3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome
The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces....
Saved in:
Published in | Human genome variation Vol. 6; no. 1; p. 28 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.06.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces. In the Tohoku Medical Megabank Project, we sequenced nearly 4000 individuals from a Japanese population and constructed an allele frequency panel of 3552 individuals after removing related samples. The panel is called the 3.5KJPNv2. It was constructed by using a standard pipeline including the 1KGP and gnomAD algorithms to reduce technical biases and to allow comparisons to other populations. Our database is the first large-scale panel providing the frequencies of variants present on the X chromosome and on the mitochondria in the Japanese population. All the data are available on our original database at
https://jmorp.megabank.tohoku.ac.jp
.
Population genetics: large database of Japanese gene variations constructed
A new database provides information on the frequency of genetic variations within 3552 Japanese individuals, and facilitates comparisons with other populations. The reference panel, constructed by Kengo Kinoshita of Tohoku University, Sendai, and colleagues in Japan is also the first large-scale database to provide genetic variation frequency information on the X chromosome and mitochondrial DNA in the Japanese population. The methods used to sequence the genetic data are similar to those used in other large databases, allowing comparisons with other populations. The population size and methods used to compile the database overcome limitations in previous Japanese reference panels. This and similar databases that catalog genetic variations within populations can improve efforts towards personalizing healthcare and contribute to the study of human population genetics. The database is publicly available online. |
---|---|
AbstractList | The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces. In the Tohoku Medical Megabank Project, we sequenced nearly 4000 individuals from a Japanese population and constructed an allele frequency panel of 3552 individuals after removing related samples. The panel is called the 3.5KJPNv2. It was constructed by using a standard pipeline including the 1KGP and gnomAD algorithms to reduce technical biases and to allow comparisons to other populations. Our database is the first large-scale panel providing the frequencies of variants present on the X chromosome and on the mitochondria in the Japanese population. All the data are available on our original database at https://jmorp.megabank.tohoku.ac.jp.The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces. In the Tohoku Medical Megabank Project, we sequenced nearly 4000 individuals from a Japanese population and constructed an allele frequency panel of 3552 individuals after removing related samples. The panel is called the 3.5KJPNv2. It was constructed by using a standard pipeline including the 1KGP and gnomAD algorithms to reduce technical biases and to allow comparisons to other populations. Our database is the first large-scale panel providing the frequencies of variants present on the X chromosome and on the mitochondria in the Japanese population. All the data are available on our original database at https://jmorp.megabank.tohoku.ac.jp. The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces. In the Tohoku Medical Megabank Project, we sequenced nearly 4000 individuals from a Japanese population and constructed an allele frequency panel of 3552 individuals after removing related samples. The panel is called the 3.5KJPNv2. It was constructed by using a standard pipeline including the 1KGP and gnomAD algorithms to reduce technical biases and to allow comparisons to other populations. Our database is the first large-scale panel providing the frequencies of variants present on the X chromosome and on the mitochondria in the Japanese population. All the data are available on our original database at https://jmorp.megabank.tohoku.ac.jp.Population genetics: large database of Japanese gene variations constructedA new database provides information on the frequency of genetic variations within 3552 Japanese individuals, and facilitates comparisons with other populations. The reference panel, constructed by Kengo Kinoshita of Tohoku University, Sendai, and colleagues in Japan is also the first large-scale database to provide genetic variation frequency information on the X chromosome and mitochondrial DNA in the Japanese population. The methods used to sequence the genetic data are similar to those used in other large databases, allowing comparisons with other populations. The population size and methods used to compile the database overcome limitations in previous Japanese reference panels. This and similar databases that catalog genetic variations within populations can improve efforts towards personalizing healthcare and contribute to the study of human population genetics. The database is publicly available online. The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces. In the Tohoku Medical Megabank Project, we sequenced nearly 4000 individuals from a Japanese population and constructed an allele frequency panel of 3552 individuals after removing related samples. The panel is called the 3.5KJPNv2. It was constructed by using a standard pipeline including the 1KGP and gnomAD algorithms to reduce technical biases and to allow comparisons to other populations. Our database is the first large-scale panel providing the frequencies of variants present on the X chromosome and on the mitochondria in the Japanese population. All the data are available on our original database at https://jmorp.megabank.tohoku.ac.jp . A new database provides information on the frequency of genetic variations within 3552 Japanese individuals, and facilitates comparisons with other populations. The reference panel, constructed by Kengo Kinoshita of Tohoku University, Sendai, and colleagues in Japan is also the first large-scale database to provide genetic variation frequency information on the X chromosome and mitochondrial DNA in the Japanese population. The methods used to sequence the genetic data are similar to those used in other large databases, allowing comparisons with other populations. The population size and methods used to compile the database overcome limitations in previous Japanese reference panels. This and similar databases that catalog genetic variations within populations can improve efforts towards personalizing healthcare and contribute to the study of human population genetics. The database is publicly available online. The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces. In the Tohoku Medical Megabank Project, we sequenced nearly 4000 individuals from a Japanese population and constructed an allele frequency panel of 3552 individuals after removing related samples. The panel is called the 3.5KJPNv2. It was constructed by using a standard pipeline including the 1KGP and gnomAD algorithms to reduce technical biases and to allow comparisons to other populations. Our database is the first large-scale panel providing the frequencies of variants present on the X chromosome and on the mitochondria in the Japanese population. All the data are available on our original database at https://jmorp.megabank.tohoku.ac.jp . Population genetics: large database of Japanese gene variations constructed A new database provides information on the frequency of genetic variations within 3552 Japanese individuals, and facilitates comparisons with other populations. The reference panel, constructed by Kengo Kinoshita of Tohoku University, Sendai, and colleagues in Japan is also the first large-scale database to provide genetic variation frequency information on the X chromosome and mitochondrial DNA in the Japanese population. The methods used to sequence the genetic data are similar to those used in other large databases, allowing comparisons with other populations. The population size and methods used to compile the database overcome limitations in previous Japanese reference panels. This and similar databases that catalog genetic variations within populations can improve efforts towards personalizing healthcare and contribute to the study of human population genetics. The database is publicly available online. The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces. In the Tohoku Medical Megabank Project, we sequenced nearly 4000 individuals from a Japanese population and constructed an allele frequency panel of 3552 individuals after removing related samples. The panel is called the 3.5KJPNv2. It was constructed by using a standard pipeline including the 1KGP and gnomAD algorithms to reduce technical biases and to allow comparisons to other populations. Our database is the first large-scale panel providing the frequencies of variants present on the X chromosome and on the mitochondria in the Japanese population. All the data are available on our original database at https://jmorp.megabank.tohoku.ac.jp . The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level genomic information is strictly controlled, it will be useful to construct population-level allele frequency panels with easy-to-use interfaces. In the Tohoku Medical Megabank Project, we sequenced nearly 4000 individuals from a Japanese population and constructed an allele frequency panel of 3552 individuals after removing related samples. The panel is called the 3.5KJPNv2. It was constructed by using a standard pipeline including the 1KGP and gnomAD algorithms to reduce technical biases and to allow comparisons to other populations. Our database is the first large-scale panel providing the frequencies of variants present on the X chromosome and on the mitochondria in the Japanese population. All the data are available on our original database at https://jmorp.megabank.tohoku.ac.jp. |
ArticleNumber | 28 |
Author | Motoike, Ikuko N. Minegishi, Naoko Yamamoto, Masayuki Tadaka, Shu Shirota, Matsuyuki Katsuoka, Fumiki Saito, Sakae Otsuki, Akihito Yasuda, Jun Gocho, Chinatsu Nagasaki, Masao Danjoh, Inaho Hozawa, Atsushi Yamaguchi-Kabata, Yumi Makino, Satoshi Kojima, Kaname Shimizu, Atsushi Sakurai-Yageta, Mika Kinoshita, Kengo Koshiba, Seizo Tamiya, Gen Fuse, Nobuo Ueki, Masao Kuriyama, Shinichi |
Author_xml | – sequence: 1 givenname: Shu orcidid: 0000-0002-8256-0735 surname: Tadaka fullname: Tadaka, Shu organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 2 givenname: Fumiki surname: Katsuoka fullname: Katsuoka, Fumiki organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 3 givenname: Masao surname: Ueki fullname: Ueki, Masao organization: Tohoku Medical Megabank Organization, Tohoku University, Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project – sequence: 4 givenname: Kaname surname: Kojima fullname: Kojima, Kaname organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University, Graduate School of Information Sciences, Tohoku University – sequence: 5 givenname: Satoshi surname: Makino fullname: Makino, Satoshi organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 6 givenname: Sakae surname: Saito fullname: Saito, Sakae organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 7 givenname: Akihito surname: Otsuki fullname: Otsuki, Akihito organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 8 givenname: Chinatsu surname: Gocho fullname: Gocho, Chinatsu organization: Tohoku Medical Megabank Organization, Tohoku University – sequence: 9 givenname: Mika surname: Sakurai-Yageta fullname: Sakurai-Yageta, Mika organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 10 givenname: Inaho surname: Danjoh fullname: Danjoh, Inaho organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 11 givenname: Ikuko N. surname: Motoike fullname: Motoike, Ikuko N. organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University, Graduate School of Information Sciences, Tohoku University – sequence: 12 givenname: Yumi surname: Yamaguchi-Kabata fullname: Yamaguchi-Kabata, Yumi organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 13 givenname: Matsuyuki surname: Shirota fullname: Shirota, Matsuyuki organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University, Graduate School of Information Sciences, Tohoku University – sequence: 14 givenname: Seizo surname: Koshiba fullname: Koshiba, Seizo organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 15 givenname: Masao surname: Nagasaki fullname: Nagasaki, Masao organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University, Graduate School of Information Sciences, Tohoku University – sequence: 16 givenname: Naoko surname: Minegishi fullname: Minegishi, Naoko organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University, Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University – sequence: 17 givenname: Atsushi surname: Hozawa fullname: Hozawa, Atsushi organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 18 givenname: Shinichi surname: Kuriyama fullname: Kuriyama, Shinichi organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University, International Research Institute of Disaster Science, Tohoku University – sequence: 19 givenname: Atsushi surname: Shimizu fullname: Shimizu, Atsushi organization: Iwate Tohoku Medical Megabank Organization, Iwate Medical University – sequence: 20 givenname: Jun surname: Yasuda fullname: Yasuda, Jun organization: Tohoku Medical Megabank Organization, Tohoku University, Miyagi Cancer Center, Miyagi Hospital Organization – sequence: 21 givenname: Nobuo surname: Fuse fullname: Fuse, Nobuo organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University – sequence: 23 givenname: Gen surname: Tamiya fullname: Tamiya, Gen organization: Tohoku Medical Megabank Organization, Tohoku University, Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project – sequence: 24 givenname: Masayuki surname: Yamamoto fullname: Yamamoto, Masayuki organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Medicine, Tohoku University, Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University – sequence: 25 givenname: Kengo orcidid: 0000-0003-3453-2171 surname: Kinoshita fullname: Kinoshita, Kengo email: kengo@ecei.tohoku.ac.jp organization: Tohoku Medical Megabank Organization, Tohoku University, Graduate School of Information Sciences, Tohoku University, Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Institute of Development, Aging and Cancer, Tohoku University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31240104$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEUhoNUbK39AW4k4MbN1JOvmRsXghS_alEXXXQhhNzMmXtTMsk1mbnQf28ut9Va0EXICXnel_ec85QcxBSRkOcMThmIxesimRS6AVYPKN2oR-SIg5KNkOrq4F59SE5KuQYAprRcMPGEHArGJTCQR-SHOFVfzr9_3fI31EZqQ8CAdMj4c8bobujGRgw0DVQoxem53b0LUh97v_X9bEOptQtz7-OKTmukV9StcxpTSSM-I4-HSuDJ7X1MLj-8vzz71Fx8-_j57N1F41QLU2OhbTlfCjdYiU4OjA01rbbcMWyF0EvdOQ09tL3tlNSu7TQT6GzXwaBsJ47J273tZl6O2DuMU7bBbLIfbb4xyXrz90_0a7NKW9OqBdPAq8GrW4Ocat9lMqMvDkOozaa5GM4V1ISgFxV9-QC9TnOOtbtKSd51ok65Ui_uJ_od5W7uFej2gMuplIyDcX6yk0-7gD4YBma3ZLNfsqlLNrslG1WV7IHyzvx_Gr7XlMrGFeY_of8t-gVlMbca |
CitedBy_id | crossref_primary_10_1007_s41105_021_00349_2 crossref_primary_10_1038_s41467_020_20146_8 crossref_primary_10_7759_cureus_33379 crossref_primary_10_3390_ijms252111679 crossref_primary_10_1093_nar_gkaa1034 crossref_primary_10_1097_HEP_0000000000000894 crossref_primary_10_1038_s41598_021_87982_6 crossref_primary_10_1016_j_xops_2022_100113 crossref_primary_10_1038_s41598_020_73263_1 crossref_primary_10_1038_s41598_020_77081_3 crossref_primary_10_1016_j_hrthm_2025_03_1974 crossref_primary_10_1002_ajmg_a_62152 crossref_primary_10_1186_s40246_019_0234_2 crossref_primary_10_1093_jb_mvab060 crossref_primary_10_1093_hmg_ddac093 crossref_primary_10_3389_fneur_2022_978532 crossref_primary_10_1038_s41467_022_32005_9 crossref_primary_10_1007_s00228_022_03424_w crossref_primary_10_1097_MD_0000000000028828 crossref_primary_10_1016_j_ebiom_2020_103130 crossref_primary_10_1016_j_jacasi_2023_03_011 crossref_primary_10_3389_fmolb_2022_1040237 crossref_primary_10_1002_humu_24036 crossref_primary_10_1038_s41439_021_00175_5 crossref_primary_10_1002_ajmg_a_62132 crossref_primary_10_1111_cge_14640 crossref_primary_10_1038_s41598_023_30464_8 crossref_primary_10_1089_bio_2022_0211 crossref_primary_10_1038_s10038_021_00952_8 crossref_primary_10_1183_13993003_01511_2023 crossref_primary_10_1093_nar_gkad978 crossref_primary_10_1186_s12884_024_06376_4 crossref_primary_10_1038_s41598_021_95521_6 crossref_primary_10_1038_s10038_020_0815_x crossref_primary_10_1016_j_drudis_2024_104134 crossref_primary_10_1038_s41439_023_00252_x crossref_primary_10_1007_s10384_024_01103_0 crossref_primary_10_1038_s10038_025_01330_4 crossref_primary_10_1038_s10038_020_0745_7 crossref_primary_10_1111_gtc_13164 crossref_primary_10_5551_jat_64906 crossref_primary_10_1016_j_jare_2023_12_018 crossref_primary_10_1016_j_xcrm_2023_101114 crossref_primary_10_3389_fgene_2023_1102101 crossref_primary_10_1126_sciadv_adi8419 crossref_primary_10_2188_jea_JE20230192 crossref_primary_10_5674_jjppp_2302si crossref_primary_10_1038_s42003_021_02813_8 crossref_primary_10_1080_15257770_2024_2387033 crossref_primary_10_1038_s41439_022_00213_w crossref_primary_10_1111_cge_14103 crossref_primary_10_1097_CM9_0000000000002985 crossref_primary_10_1038_s42003_021_02030_3 crossref_primary_10_1371_journal_pone_0236907 crossref_primary_10_1016_j_braindev_2020_10_010 crossref_primary_10_26508_lsa_202101319 crossref_primary_10_3389_fgene_2024_1408952 crossref_primary_10_1016_j_celrep_2023_113324 crossref_primary_10_1038_s10038_024_01314_w crossref_primary_10_1016_j_heliyon_2024_e36023 crossref_primary_10_1002_ajmg_a_62982 crossref_primary_10_1038_s42003_020_01383_5 crossref_primary_10_1002_ajmg_a_62226 crossref_primary_10_1016_j_jacl_2022_01_007 crossref_primary_10_1038_s41467_022_29109_7 crossref_primary_10_1002_ajmg_a_61373 crossref_primary_10_1016_j_jpeds_2020_01_064 crossref_primary_10_1371_journal_pone_0239614 crossref_primary_10_1002_ajmg_a_61892 crossref_primary_10_1038_s41588_024_01782_y crossref_primary_10_1089_thy_2021_0417 crossref_primary_10_1080_15476286_2024_2340297 crossref_primary_10_1093_rheumatology_keae492 crossref_primary_10_1016_j_ejmg_2022_104512 crossref_primary_10_1002_gepi_70002 crossref_primary_10_1007_s12272_019_01193_2 crossref_primary_10_1093_nar_gkac638 crossref_primary_10_1093_hmg_ddab361 crossref_primary_10_1111_pcn_13474 crossref_primary_10_1007_s12282_022_01404_7 crossref_primary_10_1093_dnares_dsae028 crossref_primary_10_1007_s13340_023_00618_0 crossref_primary_10_1093_nar_gkz829 crossref_primary_10_1371_journal_pone_0289029 crossref_primary_10_1038_s10038_022_01094_1 crossref_primary_10_1016_j_xgen_2024_100625 crossref_primary_10_1111_cas_14552 crossref_primary_10_1016_j_braindev_2020_02_008 crossref_primary_10_1016_j_reth_2022_11_007 crossref_primary_10_3390_jpm12122040 crossref_primary_10_1002_ajmg_a_63614 crossref_primary_10_1016_j_cll_2020_02_002 crossref_primary_10_3389_fimmu_2024_1475179 crossref_primary_10_1111_cas_16365 crossref_primary_10_1038_s41439_022_00222_9 crossref_primary_10_1111_ped_14565 crossref_primary_10_1016_j_bbrc_2019_11_151 crossref_primary_10_1016_j_jacl_2020_05_007 crossref_primary_10_1038_s10038_020_0786_y crossref_primary_10_1038_s41525_022_00298_w crossref_primary_10_1111_cge_14536 crossref_primary_10_1016_j_xgen_2025_100776 crossref_primary_10_1038_s10038_024_01223_y crossref_primary_10_1016_j_ymgmr_2023_100968 crossref_primary_10_1093_molbev_msab060 crossref_primary_10_1038_s41439_020_00133_7 crossref_primary_10_1111_pcn_13731 crossref_primary_10_1002_ajmg_a_63328 crossref_primary_10_1038_s42003_022_03953_1 crossref_primary_10_1038_s10038_022_01015_2 crossref_primary_10_1038_s41422_023_00849_5 crossref_primary_10_1007_s10875_021_00977_w crossref_primary_10_1210_clinem_dgac572 crossref_primary_10_1038_s41564_023_01381_3 crossref_primary_10_1126_scitranslmed_abf3274 crossref_primary_10_1016_j_chest_2021_08_052 crossref_primary_10_1038_s10038_020_0751_9 crossref_primary_10_1111_cas_14290 crossref_primary_10_1038_s42003_020_0812_9 crossref_primary_10_1136_jmg_2022_109027 |
Cites_doi | 10.1186/1471-2164-16-S2-S7 10.1093/nar/29.1.308 10.1126/science.1219240 10.1016/j.ijcard.2013.03.028 10.1038/ncomms9018 10.2188/jea.JE20150268 10.1186/1471-2105-16-S17-S3 10.1038/s10038-017-0347-1 10.4161/fly.19695 10.1093/nar/gkx978 10.1101/gr.135350.111 10.1016/j.ab.2014.08.015 10.1093/bioinformatics/btp352 10.1038/ejhg.2017.106 10.1371/journal.pmed.1001779 10.1038/nature19057 10.1038/hgv.2015.50 10.1016/j.bcp.2018.09.010 10.1038/nature15393 10.1016/j.dmpk.2018.08.003 10.1038/s41467-018-03274-0 10.1093/ije/dyu229 10.1038/jhg.2015.68 10.1124/dmd.118.081737 10.1093/bioinformatics/btu548 10.3389/fgene.2012.00035 10.1101/531210 10.1007/978-4-431-68302-5_25 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | the Tohoku Medical Megabank Project Study Group Tohoku Medical Megabank Project Study Group |
CorporateAuthor_xml | – name: the Tohoku Medical Megabank Project Study Group – name: Tohoku Medical Megabank Project Study Group |
DBID | C6C AAYXX CITATION NPM 3V. 7T3 7X7 7XB 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41439-019-0059-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Human Genome Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Human Genome Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2054-345X |
ExternalDocumentID | PMC6581902 31240104 10_1038_s41439_019_0059_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) grantid: JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105003; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002 funderid: https://doi.org/10.13039/100009619 – fundername: ; grantid: JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105003; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002; JP18km0105001; JP18km0105002 |
GroupedDBID | 0R~ 3V. 53G 5VS 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD EMOBN FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7T3 7XB 8FD 8FE 8FH 8FK AARCD AZQEC DWQXO FR3 GNUQQ K9. LK8 P64 PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c560t-a06622b3cfa4ec4f11f0009a2c1e6339b97c90d06da7549c67913eca770f5a73 |
IEDL.DBID | C6C |
ISSN | 2054-345X |
IngestDate | Thu Aug 21 14:05:16 EDT 2025 Fri Jul 11 12:42:07 EDT 2025 Wed Aug 13 04:50:19 EDT 2025 Thu Jan 02 22:59:20 EST 2025 Tue Jul 01 02:40:51 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Fri Feb 21 02:39:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rare variants Structural variation |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-a06622b3cfa4ec4f11f0009a2c1e6339b97c90d06da7549c67913eca770f5a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3453-2171 0000-0002-8256-0735 |
OpenAccessLink | https://www.nature.com/articles/s41439-019-0059-5 |
PMID | 31240104 |
PQID | 2242773159 |
PQPubID | 2041955 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581902 proquest_miscellaneous_2250622098 proquest_journals_2242773159 pubmed_primary_31240104 crossref_citationtrail_10_1038_s41439_019_0059_5 crossref_primary_10_1038_s41439_019_0059_5 springer_journals_10_1038_s41439_019_0059_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-18 |
PublicationDateYYYYMMDD | 2019-06-18 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Human genome variation |
PublicationTitleAbbrev | Hum Genome Var |
PublicationTitleAlternate | Hum Genome Var |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Springer Nature B.V |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V |
References | Scholtens (CR2) 2015; 44 Sudlow (CR1) 2015; 12 Hishinuma (CR10) 2018; 46 Lek (CR4) 2016; 536 CR19 CR18 CR15 Katsuoka (CR17) 2014; 466 CR13 Tabara (CR16) 2013; 168 Harrow (CR21) 2012; 22 Nagasaki (CR5) 2015; 6 Okada (CR29) 2018; 9 Auton (CR14) 2015; 526 Cingolani (CR20) 2012; 6 Nariai (CR28) 2015; 16 Kumondai (CR12) 2018; 33 Szolek (CR27) 2014; 30 Yamaguchi-Kabata (CR6) 2015; 2 Watanabe (CR11) 2018; 156 Kawai (CR25) 2015; 60 CR22 Wysoker (CR24) 2009; 25 Tadaka (CR30) 2018; 46 Sherry (CR23) 2001; 29 Phan, Gao, Tran, Vo (CR26) 2015; 16 Yamaguchi-Kabata (CR8) 2018; 63 Adachi (CR9) 2017; 25 Kuriyama (CR7) 2016; 26 Tennessen (CR3) 2012; 336 P Cingolani (59_CR20) 2012; 6 T Adachi (59_CR9) 2017; 25 59_CR13 59_CR15 A Szolek (59_CR27) 2014; 30 T Watanabe (59_CR11) 2018; 156 Y Tabara (59_CR16) 2013; 168 F Katsuoka (59_CR17) 2014; 466 Y Kawai (59_CR25) 2015; 60 S Kuriyama (59_CR7) 2016; 26 A Wysoker (59_CR24) 2009; 25 ST Sherry (59_CR23) 2001; 29 E Hishinuma (59_CR10) 2018; 46 59_CR18 59_CR19 JA Tennessen (59_CR3) 2012; 336 M Lek (59_CR4) 2016; 536 59_CR22 Y Okada (59_CR29) 2018; 9 J Harrow (59_CR21) 2012; 22 V Phan (59_CR26) 2015; 16 Y Yamaguchi-Kabata (59_CR6) 2015; 2 C Sudlow (59_CR1) 2015; 12 S Tadaka (59_CR30) 2018; 46 N Nariai (59_CR28) 2015; 16 Y Yamaguchi-Kabata (59_CR8) 2018; 63 A Auton (59_CR14) 2015; 526 M Nagasaki (59_CR5) 2015; 6 M Kumondai (59_CR12) 2018; 33 S Scholtens (59_CR2) 2015; 44 |
References_xml | – ident: CR22 – volume: 16 year: 2015 ident: CR28 article-title: HLA-VBSeq: Accurate HLA typing at full resolution from whole-genome sequencing data publication-title: BMC Genomics doi: 10.1186/1471-2164-16-S2-S7 – ident: CR18 – volume: 29 start-page: 308 year: 2001 end-page: 311 ident: CR23 article-title: dbSNP: the NCBI database of genetic variation publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.1.308 – volume: 336 start-page: 64 year: 2012 end-page: 69 ident: CR3 article-title: Evolution and functional impact of rare coding variation from deep sequencing of human exomes publication-title: Science (80-.). doi: 10.1126/science.1219240 – volume: 168 start-page: 2673 year: 2013 end-page: 2677 ident: CR16 article-title: Increased aortic wave reflection and smaller pulse pressure amplification in smokers and passive smokers confirmed by urinary cotinine levels: The Nagahama Study publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2013.03.028 – volume: 6 start-page: 1 year: 2015 end-page: 13 ident: CR5 article-title: Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals publication-title: Nat. Commun. doi: 10.1038/ncomms9018 – volume: 26 start-page: 493 year: 2016 end-page: 511 ident: CR7 article-title: The Tohoku Medical Megabank Project: design and mission publication-title: J. Epidemiol. doi: 10.2188/jea.JE20150268 – volume: 16 year: 2015 ident: CR26 article-title: How genome complexity can explain the difficulty of aligning reads to genomes publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-16-S17-S3 – volume: 63 start-page: 213 year: 2018 end-page: 230 ident: CR8 article-title: Evaluation of reported pathogenic variants and their frequencies in a Japanese population based on a whole-genome reference panel of 2049 individuals article publication-title: J. Hum. Genet. doi: 10.1038/s10038-017-0347-1 – volume: 6 start-page: 80 year: 2012 end-page: 92 ident: CR20 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 publication-title: Fly (Austin). doi: 10.4161/fly.19695 – volume: 46 start-page: D551 year: 2018 end-page: D557 ident: CR30 article-title: JMorp: Japanese Multi Omics Reference Panel publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx978 – volume: 22 start-page: 1760 year: 2012 end-page: 1774 ident: CR21 article-title: GENCODE: The reference human genome annotation for the ENCODE project publication-title: Genome Res. doi: 10.1101/gr.135350.111 – volume: 466 start-page: 27 year: 2014 end-page: 29 ident: CR17 article-title: An efficient quantitation method of next-generation sequencing libraries by using MiSeq sequencer publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.08.015 – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: CR24 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – ident: CR19 – volume: 25 start-page: 1025 year: 2017 end-page: 1028 ident: CR9 article-title: Japan’s initiative on rare and undiagnosed diseases (IRUD): towards an end to the diagnostic odyssey publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2017.106 – volume: 12 year: 2015 ident: CR1 article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001779 – volume: 536 start-page: 285 year: 2016 end-page: 291 ident: CR4 article-title: Analysis of protein-coding genetic variation in 60,706 humans publication-title: Nature doi: 10.1038/nature19057 – volume: 2 start-page: 15050 year: 2015 ident: CR6 article-title: iJGVD: an integrative Japanese genome variation database based on whole-genome sequencing publication-title: Hum. Genome Var. doi: 10.1038/hgv.2015.50 – volume: 156 start-page: 420 year: 2018 end-page: 430 ident: CR11 article-title: Functional characterization of 40 CYP2B6 allelic variants by assessing efavirenz 8-hydroxylation publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.09.010 – volume: 526 start-page: 68 year: 2015 end-page: 74 ident: CR14 article-title: A global reference for human genetic variation publication-title: Nature doi: 10.1038/nature15393 – volume: 33 start-page: 258 year: 2018 end-page: 263 ident: CR12 article-title: Development and application of a rapid and sensitive genotyping method for pharmacogene variants using the single-stranded tag hybridization chromatographic printed-array strip (STH-PAS) publication-title: Drug Metab. Pharmacokinet. doi: 10.1016/j.dmpk.2018.08.003 – ident: CR15 – volume: 9 start-page: 1631 issue: 1 year: 2018 ident: CR29 article-title: Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese publication-title: Nat. Commun. doi: 10.1038/s41467-018-03274-0 – ident: CR13 – volume: 44 start-page: 1172 year: 2015 end-page: 1180 ident: CR2 article-title: Cohort Profile: LifeLines, a three-generation cohort study and biobank publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyu229 – volume: 60 start-page: 581 year: 2015 end-page: 587 ident: CR25 article-title: Japonica array: Improved genotype imputation by designing a population-specific SNP array with 1070 Japanese individuals publication-title: J. Hum. Genet. doi: 10.1038/jhg.2015.68 – volume: 46 start-page: 1083 year: 2018 end-page: 1090 ident: CR10 article-title: Functional characterization of 21 allelic variants of dihydropyrimidine dehydrogenase identified in 1070 Japanese individuals publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.118.081737 – volume: 30 start-page: 3310 year: 2014 end-page: 3316 ident: CR27 article-title: OptiType: Precision HLA typing from next-generation sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu548 – ident: 59_CR19 – volume: 63 start-page: 213 year: 2018 ident: 59_CR8 publication-title: J. Hum. Genet. doi: 10.1038/s10038-017-0347-1 – volume: 466 start-page: 27 year: 2014 ident: 59_CR17 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.08.015 – volume: 2 start-page: 15050 year: 2015 ident: 59_CR6 publication-title: Hum. Genome Var. doi: 10.1038/hgv.2015.50 – volume: 33 start-page: 258 year: 2018 ident: 59_CR12 publication-title: Drug Metab. Pharmacokinet. doi: 10.1016/j.dmpk.2018.08.003 – volume: 25 start-page: 1025 year: 2017 ident: 59_CR9 publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2017.106 – volume: 16 year: 2015 ident: 59_CR28 publication-title: BMC Genomics doi: 10.1186/1471-2164-16-S2-S7 – ident: 59_CR22 doi: 10.3389/fgene.2012.00035 – volume: 22 start-page: 1760 year: 2012 ident: 59_CR21 publication-title: Genome Res. doi: 10.1101/gr.135350.111 – volume: 536 start-page: 285 year: 2016 ident: 59_CR4 publication-title: Nature doi: 10.1038/nature19057 – volume: 60 start-page: 581 year: 2015 ident: 59_CR25 publication-title: J. Hum. Genet. doi: 10.1038/jhg.2015.68 – volume: 6 start-page: 80 year: 2012 ident: 59_CR20 publication-title: Fly (Austin). doi: 10.4161/fly.19695 – volume: 29 start-page: 308 year: 2001 ident: 59_CR23 publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.1.308 – ident: 59_CR15 doi: 10.1101/531210 – ident: 59_CR13 doi: 10.1007/978-4-431-68302-5_25 – volume: 46 start-page: 1083 year: 2018 ident: 59_CR10 publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.118.081737 – volume: 336 start-page: 64 year: 2012 ident: 59_CR3 publication-title: Science (80-.). doi: 10.1126/science.1219240 – ident: 59_CR18 – volume: 25 start-page: 2078 year: 2009 ident: 59_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 526 start-page: 68 year: 2015 ident: 59_CR14 publication-title: Nature doi: 10.1038/nature15393 – volume: 16 year: 2015 ident: 59_CR26 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-16-S17-S3 – volume: 26 start-page: 493 year: 2016 ident: 59_CR7 publication-title: J. Epidemiol. doi: 10.2188/jea.JE20150268 – volume: 46 start-page: D551 year: 2018 ident: 59_CR30 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx978 – volume: 156 start-page: 420 year: 2018 ident: 59_CR11 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.09.010 – volume: 9 start-page: 1631 issue: 1 year: 2018 ident: 59_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03274-0 – volume: 12 year: 2015 ident: 59_CR1 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1001779 – volume: 30 start-page: 3310 year: 2014 ident: 59_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu548 – volume: 6 start-page: 1 year: 2015 ident: 59_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms9018 – volume: 168 start-page: 2673 year: 2013 ident: 59_CR16 publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2013.03.028 – volume: 44 start-page: 1172 year: 2015 ident: 59_CR2 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyu229 |
SSID | ssj0001594813 |
Score | 2.4651787 |
Snippet | The first step towards realizing personalized healthcare is to catalog the genetic variations in a population. Since the dissemination of individual-level... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28 |
SubjectTerms | 631/208/726/649/2157 631/208/726/649/2219 Biomedical and Life Sciences Biomedicine Gene Expression Gene Function Gene Therapy Human Genetics Molecular Medicine Population Population genetics |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SBEovpekrbpKiQE8pavSwLbuXUkpD2JCQQwp7KBitLJHAxk7i3UL_fWb8WrahORhsJGNrRtJ80oy-AfgkM6fQCpVcBp_yWGclz7VwXOugSrT_QbQHac_O05Nf8WSaTPsNt6YPqxzmxHaiLmtHe-RHaGqUMRqt77fbO05Zo8i72qfQeAZbRF1GIV1malZ7LC0XiR6cmTo7amLEBxQghBcCC56sm6NHGPNxqOQ__tLWDB2_gpc9fmTfO4Vvw4avXsPzs95D_gZ-6y_J6eTi_I_6ymzFKFPK3LNw30VM_2U4-P2c1YEhAlBsYum58ex6PJfV4L2bL8mkMQSHbMrcFYXsNfWNfwuXxz8vf5zwPoMCd4hkFtwSv7uaaRds7F0cpAwEqqxy0qda57PcuFyUIi2twYWiS00utXfWGBESa_Q72Kzqyu8A81YSE7tHFYrYJrhQi60rYxSMTYIsVQRikGPhenZxSnIxL1ovt86KTvQFir4g0RdJBIfjK7cdtcZTlfcG5RT9KGuKVZ-I4GAsxvFBTg8UX72kOolAGYg8i-B9p8vxaxrBDa1HIzBrWh4rEPf2ekl1fdVycCNwQyiFzf489IfVb_23ER-ebsQuvFBtz0y5zPZgc3G_9PsIeRazj22_fgAgqvxC priority: 102 providerName: ProQuest |
Title | 3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome |
URI | https://link.springer.com/article/10.1038/s41439-019-0059-5 https://www.ncbi.nlm.nih.gov/pubmed/31240104 https://www.proquest.com/docview/2242773159 https://www.proquest.com/docview/2250622098 https://pubmed.ncbi.nlm.nih.gov/PMC6581902 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ygNJL6btO00WFnlrU6mFbdm6bJSG4ZAltCnsoGK0skcDWW-LdQP59RvIjbJcWejC2kYSlGcnzSTP6BPCBZ0agFaoodzalscwqmktmqJROVGj_HQsbac-n6dmPuJglsx3g_V6YELQfKC3Db7qPDvvSxGjYfWQPXogIaLIL-5653XfqSTp5WFYJ9COy91_KbLvkpgXagpXb0ZF_uEiD5Tl9Ck86yEjGbSWfwY6tn8Oj884p_gJ-ys_J1-JieiuOiK6JPxxlYYm7aYOk7wiOd7sgS0fQ6AtSaP_eWHI9bMVq8Nks1t6KEcSDZEbMlY_Sa5a_7Eu4PD25nJzR7tAEahC8rKj2lO5iLo3TsTWx49x5HKWF4TaVMp_nyuSsYmmlFc4NTapyLq3RSjGXaCVfwV69rO0bIFZzT75uUWss1gnOzWJtqhgFoxPHKxEB6-VYmo5Q3J9rsSiDY1tmZSv6EkVfetGXSQQfhyK_WzaNf2U-7JVTdgOrKRFxCKUkqjmC90MyDgnv50DxLdc-T8JQBizPInjd6nL4mkQ846egEagNLQ8ZPN32Zkp9fRVotxGrIXrCZn_q-8NDtf7aiIP_yv0WHovQUVPKs0PYW92s7TsEPav5CHbVTI1gfzwuvhd4Pz6ZXnwbhc4_CgsJ94_e_qY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3raxQxEB_qFdQv4rNdWzWCflFis8k-BREfLde73lHkhPsghFw2oYVzt-3eKf2j_B-d7Os4i_3WDwu7bPaRmUnmN5nJDMArP9EctVBGfWsiGogko6lgmgpheYb637JqI-1oHPW_B4NpON2AP-1eGBdW2c6J1USdFdqtke-hquFxLFD7fjw7p65qlPOutiU0arEYmsvfaLKVHw6_In9fc36wP_nSp01VAapRuy-ocjnP-UxoqwKjA-v71gENxbVvIiHSWRrrlGUsylSMxpOO4tQXRqs4ZjZUscDX3oLNQKAl04PNz_vj42-rRZ0q-Ylovaci2SsDBCQuIgkPRDI0XNd_V0Dt1djMfxy0ld47uA_3GsBKPtUS9gA2TP4Qbo8al_wj-CHehcPB8fgXf09UTlxplrkh9qIO0b4kONuYOSksQcjByUC569KQ024jWInner50OpQgGiVTok9cjGBZ_DSPYXITxH0CvbzIzTYQo3yX-t2gzLBAhWgZBkpnARJGhdbPuAespaPUTTpzV1VjLiu3ukhkTXqJpJeO9DL04E33yFmdy-O6xrstc2QzrEu5EkIPXna3cUA6LwuSr1i6NiFDGrA08WCr5mX3NYFoyhnAHsRrXO4auGTf63fy05Mq6TciRcRu2O23rTysfuu_nXh6fSdewJ3-ZHQkjw7Hwx24yyspjaif7EJvcbE0zxBvLWbPGyknIG94XP0FAXA5cg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG9SChgJLiCzsZ3ECRJCiLJqd-mqhyLtAcnyOrZaaZuUZpeqP63_jnFeq6Witx4iJYrz8HjG841nPAPwlqWGoxbKKXM2oZFIc5qJ0FAhHM9R_7uw3kh7MEn2fkajaTzdgKtuL4wPq-zmxHqizkvj18gHqGq4lAK178C1YRGHu8MvZ7-pryDlPa1dOY2GRcb28gLNt-rz_i6O9TvOh9-Pvu3RtsIANajpF1T7_Od8JozTkTWRY8x50KG5YTYRIptl0mRhHia5lmhImURmTFijpQxdrKXA196Bu1LEzIuYnMrV8k6dBkV0flSRDqoIoYmPTcIDMQ2N1zXhNXh7PUrzH1dtrQGHD-B-C13J14bXHsKGLR7B1kHrnH8Mv8THeDw6nPzhn4guiC_SMrfEnTfB2pcE5x07J6UjCD44GWl_XVly0m8Jq_DczJdemxLEpWRKzLGPFqzKU_sEjm6DtE9hsygL-xyI1cwngbfIPWGkY7QRI23yCAmjY8dyHkDY0VGZNrG5r68xV7WDXaSqIb1C0itPehUH8L5_5KzJ6nFT451ucFQr4JVasWMAb_rbKJre34LkK5e-TRwiDcIsDeBZM5b91wTiKm8KByDXRrlv4NN-r98pTo7r9N-IGRHFYbc_dPyw-q3_dmL75k68hi2UJvVjfzJ-Afd4zaQJZekObC7Ol_YlAq_F7FXN4gTULYvUX0uaPEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3.5KJPNv2%3A+an+allele+frequency+panel+of+3552+Japanese+individuals+including+the+X+chromosome&rft.jtitle=Human+genome+variation&rft.au=Tadaka%2C+Shu&rft.au=Katsuoka%2C+Fumiki&rft.au=Ueki%2C+Masao&rft.au=Kojima%2C+Kaname&rft.date=2019-06-18&rft.issn=2054-345X&rft.eissn=2054-345X&rft.volume=6&rft.spage=28&rft_id=info:doi/10.1038%2Fs41439-019-0059-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-345X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-345X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-345X&client=summon |