DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates
Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degrad...
Saved in:
Published in | Genome Biology Vol. 25; no. 1; p. 229 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
06.09.2024
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation. |
---|---|
AbstractList | Abstract Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation. Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation.Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation. Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating kinetic rates have limitations, assuming uniform rates across cells. DeepKINET is a deep generative model that estimates splicing and degradation rates at single-cell resolution from scRNA-seq data. DeepKINET outperforms existing methods on simulated and metabolic labeling datasets. Applied to forebrain and breast cancer data, it identifies RNA-binding proteins responsible for kinetic rate diversity. DeepKINET also analyzes the effects of splicing factor mutations on target genes in erythroid lineage cells. DeepKINET effectively reveals cellular heterogeneity in post-transcriptional regulation. |
ArticleNumber | 229 |
Author | Mizukoshi, Chikara Shimamura, Teppei Nomura, Satoshi Kojima, Yasuhiro Hayashi, Shuto Abe, Ko |
Author_xml | – sequence: 1 givenname: Chikara surname: Mizukoshi fullname: Mizukoshi, Chikara – sequence: 2 givenname: Yasuhiro surname: Kojima fullname: Kojima, Yasuhiro – sequence: 3 givenname: Satoshi surname: Nomura fullname: Nomura, Satoshi – sequence: 4 givenname: Shuto surname: Hayashi fullname: Hayashi, Shuto – sequence: 5 givenname: Ko surname: Abe fullname: Abe, Ko – sequence: 6 givenname: Teppei surname: Shimamura fullname: Shimamura, Teppei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39237934$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URD_gD3BAlrhwCYw_EsfcqtLCiqpIqEjczCSerLLKxou9i8S_72y3VIgTF3-MH73yO_OeiqM5zSTESwVvlWqbd0UZqH0F2lZgTOOq9ok4UdbZyjXw_eiv87E4LWUFoLzVzTNxbLw2zht7In58INp8Xtxc3r6XKCNf5JJmyrgdf5Fcp0iTHFKWVLbjmovzUhZeJqp6mib59eZcls009vsHnCMrLDNGBtMsWYTKc_F0wKnQi4f9THy7ury9-FRdf_m4uDi_rvq6gW3lOrah0Rmyuu29bQdE32NsfUSFne6bCGBcV0etfD2At6QRWvajAZgyZ2Jx0I0JV2GT-bf5d0g4hvtCysuAeTv2EwXfKFSm61jNWPK2084NtkOL3WBqGFjrzUFrk9PPHVsP67Hs_eJMaVeCUbVxrdda_wcKSvOYnGX09T_oKu3yzE3ZU7qGGhQw9eqB2nVrio9O_oyMAX0A-pxKyTQ8IgrCPhfhkIvADQ33uQituQNMCKdj |
Cites_doi | 10.1126/science.aax3072 10.1038/ncomms14049 10.1158/2643-3230.BCD-21-0220 10.1093/carcin/bgz172 10.1242/dev.173849 10.1158/1541-7786.MCR-21-0402 10.1038/s41467-018-06063-x 10.3390/ijms20112683 10.1038/s41598-022-18921-2 10.1038/s41587-023-01728-5 10.1002/mc.23158 10.1126/science.aad0501 10.1002/wrna.1398 10.3748/wjg.v26.i2.184 10.3389/fmed.2017.00227 10.1016/j.cell.2021.12.045 10.1159/000487162 10.1016/j.canlet.2020.11.024 10.1038/s41467-022-34581-2 10.1016/j.ccell.2020.12.012 10.1038/s41467-021-25842-7 10.1038/s41568-022-00541-7 10.1038/s41420-022-01112-3 10.1038/s41467-023-40518-0 10.1016/j.celrep.2022.111260 10.1038/s41587-022-01476-y 10.1016/j.cels.2020.08.003 10.1038/s41388-019-0892-5 10.1002/jcp.30763 10.7150/jca.60885 10.1186/bcr3684 10.1186/s13045-020-00927-w 10.1038/s41586-018-0414-6 10.1093/nar/gkz369 10.1073/pnas.1914786117 10.1126/science.abl5197 10.1016/j.biopha.2022.114127 10.1186/s40164-022-00298-7 10.1371/journal.pcbi.1010492 10.1038/s41592-020-0935-4 10.1186/s13059-019-1663-x 10.1186/s12864-015-1273-2 10.3389/fonc.2021.644737 10.7554/eLife.02734 10.1080/2162402X.2018.1468954 10.3390/cancers15205033 10.1038/s41576-018-0089-8 10.1186/s13059-023-03148-9 10.1007/s12672-020-00377-3 10.1016/j.trecan.2017.05.003 10.1038/s41592-023-01994-w 10.1038/s41587-020-0591-3 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 DOA |
DOI | 10.1186/s13059-024-03367-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 229 |
ExternalDocumentID | oai_doaj_org_article_961a13bb7b534e94b277f4ba4abf350f 39237934 10_1186_s13059_024_03367_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development grantid: P23tm0424226 – fundername: Japan Agency for Medical Research and Development grantid: JP22wm0425007 – fundername: Japan Agency for Medical Research and Development grantid: JP23wm0325068 – fundername: Japan Society for the Promotion of Science grantid: 22H04925 – fundername: Japan Society for the Promotion of Science grantid: 23H04938 – fundername: Moonshot Research and Development Program grantid: JPMJMS2025 – fundername: Japan Agency for Medical Research and Development grantid: JP22ama221215 – fundername: Japan Agency for Medical Research and Development grantid: JP22ama221501 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c560t-7b0242a73e428c948faa9cad89da1ab2c6d0037b5d2195f094e2a08942200d893 |
IEDL.DBID | DOA |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:30:24 EDT 2025 Fri Jul 11 07:55:13 EDT 2025 Fri Jul 11 03:07:24 EDT 2025 Fri Jul 25 11:46:08 EDT 2025 Mon Jul 21 06:00:41 EDT 2025 Tue Jul 01 03:11:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dimensionality reduction Variational autoencoder (VAE) RNA velocity Deep generative model RNA degradation RNA-binding proteins Neural network Cell differentiation Transcriptome dynamics Single-cell RNA sequencing (scRNA-seq) Splicing kinetics Metabolic labeling RNA splicing |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-7b0242a73e428c948faa9cad89da1ab2c6d0037b5d2195f094e2a08942200d893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/961a13bb7b534e94b277f4ba4abf350f |
PMID | 39237934 |
PQID | 3102505010 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_961a13bb7b534e94b277f4ba4abf350f proquest_miscellaneous_3153789222 proquest_miscellaneous_3101230574 proquest_journals_3102505010 pubmed_primary_39237934 crossref_primary_10_1186_s13059_024_03367_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-06 |
PublicationDateYYYYMMDD | 2024-09-06 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2024 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | Y Liu (3367_CR34) 2023; 15 N Battich (3367_CR3) 2020; 367 G La Manno (3367_CR5) 2018; 560 G Biber (3367_CR43) 2021; 12 3367_CR60 I Tirosh (3367_CR14) 2016; 352 WR Ma (3367_CR36) 2020; 26 3367_CR20 3367_CR23 SL Klemm (3367_CR47) 2019; 20 3367_CR8 L Jin (3367_CR32) 2021; 12 AM Fowler (3367_CR21) 2020; 11 V Gatti (3367_CR25) 2019; 20 K Nagaharu (3367_CR9) 2022; 40 T Guo (3367_CR30) 2022; 8 H Qin (3367_CR17) 2020; 13 T Liu (3367_CR19) 2022; 13 RK Bradley (3367_CR1) 2023; 23 N Fusco (3367_CR22) 2021; 11 T Guan (3367_CR26) 2022; 237 G Turashvili (3367_CR52) 2017; 4 H Cui (3367_CR12) 2024; 25 B Jovanović (3367_CR33) 2014; 16 3367_CR37 D Peeney (3367_CR27) 2020; 41 Z Fang (3367_CR2) 2022; 11 B Pereira (3367_CR16) 2017; 3 3367_CR42 3367_CR40 W Xie (3367_CR35) 2020; 59 G Gorin (3367_CR48) 2022; 18 S Vanharanta (3367_CR29) 2014; 3 Y Shiozawa (3367_CR39) 2018; 9 3367_CR49 Y Xiao (3367_CR31) 2021; 39 V Bergen (3367_CR6) 2020; 38 G Zheng (3367_CR18) 2017; 8 T Ochi (3367_CR38) 2022; 12 V Adema (3367_CR41) 2022; 3 A Gayoso (3367_CR7) 2024; 21 YT Yang (3367_CR51) 2015; 16 FA Wolf (3367_CR10) 2019; 20 A Bastidas-Ponce (3367_CR56) 2019; 146 C Domínguez Conde (3367_CR53) 2022; 376 G Miao (3367_CR44) 2023; 158 J Zhang (3367_CR24) 2018; 45 3367_CR50 Y Kim (3367_CR28) 2019; 38 3367_CR57 3367_CR55 Q Qiu (3367_CR4) 2020; 17 3367_CR54 C Li (3367_CR46) 2023; 41 P Dibaeinia (3367_CR11) 2020; 11 3367_CR15 3367_CR59 3367_CR58 Y Xue (3367_CR45) 2023; 14 X Qiu (3367_CR13) 2022; 185 |
References_xml | – volume: 367 start-page: 1151 issue: 6482 year: 2020 ident: 3367_CR3 publication-title: Science. doi: 10.1126/science.aax3072 – volume: 8 start-page: 14049 year: 2017 ident: 3367_CR18 publication-title: Nat Commun. doi: 10.1038/ncomms14049 – volume: 3 start-page: 554 issue: 6 year: 2022 ident: 3367_CR41 publication-title: Blood Cancer Discov. doi: 10.1158/2643-3230.BCD-21-0220 – volume: 41 start-page: 313 issue: 3 year: 2020 ident: 3367_CR27 publication-title: Carcinogenesis. doi: 10.1093/carcin/bgz172 – ident: 3367_CR57 doi: 10.1242/dev.173849 – ident: 3367_CR20 doi: 10.1158/1541-7786.MCR-21-0402 – volume: 9 start-page: 3649 issue: 1 year: 2018 ident: 3367_CR39 publication-title: Nat Commun. doi: 10.1038/s41467-018-06063-x – volume: 20 start-page: 2683 issue: 11 year: 2019 ident: 3367_CR25 publication-title: Int J Mol Sci. doi: 10.3390/ijms20112683 – ident: 3367_CR40 – volume: 12 start-page: 14562 issue: 1 year: 2022 ident: 3367_CR38 publication-title: Sci Rep. doi: 10.1038/s41598-022-18921-2 – ident: 3367_CR8 doi: 10.1038/s41587-023-01728-5 – volume: 59 start-page: 339 issue: 4 year: 2020 ident: 3367_CR35 publication-title: Mol Carcinog. doi: 10.1002/mc.23158 – volume: 352 start-page: 189 issue: 6282 year: 2016 ident: 3367_CR14 publication-title: Science. doi: 10.1126/science.aad0501 – ident: 3367_CR15 doi: 10.1002/wrna.1398 – ident: 3367_CR54 – ident: 3367_CR58 – volume: 26 start-page: 184 issue: 2 year: 2020 ident: 3367_CR36 publication-title: World J Gastroenterol. doi: 10.3748/wjg.v26.i2.184 – volume: 4 start-page: 227 year: 2017 ident: 3367_CR52 publication-title: Front Med (Lausanne). doi: 10.3389/fmed.2017.00227 – volume: 185 start-page: 690 issue: 4 year: 2022 ident: 3367_CR13 publication-title: Cell. doi: 10.1016/j.cell.2021.12.045 – volume: 45 start-page: 692 issue: 2 year: 2018 ident: 3367_CR24 publication-title: Cell Physiol Biochem. doi: 10.1159/000487162 – ident: 3367_CR37 doi: 10.1016/j.canlet.2020.11.024 – volume: 13 start-page: 6823 issue: 1 year: 2022 ident: 3367_CR19 publication-title: Nat Commun. doi: 10.1038/s41467-022-34581-2 – volume: 39 start-page: 423 issue: 3 year: 2021 ident: 3367_CR31 publication-title: Cancer Cell. doi: 10.1016/j.ccell.2020.12.012 – volume: 12 start-page: 5581 issue: 1 year: 2021 ident: 3367_CR43 publication-title: Nat Commun. doi: 10.1038/s41467-021-25842-7 – ident: 3367_CR60 – volume: 23 start-page: 135 issue: 3 year: 2023 ident: 3367_CR1 publication-title: Nat Rev Cancer. doi: 10.1038/s41568-022-00541-7 – volume: 8 start-page: 320 issue: 1 year: 2022 ident: 3367_CR30 publication-title: Cell Death Discov. doi: 10.1038/s41420-022-01112-3 – volume: 14 start-page: 4758 issue: 1 year: 2023 ident: 3367_CR45 publication-title: Nat Commun. doi: 10.1038/s41467-023-40518-0 – volume: 40 start-page: 111260 issue: 9 year: 2022 ident: 3367_CR9 publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111260 – ident: 3367_CR49 – ident: 3367_CR55 – volume: 41 start-page: 387 issue: 3 year: 2023 ident: 3367_CR46 publication-title: Nat Biotechnol. doi: 10.1038/s41587-022-01476-y – volume: 146 start-page: dev173849 issue: 12 year: 2019 ident: 3367_CR56 publication-title: Development. doi: 10.1242/dev.173849 – volume: 11 start-page: 252 issue: 3 year: 2020 ident: 3367_CR11 publication-title: Cell Syst. doi: 10.1016/j.cels.2020.08.003 – volume: 38 start-page: 6521 issue: 38 year: 2019 ident: 3367_CR28 publication-title: Oncogene. doi: 10.1038/s41388-019-0892-5 – ident: 3367_CR59 – volume: 237 start-page: 2992 issue: 7 year: 2022 ident: 3367_CR26 publication-title: J Cell Physiol. doi: 10.1002/jcp.30763 – volume: 12 start-page: 5413 issue: 18 year: 2021 ident: 3367_CR32 publication-title: J Cancer doi: 10.7150/jca.60885 – volume: 16 start-page: R69 issue: 4 year: 2014 ident: 3367_CR33 publication-title: Breast Cancer Res. doi: 10.1186/bcr3684 – volume: 13 start-page: 90 issue: 1 year: 2020 ident: 3367_CR17 publication-title: J Hematol Oncol. doi: 10.1186/s13045-020-00927-w – volume: 560 start-page: 494 issue: 7719 year: 2018 ident: 3367_CR5 publication-title: Nature. doi: 10.1038/s41586-018-0414-6 – ident: 3367_CR50 doi: 10.1093/nar/gkz369 – ident: 3367_CR23 doi: 10.1073/pnas.1914786117 – volume: 376 start-page: eabl5197 issue: 6594 year: 2022 ident: 3367_CR53 publication-title: Science. doi: 10.1126/science.abl5197 – volume: 158 start-page: 114127 year: 2023 ident: 3367_CR44 publication-title: Biomed Pharmacother. doi: 10.1016/j.biopha.2022.114127 – volume: 11 start-page: 45 issue: 1 year: 2022 ident: 3367_CR2 publication-title: Exp Hematol Oncol. doi: 10.1186/s40164-022-00298-7 – volume: 18 start-page: e1010492 issue: 9 year: 2022 ident: 3367_CR48 publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1010492 – volume: 17 start-page: 991 issue: 10 year: 2020 ident: 3367_CR4 publication-title: Nat Methods. doi: 10.1038/s41592-020-0935-4 – volume: 20 start-page: 59 issue: 1 year: 2019 ident: 3367_CR10 publication-title: Genome Biol. doi: 10.1186/s13059-019-1663-x – volume: 16 start-page: 51 issue: 1 year: 2015 ident: 3367_CR51 publication-title: BMC Genomics. doi: 10.1186/s12864-015-1273-2 – volume: 11 start-page: 644737 year: 2021 ident: 3367_CR22 publication-title: Front Oncol. doi: 10.3389/fonc.2021.644737 – volume: 3 start-page: e02734 year: 2014 ident: 3367_CR29 publication-title: Elife. doi: 10.7554/eLife.02734 – ident: 3367_CR42 doi: 10.1080/2162402X.2018.1468954 – volume: 15 start-page: 5033 issue: 20 year: 2023 ident: 3367_CR34 publication-title: Cancers (Basel). doi: 10.3390/cancers15205033 – volume: 20 start-page: 207 year: 2019 ident: 3367_CR47 publication-title: Nat Rev Genet. doi: 10.1038/s41576-018-0089-8 – volume: 25 start-page: 27 issue: 1 year: 2024 ident: 3367_CR12 publication-title: Genome Biol. doi: 10.1186/s13059-023-03148-9 – volume: 11 start-page: 63 issue: 2 year: 2020 ident: 3367_CR21 publication-title: Horm Cancer. doi: 10.1007/s12672-020-00377-3 – volume: 3 start-page: 506 issue: 7 year: 2017 ident: 3367_CR16 publication-title: Trends Cancer. doi: 10.1016/j.trecan.2017.05.003 – volume: 21 start-page: 50 issue: 1 year: 2024 ident: 3367_CR7 publication-title: Nat Methods. doi: 10.1038/s41592-023-01994-w – volume: 38 start-page: 1408 issue: 12 year: 2020 ident: 3367_CR6 publication-title: Nat Biotechnol. doi: 10.1038/s41587-020-0591-3 |
SSID | ssj0019426 ssj0017866 |
Score | 2.4706953 |
Snippet | Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for estimating... Abstract Messenger RNA splicing and degradation are critical for gene expression regulation, the abnormality of which leads to diseases. Previous methods for... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 229 |
SubjectTerms | Accuracy Animals brain Breast cancer breast neoplasms Breast Neoplasms - genetics Breast Neoplasms - metabolism Cancer Cell cycle data collection Datasets Degradation Female Forebrain Gene expression gene expression regulation Gene regulation Genes genome Humans Kinetics messenger RNA Metabolism Methods Neural networks Parameter estimation Post-transcription Prosencephalon - metabolism Proteins RNA degradation RNA Splicing RNA Stability RNA-binding protein RNA-binding proteins RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Single-Cell Analysis Single-cell RNA sequencing (scRNA-seq) Splicing factors Splicing kinetics Transcriptome dynamics Velocity |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJuUgozEDVlNYie2uaACrSokekCttDczjp29VNllsz3w7zvjZBdxoMfEI8saj2e-8eMbgA-KT7doqqXSmKSuyyQtlqWk0EgmHU3rEr9G_nHRnl_p74tmMW-4jfO1yp1PzI46rjreIz-mDjlaU_rwef1bctUoPl2dS2jchwdMXcZWbRb7hKsylrHK_OF0PT014guIjWt3L2hsezySI2-cpHAlS6XIc9h_olQm8_8_As2R6OwJPJ4hpDiZ5vwp3EvDM3g4FZX88xx-fUtpTUn56eUngSLSh1hmbml2bCJXvhGEVAXTazBcHZaC9wuuk-RNfPHz4kSMfKjNDThE6mG5wanykmBeifEFXJ2dXn49l3MdBdkRntlKEzgQo1GJco3Oadsjug6jdRErDHXXRqahCU0k99X0lPClGktLCqMlRFLqJRwMqyG9BhF7yp8cNVd1qaNBJHRQh4pyDtu6TncFfNzpza8nugyf0wzb-knLnsbis5a9LeALq3YvyVTX-cdqs_TzyvGurbBSIdD4lE5Oh9qYXgfUGHrVlH0BR7uJ8fP6G_1fayng_b6ZVg5rEoe0uskyFLYJr-q7ZBplrCMQVcCradL3oyVkqci76cO7B_AGHtXZspjt4QgOtpub9JaAzDa8y9Z6C6CP6fM priority: 102 providerName: ProQuest |
Title | DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39237934 https://www.proquest.com/docview/3102505010 https://www.proquest.com/docview/3101230574 https://www.proquest.com/docview/3153789222 https://doaj.org/article/961a13bb7b534e94b277f4ba4abf350f |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3alEIvpemn02RRobciYluyJeWWbTeEQpeyJLD0oo5seS_BCdnNof--M7J3SQ5tL70YbAkjz0jz3lj2G4CPine3yNVSaYxSl3mUFvNcEjTSlG5N7SL_jfxtXp9f6q_Lanmv1Bd_EzbIAw-GO3Z1gYUKwYRK6eh0KI3pdECNoVNV3nH0JczbJlPj_oEj4Nn-ImPr4zVF6spJwiOZK0WhwT6AoaTW_2eKmaDm7AU8HzmiOB3Gtg-PYv8Sng5VI3-9gp9fYryhrHt2cSJQtHQiVkk8miOXSKVtBFFRwfoZzEf7leAXAldR8lt6sZifijXvWnMD9i3dYXWLQ2klwcIR69dweTa7-Hwux0IJsiHCspEmMNKiUZGSicZp2yG6BlvrWiwwlE3dss5MqFqKT1VHGV0sMbdkJFoj1Eu9gb3-uo_vQLQdJUiOmosy161BJPgvQ0FJha1do5sMPm3t5m8GPQyf8ghb-8HKnsbik5W9zWDKpt31ZC3rdIE87EcP-395OIPDrWP8uMDWnuYXkzfKJjP4sGumpcGWxD5e36U-hMtESPXf-lTKWEcsKYO3g9N3oyXqqCh86YP_8RTv4VmZ5h-LPhzC3ub2Lh4Rn9mECTw2SzOBJ9PZ_PtikiYyHRfTH78BpTPx5w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k1KASPBCVlNbCexkRAqtNUu2-4BbaW9uXbs7AVlt5utUP8Uv5EZJ1nEgd56dOxYo_E8vvFjhpD3Ak-3YKmZkDYwydPAlE1TBq4RRNqXhQ74GvlsWozO5fd5Pt8hv4e3MHitcrCJ0VD7ZYV75AcwIXprCB--rC4ZVo3C09WhhEYnFpNw_QtCtvbz-AjW9wPnJ8ezbyPWVxVgFXj3DSsduiVbigDIu9JS1dbqynqlvc2s41XhMSmLyz0oc15D-BO4TZWWHAQKRgmY9w65C443xWCvnG8DvKxUiI36BvzQPW3CC4-5LoYXO6o4aMFx5JoBHSwVAiyV-scrxuIB_0e80fOdPCIPe8hKDzsZe0x2QvOE3OuKWF4_JRdHIawm4-nx7BO11EODLmIuazSkNFbaoYCMKabzQHjcLCjuT_wMDA8N6I_pIW3xEB07bONhhsXadpWeKOaxaJ-R81vh8HOy2yyb8JJQX0O8pqE746n0pbWARrjLIMZRha5klZCPA9_MqkvPYWJYowrTcdkALSZy2aiEfEXWbkdiau34YblemF5TjS4ymwnngD4hg5aOl2UtnZXW1SJP64TsDwtjen1vzV_pTMi7bTdoKnLSNmF5FccATAB8LG8ak4tSaQBtCXnRLfqWWkCyAqyp3LuZgLfk_mh2dmpOx9PJK_KARynDTBP7ZHezvgqvAURt3JsouZRc3Laq_AFoEiXF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepKINET%3A+a+deep+generative+model+for+estimating+single-cell+RNA+splicing+and+degradation+rates&rft.jtitle=Genome+biology&rft.au=Mizukoshi%2C+Chikara&rft.au=Kojima%2C+Yasuhiro&rft.au=Nomura%2C+Satoshi&rft.au=Hayashi%2C+Shuto&rft.date=2024-09-06&rft.eissn=1474-760X&rft.volume=25&rft.issue=1&rft.spage=229&rft_id=info:doi/10.1186%2Fs13059-024-03367-8&rft_id=info%3Apmid%2F39237934&rft.externalDocID=39237934 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |