Altered Creatine Kinase Adenosine Triphosphate Kinetics in Failing Hypertrophied Human Myocardium
Background— The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery. Methods and Results— We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (A...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 114; no. 11; pp. 1151 - 1158 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
12.09.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background—
The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery.
Methods and Results—
We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n=10) than in normal subjects (n=14,
P
<0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n=10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36±0.04 s
−1
in LVH versus 0.32±0.06 s
−1
in normal subjects) but halved in LVH+CHF (0.17±0.06 s
−1
,
P
<0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2±0.7 μmol · g
−1
· s
−1
,
P
=0.011) and by a dramatic 65% in LVH+CHF (1.1±0.4 μmol · g
−1
· s
−1
,
P
<0.001) compared with normal subjects (3.1±0.8 μmol · g
−1
· s
−1
).
Conclusions—
These first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH. |
---|---|
AbstractList | The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery.BACKGROUNDThe progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery.We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n = 10) than in normal subjects (n = 14, P < 0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n = 10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36 +/- 0.04 s(-1) in LVH versus 0.32 +/- 0.06 s(-1) in normal subjects) but halved in LVH+CHF (0.17 +/- 0.06 s(-1), P < 0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2 +/- 0.7 micromol x g(-1) x s(-1), P = 0.011) and by a dramatic 65% in LVH+CHF (1.1 +/- 0.4 micromol x g(-1) x s(-1), P < 0.001) compared with normal subjects (3.1 +/- 0.8 micromol x g(-1) x s(-1)).METHODS AND RESULTSWe measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n = 10) than in normal subjects (n = 14, P < 0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n = 10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36 +/- 0.04 s(-1) in LVH versus 0.32 +/- 0.06 s(-1) in normal subjects) but halved in LVH+CHF (0.17 +/- 0.06 s(-1), P < 0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2 +/- 0.7 micromol x g(-1) x s(-1), P = 0.011) and by a dramatic 65% in LVH+CHF (1.1 +/- 0.4 micromol x g(-1) x s(-1), P < 0.001) compared with normal subjects (3.1 +/- 0.8 micromol x g(-1) x s(-1)).These first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH.CONCLUSIONSThese first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH. The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery. We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n = 10) than in normal subjects (n = 14, P < 0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n = 10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36 +/- 0.04 s(-1) in LVH versus 0.32 +/- 0.06 s(-1) in normal subjects) but halved in LVH+CHF (0.17 +/- 0.06 s(-1), P < 0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2 +/- 0.7 micromol x g(-1) x s(-1), P = 0.011) and by a dramatic 65% in LVH+CHF (1.1 +/- 0.4 micromol x g(-1) x s(-1), P < 0.001) compared with normal subjects (3.1 +/- 0.8 micromol x g(-1) x s(-1)). These first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH. Background— The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery. Methods and Results— We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n=10) than in normal subjects (n=14, P <0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n=10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36±0.04 s −1 in LVH versus 0.32±0.06 s −1 in normal subjects) but halved in LVH+CHF (0.17±0.06 s −1 , P <0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2±0.7 μmol · g −1 · s −1 , P =0.011) and by a dramatic 65% in LVH+CHF (1.1±0.4 μmol · g −1 · s −1 , P <0.001) compared with normal subjects (3.1±0.8 μmol · g −1 · s −1 ). Conclusions— These first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH. |
Author | Weiss, Robert G. Schulman, Steven P. Gerstenblith, Gary Smith, Craig S. Bottomley, Paul A. |
Author_xml | – sequence: 1 givenname: Craig S. surname: Smith fullname: Smith, Craig S. organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md – sequence: 2 givenname: Paul A. surname: Bottomley fullname: Bottomley, Paul A. organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md – sequence: 3 givenname: Steven P. surname: Schulman fullname: Schulman, Steven P. organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md – sequence: 4 givenname: Gary surname: Gerstenblith fullname: Gerstenblith, Gary organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md – sequence: 5 givenname: Robert G. surname: Weiss fullname: Weiss, Robert G. organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18146446$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16952984$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2P0zAQhi20iO0u_AUUDnBLseOPxBdQFLG0orAS6p4t155sjRI72AlS_z0pLQvLhZPlmcfPjPxeoQsfPCD0iuAlIYK8bdZfm7tNvV3ffqlX9ZJgsRSECiaeoAXhBcsZp_ICLTDGMi9pUVyiq5S-zVdBS_4MXRIheSErtkC67kaIYLMmgh6dh-yT8zpBVlvwIR0L2-iGfUjDXo-_ujA6kzLnsxvtOufvs9VhgDjGMOzdLFpNvfbZ50MwOlo39c_R01Z3CV6cz2t0d_Nh26zyze3HdVNvcsMFHnPNQZRclsCYKcu24qWQVu-KlrS8opJiTVpjraU7ZnBpS26pxdxobAwGCZxeo3cn7zDterAG_Bh1p4boeh0PKminHne826v78EORCleMVrPgzVkQw_cJ0qh6lwx0nfYQpqREVTGOi2IGX_496WHE71-dgddnQCejuzZqb1z6w1WECcbEzL0_cSaGlCK0yrhxTiEcF3SdIlgd81aP857LQp3yng3yH8PDkP--_Qkq-rP3 |
CODEN | CIRCAZ |
CitedBy_id | crossref_primary_10_1093_ehjci_jeac121 crossref_primary_10_1007_s10741_022_10287_x crossref_primary_10_1172_JCI57426 crossref_primary_10_1113_jphysiol_2008_157677 crossref_primary_10_18087_cardio_n394 crossref_primary_10_1586_erc_09_169 crossref_primary_10_1002_mrm_26162 crossref_primary_10_1016_j_ejphar_2023_175676 crossref_primary_10_3390_biomedicines12112589 crossref_primary_10_13104_imri_2018_22_1_26 crossref_primary_10_1007_s11936_009_0009_5 crossref_primary_10_1016_j_jacc_2009_05_012 crossref_primary_10_1161_CIRCHEARTFAILURE_114_001496 crossref_primary_10_1186_s12968_019_0560_5 crossref_primary_10_1093_cvr_cvn282 crossref_primary_10_1152_ajpheart_00178_2009 crossref_primary_10_1074_mcp_M115_057380 crossref_primary_10_1016_j_phrs_2021_106038 crossref_primary_10_1038_nrcardio_2016_203 crossref_primary_10_5937_siks1602053R crossref_primary_10_2967_jnumed_109_068197 crossref_primary_10_1111_cbdd_12877 crossref_primary_10_3390_metabo13080932 crossref_primary_10_1016_j_jmr_2012_03_008 crossref_primary_10_1042_CS20230616 crossref_primary_10_1002_1873_3468_13496 crossref_primary_10_1113_JP270354 crossref_primary_10_1007_s12350_016_0620_2 crossref_primary_10_1186_s12906_019_2506_8 crossref_primary_10_1152_japplphysiol_01051_2016 crossref_primary_10_1002_nbm_3103 crossref_primary_10_1016_j_cpcardiol_2015_12_002 crossref_primary_10_1161_CIRCULATIONAHA_119_043450 crossref_primary_10_1016_j_jmr_2007_12_015 crossref_primary_10_1016_j_hfc_2008_01_001 crossref_primary_10_1111_j_1755_5922_2010_00133_x crossref_primary_10_1161_CIRCHEARTFAILURE_119_006170 crossref_primary_10_1016_j_jmr_2013_09_018 crossref_primary_10_1016_j_pharmthera_2017_08_001 crossref_primary_10_1007_s12410_012_9146_4 crossref_primary_10_1007_s11897_012_0109_5 crossref_primary_10_1007_s10557_007_6000_z crossref_primary_10_1016_j_hfc_2023_03_007 crossref_primary_10_1155_2013_824135 crossref_primary_10_1007_s00259_007_0444_z crossref_primary_10_2337_db09_0916 crossref_primary_10_1161_CIRCULATIONAHA_119_042770 crossref_primary_10_1152_ajpheart_00727_2009 crossref_primary_10_1016_j_mad_2017_07_002 crossref_primary_10_1152_ajpcell_00500_2010 crossref_primary_10_1016_j_ijcha_2015_07_004 crossref_primary_10_1016_j_jacc_2010_03_077 crossref_primary_10_1152_ajpheart_00771_2011 crossref_primary_10_1016_j_jmccpl_2023_100036 crossref_primary_10_1186_s12968_018_0491_6 crossref_primary_10_1136_heartjnl_2012_302546 crossref_primary_10_1007_s10741_012_9359_2 crossref_primary_10_1016_j_pharmthera_2013_05_012 crossref_primary_10_1038_s41569_023_00887_x crossref_primary_10_1161_CIRCULATIONAHA_116_022931 crossref_primary_10_1152_ajpheart_00737_2006 crossref_primary_10_1161_CIRCIMAGING_116_005604 crossref_primary_10_1038_nrcardio_2011_138 crossref_primary_10_1042_CS20210127 crossref_primary_10_1186_1477_5956_9_69 crossref_primary_10_1152_ajpheart_00411_2013 crossref_primary_10_1002_nbm_3320 crossref_primary_10_1016_j_jcmg_2008_08_005 crossref_primary_10_1093_eurheartj_ehq426 crossref_primary_10_14814_phy2_13130 crossref_primary_10_51847_rRRBoMbIYa crossref_primary_10_1016_j_jcmg_2022_04_025 crossref_primary_10_1002_mrm_26005 crossref_primary_10_1083_jcb_201101100 crossref_primary_10_1016_j_jacc_2011_10_895 crossref_primary_10_47803_rjc_2021_31_2_269 crossref_primary_10_1093_ehjci_jeac041 crossref_primary_10_1371_journal_pone_0229933 crossref_primary_10_1002_nbm_4085 crossref_primary_10_1007_s11682_020_00398_0 crossref_primary_10_1007_s12410_018_9447_3 crossref_primary_10_1016_j_ejrad_2008_10_018 crossref_primary_10_1016_j_amjcard_2013_05_017 crossref_primary_10_1089_ars_2017_7236 crossref_primary_10_1186_1532_429X_10_S1_A48 crossref_primary_10_3390_cells11121920 crossref_primary_10_1007_s10741_017_9623_6 crossref_primary_10_3390_medicina59010174 crossref_primary_10_1093_cvr_cvz060 crossref_primary_10_1161_CIRCULATIONAHA_121_055646 crossref_primary_10_1142_S0192415X09007454 crossref_primary_10_1113_JP286054 crossref_primary_10_1073_pnas_0812768106 crossref_primary_10_1111_echo_12487 crossref_primary_10_1002_mrm_26357 crossref_primary_10_1152_ajpheart_00887_2007 crossref_primary_10_1152_ajpheart_01195_2008 crossref_primary_10_1002_mrm_29907 crossref_primary_10_1002_mrm_21867 crossref_primary_10_1016_j_ijcard_2011_06_113 crossref_primary_10_1172_JCI120849 crossref_primary_10_1016_j_bbadis_2017_11_013 crossref_primary_10_1002_nbm_3302 crossref_primary_10_1016_j_cmet_2024_06_003 crossref_primary_10_1007_s10916_010_9443_x crossref_primary_10_1186_s12968_015_0175_4 crossref_primary_10_1007_s10741_020_09949_5 crossref_primary_10_1016_j_cophys_2022_100559 crossref_primary_10_3390_jcm13051195 crossref_primary_10_1152_ajpheart_00731_2016 crossref_primary_10_1002_mrm_22347 crossref_primary_10_1097_FJC_0b013e31829a4e61 crossref_primary_10_1002_mrm_30354 crossref_primary_10_1016_j_apsb_2020_10_007 crossref_primary_10_1002_nbm_2961 crossref_primary_10_1002_jps_21281 crossref_primary_10_1186_1532_429X_12_62 crossref_primary_10_1007_s11892_014_0490_4 crossref_primary_10_1007_s10741_023_10353_y crossref_primary_10_1016_j_bbamcr_2010_09_006 crossref_primary_10_1126_scitranslmed_3007328 crossref_primary_10_1016_j_bbadis_2018_09_013 crossref_primary_10_5582_ddt_2019_01004 crossref_primary_10_1021_pr900297f crossref_primary_10_1016_j_jacc_2009_08_012 crossref_primary_10_1016_j_hfc_2020_08_011 |
Cites_doi | 10.1016/S0021-9258(18)54922-X 10.1161/res.67.6.2147129 10.1152/ajpheart.2001.281.1.H376 10.1161/res.89.2.153 10.1016/S0735-1097(99)00118-7 10.1161/res.14.4.294 10.1161/circ.86.6.1451253 10.1161/circ.92.1.15 10.1016/0002-9343(80)90471-4 10.1002/mrm.1910140302 10.1161/circ.97.25.2536 10.1096/fj.01-0652com 10.1016/S0960-9822(00)00008-7 10.1002/0470011505 10.1056/NEJM198510243131704 10.1161/circ.100.24.2425 10.1161/circ.99.17.2261 10.1161/circ.104.15.1844 10.1002/mrm.1910160110 10.1148/radiology.165.3.2961004 10.1146/annurev.ph.36.030174.002213 10.1146/annurev.physiol.65.092101.142243 10.1002/mrm.1910350507 10.1016/j.jacc.2003.07.046 10.1073/pnas.0408962102 10.1242/jeb.00426 10.1152/ajpheart.01142.2002 10.1056/NEJM197112232852601 10.1016/0140-6736(91)91838-L 10.1161/01.res.0000080536.06932.e3 10.1016/S0008-6363(98)00332-0 10.1007/BF02058690 10.1016/0002-8703(91)90527-O 10.1021/bi00393a021 10.1152/ajpheart.01016.2003 10.1148/radiology.191.3.8184033 10.1016/j.jacc.2003.05.005 10.1161/circ.103.11.1570 10.1161/circulationaha.104.500546 10.1002/mrm.1910390515 10.1161/circ.44.2.181 10.1161/res.60.6.2954720 10.1002/mrm.10130 10.1074/jbc.M001932200 10.1056/NEJM199005313222203 10.1016/S0735-1097(02)02160-5 10.1161/circ.91.6.1814 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/CIRCULATIONAHA.106.613646 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 1158 |
ExternalDocumentID | PMC1808438 16952984 18146446 10_1161_CIRCULATIONAHA_106_613646 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL056882 – fundername: NHLBI NIH HHS grantid: HL63030 – fundername: NHLBI NIH HHS grantid: R01 HL063030 – fundername: NHLBI NIH HHS grantid: HL56882 – fundername: NHLBI NIH HHS grantid: R01 HL061912 – fundername: NHLBI NIH HHS grantid: HL61912 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAEJM AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AARTV AASOK AAUEB AAWTL AAXQO AAYOK AAYXX ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACOAL ACRKK ACWDW ACWRI ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFCHL AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJJEV AJNWD AJNYG AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C1A C45 CITATION CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GX1 H0~ H13 HZ~ H~9 IKREB IKYAY IN~ J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B M18 N4W N9A NEJ N~7 N~B O9- OAG OAH OBH OCB OCUKA ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YOC YSK YYM YYP YZZ ZFV ZY1 ZZMQN ~H1 1CY 41~ AAQKA AASCR AASXQ ABASU ABVCZ ABXYN ABZZY ACLDA ACXJB ADFPA AEBDS AFBFQ AFMBP AFSOK AHQVU AKCTQ AKULP ALMTX AMKUR AOHHW AOQMC BS7 EEVPB EJD ERAAH FEDTE GNXGY GQDEL HLJTE HVGLF IPNFZ IQODW MVM N~M ODA OHT P-K R58 RIG TSPGW WHG YQJ YXB ZGI ZXP ACIJW ACRZS AWKKM CGR CUY CVF ECM EIF NPM OJAPA OLW PKN RHF 7X8 5PM |
ID | FETCH-LOGICAL-c560t-a5e67597e44c77f85769dab2f1f583930a1fcddd3b4c07d75d3d05ca0cc0e9e53 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Thu Aug 21 13:56:52 EDT 2025 Fri Jul 11 09:50:03 EDT 2025 Wed Feb 19 01:42:42 EST 2025 Mon Jul 21 09:15:42 EDT 2025 Tue Jul 01 02:05:14 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Human Heart failure Hypertrophied heart Purine nucleoside Adenosine Enzyme Creatine kinase hypertrophy Transferases Cardiovascular disease magnetic resonance spectroscopy NMR spectrometry Triphosphates Metabolism Adenosine kinase Heart disease adenosine triphosphate |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c560t-a5e67597e44c77f85769dab2f1f583930a1fcddd3b4c07d75d3d05ca0cc0e9e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Drs Weiss and Bottomley contributed equally to this work. |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.106.613646 |
PMID | 16952984 |
PQID | 68845022 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1808438 proquest_miscellaneous_68845022 pubmed_primary_16952984 pascalfrancis_primary_18146446 crossref_citationtrail_10_1161_CIRCULATIONAHA_106_613646 crossref_primary_10_1161_CIRCULATIONAHA_106_613646 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-09-12 |
PublicationDateYYYYMMDD | 2006-09-12 |
PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-12 day: 12 |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2006 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | e_1_3_2_26_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 (e_1_3_2_31_2) 1987; 74 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_1_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 (e_1_3_2_49_2) 2003; 106 e_1_3_2_21_2 e_1_3_2_23_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 (e_1_3_2_44_2) 1998; 39 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 (e_1_3_2_42_2) 1986; 251 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 4935053 - Circulation. 1971 Aug;44(2):181-95 10362198 - J Am Coll Cardiol. 1999 Jun;33(7):1948-55 1681342 - Lancet. 1991 Oct 19;338(8773):973-6 15927992 - Circulation. 2005 May 31;111(21):2837-49 11463722 - Circ Res. 2001 Jul 20;89(2):153-9 3689762 - Biochemistry. 1987 Sep 22;26(19):6083-90 15105171 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1039-45 11978729 - FASEB J. 2002 May;16(7):653-60 9657474 - Circulation. 1998 Jun 30;97(25):2536-42 9581609 - Magn Reson Med. 1998 May;39(5):772-82 12714322 - Am J Physiol Heart Circ Physiol. 2003 Aug;285(2):H541-8 2947755 - Circulation. 1987 Jan;75(1 Pt 2):I96-101 12379584 - Circulation. 2002 Oct 15;106(16):2125-31 12756286 - J Exp Biol. 2003 Jun;206(Pt 12):2039-47 19400669 - Annu Rev Physiol. 1974;36:413-59 12791710 - Circ Res. 2003 Jul 11;93(1):54-60 9476935 - J Nucl Med. 1998 Feb;39(2):272-80 2961004 - Radiology. 1987 Dec;165(3):703-7 2139921 - N Engl J Med. 1990 May 31;322(22):1561-6 7922310 - Curr Biol. 1994 Jan 1;4(1):42-6 1939088 - J Biol Chem. 1991 Oct 25;266(30):20296-304 7882492 - Circulation. 1995 Mar 15;91(6):1814-23 1451253 - Circulation. 1992 Dec;86(6):1810-8 2146246 - Heart Vessels. 1990;5(4):198-205 10867023 - J Biol Chem. 2000 Jun 30;275(26):19742-6 10533601 - Cardiovasc Res. 1999 Jun;42(3):616-26 15647364 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):808-13 1877457 - Am Heart J. 1991 Sep;122(3 Pt 1):795-801 2931604 - N Engl J Med. 1985 Oct 24;313(17):1050-4 10226091 - Circulation. 1999 May 4;99(17):2261-7 11591624 - Circulation. 2001 Oct 9;104(15):1844-9 15013109 - J Am Coll Cardiol. 2004 Feb 4;43(3):317-27 12383574 - J Am Coll Cardiol. 2002 Oct 2;40(7):1267-74 14607443 - J Am Coll Cardiol. 2003 Nov 5;42(9):1587-93 6448546 - Am J Med. 1980 Oct;69(4):576-84 2147129 - Circ Res. 1990 Dec;67(6):1334-44 2954720 - Circ Res. 1987 Jun;60(6):871-8 2355826 - Magn Reson Med. 1990 Jun;14(3):425-34 8722817 - Magn Reson Med. 1996 May;35(5):664-70 11257087 - Circulation. 2001 Mar 20;103(11):1570-6 11406506 - Am J Physiol Heart Circ Physiol. 2001 Jul;281(1):H376-86 8184033 - Radiology. 1994 Jun;191(3):593-612 2255241 - Magn Reson Med. 1990 Oct;16(1):91-116 7788910 - Circulation. 1995 Jul 1;92(1):15-23 11979563 - Magn Reson Med. 2002 May;47(5):850-63 12524460 - Annu Rev Physiol. 2003;65:45-79 10595955 - Circulation. 1999 Dec 14;100(24):2425-30 3728693 - Am J Physiol. 1986 Jul;251(1 Pt 2):H171-5 14135251 - Circ Res. 1964 Apr;14:294-300 5122894 - N Engl J Med. 1971 Dec 23;285(26):1441-6 |
References_xml | – ident: e_1_3_2_34_2 doi: 10.1016/S0021-9258(18)54922-X – ident: e_1_3_2_14_2 doi: 10.1161/res.67.6.2147129 – ident: e_1_3_2_15_2 doi: 10.1152/ajpheart.2001.281.1.H376 – ident: e_1_3_2_38_2 doi: 10.1161/res.89.2.153 – ident: e_1_3_2_17_2 doi: 10.1016/S0735-1097(99)00118-7 – ident: e_1_3_2_46_2 doi: 10.1161/res.14.4.294 – ident: e_1_3_2_12_2 doi: 10.1161/circ.86.6.1451253 – ident: e_1_3_2_24_2 doi: 10.1161/circ.92.1.15 – ident: e_1_3_2_1_2 doi: 10.1016/0002-9343(80)90471-4 – ident: e_1_3_2_23_2 doi: 10.1002/mrm.1910140302 – ident: e_1_3_2_28_2 doi: 10.1161/circ.97.25.2536 – ident: e_1_3_2_36_2 doi: 10.1096/fj.01-0652com – ident: e_1_3_2_5_2 doi: 10.1016/S0960-9822(00)00008-7 – ident: e_1_3_2_48_2 doi: 10.1002/0470011505 – ident: e_1_3_2_4_2 doi: 10.1056/NEJM198510243131704 – ident: e_1_3_2_25_2 doi: 10.1161/circ.100.24.2425 – ident: e_1_3_2_10_2 doi: 10.1161/circ.99.17.2261 – ident: e_1_3_2_35_2 doi: 10.1161/circ.104.15.1844 – ident: e_1_3_2_41_2 doi: 10.1002/mrm.1910160110 – volume: 74 start-page: I-96 year: 1987 ident: e_1_3_2_31_2 publication-title: Circulation – ident: e_1_3_2_43_2 doi: 10.1148/radiology.165.3.2961004 – volume: 106 start-page: 2125 year: 2003 ident: e_1_3_2_49_2 publication-title: Circulation – ident: e_1_3_2_3_2 doi: 10.1146/annurev.ph.36.030174.002213 – ident: e_1_3_2_50_2 doi: 10.1146/annurev.physiol.65.092101.142243 – ident: e_1_3_2_22_2 doi: 10.1002/mrm.1910350507 – ident: e_1_3_2_20_2 doi: 10.1016/j.jacc.2003.07.046 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.0408962102 – volume: 39 start-page: 272 year: 1998 ident: e_1_3_2_44_2 publication-title: J Nucl Med – ident: e_1_3_2_39_2 doi: 10.1242/jeb.00426 – ident: e_1_3_2_16_2 doi: 10.1152/ajpheart.01142.2002 – ident: e_1_3_2_19_2 doi: 10.1056/NEJM197112232852601 – volume: 251 start-page: H171 year: 1986 ident: e_1_3_2_42_2 publication-title: Am J Physiol – ident: e_1_3_2_8_2 doi: 10.1016/0140-6736(91)91838-L – ident: e_1_3_2_40_2 doi: 10.1161/01.res.0000080536.06932.e3 – ident: e_1_3_2_26_2 doi: 10.1016/S0008-6363(98)00332-0 – ident: e_1_3_2_47_2 doi: 10.1007/BF02058690 – ident: e_1_3_2_11_2 doi: 10.1016/0002-8703(91)90527-O – ident: e_1_3_2_33_2 doi: 10.1021/bi00393a021 – ident: e_1_3_2_37_2 doi: 10.1152/ajpheart.01016.2003 – ident: e_1_3_2_29_2 doi: 10.1148/radiology.191.3.8184033 – ident: e_1_3_2_32_2 doi: 10.1016/j.jacc.2003.05.005 – ident: e_1_3_2_7_2 doi: 10.1161/circ.103.11.1570 – ident: e_1_3_2_51_2 doi: 10.1161/circulationaha.104.500546 – ident: e_1_3_2_9_2 doi: 10.1002/mrm.1910390515 – ident: e_1_3_2_45_2 doi: 10.1161/circ.44.2.181 – ident: e_1_3_2_13_2 doi: 10.1161/res.60.6.2954720 – ident: e_1_3_2_21_2 doi: 10.1002/mrm.10130 – ident: e_1_3_2_27_2 doi: 10.1074/jbc.M001932200 – ident: e_1_3_2_2_2 doi: 10.1056/NEJM199005313222203 – ident: e_1_3_2_30_2 doi: 10.1016/S0735-1097(02)02160-5 – ident: e_1_3_2_6_2 doi: 10.1161/circ.91.6.1814 – reference: 10867023 - J Biol Chem. 2000 Jun 30;275(26):19742-6 – reference: 11406506 - Am J Physiol Heart Circ Physiol. 2001 Jul;281(1):H376-86 – reference: 2947755 - Circulation. 1987 Jan;75(1 Pt 2):I96-101 – reference: 10533601 - Cardiovasc Res. 1999 Jun;42(3):616-26 – reference: 2931604 - N Engl J Med. 1985 Oct 24;313(17):1050-4 – reference: 12791710 - Circ Res. 2003 Jul 11;93(1):54-60 – reference: 4935053 - Circulation. 1971 Aug;44(2):181-95 – reference: 1681342 - Lancet. 1991 Oct 19;338(8773):973-6 – reference: 9657474 - Circulation. 1998 Jun 30;97(25):2536-42 – reference: 11257087 - Circulation. 2001 Mar 20;103(11):1570-6 – reference: 1877457 - Am Heart J. 1991 Sep;122(3 Pt 1):795-801 – reference: 7922310 - Curr Biol. 1994 Jan 1;4(1):42-6 – reference: 2139921 - N Engl J Med. 1990 May 31;322(22):1561-6 – reference: 10226091 - Circulation. 1999 May 4;99(17):2261-7 – reference: 11978729 - FASEB J. 2002 May;16(7):653-60 – reference: 19400669 - Annu Rev Physiol. 1974;36:413-59 – reference: 1451253 - Circulation. 1992 Dec;86(6):1810-8 – reference: 2954720 - Circ Res. 1987 Jun;60(6):871-8 – reference: 9476935 - J Nucl Med. 1998 Feb;39(2):272-80 – reference: 7882492 - Circulation. 1995 Mar 15;91(6):1814-23 – reference: 10595955 - Circulation. 1999 Dec 14;100(24):2425-30 – reference: 12756286 - J Exp Biol. 2003 Jun;206(Pt 12):2039-47 – reference: 8722817 - Magn Reson Med. 1996 May;35(5):664-70 – reference: 12379584 - Circulation. 2002 Oct 15;106(16):2125-31 – reference: 12524460 - Annu Rev Physiol. 2003;65:45-79 – reference: 9581609 - Magn Reson Med. 1998 May;39(5):772-82 – reference: 11591624 - Circulation. 2001 Oct 9;104(15):1844-9 – reference: 2147129 - Circ Res. 1990 Dec;67(6):1334-44 – reference: 15647364 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):808-13 – reference: 15013109 - J Am Coll Cardiol. 2004 Feb 4;43(3):317-27 – reference: 11463722 - Circ Res. 2001 Jul 20;89(2):153-9 – reference: 2961004 - Radiology. 1987 Dec;165(3):703-7 – reference: 5122894 - N Engl J Med. 1971 Dec 23;285(26):1441-6 – reference: 8184033 - Radiology. 1994 Jun;191(3):593-612 – reference: 2146246 - Heart Vessels. 1990;5(4):198-205 – reference: 15927992 - Circulation. 2005 May 31;111(21):2837-49 – reference: 2355826 - Magn Reson Med. 1990 Jun;14(3):425-34 – reference: 12383574 - J Am Coll Cardiol. 2002 Oct 2;40(7):1267-74 – reference: 2255241 - Magn Reson Med. 1990 Oct;16(1):91-116 – reference: 12714322 - Am J Physiol Heart Circ Physiol. 2003 Aug;285(2):H541-8 – reference: 10362198 - J Am Coll Cardiol. 1999 Jun;33(7):1948-55 – reference: 1939088 - J Biol Chem. 1991 Oct 25;266(30):20296-304 – reference: 7788910 - Circulation. 1995 Jul 1;92(1):15-23 – reference: 3728693 - Am J Physiol. 1986 Jul;251(1 Pt 2):H171-5 – reference: 3689762 - Biochemistry. 1987 Sep 22;26(19):6083-90 – reference: 14607443 - J Am Coll Cardiol. 2003 Nov 5;42(9):1587-93 – reference: 11979563 - Magn Reson Med. 2002 May;47(5):850-63 – reference: 6448546 - Am J Med. 1980 Oct;69(4):576-84 – reference: 14135251 - Circ Res. 1964 Apr;14:294-300 – reference: 15105171 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1039-45 |
SSID | ssj0006375 |
Score | 2.29239 |
Snippet | Background—
The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy... The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1151 |
SubjectTerms | Adenosine Triphosphate - metabolism Adult Aged Associated diseases and complications Atherosclerosis (general aspects, experimental research) Biological and medical sciences Blood and lymphatic vessels Cardiac Output, Low - enzymology Cardiac Output, Low - etiology Cardiac Output, Low - physiopathology Cardiology. Vascular system Creatine Kinase - metabolism Diabetes. Impaired glucose tolerance Disease Progression Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Endocrine pancreas. Apud cells (diseases) Endocrinopathies Energy Metabolism - physiology Female Heart - physiopathology Heart Ventricles - enzymology Heart Ventricles - physiopathology Humans Hypertrophy, Left Ventricular - enzymology Hypertrophy, Left Ventricular - etiology Hypertrophy, Left Ventricular - physiopathology Male Medical sciences Middle Aged Myocardium - enzymology Myocardium - pathology Severity of Illness Index |
Title | Altered Creatine Kinase Adenosine Triphosphate Kinetics in Failing Hypertrophied Human Myocardium |
URI | https://www.ncbi.nlm.nih.gov/pubmed/16952984 https://www.proquest.com/docview/68845022 https://pubmed.ncbi.nlm.nih.gov/PMC1808438 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIq2QEIJdHuWxGAlxQenmYcfJsVTQglgOsJV6ixw7IRFtUrXpYfkH_GvGsfPoqistXKLKjh2l82X8zXg8g9DblMEHlFJp-Sy0LRIz0IOSMyuOCRcspUQ46qDwxTd_NidfFnQxGPzpRS3tqngkfh88V_I_UoU2kKs6JfsPkm0nhQb4DfKFK0gYrreS8VhtdQNj1MwP6OKvvIBV6T2XKgW4aqhAJ2Tldp0BpVS9SZ2VOVeOjbw-iJ6BHbqpNuU6U1xUV-xbXcECB8AxWRqaPAb5RphaX4dK-PRcCq23ZrLh-c_OufqhrKpyZZzkKiSxc6T-ENlu2Thj60Jr3cGzqWKoSREvzaxTbkKXe84KVWxBrzVGwbrEIlQnMGo1sD5H2kDN6SlUIKzOYU3vK00vulfnGR-BfTsCfuJrr2YPAetVDQHHD6kb6pp019JsN1130F0XLA5VDGO66KKFfI_RY_TGPPn8xueqJLRmpj2mc3_Nt_DRpbpayiFz5npUbo_mXD5ED4x9gscabI_QIClO0Om44CC5K_wO1xHD9VbMCTq-MIEZp4gbKOIGilhDEbdQxH0o4gaKOC-wgSLegyKuoYg7KD5G808fLyczy1TvsASw6MriNAFjNGQJIYKxNADDNpQ8dlNQDcDKPZs7qZBSejERNpOMSk_aVHBbCDsJE-o9QUdFWSTPEPadlFE1EY8dWHNk4LEUDJvU9d3E5iwYoqD5pyNhUturCivLqDZxfSeafP4-mX_V-aVnY2j2Iy2vIXLboWud3-U2g872xNmNVA51om543cg3AnWt9uB4kZS7beQHAaHAm4foqZZ2N9bAZojYHg7aG1Qi-P2eIs_qhPBOYAfEC57fOOcLdK_7Gl-io2qzS14Bma7isxrmfwEQ3M7G |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+creatine+kinase+adenosine+triphosphate+kinetics+in+failing+hypertrophied+human+myocardium&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Smith%2C+Craig+S&rft.au=Bottomley%2C+Paul+A&rft.au=Schulman%2C+Steven+P&rft.au=Gerstenblith%2C+Gary&rft.date=2006-09-12&rft.eissn=1524-4539&rft.volume=114&rft.issue=11&rft.spage=1151&rft_id=info:doi/10.1161%2Fcirculationaha.106.613646&rft_id=info%3Apmid%2F16952984&rft.externalDocID=16952984 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |