Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging
Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP2) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate the...
Saved in:
Published in | Membranes (Basel) Vol. 13; no. 2; p. 250 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP2) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP2 is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP2 in opposing the regulation of cholesterol, as seen through super-resolution imaging. |
---|---|
AbstractList | Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP
) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP
is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP
in opposing the regulation of cholesterol, as seen through super-resolution imaging. Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP2) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP2 is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP2 in opposing the regulation of cholesterol, as seen through super-resolution imaging.Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP2) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP2 is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP2 in opposing the regulation of cholesterol, as seen through super-resolution imaging. Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP2) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP2 is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP2 in opposing the regulation of cholesterol, as seen through super-resolution imaging. Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP 2 ) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP 2 is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP 2 in opposing the regulation of cholesterol, as seen through super-resolution imaging. Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP[sub.2] ) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In this review, we discuss how changes in cholesterol concentration cause nanoscopic (<200 nm) movements of membrane proteins to regulate their function. Cholesterol is known to cluster many membrane proteins (often palmitoylated proteins) with long-chain saturated lipids. Although PIP[sub.2] is better known for gating ion channels, in this review, we will discuss a second independent function as a regulator of nanoscopic protein movement that opposes cholesterol clustering. The understanding of the movement of proteins between nanoscopic lipid domains emerged largely through the recent advent of super-resolution imaging and the establishment of two-color techniques to label lipids separate from proteins. We discuss the labeling techniques for imaging, their strengths and weakness, and how they are used to reveal novel mechanisms for an ion channel, transporter, and enzyme function. Among the mechanisms, we describe substrate and ligand presentation and their ability to activate enzymes, gate channels, and transporters rapidly and potently. Finally, we define cholesterol-regulated proteins (CRP) and discuss the role of PIP[sub.2] in opposing the regulation of cholesterol, as seen through super-resolution imaging. |
Audience | Academic |
Author | Yuan, Zixuan Hansen, Scott B. |
AuthorAffiliation | 3 Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA 1 Department of Molecular Medicine, Department of Neuroscience, UF Scripps, Jupiter, FL 33458, USA 2 Department of Neuroscience UF Scripps, Jupiter, FL 33458, USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular Medicine, Department of Neuroscience, UF Scripps, Jupiter, FL 33458, USA – name: 2 Department of Neuroscience UF Scripps, Jupiter, FL 33458, USA – name: 3 Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA |
Author_xml | – sequence: 1 givenname: Zixuan orcidid: 0000-0003-0665-5086 surname: Yuan fullname: Yuan, Zixuan – sequence: 2 givenname: Scott B. orcidid: 0000-0003-0086-9753 surname: Hansen fullname: Hansen, Scott B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36837753$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1u1DAUhSNUREvpA7BBkdiwSbHj2I43SNWIn5GKQGVWbCzbuU49cuLBTor69rgzU-gUSBax7HO-K5-c58XRGEYoipcYnRMi0NsBBh3VCAkTVKOaoifFSY04rxDh9OjB-rg4S2mN8sMQZQQ9K44JawnnlJwU3xfXwUOaIAZfXkE_ezW5MJbBlp_3A8qvMUzgxpTPb0B56Ep9W65-hmoRfIjlt3kDsbqCFPy89S4H1buxf1E8tconONt_T4vVh_erxafq8svH5eLisjKUoaniXNAWYQqm6ZBmoDEzBlvbGo6YoZ2CzhhNWtRozUytMdQiB0CUJUJpRU6L5Q7bBbWWm-gGFW9lUE5uN0LspYqTMx4kQUI1WFOLLGsQ6LaxlGIsOoRrIbDOrHc71mbWQ54L4xSVP4AenozuWvbhRgrBWMubDHizB8TwY865ysElA97nHMOcZM1blP8LYSxLXz-SrsMcx5xUVnHBsGCc_FH1OXjpRhvyXHMHlRd5Hm5ZS-9Y5_9Q5beDwZncG-vy_oHh1cOL_r7hfTGygO8EJoaUIlhp3LStRiY7LzGSdy2Uf7UwO_Ej5z38_55fGI3hQQ |
CitedBy_id | crossref_primary_10_1016_j_bpj_2024_10_019 crossref_primary_10_1002_1873_3468_14956 crossref_primary_10_1016_j_pharmthera_2023_108486 crossref_primary_10_1016_j_jbc_2023_105484 crossref_primary_10_3390_cells14060445 crossref_primary_10_1186_s12951_024_02605_2 crossref_primary_10_7554_eLife_89465 crossref_primary_10_1016_j_abb_2024_110045 crossref_primary_10_1021_acs_jpcb_4c08750 crossref_primary_10_1016_j_jbc_2023_104763 crossref_primary_10_7554_eLife_89465_3 crossref_primary_10_1007_s00210_024_03116_5 crossref_primary_10_1213_ANE_0000000000006738 crossref_primary_10_1016_j_chembiol_2023_02_010 crossref_primary_10_26508_lsa_202302453 |
Cites_doi | 10.1016/j.celrep.2017.07.034 10.1016/j.taap.2022.115913 10.1038/emboj.2008.217 10.1073/pnas.2102191118 10.1016/S0896-6273(02)00790-0 10.1074/jbc.M704224200 10.1146/annurev.biophys.36.040306.132643 10.1126/science.1068539 10.1038/nature00992 10.1126/science.1174621 10.1126/science.1131163 10.1038/srep27652 10.1073/pnas.0307804101 10.1146/annurev.biophys.32.110601.141803 10.1038/nri3793 10.1016/j.bbamem.2006.09.001 10.1038/s41467-020-17538-1 10.1038/ncpneuro0549 10.1038/nn0403-345 10.1073/pnas.2002245117 10.1038/ncomms14089 10.1074/jbc.M108951200 10.1038/nprot.2013.005 10.1146/annurev.biochem.73.011303.073954 10.1021/acs.jpcb.5b10165 10.1002/bip.21586 10.1080/09687860500496417 10.1038/nature10370 10.1073/pnas.072632899 10.1016/j.chemphyslip.2015.07.022 10.1038/nrm.2015.11 10.1016/j.plipres.2020.101070 10.2139/ssrn.3155650 10.1083/jcb.200207113 10.1038/s41586-022-04474-x 10.1073/pnas.2006737117 10.1128/JVI.01134-06 10.1016/j.ejphar.2009.11.052 10.1007/s00424-007-0295-2 10.1529/biophysj.104.043273 10.1016/j.bbamem.2015.03.029 10.1523/JNEUROSCI.3231-04.2005 10.1016/j.tibs.2019.04.001 10.1016/j.cell.2019.12.003 10.1523/JNEUROSCI.3317-10.2010 10.1002/cbic.201500278 10.1038/nmeth.f.314 10.1194/jlr.TR119000468 10.1093/emboj/20.9.2202 10.1111/imm.12617 10.1038/nchembio.1592 10.1007/s00424-010-0828-y 10.1038/sj.emboj.7600655 10.1146/annurev.bi.65.070196.001325 10.4061/2011/603052 10.1074/jbc.R110.210005 10.1016/j.bbalip.2010.03.007 10.1038/nature08147 10.1083/jcb.201008160 10.1038/s41589-020-00659-5 10.1038/s41586-018-0833-4 10.1161/CIRCRESAHA.116.308856 10.1016/j.jmb.2018.11.028 10.1038/nrm.2017.16 10.1038/s41467-021-23756-y 10.1073/pnas.1407160111 10.1073/pnas.1018572108 10.1073/pnas.2002200117 10.1242/bio.20122071 10.1016/S0896-6273(03)00840-7 10.1038/nature10545 10.1128/MMBR.00036-14 10.1038/nature17964 10.1021/bi0156557 10.1038/ncomms13873 10.1007/s002329900397 10.1073/pnas.1009362108 10.4049/jimmunol.1100253 10.1146/annurev-pharmtox-010919-023411 10.1038/s41586-021-03196-w 10.1038/s41580-019-0190-7 10.1523/JNEUROSCI.4704-12.2013 10.1194/jlr.M600428-JLR200 10.1152/ajpcell.00492.2006 10.1002/iub.192 10.1073/pnas.1016184107 10.1101/2020.05.09.086249 10.1021/bi9007879 10.1101/758896 10.1021/acs.langmuir.8b02074 10.1073/pnas.2202647119 10.1146/annurev.biophys.37.032807.125859 10.1016/j.bpj.2015.11.203 10.1038/nprot.2011.336 10.1016/j.bbalip.2015.01.011 10.1016/j.bpj.2010.11.086 10.1016/j.tins.2021.08.007 10.7554/eLife.19891 10.1073/pnas.2004259117 10.1161/JAHA.118.008749 10.1126/stke.2001.111.re19 10.1016/j.bbalip.2020.158706 10.1016/j.bbamem.2019.183091 10.1042/CS20201394 10.3389/fphys.2012.00189 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KB. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/membranes13020250 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central - New (Subscription) Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2077-0375 |
ExternalDocumentID | oai_doaj_org_article_309a41b5f0f640eb84f55119d012991b PMC9966874 A743186856 36837753 10_3390_membranes13020250 |
Genre | Journal Article Review |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIH HHS grantid: 1DP2NS087943-01 – fundername: NIA NIH HHS grantid: R21 AG078845 – fundername: NIH HHS grantid: R21 AG078845-01 – fundername: NIH HHS grantid: 1R01NS112534-01 – fundername: NINDS NIH HHS grantid: DP2 NS087943 – fundername: NINDS NIH HHS grantid: R01 NS112534 – fundername: National Institutes of Health grantid: R01NS112534 – fundername: Director’s New Innovator Award grantid: DP2NS087943 |
GroupedDBID | 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV ADMLS AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION D1I EAD EAP EPL ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE I-F IAO ITC KB. KQ8 L6V LK8 M1P M48 M7P M7S MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS RPM TUS UKHRP NPM PMFND 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK AZQEC COVID DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c560t-77958015ec4d0b6eb16cc1ff8c706c5daedccb3804bb6c2b1e293393af39aba3 |
IEDL.DBID | M48 |
ISSN | 2077-0375 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Thu Aug 21 18:37:43 EDT 2025 Fri Jul 11 03:53:56 EDT 2025 Fri Jul 25 11:55:19 EDT 2025 Tue Jun 17 22:02:20 EDT 2025 Tue Jun 10 21:00:47 EDT 2025 Thu Apr 03 07:08:30 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 Tue Jul 01 03:32:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | nanoscopic clustering lipid raft ion channel PIP2 transporter |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-77958015ec4d0b6eb16cc1ff8c706c5daedccb3804bb6c2b1e293393af39aba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0665-5086 0000-0003-0086-9753 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/membranes13020250 |
PMID | 36837753 |
PQID | 2779619673 |
PQPubID | 2032363 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_309a41b5f0f640eb84f55119d012991b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9966874 proquest_miscellaneous_2780077366 proquest_journals_2779619673 gale_infotracmisc_A743186856 gale_infotracacademiconefile_A743186856 pubmed_primary_36837753 crossref_citationtrail_10_3390_membranes13020250 crossref_primary_10_3390_membranes13020250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Membranes (Basel) |
PublicationTitleAlternate | Membranes (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Startek (ref_29) 2016; 110 Le (ref_73) 2018; 7 Meng (ref_92) 2022; 603 ref_91 Chan (ref_45) 2010; 30 Harraz (ref_38) 2020; 117 Pian (ref_58) 2007; 455 Bleecker (ref_74) 2016; 120 Henriques (ref_94) 2011; 95 Logothetis (ref_16) 2010; 460 Wang (ref_41) 2021; 118 Katsuta (ref_83) 2018; 35 Cardoso (ref_8) 2021; 135 Zhang (ref_62) 2014; 10 Robinson (ref_13) 2019; 44 Wang (ref_23) 2012; 1 Hilgemann (ref_17) 2001; 2001 Petersen (ref_22) 2016; 7 Sengupta (ref_88) 2013; 8 Tikku (ref_70) 2007; 293 Levental (ref_11) 2010; 107 Luo (ref_4) 2020; 21 Schrecke (ref_18) 2020; 17 Phillips (ref_36) 2009; 459 Lorent (ref_86) 2015; 192 Shipston (ref_24) 2011; 286 Perozo (ref_81) 2002; 418 Logothetis (ref_72) 2011; 100 Tall (ref_3) 2015; 15 Hansen (ref_30) 2011; 477 Suh (ref_59) 2002; 35 Zacharias (ref_96) 2002; 296 Lang (ref_106) 2001; 20 Anderluh (ref_33) 2017; 8 Kapadia (ref_5) 2007; 81 Yao (ref_84) 2020; 81 Gao (ref_31) 2016; 534 Espinosa (ref_93) 2011; 108 Zakany (ref_71) 2020; 1865 Hartley (ref_87) 2015; 16 Cornell (ref_75) 2020; 117 Raut (ref_95) 2022; 440 Puglielli (ref_1) 2003; 6 Ehehalt (ref_52) 2003; 160 Tanaka (ref_105) 2010; 7 Brown (ref_97) 1998; 164 Miller (ref_53) 2020; 61 Sezgin (ref_10) 2017; 18 Vetrivel (ref_49) 2010; 1801 Velisetty (ref_64) 2016; 6 Han (ref_19) 2022; 119 Hansen (ref_15) 2015; 1851 Wedegaertner (ref_25) 2007; 1768 Deng (ref_80) 2020; 11 Hicks (ref_47) 2012; 3 Lengl (ref_28) 2010; 628 Winks (ref_61) 2005; 25 Yuan (ref_7) 2022; 5 Bramkamp (ref_85) 2015; 79 Pike (ref_108) 2002; 41 Zhang (ref_82) 2021; 590 Song (ref_35) 2020; 60 Simons (ref_98) 2004; 33 Fessler (ref_56) 2011; 187 Wang (ref_42) 2022; 2 Smotrys (ref_100) 2004; 73 Achame (ref_109) 2005; 24 Suh (ref_14) 2008; 37 Raut (ref_43) 2022; 1196503 Heberle (ref_76) 2020; 117 Wang (ref_103) 2016; 17 Zhang (ref_102) 1996; 65 Bhattacharyya (ref_46) 2013; 33 Damian (ref_26) 2021; 12 Grouleff (ref_37) 2015; 1848 ref_66 Sun (ref_32) 2019; 180 Cheng (ref_50) 2007; 3 Cordy (ref_51) 2006; 23 Thyagarajan (ref_65) 2008; 283 Petersen (ref_12) 2019; 1862 Koseki (ref_55) 2007; 48 Cabanos (ref_68) 2017; 20 Varshney (ref_54) 2016; 149 Martinac (ref_77) 2002; 99 Andersen (ref_79) 2007; 36 Wolozin (ref_2) 2004; 41 Kabir (ref_9) 2021; 32 Comoglio (ref_67) 2014; 111 Salaun (ref_101) 2010; 191 Nilius (ref_63) 2008; 27 DeSpenza (ref_107) 2021; 44 Hooper (ref_48) 2011; 2011 Stone (ref_90) 2017; 6 Laverty (ref_34) 2019; 565 Chung (ref_104) 2018; 431 Lingwood (ref_44) 2009; 327 Suh (ref_60) 2006; 314 Bogaart (ref_20) 2011; 479 Romanenko (ref_27) 2004; 87 Levental (ref_21) 2009; 48 Levitan (ref_69) 2009; 61 Wiggins (ref_78) 2004; 101 Yue (ref_57) 2002; 277 Pavel (ref_40) 2020; 117 Gulshan (ref_39) 2016; 119 Holt (ref_99) 2011; 108 Klein (ref_89) 2011; 6 ref_6 |
References_xml | – volume: 20 start-page: 1287 year: 2017 ident: ref_68 article-title: A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.07.034 – volume: 440 start-page: 115913 year: 2022 ident: ref_95 article-title: Cetylpyridinium chloride (CPC) reduces zebrafish mortality from influenza infection: Super-resolution microscopy reveals CPC interference with multiple protein interactions with phosphatidylinositol 4,5-bisphosphate in immune function publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2022.115913 – volume: 27 start-page: 2809 year: 2008 ident: ref_63 article-title: Transient receptor potential channels meet phosphoinositides publication-title: EMBO J. doi: 10.1038/emboj.2008.217 – volume: 118 start-page: e2102191118 year: 2021 ident: ref_41 article-title: Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2102191118 – volume: 35 start-page: 507 year: 2002 ident: ref_59 article-title: Recovery from Muscarinic Modulation of M Current Channels Requires Phosphatidylinositol 4,5-Bisphosphate Synthesis publication-title: Neuron doi: 10.1016/S0896-6273(02)00790-0 – volume: 283 start-page: 14980 year: 2008 ident: ref_65 article-title: Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate Mediates Calcium-induced Inactivation of TRPV6 Channels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704224200 – volume: 36 start-page: 107 year: 2007 ident: ref_79 article-title: Bilayer Thickness and Membrane Protein Function: An Energetic Perspective publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.36.040306.132643 – volume: 296 start-page: 913 year: 2002 ident: ref_96 article-title: Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells publication-title: Science doi: 10.1126/science.1068539 – volume: 418 start-page: 942 year: 2002 ident: ref_81 article-title: Open channel structure of MscL and the gating mechanism of mechanosensitive channels publication-title: Nature doi: 10.1038/nature00992 – volume: 327 start-page: 46 year: 2009 ident: ref_44 article-title: Lipid Rafts as a Membrane-Organizing Principle publication-title: Science doi: 10.1126/science.1174621 – volume: 314 start-page: 1454 year: 2006 ident: ref_60 article-title: Rapid Chemically Induced Changes of PtdIns(4,5)P 2 Gate KCNQ Ion Channels publication-title: Science doi: 10.1126/science.1131163 – volume: 6 start-page: 27652 year: 2016 ident: ref_64 article-title: A molecular determinant of phosphoinositide affinity in mammalian TRPV channels publication-title: Sci. Rep. doi: 10.1038/srep27652 – volume: 101 start-page: 4071 year: 2004 ident: ref_78 article-title: Analytic models for mechanotransduction: Gating a mechanosensitive channel publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0307804101 – volume: 33 start-page: 269 year: 2004 ident: ref_98 article-title: Model systems, lipid rafts, and cell membranes publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.32.110601.141803 – volume: 15 start-page: 104 year: 2015 ident: ref_3 article-title: Cholesterol, inflammation and innate immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3793 – volume: 1768 start-page: 836 year: 2007 ident: ref_25 article-title: Lipid–protein interactions in GPCR-associated signaling publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2006.09.001 – volume: 11 start-page: 3690 year: 2020 ident: ref_80 article-title: Structural mechanism for gating of a eukaryotic mechanosensitive channel of small conductance publication-title: Nat. Commun. doi: 10.1038/s41467-020-17538-1 – volume: 3 start-page: 374 year: 2007 ident: ref_50 article-title: Mechanisms of Disease: New therapeutic strategies for Alzheimer’s disease—Targeting APP processing in lipid rafts publication-title: Nat. Clin. Pract. Neurol. doi: 10.1038/ncpneuro0549 – volume: 6 start-page: 345 year: 2003 ident: ref_1 article-title: Alzheimer’s disease: The cholesterol connection publication-title: Nat. Neurosci. doi: 10.1038/nn0403-345 – volume: 117 start-page: 19713 year: 2020 ident: ref_75 article-title: Direct imaging of liquid domains in membranes by cryo-electron tomography publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2002245117 – volume: 8 start-page: 14089 year: 2017 ident: ref_33 article-title: Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter publication-title: Nat. Commun. doi: 10.1038/ncomms14089 – volume: 277 start-page: 11965 year: 2002 ident: ref_57 article-title: Phosphatidylinositol 4,5-Bisphosphate (PIP2) Stimulates Epithelial Sodium Channel Activity in A6 Cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M108951200 – volume: 8 start-page: 345 year: 2013 ident: ref_88 article-title: Quantifying spatial organization in point-localization superresolution images using pair correlation analysis publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.005 – volume: 73 start-page: 559 year: 2004 ident: ref_100 article-title: Palmitoylation of Intracellular Signaling Proteins: Regulation and Function publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.073954 – volume: 120 start-page: 2761 year: 2016 ident: ref_74 article-title: Thickness Mismatch of Coexisting Liquid Phases in Noncanonical Lipid Bilayers publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b10165 – volume: 95 start-page: 322 year: 2011 ident: ref_94 article-title: PALM and STORM: Unlocking live-cell super-resolution publication-title: Biopolymers doi: 10.1002/bip.21586 – volume: 23 start-page: 111 year: 2006 ident: ref_51 article-title: The involvement of lipid rafts in Alzheimer’s disease (Review) publication-title: Mol. Membr. Biol. doi: 10.1080/09687860500496417 – volume: 477 start-page: 495 year: 2011 ident: ref_30 article-title: Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2 publication-title: Nature doi: 10.1038/nature10370 – volume: 99 start-page: 4308 year: 2002 ident: ref_77 article-title: Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.072632899 – volume: 192 start-page: 23 year: 2015 ident: ref_86 article-title: Structural determinants of protein partitioning into ordered membrane domains and lipid rafts publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2015.07.022 – volume: 17 start-page: 110 year: 2016 ident: ref_103 article-title: Protein prenylation: Unique fats make their mark on biology publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.11 – volume: 81 start-page: 101070 year: 2020 ident: ref_84 article-title: Structural insights into phospholipase D function publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2020.101070 – ident: ref_91 doi: 10.2139/ssrn.3155650 – volume: 160 start-page: 113 year: 2003 ident: ref_52 article-title: Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts publication-title: J. Cell Biol. doi: 10.1083/jcb.200207113 – volume: 603 start-page: 706 year: 2022 ident: ref_92 article-title: Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity publication-title: Nature doi: 10.1038/s41586-022-04474-x – volume: 117 start-page: 20378 year: 2020 ident: ref_38 article-title: PIP 2: A critical regulator of vascular ion channels hiding in plain sight publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2006737117 – volume: 32 start-page: 68 year: 2021 ident: ref_9 article-title: Non-HDL Cholesterol as a Predictor of Cardiovascular Disease in Type 2 Diabetes publication-title: Med. Forum Mon. – volume: 81 start-page: 374 year: 2007 ident: ref_5 article-title: Initiation of Hepatitis C Virus Infection Is Dependent on Cholesterol and Cooperativity between CD81 and Scavenger Receptor B Type I publication-title: J. Virol. doi: 10.1128/JVI.01134-06 – volume: 628 start-page: 67 year: 2010 ident: ref_28 article-title: Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2009.11.052 – volume: 455 start-page: 125 year: 2007 ident: ref_58 article-title: Modulation of cyclic nucleotide-regulated HCN channels by PIP2 and receptors coupled to phospholipase C publication-title: Pflugers Arch. doi: 10.1007/s00424-007-0295-2 – volume: 87 start-page: 3850 year: 2004 ident: ref_27 article-title: Cholesterol Sensitivity and Lipid Raft Targeting of Kir2.1 Channels publication-title: Biophys. J. doi: 10.1529/biophysj.104.043273 – volume: 1848 start-page: 1783 year: 2015 ident: ref_37 article-title: The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2015.03.029 – volume: 2 start-page: e520161 year: 2022 ident: ref_42 article-title: Regulation of Neuroinflammation by Astrocyte-Derived Cholesterol publication-title: bioRxiv – volume: 25 start-page: 3400 year: 2005 ident: ref_61 article-title: Relationship between Membrane Phosphatidylinositol-4,5-Bisphosphate and Receptor-Mediated Inhibition of Native Neuronal M Channels publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3231-04.2005 – volume: 44 start-page: 795 year: 2019 ident: ref_13 article-title: Tools for Understanding Nanoscale Lipid Regulation of Ion Channels publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2019.04.001 – volume: 180 start-page: 340 year: 2019 ident: ref_32 article-title: Structural Basis of Human KCNQ1 Modulation and Gating publication-title: Cell doi: 10.1016/j.cell.2019.12.003 – volume: 30 start-page: 16419 year: 2010 ident: ref_45 article-title: Phospholipase D2 Ablation Ameliorates Alzheimer’s Disease-Linked Synaptic Dysfunction and Cognitive Deficits publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3317-10.2010 – volume: 16 start-page: 1725 year: 2015 ident: ref_87 article-title: Super-Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cell-Surface Self-Assembly of Hybrid Nanoconjugates publication-title: Chembiochem doi: 10.1002/cbic.201500278 – volume: 7 start-page: 865 year: 2010 ident: ref_105 article-title: Membrane molecules mobile even after chemical fixation publication-title: Nat. Methods doi: 10.1038/nmeth.f.314 – volume: 61 start-page: 655 year: 2020 ident: ref_53 article-title: Lipid rafts in glial cells: Role in neuroinflammation and pain processing publication-title: J. Lipid Res. doi: 10.1194/jlr.TR119000468 – volume: 20 start-page: 2202 year: 2001 ident: ref_106 article-title: SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis publication-title: EMBO J. doi: 10.1093/emboj/20.9.2202 – volume: 149 start-page: 13 year: 2016 ident: ref_54 article-title: Lipid rafts in immune signalling: Current progress and future perspective publication-title: Immunology doi: 10.1111/imm.12617 – volume: 10 start-page: 753 year: 2014 ident: ref_62 article-title: Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1592 – volume: 460 start-page: 321 year: 2010 ident: ref_16 article-title: Channelopathies linked to plasma membrane phosphoinositides publication-title: Eur. J. Physiol. doi: 10.1007/s00424-010-0828-y – volume: 24 start-page: 1664 year: 2005 ident: ref_109 article-title: PIP2 signaling in lipid domains: A critical re-evaluation publication-title: EMBO J. doi: 10.1038/sj.emboj.7600655 – volume: 65 start-page: 241 year: 1996 ident: ref_102 article-title: PROTEIN PRENYLATION: Molecular Mechanisms and Functional Consequences publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.65.070196.001325 – volume: 2011 start-page: e603052 year: 2011 ident: ref_48 article-title: Lipid Rafts: Linking Alzheimer’s Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes publication-title: Int. J. Alzheimers Dis. doi: 10.4061/2011/603052 – volume: 286 start-page: 8709 year: 2011 ident: ref_24 article-title: Ion Channel Regulation by Protein Palmitoylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.R110.210005 – volume: 1801 start-page: 860 year: 2010 ident: ref_49 article-title: Membrane rafts in Alzheimer’s disease beta-amyloid production publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2010.03.007 – volume: 459 start-page: 379 year: 2009 ident: ref_36 article-title: Emerging roles for lipids in shaping membrane-protein function publication-title: Nature doi: 10.1038/nature08147 – volume: 191 start-page: 1229 year: 2010 ident: ref_101 article-title: The intracellular dynamic of protein palmitoylation publication-title: J. Cell Biol. doi: 10.1083/jcb.201008160 – volume: 17 start-page: 89 year: 2020 ident: ref_18 article-title: Selective regulation of human TRAAK channels by biologically active phospholipids publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-00659-5 – volume: 565 start-page: 516 year: 2019 ident: ref_34 article-title: Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer publication-title: Nature doi: 10.1038/s41586-018-0833-4 – volume: 119 start-page: 827 year: 2016 ident: ref_39 article-title: PI(4,5)P2 Is Translocated by ABCA1 to the Cell Surface Where It Mediates Apolipoprotein A1 Binding and Nascent HDL Assembly publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.308856 – volume: 431 start-page: 196 year: 2018 ident: ref_104 article-title: A Molecular Target for an Alcohol Chain-Length Cutoff publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.11.028 – volume: 18 start-page: 361 year: 2017 ident: ref_10 article-title: The mystery of membrane organization: Composition, regulation and roles of lipid rafts publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.16 – volume: 12 start-page: 3938 year: 2021 ident: ref_26 article-title: Allosteric modulation of ghrelin receptor signaling by lipids publication-title: Nat. Commun. doi: 10.1038/s41467-021-23756-y – volume: 111 start-page: 13547 year: 2014 ident: ref_67 article-title: Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1407160111 – volume: 108 start-page: 6008 year: 2011 ident: ref_93 article-title: Shear rheology of lipid monolayers and insights on membrane fluidity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1018572108 – volume: 117 start-page: 19943 year: 2020 ident: ref_76 article-title: Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2002200117 – volume: 1 start-page: 857 year: 2012 ident: ref_23 article-title: Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane publication-title: Biol. Open doi: 10.1242/bio.20122071 – volume: 41 start-page: 7 year: 2004 ident: ref_2 article-title: Cholesterol and the Biology of Alzheimer’s Disease publication-title: Neuron doi: 10.1016/S0896-6273(03)00840-7 – volume: 479 start-page: 552 year: 2011 ident: ref_20 article-title: Membrane protein sequestering by ionic protein–lipid interactions publication-title: Nature doi: 10.1038/nature10545 – volume: 79 start-page: 81 year: 2015 ident: ref_85 article-title: Exploring the Existence of Lipid Rafts in Bacteria publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00036-14 – volume: 534 start-page: 347 year: 2016 ident: ref_31 article-title: TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action publication-title: Nature doi: 10.1038/nature17964 – volume: 41 start-page: 2075 year: 2002 ident: ref_108 article-title: Lipid Rafts Are Enriched in Arachidonic Acid and Plasmenylethanolamine and Their Composition Is Independent of Caveolin-1 Expression: A Quantitative Electrospray Ionization/Mass Spectrometric Analysis publication-title: Biochemistry doi: 10.1021/bi0156557 – volume: 7 start-page: 13873 year: 2016 ident: ref_22 article-title: Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D publication-title: Nat. Commun. doi: 10.1038/ncomms13873 – volume: 164 start-page: 103 year: 1998 ident: ref_97 article-title: Structure and Origin of Ordered Lipid Domains in Biological Membranes publication-title: J. Membr. Biol. doi: 10.1007/s002329900397 – volume: 108 start-page: 1343 year: 2011 ident: ref_99 article-title: Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1009362108 – volume: 187 start-page: 1529 year: 2011 ident: ref_56 article-title: Intracellular Lipid Flux and Membrane Microdomains as Organizing Principles in Inflammatory Cell Signaling publication-title: J. Immunol. doi: 10.4049/jimmunol.1100253 – volume: 5 start-page: 1 year: 2022 ident: ref_7 article-title: Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture publication-title: Commun. Biol. – volume: 60 start-page: 31 year: 2020 ident: ref_35 article-title: Lipid-Dependent Regulation of Ion Channels and G Protein–Coupled Receptors: Insights from Structures and Simulations publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010919-023411 – volume: 590 start-page: 509 year: 2021 ident: ref_82 article-title: Visualization of the mechanosensitive ion channel MscS under membrane tension publication-title: Nature doi: 10.1038/s41586-021-03196-w – volume: 21 start-page: 225 year: 2020 ident: ref_4 article-title: Mechanisms and regulation of cholesterol homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0190-7 – volume: 33 start-page: 11169 year: 2013 ident: ref_46 article-title: Palmitoylation of Amyloid Precursor Protein Regulates Amyloidogenic Processing in Lipid Rafts publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4704-12.2013 – volume: 48 start-page: 299 year: 2007 ident: ref_55 article-title: Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-α secretion in Abca1-deficient macrophages publication-title: J. Lipid Res. doi: 10.1194/jlr.M600428-JLR200 – volume: 293 start-page: C440 year: 2007 ident: ref_70 article-title: Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol-rich and cholesterol-poor membrane domains publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajpcell.00492.2006 – volume: 61 start-page: 781 year: 2009 ident: ref_69 article-title: Cholesterol and Kir channels publication-title: IUBMB Life doi: 10.1002/iub.192 – volume: 107 start-page: 22050 year: 2010 ident: ref_11 article-title: Palmitoylation regulates raft affinity for the majority of integral raft proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1016184107 – ident: ref_6 doi: 10.1101/2020.05.09.086249 – volume: 48 start-page: 8241 year: 2009 ident: ref_21 article-title: Calcium-Dependent Lateral Organization in Phosphatidylinositol 4,5-Bisphosphate (PIP2) and Cholesterol-Containing Monolayers publication-title: Biochemistry doi: 10.1021/bi9007879 – ident: ref_66 doi: 10.1101/758896 – volume: 35 start-page: 7432 year: 2018 ident: ref_83 article-title: Biophysical Mechanisms of Membrane-Thickness-Dependent MscL Gating: An All-Atom Molecular Dynamics Study publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02074 – volume: 119 start-page: e2202647119 year: 2022 ident: ref_19 article-title: Design principles of PI(4,5)P2 clustering under protein-free conditions: Specific cation effects and calcium-potassium synergy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2202647119 – volume: 37 start-page: 175 year: 2008 ident: ref_14 article-title: PIP2 Is a Necessary Cofactor for Ion Channel Function: How and Why? publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.37.032807.125859 – volume: 110 start-page: 26a year: 2016 ident: ref_29 article-title: The Role of Lipid Rafts in the Localization and Function of the Chemosensory TRPA1 Channel publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.11.203 – volume: 6 start-page: 991 year: 2011 ident: ref_89 article-title: Direct stochastic optical reconstruction microscopy with standard fluorescent probes publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.336 – volume: 1851 start-page: 620 year: 2015 ident: ref_15 article-title: Lipid agonism: The PIP2 paradigm of ligand-gated ion channels publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2015.01.011 – volume: 100 start-page: 381 year: 2011 ident: ref_72 article-title: Cholesterol Sensitivity of KIR2.1 Is Controlled by a Belt of Residues around the Cytosolic Pore publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.11.086 – volume: 44 start-page: 961 year: 2021 ident: ref_107 article-title: PTEN mutations in autism spectrum disorder and congenital hydrocephalus: Developmental pleiotropy and therapeutic targets publication-title: Trends Neurosci. doi: 10.1016/j.tins.2021.08.007 – volume: 6 start-page: e19891 year: 2017 ident: ref_90 article-title: Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes publication-title: elife doi: 10.7554/eLife.19891 – volume: 117 start-page: 13757 year: 2020 ident: ref_40 article-title: Studies on the mechanism of general anesthesia publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2004259117 – volume: 7 start-page: e008749 year: 2018 ident: ref_73 article-title: Regulation of Kir2.1 Function Under Shear Stress and Cholesterol Loading publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.008749 – volume: 2001 start-page: re19 year: 2001 ident: ref_17 article-title: The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters publication-title: Sci. Signal. doi: 10.1126/stke.2001.111.re19 – volume: 1865 start-page: 158706 year: 2020 ident: ref_71 article-title: Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2020.158706 – volume: 1196503 start-page: e2613460 year: 2022 ident: ref_43 article-title: Localization-based super-resolution microscopy reveals relationship between SARS-CoV2 spike and phosphatidylinositol (4,5): Biphosphate publication-title: Multiphoton Microsc. Biomed. Sci. – volume: 1862 start-page: 183091 year: 2019 ident: ref_12 article-title: Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2019.183091 – volume: 135 start-page: 1389 year: 2021 ident: ref_8 article-title: Cholesterol metabolism: A new molecular switch to control inflammation publication-title: Clin. Sci. doi: 10.1042/CS20201394 – volume: 3 start-page: 189 year: 2012 ident: ref_47 article-title: Lipid Rafts and Alzheimer’s Disease: Protein-Lipid Interactions and Perturbation of Signaling publication-title: Front. Physiol. doi: 10.3389/fphys.2012.00189 |
SSID | ssj0000605630 |
Score | 2.3522716 |
SecondaryResourceType | review_article |
Snippet | Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP2) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In... Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP ) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells. In... Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP[sub.2] ) are hydrophobic molecules that regulate protein function in the plasma membrane of all... Cholesterol and phosphatidyl inositol 4,5-bisphosphate (PIP 2 ) are hydrophobic molecules that regulate protein function in the plasma membrane of all cells.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 250 |
SubjectTerms | Alzheimer's disease Binding sites Biological control systems Biological transport Channel gating Cholesterol Cholesterol metabolism Clustering Color Cytokines Enzymes Health aspects Hydrophobicity Image resolution Inositol Inositols ion channel Ion channels Ligands lipid raft Lipids Localization Medical research Medicine, Experimental Membrane lipids Membrane proteins Membranes Microscope and microscopy nanoscopic Nanotechnology Optical properties Phosphatidylinositol 4,5-diphosphate Physiological aspects PIP2 Potassium Proteins Review Substrates transporter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ30Qv12tEkEQhKXZzccmj_WwVKEiekLxJSTZBAu93XK9s_S_d2azPXYp6IuvO0lIJpP5SGZ_Q8hbp3lItYilbzQrReNT6ThmABhtokN874AX-idf1PEP8flUnk5KfWFOWIYHzow74Mw4UXmZWFKCRa9Fkvj21eINiqk8al-weZNgKutghsBX-RmTQ1x_sIorCD9BfeBLHRr-mSEa8Ppva-WJWZqnTE5s0NEDcn90HulhnvRDcid2j8i9CaTgY_JzgQVvEf2gP6ffcqF5YD3tEz0Z50a_IjbDWXcJ9N_oJ7bUX9PlVV8uQBOu6fftRVyXeK-fpZJ-Wg2ljJ6Q5dHH5eK4HOsnlAH8mA04zkaCAZIxiJZ5BVpZhVClpEPDVJCtg-UEzzUT3qtQ-yqC7eeGu8SN844_JXtd38XnhCojeJuS8sa0QrbRyxrGA7_caS1MXRWE3fDShhFbHEtcnFuIMZD99hb7C_J-1-UiA2v8rfEH3KBdQ8TEHj6ApNhRUuy_JKUg73B7LZ5cmFxw4w8IsETEwLKH6ExppaUqyP6sJZy4MCffCIgdT_ylrYHbEIyqhhfkzY6MPTGLrYv9FttohE_iCoZ4luVptySuNG8gdixIM5O02ZrnlO7s14AHjiGrbsSL_8Gkl-QucJznvPR9srdZb-MrcLs2_vVwwv4Akx4rlw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66vujD4nrb6q5EEAShbNtcmjzJOjiuworoCIsvJUkTXdhpx7ko_nvPaTN1ysK-NmnJ5Vy-nJx-h5CXRjEXCu5TW6os5aUNqWGYAaCV9gb5vR0G9M8_ybNv_OOFuIgBt1VMq9zaxM5Q163DGPlJUZYawL4s2ZvFrxSrRuHtaiyhcZvcycHTYEqXmr4fYiwZYHXJ4mUmg9P9ydzP4RAKRgTv69D9j9xRx9p_3TbvOKdx4uSOJ5reJ_sRQtLTfs8PyC3fPCD3dogFH5LvEyx7ixwI7RX90pebhw2gbaDncWz0MzI0XDYraP-NaLGm9i-d_WnTCdjDJf26WfhlitH9Xjbph3lX0OgRmU3fzSZnaayikDpAM2uAz1qAGxLe8TqzEmyzdC4PQbkyk07UBqbjLFMZt1a6wuYeEADTzASmjTXsMdlr2sYfEio1Z3UI0mpdc1F7Kwr4HqBzoxTXRZ6QbLuWlYsM41jo4qqCkwYuf3Vt-RPyenhl0dNr3NT5LW7Q0BGZsbsH7fJHFRWtYpk2PLciZEHyzFvFg8C70hojbjq3CXmF21uh_sLgnIm_IcAUkQmrOkVIpaQSMiFHo56gd27cvBWQKur9qvovpQl5MTTjm5jL1vh2g30UkigxCZ940svTMCUmFSvhBJmQciRpozmPW5rLnx0rOB5cVcmf3jysZ-QurCXr886PyN56ufHHAKvW9nmnO_8AKWMkTw priority: 102 providerName: ProQuest |
Title | Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36837753 https://www.proquest.com/docview/2779619673 https://www.proquest.com/docview/2780077366 https://pubmed.ncbi.nlm.nih.gov/PMC9966874 https://doaj.org/article/309a41b5f0f640eb84f55119d012991b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_6AVIfxG-j9YggCEI0yW42uw8i7dGzCldKvcLhS8hudrVwl9T0Tu1_70ySOy60-OBLHrIfZHdmZ36zu_kNwOtcMuNibgOdyjDgqXZBzugGgJLK5sTvbWhDf3wijs_5l2ky3YJVeqtuAq9uDe0on9R5PXv35-f1R1zwHyjixJD9_dzOMbJEy0CHcOTTt2EXHVNKCQ3GHdpvDXNIbFjt2ebtLffgDhMYs6UJ6zmqhs__ptXecFv9K5UbPmp0H-514NI_aLXhAWzZ8iHc3aAcfATfhpQQl9gRqpl_1iaiR9H4lfPH3Wf6p8TdcFFeYfkvwpGFr6_9ye8qGKKlrP2vy0tbB7Tv32qt_3nepDp6DJPR0WR4HHT5FQKDOGeBwFol6KASa3gRaoFWWxgTOSdNGgqTFDkOx2gmQ661MLGOLGIDpljumMp1zp7ATlmV9hn4QnFWOCe0UgVPCquTGPtD3J5LyVUceRCu5jIzHfc4pcCYZRiDkCSyG5Lw4O26yWVLvPGvyockoHVF4sxuXlT196xbghkLVc4jnbjQCR5aLblL6BS1oL04FWkP3pB4M9I1_DiTdz8o4BCJIys7ILAlhUyEB_u9mrgiTb94pSDZSqGzGGcbg1WRMg9erYupJd1yK221pDqS6JWYwC6etvq0HtJKLT1Ie5rWG3O_pLz40fCFU0grU_78v1u-gD2cZtZeVt-HnUW9tC8Riy30ALbTaYpPOfo0gN3Do5PTs0GzrzFo1t5fRd46ow |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BrjAXhAfBMYYCQQElK0JHYc-wGhUSgtWycERZr2YsWODZPWpPSDaT-K_8hdkpZGk_a215xj2ef79J3vCHmVS2Z9wl1oMhmFPDM-zBlmACipXI71vS1e6I8OxeAH_3KUHm2Rv6u3MJhWuZKJtaAuKot35LtJlikw9kXG3k9_h9g1CqOrqxYaDVnsu_MzcNnm74Yf4XxfJ0n_07g3CNuuAqEF7b4Ac1KlIJZTZ3kRGQGySlgbey9tFgmbFrkrrDVMRtwYYRMTO9CITLHcM5WbnMG018h1Dp_Q15P9z-srnQhcA8Ha2CnAo92Jm4DPCzILw4NobXS0X90k4KIq2NCF3TzNDcXXv0NutxYr3WtI7C7ZcuU9cmujjuF9ctzDLrtYcqE6pd-a7vZw3rTydNSujX7FghAn5Rzgf9A4Lag5p-OzKuyB-J3R78upm4UYTGhYgQ4ndf-kB2R8Feh9SLbLqnSPCRWKs8J7YZQqeFo4kyYwHzgDuZRcJXFAohUutW0LmmNfjVMNjg2iX19Af0Dern-ZNtU8Lhv8AQ9oPRALcdcfqtlP3fK1ZpHKeWxSH3nBI2ck9ymGZgu84FOxCcgbPF6N4gIWZ_P21QNsEQtv6T204KSQqQjITmcksLntglcEolsxM9f_mSIgL9dg_BNT50pXLXGMxJpNTMAUjxp6Wm-JCckycFgDknUorbPnLqQ8-VUXIUc_WWb8yeXLekFuDMajA30wPNx_Sm4CXlmT8r5DthezpXsGFt3CPK_5iBJ9xXz7D-1jYlM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QNwJDDASCAkpaho7jv2A0NatWhmrqlGkaS9W7NgwaU1KL0z7afw7zmnS0mjS3vYaX2Qf-9x8Tr5DyPtMMutj7kKTyijkqfFhxjADQEnlMsT3tvigfzwQhz_419PkdIv8Xf0Lg2mVK5m4FNR5afGNvB2nqQJjX6Ss7eu0iOF-78vkd4gVpDDSuiqnUV2RI3d1Ce7b7HN_H876Qxz3Dkbdw7CuMBBa0PRzMC1VAiI6cZbnkREgt4S1He-lTSNhkzxzubWGyYgbI2xsOg60I1Ms80xlJmMw7R2ynaJT1CLbeweD4cn6gScCR0GwOpIKg6L22I3BAwYJhsFCtD0aunBZMuC6YtjQjM2szQ012HtIHtT2K92tLtwjsuWKx-T-BqrhE3LWxZq7CMBQXtCTqtY9nD4tPT2u10aHCA9xXsyg_Q-aqjk1V3R0WYZdEMZT-n0xcdMQQwsVY9D-eFlN6SkZ3QaBn5FWURbuBaFCcZZ7L4xSOU9yZ5IY5gPXIJOSq7gTkGhFS21reHOssnGhwc1B8utr5A_Ip_WQSYXtcVPnPTygdUeE5V5-KKc_dc3lmkUq4x2T-MgLHjkjuU8wUJvjc5_qmIB8xOPVKDxgcTar_4GALSIMl95Fe04KmYiA7DR6AtPbZvPqguha6Mz0fxYJyLt1M47ERLrClQvsIxHBiQmY4nl1n9ZbYkKyFNzXgKSNm9bYc7OlOP-1hCRHr1mm_OXNy3pL7gLP6m_9wdErcg_Iyqr89x3Smk8X7jWYd3PzpmYkSvQts-4_D2hn5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesterol+Regulation+of+Membrane+Proteins+Revealed+by+Two-Color+Super-Resolution+Imaging&rft.jtitle=Membranes+%28Basel%29&rft.au=Yuan%2C+Zixuan&rft.au=Hansen%2C+Scott+B.&rft.date=2023-02-01&rft.pub=MDPI&rft.eissn=2077-0375&rft.volume=13&rft.issue=2&rft_id=info:doi/10.3390%2Fmembranes13020250&rft_id=info%3Apmid%2F36837753&rft.externalDocID=PMC9966874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0375&client=summon |