Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models

In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering....

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical semantics Vol. 8; no. 1; pp. 43 - 13
Main Authors Papanikolaou, Yannis, Tsoumakas, Grigorios, Laliotis, Manos, Markantonatos, Nikos, Vlahavas, Ioannis
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 22.09.2017
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN2041-1480
2041-1480
DOI10.1186/s13326-017-0150-0

Cover

Loading…
Abstract In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.
AbstractList Abstract Background In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013–2017), a challenge concerned with biomedical semantic indexing and question answering. Methods Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ’s super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. Results The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). Conclusions The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method’s choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.
Background In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Methods Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ’s super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. Results The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). Conclusions The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method’s choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.
In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.
In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering.BACKGROUNDIn this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering.Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task.METHODSOur main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task.The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM).RESULTSThe ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM).The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.CONCLUSIONSThe results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.
ArticleNumber 43
Audience Academic
Author Markantonatos, Nikos
Laliotis, Manos
Tsoumakas, Grigorios
Papanikolaou, Yannis
Vlahavas, Ioannis
Author_xml – sequence: 1
  givenname: Yannis
  orcidid: 0000-0003-3498-3255
  surname: Papanikolaou
  fullname: Papanikolaou, Yannis
– sequence: 2
  givenname: Grigorios
  surname: Tsoumakas
  fullname: Tsoumakas, Grigorios
– sequence: 3
  givenname: Manos
  surname: Laliotis
  fullname: Laliotis, Manos
– sequence: 4
  givenname: Nikos
  surname: Markantonatos
  fullname: Markantonatos, Nikos
– sequence: 5
  givenname: Ioannis
  surname: Vlahavas
  fullname: Vlahavas, Ioannis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28938902$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpB-CCLHHhkjKOk9i-IFUVfyqtxAXOluNMFq8ce4mzVfn2TLpL6VaIRJEj-_eePeP3sjiJKWJRvOZwyblq32cuRNWWwCV9DZTwrDiroOYlrxWcPPo_LS5y3gA9QnBQ4kVxWiktlIbqrNiu7LTGMjsbkKUYfESWcbRx9o752OOdj2uWBtb5NGLviWN2osWAmd16y2xkGEnRLfqBjbsw-zLYDgNzwebsB9LMPkU2ph5DflU8H2zIeHEYz4vvnz5-u_5Srr5-vrm-WpWuaWEuWymFwBY1p5NWXQ1Vo7BVWAvpejcACiqmbQaole0dAvBa6A75IDot-laL8-Jm79snuzHbyY92-mWS9eZ-Ik1rc6jDNE4r3ivQ1eKP2iqyRmsHEH2nEcnrw95ru-uoCQ7jPNlwZHq8Ev0Ps063pmk51CDJ4N3BYEo_d5hnM_rsMAQbMe2y4bquJCwXSujbJ-gm7aZIrVqoRkrZKvmXWtO9GR-HRPu6xdRcNSA5aNlwoi7_QdHb4-gdxWnwNH8kePO40IcK_-SFAL4H3JRynnB4QDiYJZZmH0tDsTRLLA2QRj7ROD_fR4JO48N_lL8BCJ3kuw
CitedBy_id crossref_primary_10_1142_S0218001423500337
crossref_primary_10_3390_info12120491
crossref_primary_10_1515_comp_2019_0017
crossref_primary_10_1016_j_asoc_2019_03_041
crossref_primary_10_1016_j_neunet_2023_08_023
crossref_primary_10_1108_OIR_02_2020_0073
crossref_primary_10_1109_TCBB_2020_3016355
crossref_primary_10_1016_j_artmed_2023_102505
crossref_primary_10_1186_s13326_020_00226_w
Cites_doi 10.1137/070710111
10.1007/3-540-45014-9_1
10.1007/978-0-387-09823-4_34
10.1109/TKDE.2008.239
10.1136/amiajnl-2010-000055
10.1109/ICDM.2008.74
10.1186/1471-2288-13-91
10.1016/j.patrec.2011.10.019
10.5626/JCSE.2012.6.2.151
10.1007/978-3-540-24775-3_5
10.1007/s10994-011-5272-5
10.3390/su4123234
10.1007/978-3-642-04174-7_17
10.1007/s10994-011-5271-6
10.1007/s10994-008-5064-8
10.1007/978-3-662-44851-9_28
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s) 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s) 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.1186/s13326-017-0150-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Statistics
EISSN 2041-1480
EndPage 13
ExternalDocumentID oai_doaj_org_article_5c981d80928e43e9a8316eaaf03db9ee
PMC5610407
A507109751
28938902
10_1186_s13326_017_0150_0
Genre Journal Article
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
ML~
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RBZ
RNS
ROL
RPM
RSV
SMT
SOJ
TUS
UKHRP
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7XB
8FK
AHSBF
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c560t-67733e6e919382b40258e68e437cdcf0e333165f048adce001439be1f3b93d693
IEDL.DBID M48
ISSN 2041-1480
IngestDate Wed Aug 27 01:30:29 EDT 2025
Thu Aug 21 14:07:14 EDT 2025
Fri Jul 11 01:41:56 EDT 2025
Fri Jul 25 12:03:59 EDT 2025
Tue Jun 17 21:25:43 EDT 2025
Tue Jun 10 20:21:49 EDT 2025
Thu Jan 02 23:10:16 EST 2025
Tue Jul 01 03:54:47 EDT 2025
Thu Apr 24 23:13:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-label learning
Multi-label ensemble
Supervised learning
BioASQ
Semantic indexing
Machine learning
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-67733e6e919382b40258e68e437cdcf0e333165f048adce001439be1f3b93d693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3498-3255
OpenAccessLink https://www.proquest.com/docview/1945777687?pq-origsite=%requestingapplication%
PMID 28938902
PQID 1945777687
PQPubID 2040220
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5c981d80928e43e9a8316eaaf03db9ee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5610407
proquest_miscellaneous_1942701332
proquest_journals_1945777687
gale_infotracmisc_A507109751
gale_infotracacademiconefile_A507109751
pubmed_primary_28938902
crossref_primary_10_1186_s13326_017_0150_0
crossref_citationtrail_10_1186_s13326_017_0150_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-22
PublicationDateYYYYMMDD 2017-09-22
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-22
  day: 22
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of biomedical semantics
PublicationTitleAlternate J Biomed Semantics
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 150_CR26
150_CR24
J Fürnkranz (150_CR7) 2008; 73
150_CR21
D Ramage (150_CR22) 2009
N Cesa-Bianchi (150_CR10) 2012; 88
J Demsar (150_CR16) 2006; 7
M Huang (150_CR1) 2011; 18
MA Tahir (150_CR12) 2012; 33
H He (150_CR3) 2009; 21
150_CR15
150_CR5
150_CR2
150_CR14
L Tang (150_CR20) 2009
150_CR8
150_CR11
150_CR9
DD Lewis (150_CR19) 2004; 5
150_CR6
RE Fan (150_CR18) 2008; 9
A Jimeno-Yepes (150_CR13) 2012; 6
M Pautasso (150_CR25) 2012; 4
TN Rubin (150_CR23) 2012; 88
A Clauset (150_CR4) 2009; 51
MV Joshi (150_CR17) 2002
23848987 - BMC Med Res Methodol. 2013 Jul 13;13:91
21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7
References_xml – volume: 51
  start-page: 661
  issue: 4
  year: 2009
  ident: 150_CR4
  publication-title: SIAM Rev
  doi: 10.1137/070710111
– ident: 150_CR6
  doi: 10.1007/3-540-45014-9_1
– ident: 150_CR2
  doi: 10.1007/978-0-387-09823-4_34
– volume: 5
  start-page: 361
  year: 2004
  ident: 150_CR19
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 1871
  year: 2008
  ident: 150_CR18
  publication-title: J Mach Learn Res
– ident: 150_CR24
– ident: 150_CR5
– volume-title: WWW ’09: Proceedings of the 18th International Conference on World Wide Web
  year: 2009
  ident: 150_CR20
– volume: 21
  start-page: 1263
  year: 2009
  ident: 150_CR3
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.239
– volume: 18
  start-page: 660
  issue: 5
  year: 2011
  ident: 150_CR1
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2010-000055
– ident: 150_CR9
  doi: 10.1109/ICDM.2008.74
– ident: 150_CR26
  doi: 10.1186/1471-2288-13-91
– volume: 7
  start-page: 1
  year: 2006
  ident: 150_CR16
  publication-title: J Mach Learn Res
– volume: 33
  start-page: 513
  issue: 5
  year: 2012
  ident: 150_CR12
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2011.10.019
– volume: 6
  start-page: 151
  issue: 2
  year: 2012
  ident: 150_CR13
  publication-title: JCSE
  doi: 10.5626/JCSE.2012.6.2.151
– ident: 150_CR14
  doi: 10.1007/978-3-540-24775-3_5
– ident: 150_CR15
– volume: 88
  start-page: 157
  issue: 1-2
  year: 2012
  ident: 150_CR23
  publication-title: Mach Learn
  doi: 10.1007/s10994-011-5272-5
– volume: 4
  start-page: 3234
  issue: 12
  year: 2012
  ident: 150_CR25
  publication-title: Sustainability
  doi: 10.3390/su4123234
– ident: 150_CR8
  doi: 10.1007/978-3-642-04174-7_17
– ident: 150_CR11
– volume-title: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM ’02
  year: 2002
  ident: 150_CR17
– volume: 88
  start-page: 209
  issue: 1-2
  year: 2012
  ident: 150_CR10
  publication-title: Mach Learn
  doi: 10.1007/s10994-011-5271-6
– volume: 73
  start-page: 133
  issue: 2
  year: 2008
  ident: 150_CR7
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5064-8
– ident: 150_CR21
  doi: 10.1007/978-3-662-44851-9_28
– volume-title: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume 1, EMNLP ’09
  year: 2009
  ident: 150_CR22
– reference: 21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7
– reference: 23848987 - BMC Med Res Methodol. 2013 Jul 13;13:91
SSID ssj0000331083
Score 2.1761866
Snippet In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly...
Background In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was...
Abstract Background In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 43
SubjectTerms Abstracting and Indexing as Topic - methods
Accuracy
Algorithms
Analysis
Artificial intelligence
Bibliographic data bases
BioASQ
Biomedical Research
Citations
Classification
Data mining
Indexing
International conferences
Learning algorithms
Libraries
Machine Learning
Models, Statistical
Multi-label ensemble
Multi-label learning
Ontology
Parameterization
Semantic indexing
Semantics
Statistical significance
Statistics
Supervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15Kn6nbtKgQWiiIyJIlWce0JISw9NRAbkKWx3Qh8YZ409_fGdlr1hTaS64rCTzv71uPR4wdJxWr1BgtTGelqIyLwuu2FT51VsnoGg25QfaHvbiqLq_N9d5VX9QTNo4HHhV3YpJHSFVLr2qo8GCsdWkhxk7qtvEAlH2x5u2RqZyDNcKWWk-vMcvangxIxhSRZ-q0NFLIRSHK8_r_zsp7ZWnZMrlXg86fs2cTeOSn40O_YE-gf8kOV9NfjgP_zFfzlOThFbtbUZu3GNAMwMeRGHyAW9TlOvE8JhHrFt90fPwGn8zFd41y_Pc68thzZLlw29D5jufmQ4FuAzc8EeqmNqNsWZ4v1Bles6vzs5_fL8R0w4JIiHS2wjqnNVjwCONq1SCXNDVYUrRLbeokaNSjNR2GeUTRiU9p30DZ6QYtar1-ww76TQ9vGQeJ1Eu3CBfKtvKqjIi0rENApZoak4IqmNypO6Rp_DjdgnETMg2pbRgtFNBCgSwUZMG-zkfuxtkb_9r8jWw4b6Sx2fkHdKYw6S78z5kK9oU8IFBw48OlOH2jgCLSmKxwSuhZemfKgh0tdmJQpuXyzofClBSGUHqMBYf8zhXs07xMJ6nRrYfNQ96jnCThCnY4utwsEnJjTa-FC-YWzriQebnSr3_lkeGEkpG6v3sMJb1nT1UOIy-UOmIH2_sH-IDIbNt8zEH4B5t9NDk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aX_oiWrWurRJBFITQbHKbjyep4lnk8MlC30I2m9WDdvfsXv37O5PNrV2Evm4S2Ml8_SaZzBDyLgi_CHUlWdUqzhaV9szKpmE2tEpwr2sZU4LsD3V2vvh-UV3kA7chp1XubGIy1E0f8Iz8BILtSmsAx_rT5g_DrlF4u5pbaDwkj0rwNCjhZvltOmPhEsCLkfkyszTqZICQTGAIjfmWFWd85o5S1f7_bfMd5zRPnLzjiZZPyOMMIenpyPOn5EHsDsjhKh88DvQ9XU21kocDso94cizH_IxsVpj5zQbgTKRjlQw6xCvY3nWgqXIiuDLat3R8lo8cpLvcOfp37anvKAS-8arG9S1N-YgMJCle0oBAHDOPErNp6rEzPCfny68_v5yx3HSBBQA_W6a0ljKqaAHZGVFDeFmZqExcSB2a0PIoYVNV1YLme9gHDLGkrWPZyhqYrKx8Qfa6vosvCY0cojHZAIIom4UVpQfwpTRgLFEbsBOiIHy39y7kiuTYGOPSpcjEKDeyywG7HLLL8YJ8nJZsxnIc903-jAydJmIl7fShv_7l8t65KliA7IZbgTRG6w2QF71vuWxqG2NBPqA4ONR3-Lng87MFIBErZ7lTBNTc6qosyPFsJuhpmA_vBMplOzG4f1JdkLfTMK7E3Lcu9jdpjtAciSvI4Sh_E0kQLku8KS6InknmjOb5SLf-naqII3CGaP7V_b91RPZF0hbLhDgme9vrm_gaYNi2fpN07Raioy-T
  priority: 102
  providerName: ProQuest
Title Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models
URI https://www.ncbi.nlm.nih.gov/pubmed/28938902
https://www.proquest.com/docview/1945777687
https://www.proquest.com/docview/1942701332
https://pubmed.ncbi.nlm.nih.gov/PMC5610407
https://doaj.org/article/5c981d80928e43e9a8316eaaf03db9ee
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfG9sIL4nMERmUkBBKSwbETO35AqEMrU1UmBFTqm5U4zqjUpaPpEPz33DlJtYgJiZdWqu0q92X_fsnljpAXTuSJK1LJ0kpxlqQ6Z0aWJTOuUoLnupA-JMieqdN5Ml2kiz3St7fqFNjcSO2wn9R8s3rz68fv9xDw70LAZ-ptAzxLIC_GJMqUM2DwB3Awaezk8KlD-2FjloBlQmFOwZOYARHon3Pe-C-DkyoU9P972752bg1zKq8dUpO75E6HLum4dYd7ZM_X98nhrLsn2dCXdLYro9w8IJczzANnDdjJ07ZmBm38BSh76WioowgHG11XtH1JH-1J-0w6-nOZ07ymQIP9RYHrKxqyExn4lV9Rh7Ac85CC6WnouNM8JPPJybcPp6xrwcAcQKEtU1pL6ZU3gPMyUQDZTDOvMp9I7UpXcS9BpyqtYB_IQXQkXNIUPq5kASZXRj4i-_W69o8J9Ry4mSwBT8RlYkScAxRTGhCXKDLYNUREeK9u67r65NgmY2UDT8mUbS1kwUIWLWR5RF7vlly2xTn-NfkYbbibiHW1ww_rzbntdGdTZwDAZ9wIlNGbPAPxfJ5XXJaF8T4ir9ADLPojXJzLu5cYQESso2XHCK-50WkckaPBTIhaNxzufcj2Tm9jA8GigQDqiDzfDeNKzISr_foqzBGao3AROWxdbicSkGeJz40jogfOOJB5OFIvv4ea4gijgds_-R-NPiW3RQgXw4Q4IvvbzZV_BhBtW4zILb3Q8JlNPo7IwXg8_TqF7-OTs89fRuG2xyiE5h8gfzlR
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcqAXRAuUQAEj8ZCQrDp2EscHhMqj2tKlp1bam3Ecp6zUZrfNFsSf4jcy4zxohNRbr7EtZTKfZ76xJzOEvHLCJq5IJUurjLMkVZZpWZZMuyoT3KpC-pAge5RNTpKvs3S2Rv70_8JgWmVvE4OhLhcOz8h3IdhOlQJyrD4sLxh2jcLb1b6FRguLQ__7F4RszfuDz6Df10Lsfzn-NGFdVwHmwLuvWKaUlD7zGqhLLgqIn9LcZ7lPpHKlq7iXUsZZWgG0bek8xhBSFz6uZAFSZFh8CUz-HXC8HFMI1UwNZzocVgKl6S5P4zzbbSAEFBiyY35nyhkfub_QJeB_X3DNGY4TNa95vv375F5HWelei7FNsubrLbI97Q46G_qGTofazM0W2UD-2pZ_fkCWU8w0Zw0gwdO2Kgdt_Dmoc-5oqNQIrpMuKtqWAUDE0D5Xj_6cW2prCoG2Py9wfUVD_iMD5Poz6pD4Y6ZTABcNPX2ah-TkVtTxiKzXi9o_JtRziP5kCYwlLhMtYgtkL1PA6USRg10SEeH9tzeuq4COjTjOTIiE8sy06jKgLoPqMjwi74Yly7b8x02TP6JCh4lYuTs8WFyemu7bmdRpCBFyrgXK6LXNQTxvbcVlWWjvI_IW4WDQvsDLOdv9JgEiYqUus4cEnmuVxhHZGc0Eu-DGwz2gTGeXGvNvF0Xk5TCMKzHXrvaLqzBHKI7CRWS7xd8gEoTnEm-mI6JGyBzJPB6p5z9C1XIk6glXT25-rRfk7uT429RMD44On5INEXaOZkLskPXV5ZV_BhRwVTwP-46S77e90f8CMdVqzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+online+semantic+indexing+of+biomedical+articles+via+an+ensemble+of+multi-label+classification+models&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Papanikolaou%2C+Yannis&rft.au=Tsoumakas%2C+Grigorios&rft.au=Laliotis%2C+Manos&rft.au=Markantonatos%2C+Nikos&rft.date=2017-09-22&rft.issn=2041-1480&rft.eissn=2041-1480&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs13326-017-0150-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13326_017_0150_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon