Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models
In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering....
Saved in:
Published in | Journal of biomedical semantics Vol. 8; no. 1; pp. 43 - 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
22.09.2017
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1480 2041-1480 |
DOI | 10.1186/s13326-017-0150-0 |
Cover
Loading…
Abstract | In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering.
Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task.
The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM).
The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels. |
---|---|
AbstractList | Abstract Background In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013–2017), a challenge concerned with biomedical semantic indexing and question answering. Methods Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ’s super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. Results The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). Conclusions The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method’s choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels. Background In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Methods Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ’s super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. Results The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). Conclusions The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method’s choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels. In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering. Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task. The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM). The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels. In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering.BACKGROUNDIn this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge (2013-2017), a challenge concerned with biomedical semantic indexing and question answering.Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task.METHODSOur main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal with this challenging classification task.The ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM).RESULTSThe ensemble method that we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the National Library of Medicine (NLM).The results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels.CONCLUSIONSThe results of our experimental comparisons, suggest that employing a statistical significance test to validate the ensemble method's choices, is the optimal approach for ensembling multi-label classifiers, especially in contexts with many rare labels. |
ArticleNumber | 43 |
Audience | Academic |
Author | Markantonatos, Nikos Laliotis, Manos Tsoumakas, Grigorios Papanikolaou, Yannis Vlahavas, Ioannis |
Author_xml | – sequence: 1 givenname: Yannis orcidid: 0000-0003-3498-3255 surname: Papanikolaou fullname: Papanikolaou, Yannis – sequence: 2 givenname: Grigorios surname: Tsoumakas fullname: Tsoumakas, Grigorios – sequence: 3 givenname: Manos surname: Laliotis fullname: Laliotis, Manos – sequence: 4 givenname: Nikos surname: Markantonatos fullname: Markantonatos, Nikos – sequence: 5 givenname: Ioannis surname: Vlahavas fullname: Vlahavas, Ioannis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28938902$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNUREvpB-CCLHHhkjKOk9i-IFUVfyqtxAXOluNMFq8ce4mzVfn2TLpL6VaIRJEj-_eePeP3sjiJKWJRvOZwyblq32cuRNWWwCV9DZTwrDiroOYlrxWcPPo_LS5y3gA9QnBQ4kVxWiktlIbqrNiu7LTGMjsbkKUYfESWcbRx9o752OOdj2uWBtb5NGLviWN2osWAmd16y2xkGEnRLfqBjbsw-zLYDgNzwebsB9LMPkU2ph5DflU8H2zIeHEYz4vvnz5-u_5Srr5-vrm-WpWuaWEuWymFwBY1p5NWXQ1Vo7BVWAvpejcACiqmbQaole0dAvBa6A75IDot-laL8-Jm79snuzHbyY92-mWS9eZ-Ik1rc6jDNE4r3ivQ1eKP2iqyRmsHEH2nEcnrw95ru-uoCQ7jPNlwZHq8Ev0Ps063pmk51CDJ4N3BYEo_d5hnM_rsMAQbMe2y4bquJCwXSujbJ-gm7aZIrVqoRkrZKvmXWtO9GR-HRPu6xdRcNSA5aNlwoi7_QdHb4-gdxWnwNH8kePO40IcK_-SFAL4H3JRynnB4QDiYJZZmH0tDsTRLLA2QRj7ROD_fR4JO48N_lL8BCJ3kuw |
CitedBy_id | crossref_primary_10_1142_S0218001423500337 crossref_primary_10_3390_info12120491 crossref_primary_10_1515_comp_2019_0017 crossref_primary_10_1016_j_asoc_2019_03_041 crossref_primary_10_1016_j_neunet_2023_08_023 crossref_primary_10_1108_OIR_02_2020_0073 crossref_primary_10_1109_TCBB_2020_3016355 crossref_primary_10_1016_j_artmed_2023_102505 crossref_primary_10_1186_s13326_020_00226_w |
Cites_doi | 10.1137/070710111 10.1007/3-540-45014-9_1 10.1007/978-0-387-09823-4_34 10.1109/TKDE.2008.239 10.1136/amiajnl-2010-000055 10.1109/ICDM.2008.74 10.1186/1471-2288-13-91 10.1016/j.patrec.2011.10.019 10.5626/JCSE.2012.6.2.151 10.1007/978-3-540-24775-3_5 10.1007/s10994-011-5272-5 10.3390/su4123234 10.1007/978-3-642-04174-7_17 10.1007/s10994-011-5271-6 10.1007/s10994-008-5064-8 10.1007/978-3-662-44851-9_28 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 The Author(s) 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 – notice: The Author(s) 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.1186/s13326-017-0150-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Statistics |
EISSN | 2041-1480 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_5c981d80928e43e9a8316eaaf03db9ee PMC5610407 A507109751 28938902 10_1186_s13326_017_0150_0 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR ITC KQ8 L6V LK8 M1P M48 M7P M7S ML~ M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS RBZ RNS ROL RPM RSV SMT SOJ TUS UKHRP -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7XB 8FK AHSBF AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c560t-67733e6e919382b40258e68e437cdcf0e333165f048adce001439be1f3b93d693 |
IEDL.DBID | M48 |
ISSN | 2041-1480 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Thu Aug 21 14:07:14 EDT 2025 Fri Jul 11 01:41:56 EDT 2025 Fri Jul 25 12:03:59 EDT 2025 Tue Jun 17 21:25:43 EDT 2025 Tue Jun 10 20:21:49 EDT 2025 Thu Jan 02 23:10:16 EST 2025 Tue Jul 01 03:54:47 EDT 2025 Thu Apr 24 23:13:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multi-label learning Multi-label ensemble Supervised learning BioASQ Semantic indexing Machine learning |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-67733e6e919382b40258e68e437cdcf0e333165f048adce001439be1f3b93d693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3498-3255 |
OpenAccessLink | https://www.proquest.com/docview/1945777687?pq-origsite=%requestingapplication% |
PMID | 28938902 |
PQID | 1945777687 |
PQPubID | 2040220 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c981d80928e43e9a8316eaaf03db9ee pubmedcentral_primary_oai_pubmedcentral_nih_gov_5610407 proquest_miscellaneous_1942701332 proquest_journals_1945777687 gale_infotracmisc_A507109751 gale_infotracacademiconefile_A507109751 pubmed_primary_28938902 crossref_primary_10_1186_s13326_017_0150_0 crossref_citationtrail_10_1186_s13326_017_0150_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-22 |
PublicationDateYYYYMMDD | 2017-09-22 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of biomedical semantics |
PublicationTitleAlternate | J Biomed Semantics |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 150_CR26 150_CR24 J Fürnkranz (150_CR7) 2008; 73 150_CR21 D Ramage (150_CR22) 2009 N Cesa-Bianchi (150_CR10) 2012; 88 J Demsar (150_CR16) 2006; 7 M Huang (150_CR1) 2011; 18 MA Tahir (150_CR12) 2012; 33 H He (150_CR3) 2009; 21 150_CR15 150_CR5 150_CR2 150_CR14 L Tang (150_CR20) 2009 150_CR8 150_CR11 150_CR9 DD Lewis (150_CR19) 2004; 5 150_CR6 RE Fan (150_CR18) 2008; 9 A Jimeno-Yepes (150_CR13) 2012; 6 M Pautasso (150_CR25) 2012; 4 TN Rubin (150_CR23) 2012; 88 A Clauset (150_CR4) 2009; 51 MV Joshi (150_CR17) 2002 23848987 - BMC Med Res Methodol. 2013 Jul 13;13:91 21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7 |
References_xml | – volume: 51 start-page: 661 issue: 4 year: 2009 ident: 150_CR4 publication-title: SIAM Rev doi: 10.1137/070710111 – ident: 150_CR6 doi: 10.1007/3-540-45014-9_1 – ident: 150_CR2 doi: 10.1007/978-0-387-09823-4_34 – volume: 5 start-page: 361 year: 2004 ident: 150_CR19 publication-title: J Mach Learn Res – volume: 9 start-page: 1871 year: 2008 ident: 150_CR18 publication-title: J Mach Learn Res – ident: 150_CR24 – ident: 150_CR5 – volume-title: WWW ’09: Proceedings of the 18th International Conference on World Wide Web year: 2009 ident: 150_CR20 – volume: 21 start-page: 1263 year: 2009 ident: 150_CR3 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.239 – volume: 18 start-page: 660 issue: 5 year: 2011 ident: 150_CR1 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2010-000055 – ident: 150_CR9 doi: 10.1109/ICDM.2008.74 – ident: 150_CR26 doi: 10.1186/1471-2288-13-91 – volume: 7 start-page: 1 year: 2006 ident: 150_CR16 publication-title: J Mach Learn Res – volume: 33 start-page: 513 issue: 5 year: 2012 ident: 150_CR12 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2011.10.019 – volume: 6 start-page: 151 issue: 2 year: 2012 ident: 150_CR13 publication-title: JCSE doi: 10.5626/JCSE.2012.6.2.151 – ident: 150_CR14 doi: 10.1007/978-3-540-24775-3_5 – ident: 150_CR15 – volume: 88 start-page: 157 issue: 1-2 year: 2012 ident: 150_CR23 publication-title: Mach Learn doi: 10.1007/s10994-011-5272-5 – volume: 4 start-page: 3234 issue: 12 year: 2012 ident: 150_CR25 publication-title: Sustainability doi: 10.3390/su4123234 – ident: 150_CR8 doi: 10.1007/978-3-642-04174-7_17 – ident: 150_CR11 – volume-title: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM ’02 year: 2002 ident: 150_CR17 – volume: 88 start-page: 209 issue: 1-2 year: 2012 ident: 150_CR10 publication-title: Mach Learn doi: 10.1007/s10994-011-5271-6 – volume: 73 start-page: 133 issue: 2 year: 2008 ident: 150_CR7 publication-title: Mach Learn doi: 10.1007/s10994-008-5064-8 – ident: 150_CR21 doi: 10.1007/978-3-662-44851-9_28 – volume-title: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume 1, EMNLP ’09 year: 2009 ident: 150_CR22 – reference: 21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7 – reference: 23848987 - BMC Med Res Methodol. 2013 Jul 13;13:91 |
SSID | ssj0000331083 |
Score | 2.1761866 |
Snippet | In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was mainly... Background In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This work was... Abstract Background In this paper we present the approach that we employed to deal with large scale multi-label semantic indexing of biomedical papers. This... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 43 |
SubjectTerms | Abstracting and Indexing as Topic - methods Accuracy Algorithms Analysis Artificial intelligence Bibliographic data bases BioASQ Biomedical Research Citations Classification Data mining Indexing International conferences Learning algorithms Libraries Machine Learning Models, Statistical Multi-label ensemble Multi-label learning Ontology Parameterization Semantic indexing Semantics Statistical significance Statistics Supervised learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15Kn6nbtKgQWiiIyJIlWce0JISw9NRAbkKWx3Qh8YZ409_fGdlr1hTaS64rCTzv71uPR4wdJxWr1BgtTGelqIyLwuu2FT51VsnoGg25QfaHvbiqLq_N9d5VX9QTNo4HHhV3YpJHSFVLr2qo8GCsdWkhxk7qtvEAlH2x5u2RqZyDNcKWWk-vMcvangxIxhSRZ-q0NFLIRSHK8_r_zsp7ZWnZMrlXg86fs2cTeOSn40O_YE-gf8kOV9NfjgP_zFfzlOThFbtbUZu3GNAMwMeRGHyAW9TlOvE8JhHrFt90fPwGn8zFd41y_Pc68thzZLlw29D5jufmQ4FuAzc8EeqmNqNsWZ4v1Bles6vzs5_fL8R0w4JIiHS2wjqnNVjwCONq1SCXNDVYUrRLbeokaNSjNR2GeUTRiU9p30DZ6QYtar1-ww76TQ9vGQeJ1Eu3CBfKtvKqjIi0rENApZoak4IqmNypO6Rp_DjdgnETMg2pbRgtFNBCgSwUZMG-zkfuxtkb_9r8jWw4b6Sx2fkHdKYw6S78z5kK9oU8IFBw48OlOH2jgCLSmKxwSuhZemfKgh0tdmJQpuXyzofClBSGUHqMBYf8zhXs07xMJ6nRrYfNQ96jnCThCnY4utwsEnJjTa-FC-YWzriQebnSr3_lkeGEkpG6v3sMJb1nT1UOIy-UOmIH2_sH-IDIbNt8zEH4B5t9NDk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aX_oiWrWurRJBFITQbHKbjyep4lnk8MlC30I2m9WDdvfsXv37O5PNrV2Evm4S2Ml8_SaZzBDyLgi_CHUlWdUqzhaV9szKpmE2tEpwr2sZU4LsD3V2vvh-UV3kA7chp1XubGIy1E0f8Iz8BILtSmsAx_rT5g_DrlF4u5pbaDwkj0rwNCjhZvltOmPhEsCLkfkyszTqZICQTGAIjfmWFWd85o5S1f7_bfMd5zRPnLzjiZZPyOMMIenpyPOn5EHsDsjhKh88DvQ9XU21kocDso94cizH_IxsVpj5zQbgTKRjlQw6xCvY3nWgqXIiuDLat3R8lo8cpLvcOfp37anvKAS-8arG9S1N-YgMJCle0oBAHDOPErNp6rEzPCfny68_v5yx3HSBBQA_W6a0ljKqaAHZGVFDeFmZqExcSB2a0PIoYVNV1YLme9gHDLGkrWPZyhqYrKx8Qfa6vosvCY0cojHZAIIom4UVpQfwpTRgLFEbsBOiIHy39y7kiuTYGOPSpcjEKDeyywG7HLLL8YJ8nJZsxnIc903-jAydJmIl7fShv_7l8t65KliA7IZbgTRG6w2QF71vuWxqG2NBPqA4ONR3-Lng87MFIBErZ7lTBNTc6qosyPFsJuhpmA_vBMplOzG4f1JdkLfTMK7E3Lcu9jdpjtAciSvI4Sh_E0kQLku8KS6InknmjOb5SLf-naqII3CGaP7V_b91RPZF0hbLhDgme9vrm_gaYNi2fpN07Raioy-T priority: 102 providerName: ProQuest |
Title | Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28938902 https://www.proquest.com/docview/1945777687 https://www.proquest.com/docview/1942701332 https://pubmed.ncbi.nlm.nih.gov/PMC5610407 https://doaj.org/article/5c981d80928e43e9a8316eaaf03db9ee |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfG9sIL4nMERmUkBBKSwbETO35AqEMrU1UmBFTqm5U4zqjUpaPpEPz33DlJtYgJiZdWqu0q92X_fsnljpAXTuSJK1LJ0kpxlqQ6Z0aWJTOuUoLnupA-JMieqdN5Ml2kiz3St7fqFNjcSO2wn9R8s3rz68fv9xDw70LAZ-ptAzxLIC_GJMqUM2DwB3Awaezk8KlD-2FjloBlQmFOwZOYARHon3Pe-C-DkyoU9P972752bg1zKq8dUpO75E6HLum4dYd7ZM_X98nhrLsn2dCXdLYro9w8IJczzANnDdjJ07ZmBm38BSh76WioowgHG11XtH1JH-1J-0w6-nOZ07ymQIP9RYHrKxqyExn4lV9Rh7Ac85CC6WnouNM8JPPJybcPp6xrwcAcQKEtU1pL6ZU3gPMyUQDZTDOvMp9I7UpXcS9BpyqtYB_IQXQkXNIUPq5kASZXRj4i-_W69o8J9Ry4mSwBT8RlYkScAxRTGhCXKDLYNUREeK9u67r65NgmY2UDT8mUbS1kwUIWLWR5RF7vlly2xTn-NfkYbbibiHW1ww_rzbntdGdTZwDAZ9wIlNGbPAPxfJ5XXJaF8T4ir9ADLPojXJzLu5cYQESso2XHCK-50WkckaPBTIhaNxzufcj2Tm9jA8GigQDqiDzfDeNKzISr_foqzBGao3AROWxdbicSkGeJz40jogfOOJB5OFIvv4ea4gijgds_-R-NPiW3RQgXw4Q4IvvbzZV_BhBtW4zILb3Q8JlNPo7IwXg8_TqF7-OTs89fRuG2xyiE5h8gfzlR |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcqAXRAuUQAEj8ZCQrDp2EscHhMqj2tKlp1bam3Ecp6zUZrfNFsSf4jcy4zxohNRbr7EtZTKfZ76xJzOEvHLCJq5IJUurjLMkVZZpWZZMuyoT3KpC-pAge5RNTpKvs3S2Rv70_8JgWmVvE4OhLhcOz8h3IdhOlQJyrD4sLxh2jcLb1b6FRguLQ__7F4RszfuDz6Df10Lsfzn-NGFdVwHmwLuvWKaUlD7zGqhLLgqIn9LcZ7lPpHKlq7iXUsZZWgG0bek8xhBSFz6uZAFSZFh8CUz-HXC8HFMI1UwNZzocVgKl6S5P4zzbbSAEFBiyY35nyhkfub_QJeB_X3DNGY4TNa95vv375F5HWelei7FNsubrLbI97Q46G_qGTofazM0W2UD-2pZ_fkCWU8w0Zw0gwdO2Kgdt_Dmoc-5oqNQIrpMuKtqWAUDE0D5Xj_6cW2prCoG2Py9wfUVD_iMD5Poz6pD4Y6ZTABcNPX2ah-TkVtTxiKzXi9o_JtRziP5kCYwlLhMtYgtkL1PA6USRg10SEeH9tzeuq4COjTjOTIiE8sy06jKgLoPqMjwi74Yly7b8x02TP6JCh4lYuTs8WFyemu7bmdRpCBFyrgXK6LXNQTxvbcVlWWjvI_IW4WDQvsDLOdv9JgEiYqUus4cEnmuVxhHZGc0Eu-DGwz2gTGeXGvNvF0Xk5TCMKzHXrvaLqzBHKI7CRWS7xd8gEoTnEm-mI6JGyBzJPB6p5z9C1XIk6glXT25-rRfk7uT429RMD44On5INEXaOZkLskPXV5ZV_BhRwVTwP-46S77e90f8CMdVqzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+online+semantic+indexing+of+biomedical+articles+via+an+ensemble+of+multi-label+classification+models&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Papanikolaou%2C+Yannis&rft.au=Tsoumakas%2C+Grigorios&rft.au=Laliotis%2C+Manos&rft.au=Markantonatos%2C+Nikos&rft.date=2017-09-22&rft.issn=2041-1480&rft.eissn=2041-1480&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1186%2Fs13326-017-0150-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13326_017_0150_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon |