DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates

Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degrad...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 25; no. 1; p. 229
Main Authors Mizukoshi, Chikara, Kojima, Yasuhiro, Nomura, Satoshi, Hayashi, Shuto, Abe, Ko, Shimamura, Teppei
Format Journal Article
LanguageEnglish
Published England BioMed Central 06.09.2024
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.
AbstractList Abstract Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.
Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.
Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.
ArticleNumber 229
Author Mizukoshi, Chikara
Shimamura, Teppei
Nomura, Satoshi
Kojima, Yasuhiro
Hayashi, Shuto
Abe, Ko
Author_xml – sequence: 1
  givenname: Chikara
  surname: Mizukoshi
  fullname: Mizukoshi, Chikara
– sequence: 2
  givenname: Yasuhiro
  surname: Kojima
  fullname: Kojima, Yasuhiro
– sequence: 3
  givenname: Satoshi
  surname: Nomura
  fullname: Nomura, Satoshi
– sequence: 4
  givenname: Shuto
  surname: Hayashi
  fullname: Hayashi, Shuto
– sequence: 5
  givenname: Ko
  surname: Abe
  fullname: Abe, Ko
– sequence: 6
  givenname: Teppei
  surname: Shimamura
  fullname: Shimamura, Teppei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39237934$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gD3BAlrhwCYw_EsfcqtLCiqpIqEjczCSerLLKxou9i8S_72y3VIgTF3-MH73yO_OeiqM5zSTESwVvlWqbd0UZqH0F2lZgTOOq9ok4UdbZyjXw_eiv87E4LWUFoLzVzTNxbLw2zht7In58INp8Xtxc3r6XKCNf5JJmyrgdf5Fcp0iTHFKWVLbjmovzUhZeJqp6mib59eZcls009vsHnCMrLDNGBtMsWYTKc_F0wKnQi4f9THy7ury9-FRdf_m4uDi_rvq6gW3lOrah0Rmyuu29bQdE32NsfUSFne6bCGBcV0etfD2At6QRWvajAZgyZ2Jx0I0JV2GT-bf5d0g4hvtCysuAeTv2EwXfKFSm61jNWPK2084NtkOL3WBqGFjrzUFrk9PPHVsP67Hs_eJMaVeCUbVxrdda_wcKSvOYnGX09T_oKu3yzE3ZU7qGGhQw9eqB2nVrio9O_oyMAX0A-pxKyTQ8IgrCPhfhkIvADQ33uQituQNMCKdj
Cites_doi 10.1126/science.aax3072
10.1038/ncomms14049
10.1158/2643-3230.BCD-21-0220
10.1093/carcin/bgz172
10.1242/dev.173849
10.1158/1541-7786.MCR-21-0402
10.1038/s41467-018-06063-x
10.3390/ijms20112683
10.1038/s41598-022-18921-2
10.1038/s41587-023-01728-5
10.1002/mc.23158
10.1126/science.aad0501
10.1002/wrna.1398
10.3748/wjg.v26.i2.184
10.3389/fmed.2017.00227
10.1016/j.cell.2021.12.045
10.1159/000487162
10.1016/j.canlet.2020.11.024
10.1038/s41467-022-34581-2
10.1016/j.ccell.2020.12.012
10.1038/s41467-021-25842-7
10.1038/s41568-022-00541-7
10.1038/s41420-022-01112-3
10.1038/s41467-023-40518-0
10.1016/j.celrep.2022.111260
10.1038/s41587-022-01476-y
10.1016/j.cels.2020.08.003
10.1038/s41388-019-0892-5
10.1002/jcp.30763
10.7150/jca.60885
10.1186/bcr3684
10.1186/s13045-020-00927-w
10.1038/s41586-018-0414-6
10.1093/nar/gkz369
10.1073/pnas.1914786117
10.1126/science.abl5197
10.1016/j.biopha.2022.114127
10.1186/s40164-022-00298-7
10.1371/journal.pcbi.1010492
10.1038/s41592-020-0935-4
10.1186/s13059-019-1663-x
10.1186/s12864-015-1273-2
10.3389/fonc.2021.644737
10.7554/eLife.02734
10.1080/2162402X.2018.1468954
10.3390/cancers15205033
10.1038/s41576-018-0089-8
10.1186/s13059-023-03148-9
10.1007/s12672-020-00377-3
10.1016/j.trecan.2017.05.003
10.1038/s41592-023-01994-w
10.1038/s41587-020-0591-3
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
DOA
DOI 10.1186/s13059-024-03367-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 229
ExternalDocumentID oai_doaj_org_article_961a13bb7b534e94b277f4ba4abf350f
39237934
10_1186_s13059_024_03367_8
Genre Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development
  grantid: P23tm0424226
– fundername: Japan Agency for Medical Research and Development
  grantid: JP22wm0425007
– fundername: Japan Agency for Medical Research and Development
  grantid: JP23wm0325068
– fundername: Japan Society for the Promotion of Science
  grantid: 22H04925
– fundername: Japan Society for the Promotion of Science
  grantid: 23H04938
– fundername: Moonshot Research and Development Program
  grantid: JPMJMS2025
– fundername: Japan Agency for Medical Research and Development
  grantid: JP22ama221215
– fundername: Japan Agency for Medical Research and Development
  grantid: JP22ama221501
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c560t-7b0242a73e428c948faa9cad89da1ab2c6d0037b5d2195f094e2a08942200d893
IEDL.DBID DOA
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:30:24 EDT 2025
Fri Jul 11 07:55:13 EDT 2025
Fri Jul 11 03:07:24 EDT 2025
Fri Jul 25 11:46:08 EDT 2025
Mon Jul 21 06:00:41 EDT 2025
Tue Jul 01 03:11:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dimensionality reduction
Variational autoencoder (VAE)
RNA velocity
Deep generative model
RNA degradation
RNA-binding proteins
Neural network
Cell differentiation
Transcriptome dynamics
Single-cell RNA sequencing (scRNA-seq)
Splicing kinetics
Metabolic labeling
RNA splicing
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-7b0242a73e428c948faa9cad89da1ab2c6d0037b5d2195f094e2a08942200d893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/961a13bb7b534e94b277f4ba4abf350f
PMID 39237934
PQID 3102505010
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_961a13bb7b534e94b277f4ba4abf350f
proquest_miscellaneous_3153789222
proquest_miscellaneous_3101230574
proquest_journals_3102505010
pubmed_primary_39237934
crossref_primary_10_1186_s13059_024_03367_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-06
PublicationDateYYYYMMDD 2024-09-06
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome Biology
PublicationTitleAlternate Genome Biol
PublicationYear 2024
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References Y Liu (3367_CR34) 2023; 15
N Battich (3367_CR3) 2020; 367
G La Manno (3367_CR5) 2018; 560
G Biber (3367_CR43) 2021; 12
3367_CR60
I Tirosh (3367_CR14) 2016; 352
WR Ma (3367_CR36) 2020; 26
3367_CR20
3367_CR23
SL Klemm (3367_CR47) 2019; 20
3367_CR8
L Jin (3367_CR32) 2021; 12
AM Fowler (3367_CR21) 2020; 11
V Gatti (3367_CR25) 2019; 20
K Nagaharu (3367_CR9) 2022; 40
T Guo (3367_CR30) 2022; 8
H Qin (3367_CR17) 2020; 13
T Liu (3367_CR19) 2022; 13
RK Bradley (3367_CR1) 2023; 23
N Fusco (3367_CR22) 2021; 11
T Guan (3367_CR26) 2022; 237
G Turashvili (3367_CR52) 2017; 4
H Cui (3367_CR12) 2024; 25
B Jovanović (3367_CR33) 2014; 16
3367_CR37
D Peeney (3367_CR27) 2020; 41
Z Fang (3367_CR2) 2022; 11
B Pereira (3367_CR16) 2017; 3
3367_CR42
3367_CR40
W Xie (3367_CR35) 2020; 59
G Gorin (3367_CR48) 2022; 18
S Vanharanta (3367_CR29) 2014; 3
Y Shiozawa (3367_CR39) 2018; 9
3367_CR49
Y Xiao (3367_CR31) 2021; 39
V Bergen (3367_CR6) 2020; 38
G Zheng (3367_CR18) 2017; 8
T Ochi (3367_CR38) 2022; 12
V Adema (3367_CR41) 2022; 3
A Gayoso (3367_CR7) 2024; 21
YT Yang (3367_CR51) 2015; 16
FA Wolf (3367_CR10) 2019; 20
A Bastidas-Ponce (3367_CR56) 2019; 146
C Domínguez Conde (3367_CR53) 2022; 376
G Miao (3367_CR44) 2023; 158
J Zhang (3367_CR24) 2018; 45
3367_CR50
Y Kim (3367_CR28) 2019; 38
3367_CR57
3367_CR55
Q Qiu (3367_CR4) 2020; 17
3367_CR54
C Li (3367_CR46) 2023; 41
P Dibaeinia (3367_CR11) 2020; 11
3367_CR15
3367_CR59
3367_CR58
Y Xue (3367_CR45) 2023; 14
X Qiu (3367_CR13) 2022; 185
References_xml – volume: 367
  start-page: 1151
  issue: 6482
  year: 2020
  ident: 3367_CR3
  publication-title: Science.
  doi: 10.1126/science.aax3072
– volume: 8
  start-page: 14049
  year: 2017
  ident: 3367_CR18
  publication-title: Nat Commun.
  doi: 10.1038/ncomms14049
– volume: 3
  start-page: 554
  issue: 6
  year: 2022
  ident: 3367_CR41
  publication-title: Blood Cancer Discov.
  doi: 10.1158/2643-3230.BCD-21-0220
– volume: 41
  start-page: 313
  issue: 3
  year: 2020
  ident: 3367_CR27
  publication-title: Carcinogenesis.
  doi: 10.1093/carcin/bgz172
– ident: 3367_CR57
  doi: 10.1242/dev.173849
– ident: 3367_CR20
  doi: 10.1158/1541-7786.MCR-21-0402
– volume: 9
  start-page: 3649
  issue: 1
  year: 2018
  ident: 3367_CR39
  publication-title: Nat Commun.
  doi: 10.1038/s41467-018-06063-x
– volume: 20
  start-page: 2683
  issue: 11
  year: 2019
  ident: 3367_CR25
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms20112683
– ident: 3367_CR40
– volume: 12
  start-page: 14562
  issue: 1
  year: 2022
  ident: 3367_CR38
  publication-title: Sci Rep.
  doi: 10.1038/s41598-022-18921-2
– ident: 3367_CR8
  doi: 10.1038/s41587-023-01728-5
– volume: 59
  start-page: 339
  issue: 4
  year: 2020
  ident: 3367_CR35
  publication-title: Mol Carcinog.
  doi: 10.1002/mc.23158
– volume: 352
  start-page: 189
  issue: 6282
  year: 2016
  ident: 3367_CR14
  publication-title: Science.
  doi: 10.1126/science.aad0501
– ident: 3367_CR15
  doi: 10.1002/wrna.1398
– ident: 3367_CR54
– ident: 3367_CR58
– volume: 26
  start-page: 184
  issue: 2
  year: 2020
  ident: 3367_CR36
  publication-title: World J Gastroenterol.
  doi: 10.3748/wjg.v26.i2.184
– volume: 4
  start-page: 227
  year: 2017
  ident: 3367_CR52
  publication-title: Front Med (Lausanne).
  doi: 10.3389/fmed.2017.00227
– volume: 185
  start-page: 690
  issue: 4
  year: 2022
  ident: 3367_CR13
  publication-title: Cell.
  doi: 10.1016/j.cell.2021.12.045
– volume: 45
  start-page: 692
  issue: 2
  year: 2018
  ident: 3367_CR24
  publication-title: Cell Physiol Biochem.
  doi: 10.1159/000487162
– ident: 3367_CR37
  doi: 10.1016/j.canlet.2020.11.024
– volume: 13
  start-page: 6823
  issue: 1
  year: 2022
  ident: 3367_CR19
  publication-title: Nat Commun.
  doi: 10.1038/s41467-022-34581-2
– volume: 39
  start-page: 423
  issue: 3
  year: 2021
  ident: 3367_CR31
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccell.2020.12.012
– volume: 12
  start-page: 5581
  issue: 1
  year: 2021
  ident: 3367_CR43
  publication-title: Nat Commun.
  doi: 10.1038/s41467-021-25842-7
– ident: 3367_CR60
– volume: 23
  start-page: 135
  issue: 3
  year: 2023
  ident: 3367_CR1
  publication-title: Nat Rev Cancer.
  doi: 10.1038/s41568-022-00541-7
– volume: 8
  start-page: 320
  issue: 1
  year: 2022
  ident: 3367_CR30
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-022-01112-3
– volume: 14
  start-page: 4758
  issue: 1
  year: 2023
  ident: 3367_CR45
  publication-title: Nat Commun.
  doi: 10.1038/s41467-023-40518-0
– volume: 40
  start-page: 111260
  issue: 9
  year: 2022
  ident: 3367_CR9
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111260
– ident: 3367_CR49
– ident: 3367_CR55
– volume: 41
  start-page: 387
  issue: 3
  year: 2023
  ident: 3367_CR46
  publication-title: Nat Biotechnol.
  doi: 10.1038/s41587-022-01476-y
– volume: 146
  start-page: dev173849
  issue: 12
  year: 2019
  ident: 3367_CR56
  publication-title: Development.
  doi: 10.1242/dev.173849
– volume: 11
  start-page: 252
  issue: 3
  year: 2020
  ident: 3367_CR11
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2020.08.003
– volume: 38
  start-page: 6521
  issue: 38
  year: 2019
  ident: 3367_CR28
  publication-title: Oncogene.
  doi: 10.1038/s41388-019-0892-5
– ident: 3367_CR59
– volume: 237
  start-page: 2992
  issue: 7
  year: 2022
  ident: 3367_CR26
  publication-title: J Cell Physiol.
  doi: 10.1002/jcp.30763
– volume: 12
  start-page: 5413
  issue: 18
  year: 2021
  ident: 3367_CR32
  publication-title: J Cancer
  doi: 10.7150/jca.60885
– volume: 16
  start-page: R69
  issue: 4
  year: 2014
  ident: 3367_CR33
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr3684
– volume: 13
  start-page: 90
  issue: 1
  year: 2020
  ident: 3367_CR17
  publication-title: J Hematol Oncol.
  doi: 10.1186/s13045-020-00927-w
– volume: 560
  start-page: 494
  issue: 7719
  year: 2018
  ident: 3367_CR5
  publication-title: Nature.
  doi: 10.1038/s41586-018-0414-6
– ident: 3367_CR50
  doi: 10.1093/nar/gkz369
– ident: 3367_CR23
  doi: 10.1073/pnas.1914786117
– volume: 376
  start-page: eabl5197
  issue: 6594
  year: 2022
  ident: 3367_CR53
  publication-title: Science.
  doi: 10.1126/science.abl5197
– volume: 158
  start-page: 114127
  year: 2023
  ident: 3367_CR44
  publication-title: Biomed Pharmacother.
  doi: 10.1016/j.biopha.2022.114127
– volume: 11
  start-page: 45
  issue: 1
  year: 2022
  ident: 3367_CR2
  publication-title: Exp Hematol Oncol.
  doi: 10.1186/s40164-022-00298-7
– volume: 18
  start-page: e1010492
  issue: 9
  year: 2022
  ident: 3367_CR48
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1010492
– volume: 17
  start-page: 991
  issue: 10
  year: 2020
  ident: 3367_CR4
  publication-title: Nat Methods.
  doi: 10.1038/s41592-020-0935-4
– volume: 20
  start-page: 59
  issue: 1
  year: 2019
  ident: 3367_CR10
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1663-x
– volume: 16
  start-page: 51
  issue: 1
  year: 2015
  ident: 3367_CR51
  publication-title: BMC Genomics.
  doi: 10.1186/s12864-015-1273-2
– volume: 11
  start-page: 644737
  year: 2021
  ident: 3367_CR22
  publication-title: Front Oncol.
  doi: 10.3389/fonc.2021.644737
– volume: 3
  start-page: e02734
  year: 2014
  ident: 3367_CR29
  publication-title: Elife.
  doi: 10.7554/eLife.02734
– ident: 3367_CR42
  doi: 10.1080/2162402X.2018.1468954
– volume: 15
  start-page: 5033
  issue: 20
  year: 2023
  ident: 3367_CR34
  publication-title: Cancers (Basel).
  doi: 10.3390/cancers15205033
– volume: 20
  start-page: 207
  year: 2019
  ident: 3367_CR47
  publication-title: Nat Rev Genet.
  doi: 10.1038/s41576-018-0089-8
– volume: 25
  start-page: 27
  issue: 1
  year: 2024
  ident: 3367_CR12
  publication-title: Genome Biol.
  doi: 10.1186/s13059-023-03148-9
– volume: 11
  start-page: 63
  issue: 2
  year: 2020
  ident: 3367_CR21
  publication-title: Horm Cancer.
  doi: 10.1007/s12672-020-00377-3
– volume: 3
  start-page: 506
  issue: 7
  year: 2017
  ident: 3367_CR16
  publication-title: Trends Cancer.
  doi: 10.1016/j.trecan.2017.05.003
– volume: 21
  start-page: 50
  issue: 1
  year: 2024
  ident: 3367_CR7
  publication-title: Nat Methods.
  doi: 10.1038/s41592-023-01994-w
– volume: 38
  start-page: 1408
  issue: 12
  year: 2020
  ident: 3367_CR6
  publication-title: Nat Biotechnol.
  doi: 10.1038/s41587-020-0591-3
SSID ssj0019426
ssj0017866
Score 2.4706953
Snippet Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating...
Abstract Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 229
SubjectTerms Accuracy
Animals
brain
Breast cancer
breast neoplasms
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Cancer
Cell cycle
data collection
Datasets
Degradation
Female
Forebrain
Gene expression
gene expression regulation
Gene regulation
Genes
genome
Humans
Kinetics
messenger RNA
Metabolism
Methods
Neural networks
Parameter estimation
Post-transcription
Prosencephalon - metabolism
Proteins
RNA degradation
RNA Splicing
RNA Stability
RNA-binding protein
RNA-binding proteins
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Single-Cell Analysis
Single-cell RNA sequencing (scRNA-seq)
Splicing factors
Splicing kinetics
Transcriptome dynamics
Velocity
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJuUgozEDVlNYie2uaACrSokekCttDczjp29VNllsz3w7zvjZBdxoMfEI8saj2e-8eMbgA-KT7doqqXSmKSuyyQtlqWk0EgmHU3rEr9G_nHRnl_p74tmMW-4jfO1yp1PzI46rjreIz-mDjlaU_rwef1bctUoPl2dS2jchwdMXcZWbRb7hKsylrHK_OF0PT014guIjWt3L2hsezySI2-cpHAlS6XIc9h_olQm8_8_As2R6OwJPJ4hpDiZ5vwp3EvDM3g4FZX88xx-fUtpTUn56eUngSLSh1hmbml2bCJXvhGEVAXTazBcHZaC9wuuk-RNfPHz4kSMfKjNDThE6mG5wanykmBeifEFXJ2dXn49l3MdBdkRntlKEzgQo1GJco3Oadsjug6jdRErDHXXRqahCU0k99X0lPClGktLCqMlRFLqJRwMqyG9BhF7yp8cNVd1qaNBJHRQh4pyDtu6TncFfNzpza8nugyf0wzb-knLnsbis5a9LeALq3YvyVTX-cdqs_TzyvGurbBSIdD4lE5Oh9qYXgfUGHrVlH0BR7uJ8fP6G_1fayng_b6ZVg5rEoe0uskyFLYJr-q7ZBplrCMQVcCradL3oyVkqci76cO7B_AGHtXZspjt4QgOtpub9JaAzDa8y9Z6C6CP6fM
  priority: 102
  providerName: ProQuest
Title DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates
URI https://www.ncbi.nlm.nih.gov/pubmed/39237934
https://www.proquest.com/docview/3102505010
https://www.proquest.com/docview/3101230574
https://www.proquest.com/docview/3153789222
https://doaj.org/article/961a13bb7b534e94b277f4ba4abf350f
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3alEIvpemn02RRobciYluyJeWWbTeEQpeyJLD0oo5seS_BCdnNof--M7J3SQ5tL70YbAkjz0jz3lj2G4CPine3yNVSaYxSl3mUFvNcEjTSlG5N7SL_jfxtXp9f6q_Lanmv1Bd_EzbIAw-GO3Z1gYUKwYRK6eh0KI3pdECNoVNV3nH0JczbJlPj_oEj4Nn-ImPr4zVF6spJwiOZK0WhwT6AoaTW_2eKmaDm7AU8HzmiOB3Gtg-PYv8Sng5VI3-9gp9fYryhrHt2cSJQtHQiVkk8miOXSKVtBFFRwfoZzEf7leAXAldR8lt6sZifijXvWnMD9i3dYXWLQ2klwcIR69dweTa7-Hwux0IJsiHCspEmMNKiUZGSicZp2yG6BlvrWiwwlE3dss5MqFqKT1VHGV0sMbdkJFoj1Eu9gb3-uo_vQLQdJUiOmosy161BJPgvQ0FJha1do5sMPm3t5m8GPQyf8ghb-8HKnsbik5W9zWDKpt31ZC3rdIE87EcP-395OIPDrWP8uMDWnuYXkzfKJjP4sGumpcGWxD5e36U-hMtESPXf-lTKWEcsKYO3g9N3oyXqqCh86YP_8RTv4VmZ5h-LPhzC3ub2Lh4Rn9mECTw2SzOBJ9PZ_PtikiYyHRfTH78BpTPx5w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k1KASPBCVlNbCexkRAqtNUu2-4BbaW9uXbs7AVlt5utUP8Uv5EZJ1nEgd56dOxYo_E8vvFjhpD3Ak-3YKmZkDYwydPAlE1TBq4RRNqXhQ74GvlsWozO5fd5Pt8hv4e3MHitcrCJ0VD7ZYV75AcwIXprCB--rC4ZVo3C09WhhEYnFpNw_QtCtvbz-AjW9wPnJ8ezbyPWVxVgFXj3DSsduiVbigDIu9JS1dbqynqlvc2s41XhMSmLyz0oc15D-BO4TZWWHAQKRgmY9w65C443xWCvnG8DvKxUiI36BvzQPW3CC4-5LoYXO6o4aMFx5JoBHSwVAiyV-scrxuIB_0e80fOdPCIPe8hKDzsZe0x2QvOE3OuKWF4_JRdHIawm4-nx7BO11EODLmIuazSkNFbaoYCMKabzQHjcLCjuT_wMDA8N6I_pIW3xEB07bONhhsXadpWeKOaxaJ-R81vh8HOy2yyb8JJQX0O8pqE746n0pbWARrjLIMZRha5klZCPA9_MqkvPYWJYowrTcdkALSZy2aiEfEXWbkdiau34YblemF5TjS4ymwnngD4hg5aOl2UtnZXW1SJP64TsDwtjen1vzV_pTMi7bTdoKnLSNmF5FccATAB8LG8ak4tSaQBtCXnRLfqWWkCyAqyp3LuZgLfk_mh2dmpOx9PJK_KARynDTBP7ZHezvgqvAURt3JsouZRc3Laq_AFoEiXF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepKINET%3A+a+deep+generative+model+for+estimating+single-cell+RNA+splicing+and+degradation+rates&rft.jtitle=Genome+biology&rft.au=Mizukoshi%2C+Chikara&rft.au=Kojima%2C+Yasuhiro&rft.au=Nomura%2C+Satoshi&rft.au=Hayashi%2C+Shuto&rft.date=2024-09-06&rft.eissn=1474-760X&rft.volume=25&rft.issue=1&rft.spage=229&rft_id=info:doi/10.1186%2Fs13059-024-03367-8&rft_id=info%3Apmid%2F39237934&rft.externalDocID=39237934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon