Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington's Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain
Previously reported data suggest that hibiscetin, isolated from , contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 3; p. 1402 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previously reported data suggest that hibiscetin, isolated from
, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD).
To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (
= 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated.
The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin.
The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models. |
---|---|
AbstractList | Previously reported data suggest that hibiscetin, isolated from
, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD).
To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (
= 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated.
The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin.
The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models. Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD).BACKGROUNDPreviously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD).To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated.METHODSTo investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated.The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin.RESULTSThe hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin.The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models.CONCLUSIONThe current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models. Background: Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington’s disease (HD). Methods: To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups (n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated. Results: The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin. Conclusion: The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models. Background: Previously reported data suggest that hibiscetin, isolated from roselle , contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and has a broad range of physiological effects. In this study, we aim to analyze the effect of hibiscetin neuroprotective ability in rats against 3-nitropropionic acid (3-NPA)-induced Huntington’s disease (HD). Methods: To investigate possible toxicities in animals, oral acute toxicity studies of hibiscetin were undertaken, and results revealed the safety of hibiscetin in animals with a maximum tolerated dose. Wistar rats were divided into four groups ( n = 6); (group-1) treated with normal saline, (group-2) hibiscetin (10 mg/kg) only, (group-3) 3-NPA only, and (group-4) 3-NPA +10 mg/kg hibiscetin. The efficacy of hibiscetin 10 mg/kg was studied with the administration of 3-NPA doses for the induction of experimentally induced HD symptoms in rats. The mean body weight (MBW) was recorded at end of the study on day 22 to evaluate any change in mean body weight. Several biochemical parameters were assessed to support oxidative stress (GSH, SOD, CAT, LPO, GR, and GPx), alteration in neurotransmitters (DOPAC, HVA, 5-HIAA, norepinephrine, serotonin, GABA, and dopamine), alterations in BDNF and cleaved caspase (caspase 3) activity. Additionally, inflammatory markers, i.e., tumor necrosis factor alpha (TNF-α), interleukins beta (IL-1β), and myeloperoxidase (MPO) were evaluated. Results: The hibiscetin-treated group exhibits a substantial restoration of MBW than the 3-NPA control group. Furthermore, 3-NPA caused a substantial alteration in biochemical, neurotransmitter monoamines, and neuroinflammatory parameters which were restored successfully by hibiscetin. Conclusion: The current study linked the possible role of hibiscetin by offering neuroprotection in experimental animal models. |
Audience | Academic |
Author | Sayyed, Nadeem Hajjar, Baraa Mohammed Kazmi, Imran Almaniea, Mohammad A Mahdi, Wael A Al-Abbasi, Fahad A Alshehri, Sultan AlGhamdi, Shareefa A Alghamdi, Amira M Imam, Syed Sarim |
AuthorAffiliation | 2 Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia 3 Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia 4 School of Pharmacy, Glocal University, Saharanpur 247121, India 1 Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia |
AuthorAffiliation_xml | – name: 1 Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia – name: 3 Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia – name: 4 School of Pharmacy, Glocal University, Saharanpur 247121, India – name: 2 Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
Author_xml | – sequence: 1 givenname: Wael A orcidid: 0000-0002-7083-1753 surname: Mahdi fullname: Mahdi, Wael A organization: Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia – sequence: 2 givenname: Shareefa A orcidid: 0000-0002-6603-6116 surname: AlGhamdi fullname: AlGhamdi, Shareefa A organization: Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 3 givenname: Amira M surname: Alghamdi fullname: Alghamdi, Amira M organization: Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 4 givenname: Syed Sarim orcidid: 0000-0002-8913-0826 surname: Imam fullname: Imam, Syed Sarim organization: Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia – sequence: 5 givenname: Sultan orcidid: 0000-0002-0922-9819 surname: Alshehri fullname: Alshehri, Sultan organization: Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia – sequence: 6 givenname: Mohammad A surname: Almaniea fullname: Almaniea, Mohammad A organization: Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia – sequence: 7 givenname: Baraa Mohammed surname: Hajjar fullname: Hajjar, Baraa Mohammed organization: Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia – sequence: 8 givenname: Fahad A surname: Al-Abbasi fullname: Al-Abbasi, Fahad A organization: Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia – sequence: 9 givenname: Nadeem surname: Sayyed fullname: Sayyed, Nadeem organization: School of Pharmacy, Glocal University, Saharanpur 247121, India – sequence: 10 givenname: Imran orcidid: 0000-0003-1881-5219 surname: Kazmi fullname: Kazmi, Imran organization: Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36771072$$D View this record in MEDLINE/PubMed |
BookMark | eNptUttuEzEQXaEieoEP4AVZ4gFetviyG2dfkEIpJFJpJQrPq4k9Do527dT2RvBd_CDetJQGkC15NHPOmYvnuDhw3mFRPGf0VIiGvul9h2roMPIpFayi_FFxxCpOS0Gr5uCBfVgcx7imlLOK1U-KQzGRklHJj4qflzgEvwk-oUrgEjk3JluReEPmdmmjwmQdyVeUlzbtoBvrnVVkpqwuF04PCjWZDy7jVsm7V5G8txEhItlaINfDMlqdQ-Tqu9WQ7BbJdQoYIwGnySevhw5Gajadh946JLuaUgAXe5sShjjm_wy5qncBrHtaPDbQRXx2954UXz-cfzmblxdXHxdns4tS1ROayolgEig2wDlFAM60BioqjQ1DzZoKKRVooJkCn2hZLVVtmKhz3DSC4bQWJ8XiVld7WLebYHsIP1oPtt05fFi1EJJVHbaSNbVgYok10srIepqTGdC4rBWfYm2y1ttbrc2w7FErdLm_bk90P-Lst3blt23TcMbZWMzrO4HgbwaMqe3Hz-k6cOiH2HIp6wmbyEpm6Mu_oGs_BJdHNaKqpmKCTv-gVpAbsM6ME1ejaDuTleCMSSoy6vQ_qHw09lbldTQ2-_cI7Jaggo8xoLnvkdF23Nr2n63NnBcPh3PP-L2m4hc5qe-6 |
CitedBy_id | crossref_primary_10_3390_biomedicines12030625 crossref_primary_10_1007_s43440_024_00619_z crossref_primary_10_1016_j_chphi_2023_100416 crossref_primary_10_1371_journal_pone_0293660 crossref_primary_10_1007_s11064_024_04158_0 crossref_primary_10_7717_peerj_16795 |
Cites_doi | 10.3389/fncel.2021.689332 10.1038/emboj.2012.65 10.1046/j.1469-7580.2000.19640519.x 10.1007/s12640-019-00086-y 10.1016/j.pneurobio.2007.01.003 10.1021/jf903209w 10.1016/j.pnpbp.2007.12.017 10.1016/S0140-6736(07)60111-1 10.1016/j.biopha.2016.11.111 10.1016/0896-6273(95)90346-1 10.1002/ptr.5585 10.1016/j.foodres.2011.06.016 10.1038/s41598-018-34883-w 10.3389/fncel.2021.785703 10.1523/JNEUROSCI.11-12-03877.1991 10.3233/JHD-160205 10.1007/s00441-018-02980-x 10.1016/j.jsps.2022.09.016 10.3390/biom12081023 10.1016/j.neuroscience.2014.12.018 10.1038/ng0696-196 10.1016/S0092-8674(00)81369-0 10.3389/fnmol.2019.00258 10.1016/0006-291X(76)90747-6 10.1016/j.cell.2004.06.018 10.1016/0003-2697(79)90738-3 10.2164/jandrol.108.007054 10.1016/S0021-9258(19)45228-9 10.1016/j.jksus.2020.02.028 10.31887/DCNS.2016.18.1/pnopoulos 10.1016/j.neulet.2012.02.095 10.3389/fnint.2011.00078 10.1186/s13287-015-0248-1 10.1126/science.8091209 10.1016/B978-0-12-381328-2.00014-6 10.1016/0092-8674(93)90585-E 10.1212/WNL.41.7.1117 10.1016/S0378-4347(00)00348-0 10.1016/j.ejphar.2011.11.030 10.1523/JNEUROSCI.5473-08.2009 10.1016/j.foodres.2017.11.014 10.1016/j.biopha.2017.03.085 10.1007/s12640-021-00462-7 10.1111/j.1471-4159.2005.03515.x 10.1016/j.physbeh.2015.12.015 10.1016/S0197-4580(02)00075-1 10.1111/jnc.14723 10.3390/pr10071396 10.1016/j.expneurol.2008.05.017 10.1016/0361-9230(94)00242-S 10.1093/jn/133.7.2125 10.2217/nmt.12.34 10.4103/ijp.IJP_11_18 10.1016/j.fshw.2016.07.003 10.1126/science.3155875 10.1097/00005072-199805000-00001 10.1111/j.1432-1033.1974.tb03751.x 10.3390/molecules15020878 10.1111/j.1582-4934.2008.00402.x 10.1016/j.pscychresns.2012.01.002 10.4161/rna.26706 10.2174/0929867013373011 10.1016/j.fct.2018.05.022 10.1523/JNEUROSCI.23-03-00961.2003 10.1016/j.nbd.2015.09.008 10.1016/0003-9861(59)90090-6 10.1152/jn.01118.2005 10.1101/cshperspect.a024240 10.1007/s11068-004-0514-8 10.1016/S1474-4422(10)70245-3 10.1016/S1474-4422(11)70070-9 10.1523/JNEUROSCI.5687-08.2009 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules28031402 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 7X7 name: ProQuest Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_7195313be5e04f7581ddfadeb5c28e5f A743211703 10_3390_molecules28031402 36771072 |
Genre | Journal Article |
GeographicLocations | Saudi Arabia |
GeographicLocations_xml | – name: Saudi Arabia |
GrantInformation_xml | – fundername: King Saud University grantid: 000 – fundername: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia grantid: IFKSURG-2-347 |
GroupedDBID | --- 0R~ 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH ABDBF ABJCF ABUWG ACGFO ACIWK ACPRK AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D1I DIK DU5 E3Z EBD ECM EIF EMOBN ESTFP ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE HZ~ I09 IAO ITC KB. KQ8 LK8 M1P M7P MODMG M~E NPM O-U O9- OK1 P2P PDBOC PIMPY PQQKQ PROAC PSQYO RIG RPM SV3 TR2 TUS UKHRP ~8M AAYXX CITATION 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c560t-6317a0e9a220eaa21dda034de91ed194e003efa98a26d74bc5f1354def931e853 |
IEDL.DBID | RPM |
ISSN | 1420-3049 |
IngestDate | Tue Oct 22 15:16:05 EDT 2024 Tue Sep 17 21:34:36 EDT 2024 Sat Oct 26 04:00:20 EDT 2024 Tue Nov 12 22:00:44 EST 2024 Wed Sep 04 17:12:24 EDT 2024 Tue Nov 12 23:34:04 EST 2024 Thu Sep 26 16:24:54 EDT 2024 Sat Nov 02 12:23:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Huntington’s disease 3-nitropropionic acid hibiscetin neuroprotection |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-6317a0e9a220eaa21dda034de91ed194e003efa98a26d74bc5f1354def931e853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8913-0826 0000-0002-7083-1753 0000-0002-0922-9819 0000-0002-6603-6116 0000-0003-1881-5219 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921215/ |
PMID | 36771072 |
PQID | 2774941308 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7195313be5e04f7581ddfadeb5c28e5f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921215 proquest_miscellaneous_2775616747 proquest_journals_2774941308 gale_infotracmisc_A743211703 gale_infotracacademiconefile_A743211703 crossref_primary_10_3390_molecules28031402 pubmed_primary_36771072 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wijeyekoon (ref_34) 2011; 5 Palpagama (ref_63) 2019; 12 Unschuld (ref_20) 2012; 203 Alzarea (ref_48) 2022; 30 Brouillet (ref_50) 2005; 95 Unschuld (ref_19) 2012; 514 Shalaby (ref_59) 2018; 118 Crossman (ref_24) 2000; 196 Kaisoon (ref_40) 2012; 46 Wang (ref_55) 2017; 86 Joshi (ref_31) 2009; 29 (ref_41) 2001; 8 MacDonald (ref_6) 1993; 72 Pires (ref_39) 2018; 105 (ref_46) 2016; 5 Kumar (ref_35) 2012; 674 Lawrence (ref_75) 1976; 71 Pinho (ref_13) 2016; 90 Zuccato (ref_60) 2007; 81 Kumar (ref_54) 2016; 5 Gauthier (ref_56) 2004; 118 Gorman (ref_10) 2008; 12 Cepeda (ref_28) 2003; 23 Yang (ref_45) 2010; 58 Walker (ref_32) 2007; 369 Reiner (ref_14) 2011; 98 ref_65 ref_64 Khan (ref_62) 2015; 287 Tang (ref_15) 2012; 2 Pagel (ref_76) 2000; 746 Aliaghaei (ref_61) 2019; 376 Montoya (ref_3) 2006; 31 Graybiel (ref_25) 1994; 265 Weir (ref_37) 2011; 10 Jamwal (ref_53) 2016; 155 Licitra (ref_9) 2017; 7 Farias (ref_74) 2010; 31 Komatsu (ref_2) 2021; 15 Ellman (ref_70) 1959; 82 Ohkawa (ref_73) 1979; 95 Vonsattel (ref_11) 1997; 57 Barron (ref_26) 2021; 15 Sepers (ref_58) 2019; 150 Durg (ref_68) 2017; 90 Ikeda (ref_22) 1996; 13 Dhir (ref_36) 2008; 32 Nogueira (ref_5) 2018; 2018 Rengarajan (ref_47) 2020; 32 Abdelfattah (ref_49) 2020; 37 Cepeda (ref_27) 2006; 95 Shaikh (ref_69) 2016; 30 Gipson (ref_52) 2013; 10 Wolf (ref_21) 2008; 213 Kerkis (ref_1) 2015; 6 Sotrel (ref_18) 1991; 41 Graveland (ref_17) 1985; 227 Mangiarini (ref_23) 1996; 87 Schroeter (ref_42) 2002; 23 Tasset (ref_51) 2010; 15 Tsuda (ref_44) 2003; 133 Misra (ref_71) 1972; 247 DiFiglia (ref_12) 1995; 14 Ross (ref_7) 2011; 10 DiProspero (ref_29) 2004; 33 Borlongan (ref_33) 1995; 36 Mehan (ref_67) 2018; 50 Yu (ref_57) 2018; 8 Ferrante (ref_16) 1991; 11 ref_43 Alshehri (ref_66) 2022; 40 Costa (ref_38) 2012; 31 Schiefer (ref_4) 2015; 5 Graham (ref_30) 2009; 29 Aebi (ref_72) 1974; 48 Nopoulos (ref_8) 2022; 18 |
References_xml | – volume: 15 start-page: 225 year: 2021 ident: ref_26 article-title: Huntingtin and the synapse publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2021.689332 contributor: fullname: Barron – volume: 31 start-page: 1853 year: 2012 ident: ref_38 article-title: Shaping the role of mitochondria in the pathogenesis of Huntington’s disease publication-title: EMBO J. doi: 10.1038/emboj.2012.65 contributor: fullname: Costa – volume: 196 start-page: 519 year: 2000 ident: ref_24 article-title: Functional anatomy of movement disorders publication-title: J. Anat. doi: 10.1046/j.1469-7580.2000.19640519.x contributor: fullname: Crossman – volume: 37 start-page: 77 year: 2020 ident: ref_49 article-title: Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease publication-title: Neurotox. Res. doi: 10.1007/s12640-019-00086-y contributor: fullname: Abdelfattah – volume: 81 start-page: 294 year: 2007 ident: ref_60 article-title: Role of brain-derived neurotrophic factor in Huntington’s disease publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2007.01.003 contributor: fullname: Zuccato – volume: 2018 start-page: 3915657 year: 2018 ident: ref_5 article-title: Huntington’s disease in a patient misdiagnosed as conversion disorder publication-title: Case Rep. Psychiatry contributor: fullname: Nogueira – volume: 58 start-page: 850 year: 2010 ident: ref_45 article-title: The hypolipidemic effect of Hibiscus sabdariffa polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance publication-title: J. Agric. Food Chem. doi: 10.1021/jf903209w contributor: fullname: Yang – volume: 32 start-page: 835 year: 2008 ident: ref_36 article-title: Tiagabine, a GABA uptake inhibitor, attenuates 3-nitropropionic acid-induced alterations in various behavioral and biochemical parameters in rats publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2007.12.017 contributor: fullname: Dhir – volume: 369 start-page: 218 year: 2007 ident: ref_32 article-title: Huntington’s disease publication-title: Lancet doi: 10.1016/S0140-6736(07)60111-1 contributor: fullname: Walker – volume: 86 start-page: 81 year: 2017 ident: ref_55 article-title: Effect of Praeruptorin C on 3-nitropropionic acid induced Huntington’s disease-like symptoms in mice publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.11.111 contributor: fullname: Wang – volume: 14 start-page: 1075 year: 1995 ident: ref_12 article-title: Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons publication-title: Neuron doi: 10.1016/0896-6273(95)90346-1 contributor: fullname: DiFiglia – volume: 30 start-page: 815 year: 2016 ident: ref_69 article-title: Effect of Embelin Against Lipopolysaccharide-induced Sickness Behaviour in Mice publication-title: Phytother. Res. doi: 10.1002/ptr.5585 contributor: fullname: Shaikh – volume: 46 start-page: 563 year: 2012 ident: ref_40 article-title: Potential health enhancing properties of edible flowers from Thailand publication-title: Food Res. Int. doi: 10.1016/j.foodres.2011.06.016 contributor: fullname: Kaisoon – volume: 8 start-page: 16976 year: 2018 ident: ref_57 article-title: Decreased BDNF release in cortical neurons of a knock-in mouse model of Huntington’s disease publication-title: Sci. Rep. doi: 10.1038/s41598-018-34883-w contributor: fullname: Yu – volume: 15 start-page: 785703 year: 2021 ident: ref_2 article-title: Innovative Therapeutic Approaches for Huntington’s Disease: From Nucleic Acids to GPCR-Targeting Small Molecules publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2021.785703 contributor: fullname: Komatsu – volume: 11 start-page: 3877 year: 1991 ident: ref_16 article-title: Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: A combined study using the section-Golgi method and calbindin D28k immunocytochemistry publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.11-12-03877.1991 contributor: fullname: Ferrante – volume: 5 start-page: 217 year: 2016 ident: ref_54 article-title: Oxidative stress and Huntington’s disease: The good, the bad, and the ugly publication-title: J. Huntingt. Dis. doi: 10.3233/JHD-160205 contributor: fullname: Kumar – volume: 376 start-page: 179 year: 2019 ident: ref_61 article-title: Dental pulp stem cell transplantation ameliorates motor function and prevents cerebellar atrophy in rat model of cerebellar ataxia publication-title: Cell Tissue Res. doi: 10.1007/s00441-018-02980-x contributor: fullname: Aliaghaei – volume: 30 start-page: 1710 year: 2022 ident: ref_48 article-title: Hibiscetin attenuates oxidative, nitrative stress and neuroinflammation via suppression of TNF-α signaling in rotenone induced Parkinsonism in rats publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2022.09.016 contributor: fullname: Alzarea – ident: ref_65 doi: 10.3390/biom12081023 – volume: 31 start-page: 21 year: 2006 ident: ref_3 article-title: Brain imaging and cognitive dysfunctions in Huntington’s disease publication-title: J. Psychiatry Neurosci. contributor: fullname: Montoya – volume: 287 start-page: 66 year: 2015 ident: ref_62 article-title: Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.12.018 contributor: fullname: Khan – volume: 13 start-page: 196 year: 1996 ident: ref_22 article-title: Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo publication-title: Nat. Genet. doi: 10.1038/ng0696-196 contributor: fullname: Ikeda – volume: 87 start-page: 493 year: 1996 ident: ref_23 article-title: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice publication-title: Cell doi: 10.1016/S0092-8674(00)81369-0 contributor: fullname: Mangiarini – volume: 12 start-page: 258 year: 2019 ident: ref_63 article-title: The role of microglia and astrocytes in Huntington’s disease publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2019.00258 contributor: fullname: Palpagama – volume: 71 start-page: 952 year: 1976 ident: ref_75 article-title: Glutathione peroxidase activity in selenium-deficient rat liver publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(76)90747-6 contributor: fullname: Lawrence – volume: 5 start-page: 37 year: 2015 ident: ref_4 article-title: Clinical diagnosis and management in early Huntington’s disease: A review publication-title: Degener. Neurol. Neuromuscul. Dis. contributor: fullname: Schiefer – volume: 118 start-page: 127 year: 2004 ident: ref_56 article-title: Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules publication-title: Cell doi: 10.1016/j.cell.2004.06.018 contributor: fullname: Gauthier – volume: 95 start-page: 351 year: 1979 ident: ref_73 article-title: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction publication-title: Anal. Biochem. doi: 10.1016/0003-2697(79)90738-3 contributor: fullname: Ohkawa – volume: 31 start-page: 314 year: 2010 ident: ref_74 article-title: Oxidative stress in rat testis and epididymis under intermittent hypobaric hypoxia: Protective role of ascorbate supplementation publication-title: J. Androl. doi: 10.2164/jandrol.108.007054 contributor: fullname: Farias – volume: 247 start-page: 3170 year: 1972 ident: ref_71 article-title: The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)45228-9 contributor: fullname: Misra – volume: 32 start-page: 2236 year: 2020 ident: ref_47 article-title: Antioxidant activity of flavonoid compounds isolated from the petals of Hibiscus rosa sinensis publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2020.02.028 contributor: fullname: Rengarajan – volume: 18 start-page: 91 year: 2022 ident: ref_8 article-title: Huntington disease: A single-gene degenerative disorder of the striatum publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2016.18.1/pnopoulos contributor: fullname: Nopoulos – volume: 514 start-page: 204 year: 2012 ident: ref_19 article-title: Impaired cortico-striatal functional connectivity in prodromal Huntington’s disease publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.02.095 contributor: fullname: Unschuld – volume: 5 start-page: 78 year: 2011 ident: ref_34 article-title: The current status of neural grafting in the treatment of Huntington’s disease. A review publication-title: Front. Integr. Neurosci. doi: 10.3389/fnint.2011.00078 contributor: fullname: Wijeyekoon – volume: 6 start-page: 232 year: 2015 ident: ref_1 article-title: Neural and mesenchymal stem cells in animal models of Huntington’s disease: Past experiences and future challenges publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-015-0248-1 contributor: fullname: Kerkis – volume: 265 start-page: 1826 year: 1994 ident: ref_25 article-title: The basal ganglia and adaptive motor control publication-title: Science doi: 10.1126/science.8091209 contributor: fullname: Graybiel – volume: 98 start-page: 325 year: 2011 ident: ref_14 article-title: Genetics and neuropathology of Huntington’s disease publication-title: Int. Rev. Neurobiol. doi: 10.1016/B978-0-12-381328-2.00014-6 contributor: fullname: Reiner – volume: 72 start-page: 971 year: 1993 ident: ref_6 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes publication-title: Cell doi: 10.1016/0092-8674(93)90585-E contributor: fullname: MacDonald – volume: 41 start-page: 1117 year: 1991 ident: ref_18 article-title: Morphometric analysis of the prefrontal cortex in Huntington’s disease publication-title: Neurology doi: 10.1212/WNL.41.7.1117 contributor: fullname: Sotrel – volume: 746 start-page: 297 year: 2000 ident: ref_76 article-title: High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson’s disease publication-title: J. Chromatogr. B Biomed. Sci. Appl. doi: 10.1016/S0378-4347(00)00348-0 contributor: fullname: Pagel – volume: 674 start-page: 265 year: 2012 ident: ref_35 article-title: Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2011.11.030 contributor: fullname: Kumar – volume: 29 start-page: 2193 year: 2009 ident: ref_30 article-title: Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5473-08.2009 contributor: fullname: Graham – volume: 105 start-page: 580 year: 2018 ident: ref_39 article-title: Edible flowers as sources of phenolic compounds with bioactive potential publication-title: Food Res. Int. doi: 10.1016/j.foodres.2017.11.014 contributor: fullname: Pires – volume: 90 start-page: 328 year: 2017 ident: ref_68 article-title: Antipsychotic activity of embelin isolated from Embelia ribes: A preliminary study publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.03.085 contributor: fullname: Durg – volume: 40 start-page: 66 year: 2022 ident: ref_66 article-title: Anti-Huntington’s Effect of Butin in 3-Nitropropionic Acid-Treated Rats: Possible Mechanism of Action publication-title: Neurotox. Res. doi: 10.1007/s12640-021-00462-7 contributor: fullname: Alshehri – volume: 95 start-page: 1521 year: 2005 ident: ref_50 article-title: 3-Nitropropionic acid: A mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2005.03515.x contributor: fullname: Brouillet – volume: 155 start-page: 180 year: 2016 ident: ref_53 article-title: Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: Possible role of oxidative stress, neuroinflammation, and neurotransmitters publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2015.12.015 contributor: fullname: Jamwal – volume: 23 start-page: 861 year: 2002 ident: ref_42 article-title: MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(02)00075-1 contributor: fullname: Schroeter – volume: 150 start-page: 346 year: 2019 ident: ref_58 article-title: Alterations in synaptic function and plasticity in Huntington disease publication-title: J. Neurochem. doi: 10.1111/jnc.14723 contributor: fullname: Sepers – ident: ref_64 doi: 10.3390/pr10071396 – volume: 213 start-page: 137 year: 2008 ident: ref_21 article-title: Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2008.05.017 contributor: fullname: Wolf – volume: 36 start-page: 549 year: 1995 ident: ref_33 article-title: Systemic 3-nitropropionic acid: Behavioral deficits and striatal damage in adult rats publication-title: Brain Res. Bull. doi: 10.1016/0361-9230(94)00242-S contributor: fullname: Borlongan – volume: 133 start-page: 2125 year: 2003 ident: ref_44 article-title: Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice publication-title: J. Nutr. doi: 10.1093/jn/133.7.2125 contributor: fullname: Tsuda – volume: 2 start-page: 421 year: 2012 ident: ref_15 article-title: Monitoring Huntington’s disease progression through preclinical and early stages publication-title: Neurodegener. Dis. Manag. doi: 10.2217/nmt.12.34 contributor: fullname: Tang – volume: 50 start-page: 309 year: 2018 ident: ref_67 article-title: Neuroprotective effect of solanesol against 3-nitropropionic acid-induced Huntington’s disease-like behavioral, biochemical, and cellular alterations: Restoration of coenzyme-Q10-mediated mitochondrial dysfunction publication-title: Indian J. Pharmacol. doi: 10.4103/ijp.IJP_11_18 contributor: fullname: Mehan – volume: 5 start-page: 230 year: 2016 ident: ref_46 article-title: Effect of Roselle calyces extract on the chemical and sensory properties of functional cupcakes publication-title: Food Sci. Hum. Wellness doi: 10.1016/j.fshw.2016.07.003 – volume: 227 start-page: 770 year: 1985 ident: ref_17 article-title: Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease publication-title: Science doi: 10.1126/science.3155875 contributor: fullname: Graveland – volume: 57 start-page: 369 year: 1997 ident: ref_11 article-title: Huntington disease publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-199805000-00001 contributor: fullname: Vonsattel – volume: 48 start-page: 137 year: 1974 ident: ref_72 article-title: Heterogeneity of erythrocyte catalase II: Isolation and characterization of normal and variant erythrocyte catalase and their subunits publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1974.tb03751.x contributor: fullname: Aebi – volume: 15 start-page: 878 year: 2010 ident: ref_51 article-title: 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: Past, present and future publication-title: Molecules doi: 10.3390/molecules15020878 contributor: fullname: Tasset – volume: 12 start-page: 2263 year: 2008 ident: ref_10 article-title: Neuronal cell death in neurodegenerative diseases: Recurring themes around protein handling publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2008.00402.x contributor: fullname: Gorman – volume: 203 start-page: 166 year: 2012 ident: ref_20 article-title: Depressive symptoms in prodromal Huntington’s Disease correlate with Stroop-interference related functional connectivity in the ventromedial prefrontal cortex publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2012.01.002 contributor: fullname: Unschuld – volume: 10 start-page: 1647 year: 2013 ident: ref_52 article-title: Aberrantly spliced HTT, a new player in Huntington’s disease pathogenesis publication-title: RNA Biol. doi: 10.4161/rna.26706 contributor: fullname: Gipson – volume: 8 start-page: 797 year: 2001 ident: ref_41 article-title: Flavonoid antioxidants publication-title: Curr. Med. Chem. doi: 10.2174/0929867013373011 – volume: 118 start-page: 227 year: 2018 ident: ref_59 article-title: Topiramate mitigates 3-nitropropionic acid-induced striatal neurotoxicity via modulation of AMPA receptors publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.05.022 contributor: fullname: Shalaby – volume: 23 start-page: 961 year: 2003 ident: ref_28 article-title: Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-03-00961.2003 contributor: fullname: Cepeda – volume: 90 start-page: 51 year: 2016 ident: ref_13 article-title: Mitochondrial dynamics and quality control in Huntington’s disease publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2015.09.008 contributor: fullname: Pinho – volume: 82 start-page: 72 year: 1959 ident: ref_70 article-title: Tissue sulfhvdrvl sroups publication-title: Arch. Biochem. Biophvs doi: 10.1016/0003-9861(59)90090-6 contributor: fullname: Ellman – volume: 95 start-page: 2108 year: 2006 ident: ref_27 article-title: Altered cortical glutamate receptor function in the R6/2 model of Huntington’s disease publication-title: J. Neurophysiol. doi: 10.1152/jn.01118.2005 contributor: fullname: Cepeda – volume: 7 start-page: a024240 year: 2017 ident: ref_9 article-title: Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a024240 contributor: fullname: Licitra – volume: 33 start-page: 517 year: 2004 ident: ref_29 article-title: Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements publication-title: J. Neurocytol. doi: 10.1007/s11068-004-0514-8 contributor: fullname: DiProspero – volume: 10 start-page: 83 year: 2011 ident: ref_7 article-title: Huntington’s disease: From molecular pathogenesis to clinical treatment publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70245-3 contributor: fullname: Ross – ident: ref_43 – volume: 10 start-page: 573 year: 2011 ident: ref_37 article-title: Development of biomarkers for Huntington’s disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(11)70070-9 contributor: fullname: Weir – volume: 29 start-page: 2414 year: 2009 ident: ref_31 article-title: Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5687-08.2009 contributor: fullname: Joshi |
SSID | ssj0021415 |
Score | 2.4708946 |
Snippet | Previously reported data suggest that hibiscetin, isolated from
, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including anthocyanidins and... Background: Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including... Previously reported data suggest that hibiscetin, isolated from roselle, contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including... Background: Previously reported data suggest that hibiscetin, isolated from roselle , contains delphinidin-3-sambubioside and cyanidin-3-sambubioside including... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1402 |
SubjectTerms | 3-Nitropropionic acid Acute toxicity Animal cognition Animal models Animals Body Weight Brain Brain research Brain-derived neurotrophic factor Care and treatment Caspase-3 Disease Dopamine Evaluation Flavonoids Health aspects hibiscetin Huntington Disease - chemically induced Huntington Disease - drug therapy Huntington's chorea Huntington's disease Huntingtons disease Inflammation Monoamines Neurodegeneration Neurons Neuroprotection Neuroprotective agents Neuroprotective Agents - pharmacology Neuroprotective Agents - therapeutic use Neurotransmitter Agents - pharmacology Neurotransmitters Nitro Compounds - pharmacology Norepinephrine Oxidative Stress Peroxidase Pharmacology, Experimental Physiological effects Phytochemicals Propionates - pharmacology Proteins Rats Rats, Wistar Serotonin Signs and symptoms Toxicity Tumor necrosis factor-TNF Tumor necrosis factor-α γ-Aminobutyric acid |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYll_ZS-l83aVChUCiY2JJlW8dN0rAUkkLbQG5GlkbUh7VD1wk99jX6IH2hPklnJO-yJodeCj5ZWpA045lvVtL3MfY2c1o6b_PUayjSwrYy1ZV1qbXeFa4taxVuvZ9flMvL4uOVutqR-qIzYZEeOC7cUUX7PLlsQUFWeES3uXPeOGiVFTUoH6JvpjfF1FRq5ZiX4h6mxKL-aBWlZmFNWkxYUohZFgpk_XdD8k5Omp-X3ElAZ4_Ywwk58kUc8WN2D_on7P7JRrDtKfsdiDYm4gVcMB6Zidd88HxJij-WrjdzfGR60Y2h6zX9HWv5wnYuJRUPC44vo3oEgsI_P3-t-WncwuG3neEUZjrKdvzTj84FznD-Jdw24aZ3_HxwQQ0M2zFWDGaFEJaHUY2UEldd4PKkEXw2OK5jkqd4xi7PPnw9WaaTKkNqER2NaYmIw2SgjRAZGCPQHiaThQOdg8t1ARgnwBtdG1G6qmit8rlU2O61zAHRwXO21w89vGQcY0FeKmnRK0ShtKqzsjaq1boC6QFswt5vrNRcR_KNBosWMmlzx6QJOyY7bjsSb3Z4gd7UTN7U_MubEvaOvKChrxtXxprpkgKOl3iymgUCLkFiPTJhB7OeaGs7b974UTNFhXUjEGtrQg11wt5sm-mXdNKth-Em9EFIW2KVl7AX0e22U5JlhYCwwqlWM4eczXne0nffAme41oJ4RF79j0XaZw8EQr14dv2A7Y3fb-A1QrOxPQxf4V_LzD_d priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagHOCC-CelICMhISFFTew4iU9oW1hWSC0SUKm3yLHHJYdNlm5aceQ1eBBeiCdhxskujSoh5RQ70jgznvnGP_Mx9ipxWjpv09hryOLM1jLWhXWxtd5lrs5LFW69Hx3ni5Ps46k6HRfc1uOxyo1PDI7adZbWyPcF4hRNHrd8u_oeE2sU7a6OFBo32a0UO1DyVc4_bBOuFKPTsJMpMbXfXw6Es7AmRiZMLMQkFoWS_dcd85XIND01eSUMze-xuyN-5LNB4ffZDWgfsNuHG9q2h-x3KLcxll_A38aH-sRr3nm-IN4fS5ecOT4yPm760HVFi7KWz2zjYuLysOD4YuCQQGj45-evNX83bOTwy8ZwcjYNxTz-6UfjQuVw_iXcOeGmdfyoc4ETDNvRY3RmiUCWB6l6CozLJlT0JAk-G5TrgEgqHrGT-fuvh4t45GaILWKkPs4Rd5gEtBEiAWNE6pxJZOZAp-BSnQF6C_BGl0bkrshqq3wqFbZ7LVNAjPCY7bRdC08ZR4-Q5kpatA2RKa3KJC-NqrUuQHoAG7E3Gy1Vq6EER4WpC6m0uqbSiB2QHrcdqXp2eNGdn1XjZKwK2jtMZQ0KksxjxoTSe-OgVlaUoHzEXpMVVDTH8c9YM15VQHmpWlY1Q9gliLJHRmxv0hN1bafNGzuqRt-wrv5ZcsRebpvpSzrv1kJ3EfogsM0x14vYk8HstkOSeYGwsMChFhODnIx52tI230LlcK0FVRPZ_b9Yz9gdgVBuOJu-x3b68wt4jtCrr1-E-fUXhy42fg priority: 102 providerName: ProQuest |
Title | Neuroprotectant Effects of Hibiscetin in 3-Nitropropionic Acid-Induced Huntington's Disease via Subsiding Oxidative Stress and Modulating Monoamine Neurotransmitters in Rats Brain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36771072 https://www.proquest.com/docview/2774941308 https://www.proquest.com/docview/2775616747 https://pubmed.ncbi.nlm.nih.gov/PMC9921215 https://doaj.org/article/7195313be5e04f7581ddfadeb5c28e5f |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZ2lwNcEP8ElspISEhI2SZ2nMTHtmypkFpWCyvtLXL8A5FoUm27iCOvwYPwQjwJM05SbbQ3pCqH2pEm8Xjmm3jmG0LeREZy43QcOmmTMNElD2WmTai1M4kp01z4qvflKl1cJB8vxeUBEX0tjE_a12V1Un9fn9TVN59buVnrcZ8nNj5bzqRkSIowPiSHoKB9iN5FWTG4pPb4kkM8P163XWbtFtswQTSB7Wt4moFjzdjAF3nK_tuG-YZnGmZN3nBD8wfkfocf6aSV8yE5sPUjcnfWt217TP54uo2OfgFeG235ibe0cXSBfX80FjlT-PFwVe381A1-lNV0oisTYi8PbQ1dtD0kABr-_fV7S9-3Bzn0R6UoGpsKfR799LMynjmcfvY1J1TVhi4b43uCwThYjEatAchSL9UOHeO68oyeKMG5Armm2KTiCbmYn36ZLcKuN0OoASPtwhRwh4qsVIxFVikWG6MinhgrY2timViwFtYpmSuWmiwptXAxFzDuJI8tYISn5KhuavucULAIcSq4Bt1giZAij9JciVLKzHJnrQ7Iu36Vik1LwVFA6IKrW9xa3YBMcR33E5E92__RXH0tOh0qMjw7jHlphY0SBxETSO-UsaXQLLfCBeQtakGBexzejFZdqQLIi2xZxQRgF8OWPTwgx4OZsNZ6ONzrUdHZhm3BAHFLxA55QF7vh_FOzHerbXPt5wCwTSHWC8izVu32j9Rrb0CygUIOnnk4AhvJM4d3G-fFf9_5ktxjgPLatPVjcrS7uravAJXtyhHsxcsMrvn8w4jcmZ6uzs5H_gvHyO_Pf3EPQ78 |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,53804,53806,74073,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagHMoF8U-ggJGQkJCiJnacxCe0LSwBuosErdRb5PgHcthkaVLEkdfgQXghnoQZJ7s0qoSUU-xI48x45hv_zEfI88hIbpyOQydtEia64qHMtAm1diYxVZoLf-t9sUyLk-T9qTgdF9y68Vjlxid6R21ajWvk-wxwikSPm79afwuRNQp3V0cKjavkWsIhVuNN8fnbbcIVQ3QadjI5pPb7q4Fw1nbIyASJBZvEIl-y_7JjvhCZpqcmL4Sh-U1yY8SPdDYo_Ba5YpvbZPdwQ9t2h_z25TbG8gvw2-hQn7ijraMF8v5ovORM4eHhsu591zUuymo607UJkctDW0OLgUMCoOGfn786-nrYyKHfa0XR2dQY8-jHH7XxlcPpZ3_nhKrG0EVrPCcYtIPHaNUKgCz1UvUYGFe1r-iJEnxSINcBklTcJSfzN8eHRThyM4QaMFIfpoA7VGSlYiyySrHYGBXxxFgZWxPLxIK3sE7JXLHUZEmlhYu5gHYneWwBI9wjO03b2AeEgkeIU8E12AZLhBR5lOZKVFJmljtrdUBebrRUrocSHCWkLqjS8pJKA3KAetx2xOrZ_kV79qUcJ2OZ4d5hzCsrbJQ4yJhAeqeMrYRmuRUuIC_QCkqc4_BntBqvKoC8WC2rnAHsYkjZwwOyN-kJutbT5o0dlaNv6Mp_lhyQZ9tm_BLPuzW2Pfd9ANimkOsF5P5gdtsh8TQDWJjBULOJQU7GPG1p6q--criUDKuJPPy_WE_JbnG8OCqP3i0_PCLXGcC64Zz6Htnpz87tY4BhffXEz7W_G-A5YA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66gvoi3q2uGkEQhDBt0rTNk8zuOo6XHUVd2LeS5qJ9mHbczoqP_g1_iH_IX-I5aWfcsiDM0ySFk56Tc2lOvo-Qp7FVwnqTMK9cylJTCaZyY5kx3qa2ygoZbr0fLrL5UfrmWB4P_U_d0Fa58YnBUdvW4DfyCYc8RaHHLSZ-aIv4cDB7sfrGkEEKT1oHOo2L5BJExQxtvpi92hZfCUSq_lRTQJk_Wfbks65DdiYoMvgoLgX4_vNO-kyUGndQnglJs-vk2pBL0mmv_Bvkgmtukiv7Gwq3W-R3gN4YoBjgFdIeq7ijradz5AAyeOGZwk-wRb0OU1f4gdbQqaktQ14P4yyd93wSkCb--fmrowf9oQ79XmuKjqfG-Eff_6htQBGnn8L9E6obSw9bG_jBYBy8R6uXkNTSINUag-SyDuieKMFHDXLtIWHFbXI0e_l5f84GngZmIF9aswxyEB07pTmPndY8sVbHIrVOJc4mKnXgOZzXqtA8s3laGekTIWHcK5E4yBfukJ2mbdw9QsE7JJkUBuyEp1LJIs4KLSulcie8cyYizzdaKlc9HEcJZQyqtDyn0ojsoR63ExFJO_zRnnwph41Z5niOmIjKSRenHqonkN5r6yppeOGkj8gztIIS9zu8GaOHawsgLyJnlVMwNo70PSIiu6OZoGszHt7YUTn4ia78Z9URebIdxiex961x7WmYA0luBnVfRO72ZrddkshySBFzWGo-MsjRmscjTf01oIgrxRFZ5P7_xXpMLsM2K9-9Xrx9QK5yyPD6lvVdsrM-OXUPISNbV4_CVvsLjN89mA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroprotectant+Effects+of+Hibiscetin+in+3-Nitropropionic+Acid-Induced+Huntington%E2%80%99s+Disease+via+Subsiding+Oxidative+Stress+and+Modulating+Monoamine+Neurotransmitters+in+Rats+Brain&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Mahdi%2C+Wael+A.&rft.au=AlGhamdi%2C+Shareefa+A.&rft.au=Alghamdi%2C+Amira+M.&rft.au=Imam%2C+Syed+Sarim&rft.date=2023-02-01&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=28&rft.issue=3&rft_id=info:doi/10.3390%2Fmolecules28031402&rft_id=info%3Apmid%2F36771072&rft.externalDBID=PMC9921215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |