Altered Creatine Kinase Adenosine Triphosphate Kinetics in Failing Hypertrophied Human Myocardium

Background— The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery. Methods and Results— We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (A...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 114; no. 11; pp. 1151 - 1158
Main Authors Smith, Craig S., Bottomley, Paul A., Schulman, Steven P., Gerstenblith, Gary, Weiss, Robert G.
Format Journal Article
LanguageEnglish
Published Hagerstown, MD Lippincott Williams & Wilkins 12.09.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background— The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery. Methods and Results— We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n=10) than in normal subjects (n=14, P <0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n=10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36±0.04 s −1 in LVH versus 0.32±0.06 s −1 in normal subjects) but halved in LVH+CHF (0.17±0.06 s −1 , P <0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2±0.7 μmol · g −1 · s −1 , P =0.011) and by a dramatic 65% in LVH+CHF (1.1±0.4 μmol · g −1 · s −1 , P <0.001) compared with normal subjects (3.1±0.8 μmol · g −1 · s −1 ). Conclusions— These first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH.
AbstractList The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery.BACKGROUNDThe progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery.We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n = 10) than in normal subjects (n = 14, P < 0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n = 10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36 +/- 0.04 s(-1) in LVH versus 0.32 +/- 0.06 s(-1) in normal subjects) but halved in LVH+CHF (0.17 +/- 0.06 s(-1), P < 0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2 +/- 0.7 micromol x g(-1) x s(-1), P = 0.011) and by a dramatic 65% in LVH+CHF (1.1 +/- 0.4 micromol x g(-1) x s(-1), P < 0.001) compared with normal subjects (3.1 +/- 0.8 micromol x g(-1) x s(-1)).METHODS AND RESULTSWe measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n = 10) than in normal subjects (n = 14, P < 0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n = 10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36 +/- 0.04 s(-1) in LVH versus 0.32 +/- 0.06 s(-1) in normal subjects) but halved in LVH+CHF (0.17 +/- 0.06 s(-1), P < 0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2 +/- 0.7 micromol x g(-1) x s(-1), P = 0.011) and by a dramatic 65% in LVH+CHF (1.1 +/- 0.4 micromol x g(-1) x s(-1), P < 0.001) compared with normal subjects (3.1 +/- 0.8 micromol x g(-1) x s(-1)).These first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH.CONCLUSIONSThese first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH.
The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery. We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n = 10) than in normal subjects (n = 14, P < 0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n = 10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36 +/- 0.04 s(-1) in LVH versus 0.32 +/- 0.06 s(-1) in normal subjects) but halved in LVH+CHF (0.17 +/- 0.06 s(-1), P < 0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2 +/- 0.7 micromol x g(-1) x s(-1), P = 0.011) and by a dramatic 65% in LVH+CHF (1.1 +/- 0.4 micromol x g(-1) x s(-1), P < 0.001) compared with normal subjects (3.1 +/- 0.8 micromol x g(-1) x s(-1)). These first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH.
Background— The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or delivery. Methods and Results— We measured myocardial creatine kinase (CK) metabolite concentrations and adenosine triphosphate (ATP) synthesis through CK, the primary energy reserve of the heart, to test the hypothesis that ATP flux through CK is impaired in patients with LVH and CHF. Myocardial ATP levels were normal, but creatine phosphate levels were 35% lower in LVH patients (n=10) than in normal subjects (n=14, P <0.006). Left ventricular mass and CK metabolite levels in LVH were not different from those in patients with LVH and heart failure (LVH+CHF, n=10); however, the myocardial CK pseudo first-order rate constant was normal in LVH (0.36±0.04 s −1 in LVH versus 0.32±0.06 s −1 in normal subjects) but halved in LVH+CHF (0.17±0.06 s −1 , P <0.001). The net ATP flux through CK was significantly reduced by 30% in LVH (2.2±0.7 μmol · g −1 · s −1 , P =0.011) and by a dramatic 65% in LVH+CHF (1.1±0.4 μmol · g −1 · s −1 , P <0.001) compared with normal subjects (3.1±0.8 μmol · g −1 · s −1 ). Conclusions— These first observations in human LVH demonstrate that it is not the relative or absolute CK metabolite pool sizes but rather the kinetics of ATP turnover through CK that distinguish failing from nonfailing hypertrophic hearts. Moreover, the deficit in ATP kinetics is similar in systolic and nonsystolic heart failure and is not related to the severity of hypertrophy but to the presence of CHF. Because CK temporally buffers ATP, these observations support the hypothesis that a deficit in myofibrillar energy delivery contributes to CHF pathophysiology in human LVH.
Author Weiss, Robert G.
Schulman, Steven P.
Gerstenblith, Gary
Smith, Craig S.
Bottomley, Paul A.
Author_xml – sequence: 1
  givenname: Craig S.
  surname: Smith
  fullname: Smith, Craig S.
  organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md
– sequence: 2
  givenname: Paul A.
  surname: Bottomley
  fullname: Bottomley, Paul A.
  organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md
– sequence: 3
  givenname: Steven P.
  surname: Schulman
  fullname: Schulman, Steven P.
  organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md
– sequence: 4
  givenname: Gary
  surname: Gerstenblith
  fullname: Gerstenblith, Gary
  organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md
– sequence: 5
  givenname: Robert G.
  surname: Weiss
  fullname: Weiss, Robert G.
  organization: From the Department of Medicine (C.S.S., S.P.S., G.G., R.G.W.), Cardiology Division, and Department of Radiology (P.A.B.), Division of Magnetic Resonance Research, The Johns Hopkins Hospital, Baltimore, Md
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18146446$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16952984$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2P0zAQhi20iO0u_AUUDnBLseOPxBdQFLG0orAS6p4t155sjRI72AlS_z0pLQvLhZPlmcfPjPxeoQsfPCD0iuAlIYK8bdZfm7tNvV3ffqlX9ZJgsRSECiaeoAXhBcsZp_ICLTDGMi9pUVyiq5S-zVdBS_4MXRIheSErtkC67kaIYLMmgh6dh-yT8zpBVlvwIR0L2-iGfUjDXo-_ujA6kzLnsxvtOufvs9VhgDjGMOzdLFpNvfbZ50MwOlo39c_R01Z3CV6cz2t0d_Nh26zyze3HdVNvcsMFHnPNQZRclsCYKcu24qWQVu-KlrS8opJiTVpjraU7ZnBpS26pxdxobAwGCZxeo3cn7zDterAG_Bh1p4boeh0PKminHne826v78EORCleMVrPgzVkQw_cJ0qh6lwx0nfYQpqREVTGOi2IGX_496WHE71-dgddnQCejuzZqb1z6w1WECcbEzL0_cSaGlCK0yrhxTiEcF3SdIlgd81aP857LQp3yng3yH8PDkP--_Qkq-rP3
CODEN CIRCAZ
CitedBy_id crossref_primary_10_1093_ehjci_jeac121
crossref_primary_10_1007_s10741_022_10287_x
crossref_primary_10_1172_JCI57426
crossref_primary_10_1113_jphysiol_2008_157677
crossref_primary_10_18087_cardio_n394
crossref_primary_10_1586_erc_09_169
crossref_primary_10_1002_mrm_26162
crossref_primary_10_1016_j_ejphar_2023_175676
crossref_primary_10_3390_biomedicines12112589
crossref_primary_10_13104_imri_2018_22_1_26
crossref_primary_10_1007_s11936_009_0009_5
crossref_primary_10_1016_j_jacc_2009_05_012
crossref_primary_10_1161_CIRCHEARTFAILURE_114_001496
crossref_primary_10_1186_s12968_019_0560_5
crossref_primary_10_1093_cvr_cvn282
crossref_primary_10_1152_ajpheart_00178_2009
crossref_primary_10_1074_mcp_M115_057380
crossref_primary_10_1016_j_phrs_2021_106038
crossref_primary_10_1038_nrcardio_2016_203
crossref_primary_10_5937_siks1602053R
crossref_primary_10_2967_jnumed_109_068197
crossref_primary_10_1111_cbdd_12877
crossref_primary_10_3390_metabo13080932
crossref_primary_10_1016_j_jmr_2012_03_008
crossref_primary_10_1042_CS20230616
crossref_primary_10_1002_1873_3468_13496
crossref_primary_10_1113_JP270354
crossref_primary_10_1007_s12350_016_0620_2
crossref_primary_10_1186_s12906_019_2506_8
crossref_primary_10_1152_japplphysiol_01051_2016
crossref_primary_10_1002_nbm_3103
crossref_primary_10_1016_j_cpcardiol_2015_12_002
crossref_primary_10_1161_CIRCULATIONAHA_119_043450
crossref_primary_10_1016_j_jmr_2007_12_015
crossref_primary_10_1016_j_hfc_2008_01_001
crossref_primary_10_1111_j_1755_5922_2010_00133_x
crossref_primary_10_1161_CIRCHEARTFAILURE_119_006170
crossref_primary_10_1016_j_jmr_2013_09_018
crossref_primary_10_1016_j_pharmthera_2017_08_001
crossref_primary_10_1007_s12410_012_9146_4
crossref_primary_10_1007_s11897_012_0109_5
crossref_primary_10_1007_s10557_007_6000_z
crossref_primary_10_1016_j_hfc_2023_03_007
crossref_primary_10_1155_2013_824135
crossref_primary_10_1007_s00259_007_0444_z
crossref_primary_10_2337_db09_0916
crossref_primary_10_1161_CIRCULATIONAHA_119_042770
crossref_primary_10_1152_ajpheart_00727_2009
crossref_primary_10_1016_j_mad_2017_07_002
crossref_primary_10_1152_ajpcell_00500_2010
crossref_primary_10_1016_j_ijcha_2015_07_004
crossref_primary_10_1016_j_jacc_2010_03_077
crossref_primary_10_1152_ajpheart_00771_2011
crossref_primary_10_1016_j_jmccpl_2023_100036
crossref_primary_10_1186_s12968_018_0491_6
crossref_primary_10_1136_heartjnl_2012_302546
crossref_primary_10_1007_s10741_012_9359_2
crossref_primary_10_1016_j_pharmthera_2013_05_012
crossref_primary_10_1038_s41569_023_00887_x
crossref_primary_10_1161_CIRCULATIONAHA_116_022931
crossref_primary_10_1152_ajpheart_00737_2006
crossref_primary_10_1161_CIRCIMAGING_116_005604
crossref_primary_10_1038_nrcardio_2011_138
crossref_primary_10_1042_CS20210127
crossref_primary_10_1186_1477_5956_9_69
crossref_primary_10_1152_ajpheart_00411_2013
crossref_primary_10_1002_nbm_3320
crossref_primary_10_1016_j_jcmg_2008_08_005
crossref_primary_10_1093_eurheartj_ehq426
crossref_primary_10_14814_phy2_13130
crossref_primary_10_51847_rRRBoMbIYa
crossref_primary_10_1016_j_jcmg_2022_04_025
crossref_primary_10_1002_mrm_26005
crossref_primary_10_1083_jcb_201101100
crossref_primary_10_1016_j_jacc_2011_10_895
crossref_primary_10_47803_rjc_2021_31_2_269
crossref_primary_10_1093_ehjci_jeac041
crossref_primary_10_1371_journal_pone_0229933
crossref_primary_10_1002_nbm_4085
crossref_primary_10_1007_s11682_020_00398_0
crossref_primary_10_1007_s12410_018_9447_3
crossref_primary_10_1016_j_ejrad_2008_10_018
crossref_primary_10_1016_j_amjcard_2013_05_017
crossref_primary_10_1089_ars_2017_7236
crossref_primary_10_1186_1532_429X_10_S1_A48
crossref_primary_10_3390_cells11121920
crossref_primary_10_1007_s10741_017_9623_6
crossref_primary_10_3390_medicina59010174
crossref_primary_10_1093_cvr_cvz060
crossref_primary_10_1161_CIRCULATIONAHA_121_055646
crossref_primary_10_1142_S0192415X09007454
crossref_primary_10_1113_JP286054
crossref_primary_10_1073_pnas_0812768106
crossref_primary_10_1111_echo_12487
crossref_primary_10_1002_mrm_26357
crossref_primary_10_1152_ajpheart_00887_2007
crossref_primary_10_1152_ajpheart_01195_2008
crossref_primary_10_1002_mrm_29907
crossref_primary_10_1002_mrm_21867
crossref_primary_10_1016_j_ijcard_2011_06_113
crossref_primary_10_1172_JCI120849
crossref_primary_10_1016_j_bbadis_2017_11_013
crossref_primary_10_1002_nbm_3302
crossref_primary_10_1016_j_cmet_2024_06_003
crossref_primary_10_1007_s10916_010_9443_x
crossref_primary_10_1186_s12968_015_0175_4
crossref_primary_10_1007_s10741_020_09949_5
crossref_primary_10_1016_j_cophys_2022_100559
crossref_primary_10_3390_jcm13051195
crossref_primary_10_1152_ajpheart_00731_2016
crossref_primary_10_1002_mrm_22347
crossref_primary_10_1097_FJC_0b013e31829a4e61
crossref_primary_10_1002_mrm_30354
crossref_primary_10_1016_j_apsb_2020_10_007
crossref_primary_10_1002_nbm_2961
crossref_primary_10_1002_jps_21281
crossref_primary_10_1186_1532_429X_12_62
crossref_primary_10_1007_s11892_014_0490_4
crossref_primary_10_1007_s10741_023_10353_y
crossref_primary_10_1016_j_bbamcr_2010_09_006
crossref_primary_10_1126_scitranslmed_3007328
crossref_primary_10_1016_j_bbadis_2018_09_013
crossref_primary_10_5582_ddt_2019_01004
crossref_primary_10_1021_pr900297f
crossref_primary_10_1016_j_jacc_2009_08_012
crossref_primary_10_1016_j_hfc_2020_08_011
Cites_doi 10.1016/S0021-9258(18)54922-X
10.1161/res.67.6.2147129
10.1152/ajpheart.2001.281.1.H376
10.1161/res.89.2.153
10.1016/S0735-1097(99)00118-7
10.1161/res.14.4.294
10.1161/circ.86.6.1451253
10.1161/circ.92.1.15
10.1016/0002-9343(80)90471-4
10.1002/mrm.1910140302
10.1161/circ.97.25.2536
10.1096/fj.01-0652com
10.1016/S0960-9822(00)00008-7
10.1002/0470011505
10.1056/NEJM198510243131704
10.1161/circ.100.24.2425
10.1161/circ.99.17.2261
10.1161/circ.104.15.1844
10.1002/mrm.1910160110
10.1148/radiology.165.3.2961004
10.1146/annurev.ph.36.030174.002213
10.1146/annurev.physiol.65.092101.142243
10.1002/mrm.1910350507
10.1016/j.jacc.2003.07.046
10.1073/pnas.0408962102
10.1242/jeb.00426
10.1152/ajpheart.01142.2002
10.1056/NEJM197112232852601
10.1016/0140-6736(91)91838-L
10.1161/01.res.0000080536.06932.e3
10.1016/S0008-6363(98)00332-0
10.1007/BF02058690
10.1016/0002-8703(91)90527-O
10.1021/bi00393a021
10.1152/ajpheart.01016.2003
10.1148/radiology.191.3.8184033
10.1016/j.jacc.2003.05.005
10.1161/circ.103.11.1570
10.1161/circulationaha.104.500546
10.1002/mrm.1910390515
10.1161/circ.44.2.181
10.1161/res.60.6.2954720
10.1002/mrm.10130
10.1074/jbc.M001932200
10.1056/NEJM199005313222203
10.1016/S0735-1097(02)02160-5
10.1161/circ.91.6.1814
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1161/CIRCULATIONAHA.106.613646
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 1158
ExternalDocumentID PMC1808438
16952984
18146446
10_1161_CIRCULATIONAHA_106_613646
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL056882
– fundername: NHLBI NIH HHS
  grantid: HL63030
– fundername: NHLBI NIH HHS
  grantid: R01 HL063030
– fundername: NHLBI NIH HHS
  grantid: HL56882
– fundername: NHLBI NIH HHS
  grantid: R01 HL061912
– fundername: NHLBI NIH HHS
  grantid: HL61912
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAEJM
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AARTV
AASOK
AAUEB
AAWTL
AAXQO
AAYOK
AAYXX
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACOAL
ACRKK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFCHL
AFDTB
AFEXH
AFFNX
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJJEV
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C1A
C45
CITATION
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GX1
H0~
H13
HZ~
H~9
IKREB
IKYAY
IN~
J5H
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
M18
N4W
N9A
NEJ
N~7
N~B
O9-
OAG
OAH
OBH
OCB
OCUKA
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
YSK
YYM
YYP
YZZ
ZFV
ZY1
ZZMQN
~H1
1CY
41~
AAQKA
AASCR
AASXQ
ABASU
ABVCZ
ABXYN
ABZZY
ACLDA
ACXJB
ADFPA
AEBDS
AFBFQ
AFMBP
AFSOK
AHQVU
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
EEVPB
EJD
ERAAH
FEDTE
GNXGY
GQDEL
HLJTE
HVGLF
IPNFZ
IQODW
MVM
N~M
ODA
OHT
P-K
R58
RIG
TSPGW
WHG
YQJ
YXB
ZGI
ZXP
ACIJW
ACRZS
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OJAPA
OLW
PKN
RHF
7X8
5PM
ID FETCH-LOGICAL-c560t-a5e67597e44c77f85769dab2f1f583930a1fcddd3b4c07d75d3d05ca0cc0e9e53
ISSN 0009-7322
1524-4539
IngestDate Thu Aug 21 13:56:52 EDT 2025
Fri Jul 11 09:50:03 EDT 2025
Wed Feb 19 01:42:42 EST 2025
Mon Jul 21 09:15:42 EDT 2025
Tue Jul 01 02:05:14 EDT 2025
Thu Apr 24 23:08:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Human
Heart failure
Hypertrophied heart
Purine nucleoside
Adenosine
Enzyme
Creatine kinase
hypertrophy
Transferases
Cardiovascular disease
magnetic resonance spectroscopy
NMR spectrometry
Triphosphates
Metabolism
Adenosine kinase
Heart disease
adenosine triphosphate
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c560t-a5e67597e44c77f85769dab2f1f583930a1fcddd3b4c07d75d3d05ca0cc0e9e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Drs Weiss and Bottomley contributed equally to this work.
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.106.613646
PMID 16952984
PQID 68845022
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1808438
proquest_miscellaneous_68845022
pubmed_primary_16952984
pascalfrancis_primary_18146446
crossref_citationtrail_10_1161_CIRCULATIONAHA_106_613646
crossref_primary_10_1161_CIRCULATIONAHA_106_613646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-09-12
PublicationDateYYYYMMDD 2006-09-12
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-12
  day: 12
PublicationDecade 2000
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2006
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References e_1_3_2_26_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
(e_1_3_2_31_2) 1987; 74
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_1_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
(e_1_3_2_49_2) 2003; 106
e_1_3_2_21_2
e_1_3_2_23_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
(e_1_3_2_44_2) 1998; 39
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
(e_1_3_2_42_2) 1986; 251
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
4935053 - Circulation. 1971 Aug;44(2):181-95
10362198 - J Am Coll Cardiol. 1999 Jun;33(7):1948-55
1681342 - Lancet. 1991 Oct 19;338(8773):973-6
15927992 - Circulation. 2005 May 31;111(21):2837-49
11463722 - Circ Res. 2001 Jul 20;89(2):153-9
3689762 - Biochemistry. 1987 Sep 22;26(19):6083-90
15105171 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1039-45
11978729 - FASEB J. 2002 May;16(7):653-60
9657474 - Circulation. 1998 Jun 30;97(25):2536-42
9581609 - Magn Reson Med. 1998 May;39(5):772-82
12714322 - Am J Physiol Heart Circ Physiol. 2003 Aug;285(2):H541-8
2947755 - Circulation. 1987 Jan;75(1 Pt 2):I96-101
12379584 - Circulation. 2002 Oct 15;106(16):2125-31
12756286 - J Exp Biol. 2003 Jun;206(Pt 12):2039-47
19400669 - Annu Rev Physiol. 1974;36:413-59
12791710 - Circ Res. 2003 Jul 11;93(1):54-60
9476935 - J Nucl Med. 1998 Feb;39(2):272-80
2961004 - Radiology. 1987 Dec;165(3):703-7
2139921 - N Engl J Med. 1990 May 31;322(22):1561-6
7922310 - Curr Biol. 1994 Jan 1;4(1):42-6
1939088 - J Biol Chem. 1991 Oct 25;266(30):20296-304
7882492 - Circulation. 1995 Mar 15;91(6):1814-23
1451253 - Circulation. 1992 Dec;86(6):1810-8
2146246 - Heart Vessels. 1990;5(4):198-205
10867023 - J Biol Chem. 2000 Jun 30;275(26):19742-6
10533601 - Cardiovasc Res. 1999 Jun;42(3):616-26
15647364 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):808-13
1877457 - Am Heart J. 1991 Sep;122(3 Pt 1):795-801
2931604 - N Engl J Med. 1985 Oct 24;313(17):1050-4
10226091 - Circulation. 1999 May 4;99(17):2261-7
11591624 - Circulation. 2001 Oct 9;104(15):1844-9
15013109 - J Am Coll Cardiol. 2004 Feb 4;43(3):317-27
12383574 - J Am Coll Cardiol. 2002 Oct 2;40(7):1267-74
14607443 - J Am Coll Cardiol. 2003 Nov 5;42(9):1587-93
6448546 - Am J Med. 1980 Oct;69(4):576-84
2147129 - Circ Res. 1990 Dec;67(6):1334-44
2954720 - Circ Res. 1987 Jun;60(6):871-8
2355826 - Magn Reson Med. 1990 Jun;14(3):425-34
8722817 - Magn Reson Med. 1996 May;35(5):664-70
11257087 - Circulation. 2001 Mar 20;103(11):1570-6
11406506 - Am J Physiol Heart Circ Physiol. 2001 Jul;281(1):H376-86
8184033 - Radiology. 1994 Jun;191(3):593-612
2255241 - Magn Reson Med. 1990 Oct;16(1):91-116
7788910 - Circulation. 1995 Jul 1;92(1):15-23
11979563 - Magn Reson Med. 2002 May;47(5):850-63
12524460 - Annu Rev Physiol. 2003;65:45-79
10595955 - Circulation. 1999 Dec 14;100(24):2425-30
3728693 - Am J Physiol. 1986 Jul;251(1 Pt 2):H171-5
14135251 - Circ Res. 1964 Apr;14:294-300
5122894 - N Engl J Med. 1971 Dec 23;285(26):1441-6
References_xml – ident: e_1_3_2_34_2
  doi: 10.1016/S0021-9258(18)54922-X
– ident: e_1_3_2_14_2
  doi: 10.1161/res.67.6.2147129
– ident: e_1_3_2_15_2
  doi: 10.1152/ajpheart.2001.281.1.H376
– ident: e_1_3_2_38_2
  doi: 10.1161/res.89.2.153
– ident: e_1_3_2_17_2
  doi: 10.1016/S0735-1097(99)00118-7
– ident: e_1_3_2_46_2
  doi: 10.1161/res.14.4.294
– ident: e_1_3_2_12_2
  doi: 10.1161/circ.86.6.1451253
– ident: e_1_3_2_24_2
  doi: 10.1161/circ.92.1.15
– ident: e_1_3_2_1_2
  doi: 10.1016/0002-9343(80)90471-4
– ident: e_1_3_2_23_2
  doi: 10.1002/mrm.1910140302
– ident: e_1_3_2_28_2
  doi: 10.1161/circ.97.25.2536
– ident: e_1_3_2_36_2
  doi: 10.1096/fj.01-0652com
– ident: e_1_3_2_5_2
  doi: 10.1016/S0960-9822(00)00008-7
– ident: e_1_3_2_48_2
  doi: 10.1002/0470011505
– ident: e_1_3_2_4_2
  doi: 10.1056/NEJM198510243131704
– ident: e_1_3_2_25_2
  doi: 10.1161/circ.100.24.2425
– ident: e_1_3_2_10_2
  doi: 10.1161/circ.99.17.2261
– ident: e_1_3_2_35_2
  doi: 10.1161/circ.104.15.1844
– ident: e_1_3_2_41_2
  doi: 10.1002/mrm.1910160110
– volume: 74
  start-page: I-96
  year: 1987
  ident: e_1_3_2_31_2
  publication-title: Circulation
– ident: e_1_3_2_43_2
  doi: 10.1148/radiology.165.3.2961004
– volume: 106
  start-page: 2125
  year: 2003
  ident: e_1_3_2_49_2
  publication-title: Circulation
– ident: e_1_3_2_3_2
  doi: 10.1146/annurev.ph.36.030174.002213
– ident: e_1_3_2_50_2
  doi: 10.1146/annurev.physiol.65.092101.142243
– ident: e_1_3_2_22_2
  doi: 10.1002/mrm.1910350507
– ident: e_1_3_2_20_2
  doi: 10.1016/j.jacc.2003.07.046
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.0408962102
– volume: 39
  start-page: 272
  year: 1998
  ident: e_1_3_2_44_2
  publication-title: J Nucl Med
– ident: e_1_3_2_39_2
  doi: 10.1242/jeb.00426
– ident: e_1_3_2_16_2
  doi: 10.1152/ajpheart.01142.2002
– ident: e_1_3_2_19_2
  doi: 10.1056/NEJM197112232852601
– volume: 251
  start-page: H171
  year: 1986
  ident: e_1_3_2_42_2
  publication-title: Am J Physiol
– ident: e_1_3_2_8_2
  doi: 10.1016/0140-6736(91)91838-L
– ident: e_1_3_2_40_2
  doi: 10.1161/01.res.0000080536.06932.e3
– ident: e_1_3_2_26_2
  doi: 10.1016/S0008-6363(98)00332-0
– ident: e_1_3_2_47_2
  doi: 10.1007/BF02058690
– ident: e_1_3_2_11_2
  doi: 10.1016/0002-8703(91)90527-O
– ident: e_1_3_2_33_2
  doi: 10.1021/bi00393a021
– ident: e_1_3_2_37_2
  doi: 10.1152/ajpheart.01016.2003
– ident: e_1_3_2_29_2
  doi: 10.1148/radiology.191.3.8184033
– ident: e_1_3_2_32_2
  doi: 10.1016/j.jacc.2003.05.005
– ident: e_1_3_2_7_2
  doi: 10.1161/circ.103.11.1570
– ident: e_1_3_2_51_2
  doi: 10.1161/circulationaha.104.500546
– ident: e_1_3_2_9_2
  doi: 10.1002/mrm.1910390515
– ident: e_1_3_2_45_2
  doi: 10.1161/circ.44.2.181
– ident: e_1_3_2_13_2
  doi: 10.1161/res.60.6.2954720
– ident: e_1_3_2_21_2
  doi: 10.1002/mrm.10130
– ident: e_1_3_2_27_2
  doi: 10.1074/jbc.M001932200
– ident: e_1_3_2_2_2
  doi: 10.1056/NEJM199005313222203
– ident: e_1_3_2_30_2
  doi: 10.1016/S0735-1097(02)02160-5
– ident: e_1_3_2_6_2
  doi: 10.1161/circ.91.6.1814
– reference: 10867023 - J Biol Chem. 2000 Jun 30;275(26):19742-6
– reference: 11406506 - Am J Physiol Heart Circ Physiol. 2001 Jul;281(1):H376-86
– reference: 2947755 - Circulation. 1987 Jan;75(1 Pt 2):I96-101
– reference: 10533601 - Cardiovasc Res. 1999 Jun;42(3):616-26
– reference: 2931604 - N Engl J Med. 1985 Oct 24;313(17):1050-4
– reference: 12791710 - Circ Res. 2003 Jul 11;93(1):54-60
– reference: 4935053 - Circulation. 1971 Aug;44(2):181-95
– reference: 1681342 - Lancet. 1991 Oct 19;338(8773):973-6
– reference: 9657474 - Circulation. 1998 Jun 30;97(25):2536-42
– reference: 11257087 - Circulation. 2001 Mar 20;103(11):1570-6
– reference: 1877457 - Am Heart J. 1991 Sep;122(3 Pt 1):795-801
– reference: 7922310 - Curr Biol. 1994 Jan 1;4(1):42-6
– reference: 2139921 - N Engl J Med. 1990 May 31;322(22):1561-6
– reference: 10226091 - Circulation. 1999 May 4;99(17):2261-7
– reference: 11978729 - FASEB J. 2002 May;16(7):653-60
– reference: 19400669 - Annu Rev Physiol. 1974;36:413-59
– reference: 1451253 - Circulation. 1992 Dec;86(6):1810-8
– reference: 2954720 - Circ Res. 1987 Jun;60(6):871-8
– reference: 9476935 - J Nucl Med. 1998 Feb;39(2):272-80
– reference: 7882492 - Circulation. 1995 Mar 15;91(6):1814-23
– reference: 10595955 - Circulation. 1999 Dec 14;100(24):2425-30
– reference: 12756286 - J Exp Biol. 2003 Jun;206(Pt 12):2039-47
– reference: 8722817 - Magn Reson Med. 1996 May;35(5):664-70
– reference: 12379584 - Circulation. 2002 Oct 15;106(16):2125-31
– reference: 12524460 - Annu Rev Physiol. 2003;65:45-79
– reference: 9581609 - Magn Reson Med. 1998 May;39(5):772-82
– reference: 11591624 - Circulation. 2001 Oct 9;104(15):1844-9
– reference: 2147129 - Circ Res. 1990 Dec;67(6):1334-44
– reference: 15647364 - Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):808-13
– reference: 15013109 - J Am Coll Cardiol. 2004 Feb 4;43(3):317-27
– reference: 11463722 - Circ Res. 2001 Jul 20;89(2):153-9
– reference: 2961004 - Radiology. 1987 Dec;165(3):703-7
– reference: 5122894 - N Engl J Med. 1971 Dec 23;285(26):1441-6
– reference: 8184033 - Radiology. 1994 Jun;191(3):593-612
– reference: 2146246 - Heart Vessels. 1990;5(4):198-205
– reference: 15927992 - Circulation. 2005 May 31;111(21):2837-49
– reference: 2355826 - Magn Reson Med. 1990 Jun;14(3):425-34
– reference: 12383574 - J Am Coll Cardiol. 2002 Oct 2;40(7):1267-74
– reference: 2255241 - Magn Reson Med. 1990 Oct;16(1):91-116
– reference: 12714322 - Am J Physiol Heart Circ Physiol. 2003 Aug;285(2):H541-8
– reference: 10362198 - J Am Coll Cardiol. 1999 Jun;33(7):1948-55
– reference: 1939088 - J Biol Chem. 1991 Oct 25;266(30):20296-304
– reference: 7788910 - Circulation. 1995 Jul 1;92(1):15-23
– reference: 3728693 - Am J Physiol. 1986 Jul;251(1 Pt 2):H171-5
– reference: 3689762 - Biochemistry. 1987 Sep 22;26(19):6083-90
– reference: 14607443 - J Am Coll Cardiol. 2003 Nov 5;42(9):1587-93
– reference: 11979563 - Magn Reson Med. 2002 May;47(5):850-63
– reference: 6448546 - Am J Med. 1980 Oct;69(4):576-84
– reference: 14135251 - Circ Res. 1964 Apr;14:294-300
– reference: 15105171 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1039-45
SSID ssj0006375
Score 2.29239
Snippet Background— The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy...
The progression of pressure-overload left ventricular hypertrophy (LVH) to chronic heart failure (CHF) may involve a relative deficit in energy supply and/or...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1151
SubjectTerms Adenosine Triphosphate - metabolism
Adult
Aged
Associated diseases and complications
Atherosclerosis (general aspects, experimental research)
Biological and medical sciences
Blood and lymphatic vessels
Cardiac Output, Low - enzymology
Cardiac Output, Low - etiology
Cardiac Output, Low - physiopathology
Cardiology. Vascular system
Creatine Kinase - metabolism
Diabetes. Impaired glucose tolerance
Disease Progression
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Energy Metabolism - physiology
Female
Heart - physiopathology
Heart Ventricles - enzymology
Heart Ventricles - physiopathology
Humans
Hypertrophy, Left Ventricular - enzymology
Hypertrophy, Left Ventricular - etiology
Hypertrophy, Left Ventricular - physiopathology
Male
Medical sciences
Middle Aged
Myocardium - enzymology
Myocardium - pathology
Severity of Illness Index
Title Altered Creatine Kinase Adenosine Triphosphate Kinetics in Failing Hypertrophied Human Myocardium
URI https://www.ncbi.nlm.nih.gov/pubmed/16952984
https://www.proquest.com/docview/68845022
https://pubmed.ncbi.nlm.nih.gov/PMC1808438
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIq2QEIJdHuWxGAlxQenmYcfJsVTQglgOsJV6ixw7IRFtUrXpYfkH_GvGsfPoqistXKLKjh2l82X8zXg8g9DblMEHlFJp-Sy0LRIz0IOSMyuOCRcspUQ46qDwxTd_NidfFnQxGPzpRS3tqngkfh88V_I_UoU2kKs6JfsPkm0nhQb4DfKFK0gYrreS8VhtdQNj1MwP6OKvvIBV6T2XKgW4aqhAJ2Tldp0BpVS9SZ2VOVeOjbw-iJ6BHbqpNuU6U1xUV-xbXcECB8AxWRqaPAb5RphaX4dK-PRcCq23ZrLh-c_OufqhrKpyZZzkKiSxc6T-ENlu2Thj60Jr3cGzqWKoSREvzaxTbkKXe84KVWxBrzVGwbrEIlQnMGo1sD5H2kDN6SlUIKzOYU3vK00vulfnGR-BfTsCfuJrr2YPAetVDQHHD6kb6pp019JsN1130F0XLA5VDGO66KKFfI_RY_TGPPn8xueqJLRmpj2mc3_Nt_DRpbpayiFz5npUbo_mXD5ED4x9gscabI_QIClO0Om44CC5K_wO1xHD9VbMCTq-MIEZp4gbKOIGilhDEbdQxH0o4gaKOC-wgSLegyKuoYg7KD5G808fLyczy1TvsASw6MriNAFjNGQJIYKxNADDNpQ8dlNQDcDKPZs7qZBSejERNpOMSk_aVHBbCDsJE-o9QUdFWSTPEPadlFE1EY8dWHNk4LEUDJvU9d3E5iwYoqD5pyNhUturCivLqDZxfSeafP4-mX_V-aVnY2j2Iy2vIXLboWud3-U2g872xNmNVA51om543cg3AnWt9uB4kZS7beQHAaHAm4foqZZ2N9bAZojYHg7aG1Qi-P2eIs_qhPBOYAfEC57fOOcLdK_7Gl-io2qzS14Bma7isxrmfwEQ3M7G
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+creatine+kinase+adenosine+triphosphate+kinetics+in+failing+hypertrophied+human+myocardium&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Smith%2C+Craig+S&rft.au=Bottomley%2C+Paul+A&rft.au=Schulman%2C+Steven+P&rft.au=Gerstenblith%2C+Gary&rft.date=2006-09-12&rft.eissn=1524-4539&rft.volume=114&rft.issue=11&rft.spage=1151&rft_id=info:doi/10.1161%2Fcirculationaha.106.613646&rft_id=info%3Apmid%2F16952984&rft.externalDocID=16952984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon