Nanobody Conjugates for Targeted Cancer Therapy and Imaging
Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, lo...
Saved in:
Published in | Technology in cancer research & treatment Vol. 20; p. 15330338211010117 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.01.2021
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging. |
---|---|
AbstractList | Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their
in vivo
pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging. Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging. Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging.Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging. Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging. |
Author | Ding, Chuanfeng Wu, Chuang Yi, Lun Kang, Wei Zhou, Qian Yu, Yongsheng Zheng, Danni Xue, Chuang Ma, Xiao Tong, Xinyi |
AuthorAffiliation | 1 School of Bioengineering, Dalian University of Technology, Dalian, China 2 Ningbo Institute of Dalian University of Technology, Ningbo, China 4 Xiamen Medical College, Xiamen, China 3 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China |
AuthorAffiliation_xml | – name: 3 Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China – name: 1 School of Bioengineering, Dalian University of Technology, Dalian, China – name: 4 Xiamen Medical College, Xiamen, China – name: 2 Ningbo Institute of Dalian University of Technology, Ningbo, China |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-2288-3540 surname: Kang fullname: Kang, Wei – sequence: 2 givenname: Chuanfeng surname: Ding fullname: Ding, Chuanfeng – sequence: 3 givenname: Danni surname: Zheng fullname: Zheng, Danni – sequence: 4 givenname: Xiao surname: Ma fullname: Ma, Xiao – sequence: 5 givenname: Lun surname: Yi fullname: Yi, Lun – sequence: 6 givenname: Xinyi surname: Tong fullname: Tong, Xinyi email: yongshengyu@tongji.edu.cn – sequence: 7 givenname: Chuang surname: Wu fullname: Wu, Chuang – sequence: 8 givenname: Chuang surname: Xue fullname: Xue, Chuang email: xue.1@dlut.edu.cn – sequence: 9 givenname: Yongsheng orcidid: 0000-0001-5139-3439 surname: Yu fullname: Yu, Yongsheng email: yongshengyu@tongji.edu.cn – sequence: 10 givenname: Qian surname: Zhou fullname: Zhou, Qian email: shzhouqian@126.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33929911$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UtFuFCEUJabGtqsf4IuZxBdftnKBGSAmJmZj6yaNvtRncgeY6WxmYYXZJvv3st222hobHoDDOSfncu8pOQoxeELeAj0DkPIj1JxTzhUDoGWBfEFO9th8Dx49nEVzTE5zXlHKmobDK3LMuWZaA5yQT98xxDa6XbWIYbXtcfK56mKqrjD1fvKuWmCwvtyvfcLNrsLgquUa-yH0r8nLDsfs39ztM_Lz_OvV4tv88sfFcvHlcm7rhk5zJRuHtlXCMt9RbpmzTlOqpFW8rRUggnQe0LeUt7T1NaLTBbba1YIJzWdkefB1EVdmk4Y1pp2JOJhbIKbeYJoGO3rTCI5SA9egGqE7i0pRkG1tWUdr2bXF6_PBa7Nt195ZH6aE4yPTxy9huDZ9vDEKAGrRFIMPdwYp_tr6PJn1kK0fRww-brNhNSulgbylvn9CXcVtCuWrDGecCdEoxp9jsQY400qUJs_Iu79zPwS-72QhyAPBpphz8p2xw4TTEPdlDKMBavYzY_6ZmaKEJ8p78-c0ZwdNxt7_Cfx_wW-CD8xV |
CitedBy_id | crossref_primary_10_1186_s12951_024_02900_y crossref_primary_10_3390_cancers15133493 crossref_primary_10_1002_adtp_202300076 crossref_primary_10_3390_pharmaceutics15102374 crossref_primary_10_1007_s11030_024_11086_2 crossref_primary_10_3390_ijms241713229 crossref_primary_10_1186_s12935_024_03259_8 crossref_primary_10_3390_ijms232213687 crossref_primary_10_3390_cancers16152681 crossref_primary_10_3892_ijmm_2023_5336 crossref_primary_10_1007_s43152_023_00044_z crossref_primary_10_1016_j_addr_2023_114726 crossref_primary_10_1021_acsnano_2c12733 crossref_primary_10_1021_acs_bioconjchem_3c00374 crossref_primary_10_21931_RB_2023_08_02_13 crossref_primary_10_1007_s00259_025_07087_4 crossref_primary_10_1093_abt_tbae005 crossref_primary_10_3390_antib11040078 crossref_primary_10_1016_j_bbcan_2025_189284 crossref_primary_10_1016_j_intimp_2023_110999 crossref_primary_10_1016_j_lfs_2024_122593 crossref_primary_10_1016_j_canlet_2023_216191 crossref_primary_10_1016_j_jconrel_2023_05_031 |
Cites_doi | 10.1016/j.nano.2013.12.007 10.1093/oxfordjournals.molbev.a003988 10.1093/protein/gzv032 10.1158/0008-5472.CAN-05-0542 10.1021/acs.molpharmaceut.9b00360 10.1038/s41467-018-07131-y 10.1016/j.bbagen.2013.04.023 10.1038/nrc.2017.11 10.1016/j.jconrel.2013.08.298 10.3390/cancers12030738 10.1007/s00280-015-2712-0 10.1158/0008-5472.CAN-03-3935 10.1016/j.vetimm.2008.10.299 10.1002/anie.201507596 10.1186/s13550-016-0166-y 10.1073/pnas.0505379103 10.1002/cbic.201500009 10.1586/era.13.16 10.1517/13543784.2012.656197 10.1007/s00259-013-2471-2 10.1126/science.aaa5026 10.1093/protein/7.9.1129 10.1016/j.jmb.2007.08.027 10.2967/jnumed.108.060392 10.2310/7290.2011.00025 10.1158/1535-7163.MCT-18-0849 10.1089/104303403767740786 10.1038/celldisc.2017.4 10.2967/jnumed.118.224170 10.1083/jcb.201409074 10.1007/s11307-008-0133-8 10.1126/scitranslmed.aac5415 10.3390/cancers11060872 10.1016/j.jconrel.2016.03.014 10.1186/s12951-018-0392-8 10.3390/antib8040055 10.2967/jnumed.112.111021 10.1038/clpt.2010.12 10.7150/thno.8156 10.1038/363446a0 10.1146/annurev-biochem-063011-092449 10.1056/NEJMoa1817226 10.1038/s41556-018-0236-7 10.7554/eLife.11349 10.1007/s00253-005-0300-7 10.1038/nsb0996-803 10.1073/pnas.1202832109 10.2967/jnumed.120.255679 10.1038/nrc1893 10.1021/acs.bioconjchem.5b00602 10.1002/jgm.2604 10.1038/s41591-018-0255-8 10.1126/science.1060077 10.1021/bc500111t 10.1128/AEM.71.1.442-450.2005 10.4161/mabs.2.1.10786 10.1038/nmeth953 10.1016/j.nucmedbio.2016.01.002 10.1002/psc.2996 10.4049/jimmunol.175.6.3769 10.1038/nchembio.720 10.3390/ijms19020403 10.1002/ijc.26145 10.1038/nmeth886 10.1016/j.jconrel.2020.04.030 10.1073/pnas.1912487116 10.3389/fimmu.2017.01442 10.1016/j.vaccine.2005.05.017 10.1002/cmmi.491 10.1186/s12934-019-1053-9 10.1158/2326-6066.CIR-15-0231 10.2967/jnumed.107.048538 10.1007/s12265-012-9435-y 10.1016/j.drudis.2016.04.003 10.4161/19420862.2014.975099 10.1089/cbr.2020.3941 10.1016/j.coph.2003.05.002 10.1371/journal.ppat.1002072 10.1039/C7SC00574A 10.1073/pnas.98.2.777-e 10.3892/ijo.2015.3210 10.1016/j.jmb.2018.09.002 10.1016/j.nbt.2012.09.002 10.1186/s12951-015-0091-7 10.1186/s12929-019-0592-z 10.1002/cbic.201500591 10.1007/s40259-019-00392-z 10.1080/17425247.2016.1178235 10.1038/374168a0 10.2967/jnumed.115.162024 10.1016/j.molmed.2011.12.003 10.1002/ijc.10212 10.1186/s12967-014-0352-5 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 2021 SAGE Publications |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 2021 SAGE Publications |
DBID | AFRWT AAYXX CITATION NPM 3V. 7TO 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1177/15330338211010117 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic Oncogenes and Growth Factors Abstracts PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1533-0338 |
ExternalDocumentID | oai_doaj_org_article_643a7913918649fca88017b5c2f057fb PMC8111546 33929911 10_1177_15330338211010117 10.1177_15330338211010117 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21807043 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 21807043 |
GroupedDBID | --- 0R~ 123 53G 54M 7X7 8FI 8FJ AAJPV AAJQC AARDL AASGM ABAWP ABQXT ABUWG ABVFX ACARO ACDXX ACGFS ACHEB ACROE ADBBV ADOGD ADPDF AENEX AERKM AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AJUZI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AUTPY AYAKG BDDNI BENPR BPHCQ BSEHC BVXVI CCPQU DC. EBS EMOBN F5P FYUFA GROUPED_DOAJ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HMCUK HYE J8X K.F O9- OK1 OVD P2P PHGZM PHGZT PIMPY PQQKQ ROL RPM SAUOL SCDPB SCNPE SFC SJN TEORI UKHRP Y4B AAYXX CITATION -TM AABMB AADCB AADUE AARIX ABEIX ABFWQ ABKRH ABRHV ACDSZ ACOFE ADZZY AEQLS AEXNY AFEET AFUIA AGNHF ALJHS B8M BKSCU CDWPY CFDXU DC- DOPDO EJD M4V NPM OVEED UDS ZONMY ZPPRI ZRKOI ZSSAH 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c560t-876dacb84c2ef03c2dcd90087c83b581aa17de1aeb03b0be5aad981ac9d542493 |
IEDL.DBID | DOA |
ISSN | 1533-0346 1533-0338 |
IngestDate | Wed Aug 27 01:30:13 EDT 2025 Thu Aug 21 18:40:34 EDT 2025 Fri Jul 11 06:14:14 EDT 2025 Tue Aug 05 06:10:37 EDT 2025 Mon Jun 30 07:56:03 EDT 2025 Thu Apr 03 06:53:25 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Tue Jul 01 03:10:25 EDT 2025 Sun Jul 27 05:40:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | antibody fragments therapeutic nanobodies targeted caner treatment nanobodies bioconjugations cancer imaging |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-876dacb84c2ef03c2dcd90087c83b581aa17de1aeb03b0be5aad981ac9d542493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5139-3439 0000-0002-2288-3540 |
OpenAccessLink | https://doaj.org/article/643a7913918649fca88017b5c2f057fb |
PMID | 33929911 |
PQID | 2613298430 |
PQPubID | 4450582 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_643a7913918649fca88017b5c2f057fb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8111546 proquest_miscellaneous_2520871746 proquest_journals_3232446823 proquest_journals_2613298430 pubmed_primary_33929911 crossref_citationtrail_10_1177_15330338211010117 crossref_primary_10_1177_15330338211010117 sage_journals_10_1177_15330338211010117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Thousand Oaks – name: Sage CA: Los Angeles, CA |
PublicationTitle | Technology in cancer research & treatment |
PublicationTitleAlternate | Technol Cancer Res Treat |
PublicationYear | 2021 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Dijkers, Oude Munnink, Kosterink 2010; 87 Keyaerts, Xavier, Heemskerk 2016; 57 Yamaguchi, Matsuda, Ohtake 2016; 27 Oliveira, Heukers, Sornkom, Kok, Henegouwen 2013; 172 Kijanka, Warnders, El Khattabi 2013; 40 Chiu, Goulet, Teplyakov, Gilliland 2019; 8 Xie, Dougan, Jailkhani 2019; 116 Bachmann, Mootz 2017; 23 Gainkam, Huang, Caveliers 2008; 49 D’Huyvetter, Vincke, Xavier 2014; 4 Greenberg, Avila, Hughes, Hughes, Mckinney, Flajnik 1995; 374 Brekke, Loset 2003; 3 Jovcevska, Muyldermans 2020; 34 Muyldermans 2013; 82 Stephanopoulos, Francis 2011; 7 Burg, Ingram, Venkatakrishnan 2015; 347 Gattenlohner, Marx, Markfort 2006; 66 Minchinton, Tannock 2006; 6 Oliveira, van Dongen, van Walsum 2012; 11 Desmyter, Transue, Ghahroudi 1996; 3 Dolk, van der Vaart, Lutje Hulsik 2005; 71 Zhang, Wei, Wang 2017; 3 Nadler, Stashenko, Hardy 1980; 40 Pleiner, Bates, Trakhanov 2015; 4 Bathula, Bommadevara, Hayes 2020; 36 De Genst, Silence, Decanniere 2006; 103 Harmsen, van Solt, van Bemmel, Niewold, van Zijderveld 2006; 72 Russo, Bondanza, Ciceri 2012; 18 Huang, Gainkam, Caveliers 2008; 10 Tsumura, Sato, Furuya 2015; 47 Kijanka, van Brussel, van der Wall 2016; 6 Zou, Smith, Nguyen 2005; 175 Bensch, van der Veen, Lub-de Hooge 2018; 24 Brooks, Fresco, Lesk, Singh 2002; 19 Yan, Wang, Zhu 2015; 13 Raje, Berdeja, Lin 2019; 380 Broos, Lecocq, Xavier 2019; 11 Rothbauer, Zolghadr, Tillib 2006; 3 De Munter, Ingels, Goetgeluk 2018; 19 Patra, Das, Fraceto 2018; 16 Bartunek, Barbato, Heyndrickx, Vanderheyden, Wijns, Holz 2013; 6 Nelson 2010; 2 De Groof, Mashayekhi, Fan 2019; 16 Schumacher, Lemke, Helma 2017; 8 D’Huyvetter, De Vos, Caveliers 2020 Steeland, Vandenbroucke, Libert 2016; 21 Tang, Shah, Messerli, Snyder, Breakefield, Weissleder 2003; 14 Hamerscasterman, Atarhouch, Muyldermans 1993; 363 Xavier, Blykers, Vaneycken 2016; 43 Massa, Xavier, De Vos 2014; 25 Dijkers, Kosterink, Rademaker 2009; 50 Papandrianos, Savvopoulos, Barla 2008; 35 Grillo-Lopez 2013; 13 Niemeijer, Leung, Huisman 2018; 9 Massa, Xavier, Muyldermans, Devoogdt 2016; 13 Xavier, Vaneycken, D’Huyvetter 2013; 54 Wang, Brock, Herberich, Schultz 2001; 292 Muyldermans, Baral, Retarnozzo 2009; 128 Muralidharan, Muir 2006; 3 Zavrtanik, Luken, Loris, Lah, Hadzi 2018; 430 Gray, Tao, DePorter, Spiegel, McNaughton 2016; 17 Porter, Hwang, Frey 2015; 7 van de Water, Bagci-Onder 2012; 109 Tintelnot, Baum, Schultheiss 2019; 18 Harmsen, Van Solt, Fijten, Van Setten 2005; 23 Zah, Lin, Silva-Benedict, Jensen, Chen 2016; 4 Koide, Tereshko, Uysal, Margalef, Kossiakoff, Koide 2007; 373 Xing, Chand, Liu, Cook, O’Doherty, Zhao, Wong, Meszaros, Ting, Zhao 2019; 60 Lu, Hwang, Liu 2020; 27 Huet, Growney, Johnson 2014; 6 Ta, Redeker, Billen 2015; 28 Vaddepally, Kharel, Pandey, Garje, Chandra 2020; 12 Deken, Kijanka, Hernandez 2020; 323 Alderton 2017; 17 van Driel, Boonstra, Slooter 2016; 229 D’Huyvetter, Aerts, Xavier 2012; 7 Dennler, Bailey, Spycher, Schibli, Fischer 2015; 16 Curran, Pegram, Brentjens 2012; 14 Muyldermans, Atarhouch, Saldanha, Barbosa, Hamers 1994; 7 Zhu, Gong, Hu, Ou, Wan 2014; 12 Sleep, Cameron, Evans 2013; 1830 Hu, Liu, Muyldermans 2017; 8 Sarker, Rathore, Gupta 2019; 18 Heukers, Henegouwen, Oliveira 2014; 10 Cortez-Retamozo, Lauwereys, Gh 2002; 98 Lawson, Kessenbrock, Davis, Pervolarakis, Werb 2018; 20 Aboody, Brown, Rainov 2001; 98 Helma, Cardoso, Muyldermans, Leonhardt 2015; 209 Stijlemans, Caljon, Natesan 2011; 7 Behdani, Zeinali, Karimipour 2013; 30 Hernandez, Bott, Patel 2018; 24 Kelly, Lee, Tahtis 2008; 23 Rashidian, Wang, Edens 2016; 55 Peled, Wald, Burger 2012; 21 Papadopoulos, Isaacs, Bilic 2015; 75 Cortez-Retamozo, Backmann, Senter 2004; 64 Roovers, Vosjan, Laeremans 2011; 129 bibr49-15330338211010117 bibr91-15330338211010117 bibr36-15330338211010117 bibr37-15330338211010117 bibr77-15330338211010117 bibr64-15330338211010117 bibr51-15330338211010117 bibr24-15330338211010117 bibr11-15330338211010117 bibr78-15330338211010117 bibr88-15330338211010117 bibr48-15330338211010117 bibr12-15330338211010117 bibr22-15330338211010117 bibr52-15330338211010117 bibr62-15330338211010117 bibr92-15330338211010117 Kelly MP (bibr10-15330338211010117) 2008; 23 bibr38-15330338211010117 bibr2-15330338211010117 bibr63-15330338211010117 bibr53-15330338211010117 bibr9-15330338211010117 bibr19-15330338211010117 bibr93-15330338211010117 bibr79-15330338211010117 bibr89-15330338211010117 bibr13-15330338211010117 bibr33-15330338211010117 bibr87-15330338211010117 bibr8-15330338211010117 bibr20-15330338211010117 Xie YJ (bibr71-15330338211010117) 2019; 116 bibr47-15330338211010117 bibr67-15330338211010117 bibr27-15330338211010117 bibr4-15330338211010117 bibr90-15330338211010117 bibr35-15330338211010117 bibr85-15330338211010117 bibr25-15330338211010117 bibr95-15330338211010117 bibr45-15330338211010117 bibr75-15330338211010117 bibr65-15330338211010117 bibr55-15330338211010117 bibr50-15330338211010117 bibr15-15330338211010117 Aboody KS (bibr61-15330338211010117) 2001; 98 bibr40-15330338211010117 bibr6-15330338211010117 bibr70-15330338211010117 bibr60-15330338211010117 bibr80-15330338211010117 bibr29-15330338211010117 bibr97-15330338211010117 bibr84-15330338211010117 bibr16-15330338211010117 bibr30-15330338211010117 bibr44-15330338211010117 Papandrianos N (bibr23-15330338211010117) 2008; 35 bibr57-15330338211010117 Nadler LM (bibr1-15330338211010117) 1980; 40 bibr17-15330338211010117 bibr31-15330338211010117 bibr42-15330338211010117 bibr68-15330338211010117 bibr32-15330338211010117 bibr72-15330338211010117 bibr58-15330338211010117 bibr28-15330338211010117 bibr82-15330338211010117 bibr18-15330338211010117 bibr73-15330338211010117 bibr43-15330338211010117 bibr69-15330338211010117 bibr83-15330338211010117 bibr59-15330338211010117 bibr26-15330338211010117 bibr81-15330338211010117 bibr39-15330338211010117 bibr46-15330338211010117 bibr74-15330338211010117 bibr94-15330338211010117 bibr3-15330338211010117 Hernandez I (bibr7-15330338211010117) 2018; 24 bibr34-15330338211010117 bibr54-15330338211010117 bibr14-15330338211010117 bibr41-15330338211010117 bibr21-15330338211010117 bibr86-15330338211010117 bibr76-15330338211010117 bibr5-15330338211010117 bibr56-15330338211010117 bibr66-15330338211010117 bibr96-15330338211010117 |
References_xml | – volume: 347 start-page: 1113 issue: 6226 year: 2015 end-page: 1117 article-title: Structural biology. structural basis for chemokine recognition and activation of a viral G protein-coupled receptor publication-title: Science – volume: 229 start-page: 93 year: 2016 end-page: 105 article-title: EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer publication-title: J Control Release – volume: 16 start-page: 71 issue: 1 year: 2018 article-title: Nano based drug delivery systems: recent developments and future prospects publication-title: J Nanobiotechnol – volume: 6 start-page: 1560 issue: 6 year: 2014 end-page: 1570 article-title: Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction publication-title: Mabs-Austin – volume: 43 start-page: 247 issue: 4 year: 2016 end-page: 252 article-title: F-18-nanobody for PET imaging of HER2 overexpressing tumors publication-title: Nucl Med Biol – volume: 28 start-page: 351 issue: 10 year: 2015 end-page: 363 article-title: An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in escherichia coli combined with intein-mediated protein ligation publication-title: Protein Eng Des Sel – volume: 87 start-page: 586 issue: 5 year: 2010 end-page: 592 article-title: Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer publication-title: Clin Pharmacol Ther – volume: 6 start-page: 355 issue: 3 year: 2013 end-page: 363 article-title: Novel antiplatelet agents: ALX-0081, a nanobody directed towards von willebrand factor publication-title: J Cardiovasc Transl – volume: 18 start-page: 193 issue: 4 year: 2012 end-page: 200 article-title: A dual role for genetically modified lymphocytes in cancer immunotherapy publication-title: Trends Mol Med – volume: 7 start-page: 303ra139 issue: 303 year: 2015 article-title: Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia publication-title: Sci Transl Med – volume: 19 start-page: 403 issue: 2 year: 2018 article-title: Nanobody based dual specific CARs publication-title: Int J Mol Sci – volume: 10 start-page: 167 issue: 3 year: 2008 end-page: 175 article-title: SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression publication-title: Mol Imaging Biol – volume: 430 start-page: 4369 issue: 21 year: 2018 end-page: 4386 article-title: Structural basis of epitope recognition by heavy-chain camelid antibodies publication-title: J Mol Biol – volume: 374 start-page: 168 issue: 6518 year: 1995 end-page: 173 article-title: A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks publication-title: Nature – volume: 4 start-page: 708 issue: 7 year: 2014 end-page: 720 article-title: Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody publication-title: Theranostics – volume: 24 start-page: 109 issue: 2 year: 2018 end-page: 112 article-title: Pricing of monoclonal antibody therapies: higher if used for cancer? publication-title: Am J Manag Care – year: 2020 article-title: Phase I trial of (131)I-GMIB-Anti-HER2-VHH1, a new promising candidate for HER2-targeted radionuclide therapy in breast cancer patients publication-title: J Nucl Med – volume: 20 start-page: 1349 issue: 12 year: 2018 end-page: 1360 article-title: Tumour heterogeneity and metastasis at single-cell resolution publication-title: Nat Cell Biol – volume: 7 start-page: 876 issue: 12 year: 2011 end-page: 884 article-title: Choosing an effective protein bioconjugation strategy publication-title: Nat Chem Biol – volume: 57 start-page: 27 issue: 1 year: 2016 end-page: 33 article-title: Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma publication-title: J Nucl Med – volume: 50 start-page: 974 issue: 6 year: 2009 end-page: 981 article-title: Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging publication-title: J Nucl Med – volume: 8 start-page: 55 issue: 4 year: 2019 article-title: Antibody structure and function: the basis for engineering therapeutics publication-title: Antibodies – volume: 71 start-page: 442 issue: 1 year: 2005 end-page: 450 article-title: Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo publication-title: Appl Environ Microbiol – volume: 7 start-page: e1002072 issue: 6 year: 2011 article-title: High affinity nanobodies against the trypanosome brucei VSG are potent trypanolytic agents that block endocytosis publication-title: Plos Pathog – volume: 129 start-page: 2013 issue: 8 year: 2011 end-page: 2024 article-title: A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth publication-title: Int J Cancer – volume: 11 start-page: 872 issue: 6 year: 2019 article-title: Evaluating a single domain antibody targeting human PD-L1 as a nuclear imaging and therapeutic agent publication-title: Cancers (Basel) – volume: 21 start-page: 1076 issue: 7 year: 2016 end-page: 1113 article-title: Nanobodies as therapeutics: big opportunities for small antibodies publication-title: Drug Discov Today – volume: 109 start-page: 16642 issue: 41 year: 2012 end-page: 16647 article-title: Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects publication-title: P Natl Acad Sci USA – volume: 292 start-page: 498 issue: 5516 year: 2001 end-page: 500 article-title: Expanding the genetic code of escherichia coli publication-title: Science – volume: 323 start-page: 269 year: 2020 end-page: 281 article-title: Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session publication-title: J Control Release – volume: 9 start-page: 4664 issue: 1 year: 2018 article-title: Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer publication-title: Nat Commun – volume: 72 start-page: 544 issue: 3 year: 2006 end-page: 551 article-title: Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy publication-title: Appl Microbiol Biot – volume: 6 start-page: 14 issue: 1 year: 2016 article-title: Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization publication-title: Ejnmmi Res – volume: 2 start-page: 77 issue: 1 year: 2010 end-page: 83 article-title: Antibody fragments hope and hype publication-title: Mabs-Austin – volume: 4 start-page: e11349 year: 2015 article-title: Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation publication-title: Elife – volume: 19 start-page: 1645 issue: 10 year: 2002 end-page: 1655 article-title: Evolution of amino acid frequencies in proteins over deep time: Inferred order of introduction of amino acids into the genetic code publication-title: Mol Biol Evol – volume: 3 start-page: 887 issue: 11 year: 2006 end-page: 889 article-title: Targeting and tracing antigens in live cells with fluorescent nanobodies publication-title: Nat Methods – volume: 3 start-page: 544 issue: 5 year: 2003 end-page: 550 article-title: New technologies in therapeutic antibody development publication-title: Curr Opin Pharmacol – volume: 16 start-page: 3145 issue: 7 year: 2019 end-page: 3156 article-title: Nanobody-targeted photodynamic therapy selectively kills viral GPCR-expressing glioblastoma cells publication-title: Mol Pharmaceut – volume: 8 start-page: 3471 issue: 5 year: 2017 end-page: 3478 article-title: Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling publication-title: Chem Sci – volume: 98 start-page: 456 issue: 3 year: 2002 end-page: 462 article-title: Efficient tumor targeting by single-domain antibody fragments of camels publication-title: Int J Cancer – volume: 13 start-page: 399 issue: 4 year: 2013 end-page: 406 article-title: The first antibody therapy for cancer: a personal experience publication-title: Expert Rev Anticancer Ther – volume: 7 start-page: 1129 issue: 9 year: 1994 end-page: 1135 article-title: Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains publication-title: Protein Eng – volume: 21 start-page: 341 issue: 3 year: 2012 end-page: 353 article-title: Development of novel CXCR4-based therapeutics publication-title: Expert Opin Investig Drugs – volume: 4 start-page: 498 issue: 6 year: 2016 end-page: 508 article-title: T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B Cells publication-title: Cancer Immunol Res – volume: 13 start-page: 33 year: 2015 article-title: Characterization and applications of nanobodies against human procalcitonin selected from a novel naive nanobody phage display library publication-title: J Nanobiotechnol – volume: 75 start-page: 887 issue: 5 year: 2015 end-page: 895 article-title: Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic nanobody(R) targeting the DR5 receptor publication-title: Cancer Chemother Pharmacol – volume: 380 start-page: 1726 issue: 18 year: 2019 end-page: 1737 article-title: Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma publication-title: N Engl J Med – volume: 209 start-page: 633 issue: 5 year: 2015 end-page: 644 article-title: Nanobodies and recombinant binders in cell biology publication-title: J Cell Biol – volume: 64 start-page: 2853 issue: 8 year: 2004 end-page: 2857 article-title: Efficient cancer therapy with a nanobody-based conjugate publication-title: Cancer Res – volume: 13 start-page: 1149 issue: 8 year: 2016 end-page: 1163 article-title: Emerging site-specific bioconjugation strategies for radioimmunotracer development publication-title: Expert Opin Drug Deliv – volume: 11 start-page: 33 issue: 1 year: 2012 end-page: 46 article-title: Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody publication-title: Mol Imaging – volume: 36 start-page: 109 issue: 2 year: 2020 end-page: 122 article-title: Nanobodies: the future of antibody-based immune therapeutics publication-title: Cancer Biother Radiopharm – volume: 3 start-page: 17004 year: 2017 article-title: Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade publication-title: Cell Discov – volume: 40 start-page: 3147 issue: 9 year: 1980 end-page: 3154 article-title: Serotherapy of a patient with a monoclonal-antibody directed against a human lymphoma-associated antigen publication-title: Cancer Res – volume: 1830 start-page: 5526 issue: 12 year: 2013 end-page: 5534 article-title: Albumin as a versatile platform for drug half-life extension publication-title: Biochim Biophys Acta – volume: 17 start-page: 141 issue: 3 year: 2017 end-page: 141 article-title: Epigenetic and genetic heterogeneity in metastasis publication-title: Nat Rev Cancer – volume: 17 start-page: 155 issue: 2 year: 2016 end-page: 158 article-title: A Nanobody activation immunotherapeutic that selectively destroys HER2-positive breast cancer cells publication-title: Chembiochem – volume: 49 start-page: 788 issue: 5 year: 2008 end-page: 795 article-title: Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT publication-title: J Nucl Med – volume: 373 start-page: 941 issue: 4 year: 2007 end-page: 953 article-title: Exploring the capacity of minimalist protein interfaces: interface energetics and affinity maturation to picomolar KD of a single-domain antibody with a flat paratope publication-title: J Mol Biol – volume: 60 start-page: 1213 issue: 9 year: 2019 end-page: 1220 article-title: Early phase I study of a (99 m)Tc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer publication-title: J Nucl Med – volume: 3 start-page: 429 issue: 6 year: 2006 end-page: 438 article-title: Protein ligation: an enabling technology for the biophysical analysis of proteins publication-title: Nat Methods – volume: 172 start-page: 607 issue: 3 year: 2013 end-page: 617 article-title: Targeting tumors with nanobodies for cancer imaging and therapy publication-title: J Control Release – volume: 7 start-page: 254 issue: 2 year: 2012 end-page: 264 article-title: Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators publication-title: Contrast Media Mol Imaging – volume: 3 start-page: 803 issue: 9 year: 1996 end-page: 811 article-title: Crystal structure of a camel single-domain V-H antibody fragment in complex with lysozyme publication-title: Nat Struct Biol – volume: 16 start-page: 861 issue: 5 year: 2015 end-page: 867 article-title: Microbial transglutaminase and c-myc-tag: a strong couple for the functionalization of antibody-like protein scaffolds from discovery platforms publication-title: Chembiochem – volume: 27 start-page: 198 issue: 1 year: 2016 end-page: 206 article-title: Incorporation of a doubly functionalized synthetic amino acid into proteins for creating chemical and light-induced conjugates publication-title: Bioconjug Chem – volume: 103 start-page: 4586 issue: 12 year: 2006 end-page: 4591 article-title: Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies publication-title: P Natl Acad Sci USA – volume: 10 start-page: 1441 issue: 7 year: 2014 end-page: 1451 article-title: Nanobody-photosensitizer conjugates for targeted photodynamic therapy publication-title: Nanomed-Nanotechnol – volume: 23 start-page: 624 issue: 7-8 year: 2017 end-page: 630 article-title: N-terminal chemical protein labeling using the naturally split GOS-TerL intein publication-title: J Pept Sci – volume: 98 start-page: 777 issue: 2 year: 2001 end-page: 777 article-title: Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas (vol 97, pg 12846, 2000) publication-title: P Natl Acad Sci USA – volume: 175 start-page: 3769 issue: 6 year: 2005 end-page: 3779 article-title: Expression of a dromedary heavy chain-only antibody and B cell development in the mouse publication-title: J Immunol – volume: 18 start-page: 823 issue: 4 year: 2019 end-page: 833 article-title: Nanobody targeting of epidermal growth factor receptor (EGFR) ectodomain variants overcomes resistance to therapeutic EGFR antibodies publication-title: Mol Cancer Ther – volume: 363 start-page: 446 issue: 6428 year: 1993 end-page: 448 article-title: Naturally-occurring antibodies devoid of light-chains publication-title: Nature – volume: 14 start-page: 405 issue: 6 year: 2012 end-page: 415 article-title: Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions publication-title: J Gene Med – volume: 54 start-page: 776 issue: 5 year: 2013 end-page: 784 article-title: Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer publication-title: J Nucl Med – volume: 18 start-page: 5 issue: 1 year: 2019 article-title: Evaluation of scFv protein recovery from E-coli by in vitro refolding and mild solubilization process publication-title: Microb Cell Fact – volume: 27 start-page: 1 issue: 1 year: 2020 article-title: Development of therapeutic antibodies for the treatment of diseases publication-title: J Biomed Sci – volume: 128 start-page: 178 issue: 1-3 year: 2009 end-page: 183 article-title: Camelid immunoglobulins and nanobody technology publication-title: Vet Immunol Immunop – volume: 47 start-page: 2107 issue: 6 year: 2015 end-page: 2114 article-title: Feasibility study of the fab fragment of a monoclonal antibody against tissue factor as a diagnostic tool publication-title: Int J Oncol – volume: 40 start-page: 1718 issue: 11 year: 2013 end-page: 1729 article-title: Rapid optical imaging of human breast tumour xenografts using anti-HER2 VHHs site-directly conjugated to IRDye 800CW for image-guided surgery publication-title: Eur J Nucl Med Mol Imaging – volume: 66 start-page: 24 issue: 1 year: 2006 end-page: 28 article-title: Rhabdomyosarcoma lysis by T cells expressing a human autoantibody- based chimeric receptor targeting the fetal acetylcholine receptor publication-title: Cancer Res – volume: 116 start-page: 16656 issue: 33 year: 2019 end-page: 16656 article-title: Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice (vol 116, pg 7624, 2019) publication-title: P Natl Acad Sci USA – volume: 34 start-page: 11 issue: 1 year: 2020 end-page: 26 article-title: The therapeutic potential of nanobodies publication-title: Biodrugs – volume: 35 year: 2008 article-title: SPECT/CT imaging with 99mTc-depreotide in lymphoma. comparison to Ga-67 scintigraphy publication-title: Eur J Nucl Med Mol I – volume: 82 start-page: 775 year: 2013 end-page: 797 article-title: Nanobodies: natural single-domain antibodies publication-title: Annu Rev Biochem – volume: 23 start-page: 411 issue: 4 year: 2008 end-page: 423 article-title: Tumor targeting by a multivalent single-chain Fv (scFv) anti-lewis Y antibody construct publication-title: Cancer Biother Radio – volume: 12 start-page: 352 year: 2014 article-title: Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1 publication-title: J Transl Med – volume: 30 start-page: 205 issue: 2 year: 2013 end-page: 209 article-title: Development of VEGFR2-specific nanobody pseudomonas exotoxin a conjugated to provide efficient inhibition of tumor cell growth publication-title: N Biotechnol – volume: 25 start-page: 979 issue: 5 year: 2014 end-page: 988 article-title: Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging publication-title: Bioconjugate Chem – volume: 14 start-page: 1247 issue: 13 year: 2003 end-page: 1254 article-title: In vivo tracking of neural progenitor cell migration to glioblastomas publication-title: Hum Gene Ther – volume: 8 start-page: 1442 year: 2017 article-title: Nanobody-based delivery systems for diagnosis and targeted tumor therapy publication-title: Front Immunol – volume: 6 start-page: 583 issue: 8 year: 2006 end-page: 592 article-title: Drug penetration in solid tumours publication-title: Nat Rev Cancer – volume: 12 start-page: 738 issue: 3 year: 2020 article-title: Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence publication-title: Cancers – volume: 23 start-page: 4926 issue: 41 year: 2005 end-page: 4934 article-title: Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins publication-title: Vaccine – volume: 55 start-page: 528 issue: 2 year: 2016 end-page: 533 article-title: Enzyme-mediated modification of single-domain antibodies for imaging modalities with different characteristics publication-title: Angew Chem Int Edit – volume: 24 start-page: 1852 issue: 12 year: 2018 end-page: 1858 article-title: (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer publication-title: Nat Med – ident: bibr63-15330338211010117 doi: 10.1016/j.nano.2013.12.007 – ident: bibr38-15330338211010117 doi: 10.1093/oxfordjournals.molbev.a003988 – ident: bibr49-15330338211010117 doi: 10.1093/protein/gzv032 – ident: bibr69-15330338211010117 doi: 10.1158/0008-5472.CAN-05-0542 – ident: bibr65-15330338211010117 doi: 10.1021/acs.molpharmaceut.9b00360 – ident: bibr85-15330338211010117 doi: 10.1038/s41467-018-07131-y – ident: bibr24-15330338211010117 doi: 10.1016/j.bbagen.2013.04.023 – ident: bibr82-15330338211010117 doi: 10.1038/nrc.2017.11 – ident: bibr8-15330338211010117 doi: 10.1016/j.jconrel.2013.08.298 – ident: bibr81-15330338211010117 doi: 10.3390/cancers12030738 – ident: bibr55-15330338211010117 doi: 10.1007/s00280-015-2712-0 – ident: bibr35-15330338211010117 doi: 10.1158/0008-5472.CAN-03-3935 – ident: bibr21-15330338211010117 doi: 10.1016/j.vetimm.2008.10.299 – ident: bibr44-15330338211010117 doi: 10.1002/anie.201507596 – ident: bibr90-15330338211010117 doi: 10.1186/s13550-016-0166-y – ident: bibr20-15330338211010117 doi: 10.1073/pnas.0505379103 – ident: bibr46-15330338211010117 doi: 10.1002/cbic.201500009 – ident: bibr91-15330338211010117 doi: 10.1586/era.13.16 – ident: bibr53-15330338211010117 doi: 10.1517/13543784.2012.656197 – ident: bibr89-15330338211010117 doi: 10.1007/s00259-013-2471-2 – ident: bibr18-15330338211010117 doi: 10.1126/science.aaa5026 – ident: bibr28-15330338211010117 doi: 10.1093/protein/7.9.1129 – ident: bibr95-15330338211010117 doi: 10.1016/j.jmb.2007.08.027 – ident: bibr77-15330338211010117 doi: 10.2967/jnumed.108.060392 – ident: bibr88-15330338211010117 doi: 10.2310/7290.2011.00025 – ident: bibr52-15330338211010117 doi: 10.1158/1535-7163.MCT-18-0849 – ident: bibr62-15330338211010117 doi: 10.1089/104303403767740786 – ident: bibr57-15330338211010117 doi: 10.1038/celldisc.2017.4 – ident: bibr87-15330338211010117 doi: 10.2967/jnumed.118.224170 – ident: bibr11-15330338211010117 doi: 10.1083/jcb.201409074 – ident: bibr73-15330338211010117 doi: 10.1007/s11307-008-0133-8 – ident: bibr70-15330338211010117 doi: 10.1126/scitranslmed.aac5415 – ident: bibr86-15330338211010117 doi: 10.3390/cancers11060872 – ident: bibr64-15330338211010117 doi: 10.1016/j.jconrel.2016.03.014 – ident: bibr17-15330338211010117 doi: 10.1186/s12951-018-0392-8 – volume: 35 year: 2008 ident: bibr23-15330338211010117 publication-title: Eur J Nucl Med Mol I – ident: bibr3-15330338211010117 doi: 10.3390/antib8040055 – ident: bibr75-15330338211010117 doi: 10.2967/jnumed.112.111021 – ident: bibr76-15330338211010117 doi: 10.1038/clpt.2010.12 – ident: bibr80-15330338211010117 doi: 10.7150/thno.8156 – ident: bibr13-15330338211010117 doi: 10.1038/363446a0 – ident: bibr16-15330338211010117 doi: 10.1146/annurev-biochem-063011-092449 – ident: bibr59-15330338211010117 doi: 10.1056/NEJMoa1817226 – ident: bibr83-15330338211010117 doi: 10.1038/s41556-018-0236-7 – ident: bibr37-15330338211010117 doi: 10.7554/eLife.11349 – ident: bibr92-15330338211010117 doi: 10.1007/s00253-005-0300-7 – ident: bibr22-15330338211010117 doi: 10.1038/nsb0996-803 – ident: bibr36-15330338211010117 doi: 10.1073/pnas.1202832109 – ident: bibr54-15330338211010117 doi: 10.2967/jnumed.120.255679 – ident: bibr6-15330338211010117 doi: 10.1038/nrc1893 – ident: bibr42-15330338211010117 doi: 10.1021/acs.bioconjchem.5b00602 – ident: bibr67-15330338211010117 doi: 10.1002/jgm.2604 – ident: bibr84-15330338211010117 doi: 10.1038/s41591-018-0255-8 – ident: bibr41-15330338211010117 doi: 10.1126/science.1060077 – ident: bibr39-15330338211010117 doi: 10.1021/bc500111t – ident: bibr97-15330338211010117 doi: 10.1128/AEM.71.1.442-450.2005 – ident: bibr12-15330338211010117 doi: 10.4161/mabs.2.1.10786 – ident: bibr33-15330338211010117 doi: 10.1038/nmeth953 – ident: bibr78-15330338211010117 doi: 10.1016/j.nucmedbio.2016.01.002 – ident: bibr50-15330338211010117 doi: 10.1002/psc.2996 – ident: bibr96-15330338211010117 doi: 10.4049/jimmunol.175.6.3769 – ident: bibr43-15330338211010117 doi: 10.1038/nchembio.720 – ident: bibr72-15330338211010117 doi: 10.3390/ijms19020403 – ident: bibr25-15330338211010117 doi: 10.1002/ijc.26145 – ident: bibr51-15330338211010117 doi: 10.1038/nmeth886 – ident: bibr66-15330338211010117 doi: 10.1016/j.jconrel.2020.04.030 – volume: 23 start-page: 411 issue: 4 year: 2008 ident: bibr10-15330338211010117 publication-title: Cancer Biother Radio – volume: 116 start-page: 16656 issue: 33 year: 2019 ident: bibr71-15330338211010117 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.1912487116 – ident: bibr4-15330338211010117 doi: 10.3389/fimmu.2017.01442 – ident: bibr26-15330338211010117 doi: 10.1016/j.vaccine.2005.05.017 – ident: bibr79-15330338211010117 doi: 10.1002/cmmi.491 – ident: bibr27-15330338211010117 doi: 10.1186/s12934-019-1053-9 – ident: bibr58-15330338211010117 doi: 10.1158/2326-6066.CIR-15-0231 – ident: bibr74-15330338211010117 doi: 10.2967/jnumed.107.048538 – ident: bibr30-15330338211010117 doi: 10.1007/s12265-012-9435-y – ident: bibr31-15330338211010117 doi: 10.1016/j.drudis.2016.04.003 – ident: bibr32-15330338211010117 doi: 10.4161/19420862.2014.975099 – ident: bibr60-15330338211010117 doi: 10.1089/cbr.2020.3941 – ident: bibr2-15330338211010117 doi: 10.1016/j.coph.2003.05.002 – ident: bibr93-15330338211010117 doi: 10.1371/journal.ppat.1002072 – volume: 24 start-page: 109 issue: 2 year: 2018 ident: bibr7-15330338211010117 publication-title: Am J Manag Care – ident: bibr48-15330338211010117 doi: 10.1039/C7SC00574A – volume: 98 start-page: 777 issue: 2 year: 2001 ident: bibr61-15330338211010117 publication-title: P Natl Acad Sci USA doi: 10.1073/pnas.98.2.777-e – ident: bibr9-15330338211010117 doi: 10.3892/ijo.2015.3210 – ident: bibr19-15330338211010117 doi: 10.1016/j.jmb.2018.09.002 – ident: bibr34-15330338211010117 doi: 10.1016/j.nbt.2012.09.002 – ident: bibr94-15330338211010117 doi: 10.1186/s12951-015-0091-7 – ident: bibr5-15330338211010117 doi: 10.1186/s12929-019-0592-z – ident: bibr45-15330338211010117 doi: 10.1002/cbic.201500591 – ident: bibr15-15330338211010117 doi: 10.1007/s40259-019-00392-z – ident: bibr40-15330338211010117 doi: 10.1080/17425247.2016.1178235 – ident: bibr14-15330338211010117 doi: 10.1038/374168a0 – ident: bibr56-15330338211010117 doi: 10.2967/jnumed.115.162024 – ident: bibr68-15330338211010117 doi: 10.1016/j.molmed.2011.12.003 – ident: bibr29-15330338211010117 doi: 10.1002/ijc.10212 – volume: 40 start-page: 3147 issue: 9 year: 1980 ident: bibr1-15330338211010117 publication-title: Cancer Res – ident: bibr47-15330338211010117 doi: 10.1186/s12967-014-0352-5 |
SSID | ssj0026631 |
Score | 2.3771458 |
SecondaryResourceType | review_article |
Snippet | Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic... |
SourceID | doaj pubmedcentral proquest pubmed crossref sage |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15330338211010117 |
SubjectTerms | Amino acids Antibodies Antigens Binding sites Bioengineering Cancer Cancer research Cancer therapies Chemical bonds Crystal structure Cytotoxicity Epidermal growth factor Fluorophores Immunogenicity Medical research Nanobodies Pharmacokinetics Proteins Review Side effects Targeted cancer therapy Tomography Toxins Tumor cells |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aQXwprZ_bD1lBEITFfO0miw-ih6UK9amFe1uSTNYPdLf27h78753J5e48Wvu4ye6STCaT30yG3zD20nGNPeAqiOArHWRbWWlkBd5Ag_4EQm4K6J99aU4v9OdpPc0Bt1lOq1zZxGSoYQwUI3-DSF_J1mrF313-rqhqFN2u5hIad9k9oi4jrTbTjcOFp2nmS1UVV7rJt5pEuERtHN0z8n8E8aJtnUuJvv8mzHk9dfKf_K90JJ3ssd2MJcv3y8XfZ3fi8JDdP8u35Y_YWzSdox_hTzkZhx8LCpjNSgSp5XlK_45QTmjN8XlJLVC6AcpPv1Ldosfs4uTj-eS0ysUSqoCgZU5WDVzwFsUde66ChAAtEc4Fq3xthXPCQBQueq4897F2DlpsDi3UGn0w9YTtDOMQn7FS-z4qo3oAa7XwBtezRZQlI48W8Z8vGF-JqguZSZwKWvzsRCYPvybdgr1ef3K5pNG47eUPJP_1i8SAnRrGq69d3lAdIilniNNU2Ea3fXBoiITxdZA9QtAeB3m0Wr0ub8tZt1GiG7sVwUvdWKkK9mLdjfuNLlHcEMcF_qKWKFT045qCPV3qwnqgisAmnh4FM1tasjWT7Z7h-7fE6W0F8SLhP1-RPm2G9F8hHdw-v0P2QFL2TQoWHbGd-dUiHiN8mvvnaY_8BVjQEEs priority: 102 providerName: ProQuest – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7ULYgvUq-NrRJBEITYzCXJBB-kLi5VqA-yxb6FuUUrbiLt5qH_3nOSSXTpKj5mZpJMTs7MfOcy3wC80KnEGqcT551JpOVlonjBE2cKl6M9gZCbHPqnn_KTM_nxPDvfgXbcCxMkePWa0qqwR_1kTaObvNFHIch4RCAlReOKrBdGrGZvu_WqGtzd46kaVELx6W5FoW1LCZHXybi97Rbs8iLP-Ax2jxefvywnGw0X4ECxKpJUyDwEQre-dGMp6xn_t8HUm9mWf6SM9avYYg_uBvgZHw_6cg92fHMfbp-GAPsDeIOzbWtadx3P2-Z7Rz62qxhxbbzsM8a9i-ekJng9sBHEunHxh1V_1NFDOFu8X85PknC-QmIR56xpInTaGoV_yNepsNxZVxJHnVXCZIppzQrnmfYmFSY1PtPalVhsS5dJNNvEI5g1beP3IZam9qIQtXNKSWYKVIESgRn3qVcIGU0E6SiqygbycToD40fFAt_4DelG8Gq65efAvPGvxu9I_lNDIs3uC9rLr1UYgxWCL10QDSpTuSxrq3HuYoXJLK8RtdbYycPx71WjHlZoYQpeKinSrdWCEKnMFRcRPJ-qcYhS3EU3vu3wERlHoaLpl0fweNCFqaOC8CkuOBEUG1qy8SWbNc3Ft54GXDGiUsJnviR9-t2lvwrpyX-3PIA7nHJ3elfTIczWl51_iuBrbZ6FAfMLgaIjtw priority: 102 providerName: SAGE Publications |
Title | Nanobody Conjugates for Targeted Cancer Therapy and Imaging |
URI | https://journals.sagepub.com/doi/full/10.1177/15330338211010117 https://www.ncbi.nlm.nih.gov/pubmed/33929911 https://www.proquest.com/docview/2613298430 https://www.proquest.com/docview/3232446823 https://www.proquest.com/docview/2520871746 https://pubmed.ncbi.nlm.nih.gov/PMC8111546 https://doaj.org/article/643a7913918649fca88017b5c2f057fb |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SBEovpW36cJsuDhQCAVPrYUump2TJkgYSStiQvRm9TFoaOzS7h_77ztjabZak7aUnY0kW8mik-UYavgH4YHKJNd5kPnibScerTHPFM2-VL9GfQMhNB_qnZ-XxhTyZFbM7qb4oJmygBx4E9xEtplHEXcl0KavGGVQ4pmzheINQo7G0-6LNWzpT0dVCO8riHSbRKxGoydEZI2-HEQvamhXqyfofQpj3AyXvRHv1BmjyDJ5G5JgeDCN-DhuhfQGPT-Pd-DZ8wo2ys53_mY679tuCjsduU4Sk6bQP9g4-HdMM4_tAJJCa1qefr_ssRS_hYnI0HR9nMTVC5hCizGkP88ZZjcINTS4c985XRC_ntLCFZsYw5QMzwebC5jYUxvgKi13lC4kel3gFm23XhjeQStsEoUTjvdaSWYWzVyGm4iEPGtGeTSBfiqp2kTec0ld8r1mkCr8n3QT2V5_cDKQZf2t8SPJfNSS-674AtaCOWlD_SwsS2FnOXh0X4W2NzqHglZYif7BaEJiUpeYigd1VNa4uujIxbegW2EXBUajotZUJvB50YTVQQdASbUUCak1L1v5kvab9etUzeGtGLEjY5x7p0-8h_VFIb_-HkN7BE04ROf0B0g5szn8swnuEVHM7gkdqpkawdTA5v5zi8_Do7Mv5qF9TvwBJnxo0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgEviJuUAkECISFFOLaTOEIIwUK1S7t92kr7FnyFQ5C03V1V_VP9jczk2GXV0rc-xk4sZzLHN7bzDcBLzST2OB0570wkLc8jxTMeOZO5FPMJhNy0oD_eT4cH8us0mW7AWf8vDB2r7H1i46hdbWmN_C0ifcFzJQX7cHgUUdUo2l3tS2i0arHrT08wZZu9H33G7_uK850vk8Ew6qoKRBaj-5zM32lrFM7Ll0xY7qzLiZnNKmESFWsdZ87H2hsmDDM-0drl2Gxzl0hMVgSOew2uY-BllOxl01WCh9G742cVERMy7XZRieCJ2himg5RvxcTDthYHm3IBF2Hc80c1_zlv1oTAnTtwu8Ou4cdW2e7Chq_uwY1xtzt_H96hq65N7U7DQV39WtAC3SxEUBxOmuPm3oUD0jG8bqkMQl25cPSnqZP0AA6uRIwPYbOqK_8YQmlKLzJROqeUjE2G-pMjquOeeYV40wTAelEVtmMupwIav4u4Iys_J90A3iwfOWxpOy67-RPJf3kjMW43DfXx96Iz4AKRm86IQzVWqcxLq9HxxZlJLC8R8pY4ye3-6xWdG5gVK6W9sFsQnJWp4iKAF8tutG_atNGVrxc4RMJRqJg3pgE8anVhOVFB4BajVQDZmpasvcl6T_XzR8MhrmLiYcIxX5M-rab0XyFtXf5-z-HmcDLeK_ZG-7tP4Bankz_NQtU2bM6PF_4pQre5edbYSwjfrtpA_wLWlk6i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7BVqq4oJZXQwsECQkJKdSvJI44tQurFmiF0Fb0FvkVHoKkancP_Htmst7AqgviGNuxnBnP-Bt78hngmWEKa7zJfPA2U05UmRalyLwtfYHxBEJu2tA_OS2OztTb8_w8brjRvzBRglcvKa0KR9Q7a7LuC9_sxzPGfcIoDGMrCl44kZrdhA2lMMgbwcbB5OOn6RBy4XoaGVNlxqQq4rnm2k5WVqaewH8d6ryePPlHBli_KE224HZEk-nBQv3bcCO0d2DzJJ6X34VX6Dw72_mf6bhrv81py-wqRZiaTvsE8ODTMWkdnxfkAqlpfXr8o7-56B6cTd5Mx0dZvC4hcwhbZuTXvHFWo8BDw6QT3vmKKOecljbX3Bhe-sBNsExaZkNujK-w2FU-VxiFyfswars27ECqbBNkKRvvtVbclqjRCnGWCCxoRIA2AbYUVe0ilzhdafG95pE-_Jp0E3gxvHKxINL4V-NDkv_QkDiw-4Lu8nMdTapGLGVKYjXlulBV4wy6Il7a3IkGQWiDg9xbaq9eTqsaA0YpKq0kW1stCWCqQguZwNOhGi2OjlFMG7o5dpELFCpGckUCDxZzYRioJLiJ60cC5cosWfmS1Zr265ee1VtzYkbCPp_TfPo9pL8K6eF_t3wCmx9eT-r3x6fvduGWoKycfhNpD0azy3l4hLBqZh9H2_kFyPsSMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanobody+Conjugates+for+Targeted+Cancer+Therapy+and+Imaging&rft.jtitle=Technology+in+cancer+research+%26+treatment&rft.au=Kang%2C+Wei&rft.au=Ding+Chuanfeng&rft.au=Zheng+Danni&rft.au=Ma%2C+Xiao&rft.date=2021-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1533-0346&rft.eissn=1533-0338&rft.volume=20&rft_id=info:doi/10.1177%2F15330338211010117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1533-0346&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1533-0346&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1533-0346&client=summon |