeB2CK6z2MjgpDSFbZwPNgUfe6ydE6Z4EOelEqhwAtVos1pszSxOQ_CZ_gDdbhwPAs8w_deg3WeoSszgPXtndGnz8u4hSzq3m1JhrtHIMzbOCqu3ZwhWuSU8aHiVCgZn_eQsG4Y8D8srOBiP2dzBQR3b8Ot1nplWw273YE1X92F60dtfP4efFnJQWKTwAyj6_2UATRlP2tDH41-RunsrG7Bw8YVM3Yx92x6EfJnbtzcYGFdOYX7cHIlNH4Ag2pS-UfAhFXBC1MgplApO3xjPvReUXuQxAbpIxh2VNS2LWtO3TV-6Nq9KYRuCK-R8JoIr88jeLNcctbU9Lhs8jYdzXIileOuH0ym33Qr3bqwiTelkc5lkouSF8rxMoQsl9zhcxPBazpYTUoDP86a9u4DbpHKb-ktQd02yJWOYKM3E4Xd9oc71tCtspnpC9GI4MVymFZSAl3lJ4t6Do6TPRzBw4aTlltCtc4p-h6B7PFYb8_9kWr8vS5FLtC7SPP08eWf9Rxu7B0fHerD_dHBE7iZkgygZkjEBgzm04V_inbdvHzWChODr1ctv_8A0_FhrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+biomarker+mortality+risk+model+in+acute+respiratory+distress+syndrome&rft.jtitle=Critical+care+%28London%2C+England%29&rft.au=Bime%2C+Christian&rft.au=Casanova%2C+Nancy&rft.au=Oita%2C+Radu+C.&rft.au=Ndukum%2C+Juliet&rft.date=2019-12-16&rft.issn=1364-8535&rft.eissn=1364-8535&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs13054-019-2697-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13054_019_2697_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8535&client=summon