SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart
Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent m...
Saved in:
Published in | Cardiovascular diabetology Vol. 18; no. 1; pp. 15 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
02.02.2019
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice.
Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson's trichrome stain and Western blot.
Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling.
Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy. |
---|---|
AbstractList | Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice.
Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson's trichrome stain and Western blot.
Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling.
Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy. Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice.BACKGROUNDHyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice.Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson's trichrome stain and Western blot.METHODSThirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson's trichrome stain and Western blot.Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling.RESULTSResults showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling.Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy.CONCLUSIONSGlycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy. Abstract Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice. Methods Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson’s trichrome stain and Western blot. Results Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling. Conclusions Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy. Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice. Methods Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson’s trichrome stain and Western blot. Results Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling. Conclusions Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy. |
ArticleNumber | 15 |
Author | Xue, Mei Han, Fei Yu, Xiaochen Li, Chenguang Cheng, Ying Liu, Xiangyang Sun, Bei Xu, Linxin Li, Xiaoyu Li, Ting Lu, Yunhong Chen, Liming Zhang, Jie |
Author_xml | – sequence: 1 givenname: Chenguang surname: Li fullname: Li, Chenguang – sequence: 2 givenname: Jie surname: Zhang fullname: Zhang, Jie – sequence: 3 givenname: Mei surname: Xue fullname: Xue, Mei – sequence: 4 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu – sequence: 5 givenname: Fei surname: Han fullname: Han, Fei – sequence: 6 givenname: Xiangyang surname: Liu fullname: Liu, Xiangyang – sequence: 7 givenname: Linxin surname: Xu fullname: Xu, Linxin – sequence: 8 givenname: Yunhong surname: Lu fullname: Lu, Yunhong – sequence: 9 givenname: Ying surname: Cheng fullname: Cheng, Ying – sequence: 10 givenname: Ting surname: Li fullname: Li, Ting – sequence: 11 givenname: Xiaochen surname: Yu fullname: Yu, Xiaochen – sequence: 12 givenname: Bei surname: Sun fullname: Sun, Bei – sequence: 13 givenname: Liming surname: Chen fullname: Chen, Liming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30710997$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhSNURB_wA9ggS2zYBPyM4w0SqqBUGokFZW3dODczHiX2EDst5dfjYVrUVmJl6_rcT0c-57Q6CjFgVb1m9D1jbfMhMW6EqCkzNW1ZU_Nn1QmTWtW8lfTowf24Ok1pSynTbcNeVMeCakaN0SdV-H6xuuLEh43vfPYxkBufNwSnHaxHP4zxtw8EcsawQMZEptvoYO49jCT-8j1kf40k5RlTIhB6MvhujsmnQiRF1WH2jkzeIdkgzPll9XyAMeGru_Os-vHl89X513r17eLy_NOqdqqhuZbAuaK9004Z7BVVCFIz5Bxc8e1aCoPAvhOGc9krzYYyxMFAC6BbLow4qy4P3D7C1u5mP8F8ayN4-3cQ57Utbrwb0coOGsUFNlp0UgowqjOSa3StYLJnsrA-Hli7pZuwdxjyDOMj6OOX4Dd2Ha9tI5RpGSuAd3eAOf5cMGU7-eRwHCFgXJLlTBtptOS8SN8-kW7jMofyVUXVCqqkbpqievPQ0T8r97EWgT4IXAkjzThY5zPs4y0G_WgZtfsC2UOBbCmQ3RfI7g2wJ5v38P_v_AGjAsjZ |
CitedBy_id | crossref_primary_10_3389_fcvm_2022_995216 crossref_primary_10_1007_s00424_024_02967_4 crossref_primary_10_1007_s00232_021_00192_z crossref_primary_10_3390_jpm12020271 crossref_primary_10_1080_14656566_2023_2219840 crossref_primary_10_1113_EP087449 crossref_primary_10_1016_j_tice_2023_102200 crossref_primary_10_3390_ijms20225668 crossref_primary_10_1186_s12933_020_01042_3 crossref_primary_10_30629_0023_2149_2021_99_3_172_176 crossref_primary_10_1210_endocr_bqab079 crossref_primary_10_3390_biomedicines12122720 crossref_primary_10_1016_j_chemphyslip_2021_105138 crossref_primary_10_1016_j_intimp_2023_110072 crossref_primary_10_1093_eurheartj_ehad389 crossref_primary_10_3390_jcm11164660 crossref_primary_10_1016_j_addr_2021_113904 crossref_primary_10_3233_THC_220601 crossref_primary_10_3389_fcvm_2022_1011429 crossref_primary_10_1016_j_bbadis_2020_165729 crossref_primary_10_3390_cells13090764 crossref_primary_10_1002_ehf2_14186 crossref_primary_10_1016_j_intimp_2024_113711 crossref_primary_10_1111_jcmm_18052 crossref_primary_10_1155_2022_3955914 crossref_primary_10_1186_s13098_024_01553_z crossref_primary_10_2174_0118761429246636230919122745 crossref_primary_10_3389_fcell_2021_686848 crossref_primary_10_1007_s00210_023_02607_1 crossref_primary_10_1016_j_lfs_2019_117090 crossref_primary_10_1093_europace_euab177 crossref_primary_10_1186_s12933_020_01066_9 crossref_primary_10_1186_s12933_024_02200_7 crossref_primary_10_3390_ijms22157976 crossref_primary_10_1016_j_bbrc_2022_12_055 crossref_primary_10_1007_s11897_021_00529_8 crossref_primary_10_3390_jcdd10040171 crossref_primary_10_1186_s12933_022_01461_4 crossref_primary_10_3390_ijms241210164 crossref_primary_10_1016_j_cellsig_2024_111409 crossref_primary_10_1007_s40261_022_01166_2 crossref_primary_10_3390_ph18010134 crossref_primary_10_1093_cvr_cvaa323 crossref_primary_10_2337_db19_0991 crossref_primary_10_1002_cbin_11573 crossref_primary_10_3390_cells11020240 crossref_primary_10_3390_medicina60111796 crossref_primary_10_3390_jcdd9070225 crossref_primary_10_3390_ijms24076842 crossref_primary_10_1016_j_yjmcc_2022_03_005 crossref_primary_10_1186_s12933_019_0910_5 crossref_primary_10_1007_s10557_021_07307_7 crossref_primary_10_2147_DDDT_S269514 crossref_primary_10_1016_j_biopha_2023_115953 crossref_primary_10_3389_fphys_2020_00912 crossref_primary_10_1016_j_biopha_2021_112169 crossref_primary_10_1016_j_jdiacomp_2024_108941 crossref_primary_10_1016_j_diabres_2025_112050 crossref_primary_10_1016_j_ejphar_2022_175194 crossref_primary_10_1002_advs_202206171 crossref_primary_10_2147_IJNRD_S268811 crossref_primary_10_3390_biom12101349 crossref_primary_10_1016_j_ahjo_2023_100281 crossref_primary_10_1016_j_intimp_2024_113403 crossref_primary_10_1016_j_jacbts_2020_02_004 crossref_primary_10_1038_s41598_024_65410_9 crossref_primary_10_1007_s11906_023_01240_w crossref_primary_10_1016_j_ijcard_2019_04_004 crossref_primary_10_5114_aoms_174228 crossref_primary_10_3390_ijms24097789 crossref_primary_10_2147_DMSO_S243170 crossref_primary_10_1016_j_jjcc_2024_09_005 crossref_primary_10_1038_s41598_024_64006_7 crossref_primary_10_1007_s10741_021_10079_9 crossref_primary_10_1681_ASN_0000000515 crossref_primary_10_1007_s10528_025_11038_x crossref_primary_10_1016_j_lfs_2021_119731 crossref_primary_10_1093_cvr_cvz073 crossref_primary_10_2217_fca_2022_0058 crossref_primary_10_3389_fphar_2021_758080 crossref_primary_10_1038_s42003_022_03605_4 crossref_primary_10_1186_s12933_021_01346_y crossref_primary_10_1152_physiol_00008_2024 crossref_primary_10_3390_ijms22116105 crossref_primary_10_3390_ijms23158631 crossref_primary_10_1016_j_jdiacomp_2022_108362 crossref_primary_10_1007_s11010_024_05084_z crossref_primary_10_1155_2021_3625662 crossref_primary_10_1007_s12265_022_10220_5 crossref_primary_10_1186_s13098_023_01061_6 crossref_primary_10_1016_j_lfs_2023_122354 crossref_primary_10_1097_FJC_0000000000001511 crossref_primary_10_1172_JCI176708 crossref_primary_10_1007_s00228_023_03495_3 crossref_primary_10_1007_s42000_024_00621_3 crossref_primary_10_1111_jce_16369 crossref_primary_10_1186_s12933_023_01822_7 crossref_primary_10_1016_j_atherosclerosis_2023_03_011 crossref_primary_10_1007_s00109_021_02037_7 crossref_primary_10_1042_CS20190585 crossref_primary_10_1016_j_heliyon_2024_e29486 crossref_primary_10_3390_ijms26051887 crossref_primary_10_1016_j_jchf_2021_05_019 crossref_primary_10_1002_ehf2_14331 crossref_primary_10_1042_CS20241477 crossref_primary_10_1186_s12947_019_0177_8 crossref_primary_10_1007_s12272_020_01237_y crossref_primary_10_1038_s41598_021_01759_5 crossref_primary_10_1007_s12265_023_10379_5 crossref_primary_10_1016_j_ijcard_2023_131419 crossref_primary_10_1161_JAHA_120_019995 crossref_primary_10_3389_fphys_2021_752370 crossref_primary_10_1016_j_jnutbio_2022_109161 crossref_primary_10_1016_j_bcp_2024_116135 crossref_primary_10_2147_DMSO_S446904 crossref_primary_10_3389_fphar_2021_690371 crossref_primary_10_4236_jbm_2024_129022 crossref_primary_10_1177_03000605221097490 crossref_primary_10_1177_2040622320974833 crossref_primary_10_1097_FJC_0000000000001380 crossref_primary_10_3389_fcvm_2022_859253 crossref_primary_10_1016_j_genrep_2022_101522 crossref_primary_10_3390_ijms24119481 crossref_primary_10_1002_tox_23667 crossref_primary_10_1080_0886022X_2022_2118066 crossref_primary_10_3390_antiox11122371 crossref_primary_10_3390_biomedicines12030588 crossref_primary_10_1007_s11357_022_00563_x crossref_primary_10_3389_fphar_2022_800490 crossref_primary_10_1136_ard_2023_224242 crossref_primary_10_1007_s43188_023_00204_1 crossref_primary_10_1016_j_lfs_2021_119638 crossref_primary_10_1016_j_freeradbiomed_2024_05_018 crossref_primary_10_1161_JAHA_120_016270 crossref_primary_10_1097_XCS_0000000000001021 crossref_primary_10_1536_ihj_22_151 crossref_primary_10_3389_fcell_2021_701788 crossref_primary_10_1371_journal_pone_0263285 crossref_primary_10_1186_s12931_023_02373_x crossref_primary_10_1007_s12265_021_10192_y crossref_primary_10_1016_j_jjcc_2024_02_002 crossref_primary_10_1007_s11010_022_04474_5 crossref_primary_10_3390_v16010121 crossref_primary_10_15829_1560_4071_2024_5580 crossref_primary_10_3389_fcvm_2024_1379765 crossref_primary_10_3390_life12101663 crossref_primary_10_1016_j_heliyon_2024_e29160 crossref_primary_10_1016_j_intimp_2021_107374 crossref_primary_10_3389_fcvm_2022_903902 crossref_primary_10_3390_ijerph20176671 crossref_primary_10_3390_ijms23073651 crossref_primary_10_1002_jcp_31264 crossref_primary_10_1038_s41569_020_0406_8 crossref_primary_10_1155_2020_5732956 crossref_primary_10_1186_s12933_020_00997_7 crossref_primary_10_1152_ajpheart_00058_2022 crossref_primary_10_1139_cjpp_2022_0392 crossref_primary_10_3390_life13061265 crossref_primary_10_1186_s12933_021_01266_x crossref_primary_10_1126_scisignal_abp9586 crossref_primary_10_3390_antiox11091822 crossref_primary_10_1002_ehf2_13055 crossref_primary_10_3389_fcvm_2023_1005408 crossref_primary_10_1161_CIRCIMAGING_120_011000 crossref_primary_10_1186_s12944_021_01430_y crossref_primary_10_1007_s12020_023_03352_4 crossref_primary_10_3389_fcvm_2024_1388337 crossref_primary_10_1016_j_bbadis_2024_167473 crossref_primary_10_1097_FJC_0000000000001466 crossref_primary_10_1016_j_ejphar_2024_177002 crossref_primary_10_3390_biom10111573 crossref_primary_10_3390_ijms23062960 crossref_primary_10_1186_s12916_021_02185_0 crossref_primary_10_3390_antiox14030336 crossref_primary_10_1007_s10557_021_07216_9 crossref_primary_10_1016_j_metop_2022_100169 crossref_primary_10_1007_s00011_023_01845_6 crossref_primary_10_1093_cvr_cvae047 crossref_primary_10_1007_s10741_020_09996_y crossref_primary_10_1007_s43440_021_00224_4 crossref_primary_10_1016_j_metabol_2023_155626 crossref_primary_10_1002_jcp_30158 crossref_primary_10_3390_antiox13111388 crossref_primary_10_1007_s11886_019_1219_4 crossref_primary_10_3389_fphar_2020_593633 crossref_primary_10_1080_17469899_2022_2111302 crossref_primary_10_3390_biomedicines8030043 crossref_primary_10_1016_j_biopha_2021_112455 crossref_primary_10_1186_s12933_019_0889_y crossref_primary_10_1007_s40256_021_00486_6 crossref_primary_10_3389_fcvm_2022_985020 crossref_primary_10_1007_s11033_025_10260_5 crossref_primary_10_1016_j_jtcvs_2024_06_004 crossref_primary_10_1016_j_hrtlng_2023_02_009 crossref_primary_10_1186_s12953_024_00232_1 crossref_primary_10_31083_j_fbl2809231 crossref_primary_10_3390_antiox11122500 crossref_primary_10_1016_j_jcmg_2023_01_022 crossref_primary_10_1038_s41598_020_71449_1 crossref_primary_10_3389_fphys_2022_817542 crossref_primary_10_1186_s12933_020_01004_9 crossref_primary_10_1016_j_ecoenv_2024_116110 crossref_primary_10_3390_biomedicines10123294 crossref_primary_10_1016_j_ejphar_2023_175701 crossref_primary_10_1111_jdi_13329 crossref_primary_10_1007_s12265_022_10324_y crossref_primary_10_1016_j_actbio_2023_07_039 crossref_primary_10_1016_j_cardfail_2019_09_002 crossref_primary_10_25259_AJPPS_2023_019 crossref_primary_10_1016_j_intimp_2023_110747 crossref_primary_10_1186_s12933_020_01016_5 crossref_primary_10_3390_ijms22031177 crossref_primary_10_1016_j_intimp_2022_109494 crossref_primary_10_1016_j_jaccao_2024_01_007 crossref_primary_10_1016_j_biopha_2023_115213 crossref_primary_10_1093_cvr_cvae016 crossref_primary_10_3390_jcm9092723 crossref_primary_10_2174_0109298673251493231011192520 crossref_primary_10_3390_molecules25163606 crossref_primary_10_1186_s12933_020_01169_3 crossref_primary_10_3390_biomedicines12102314 crossref_primary_10_1038_s41598_024_80829_w crossref_primary_10_1016_j_dsx_2023_102934 crossref_primary_10_1093_cvr_cvad157 crossref_primary_10_1093_eurheartj_ehab420 crossref_primary_10_3390_ijms22115863 crossref_primary_10_1016_j_freeradbiomed_2021_03_046 crossref_primary_10_3389_fendo_2024_1421838 crossref_primary_10_2174_1389450124666230907115831 crossref_primary_10_1016_j_bbr_2023_114830 crossref_primary_10_1080_14656566_2024_2408376 crossref_primary_10_1021_acs_jafc_1c07574 crossref_primary_10_1186_s12933_020_01071_y crossref_primary_10_1186_s12933_019_0980_4 crossref_primary_10_1097_MD_0000000000036299 crossref_primary_10_3390_antiox10091379 crossref_primary_10_1016_j_coph_2022_102272 crossref_primary_10_1007_s10787_020_00732_4 crossref_primary_10_1016_j_lfs_2022_120543 crossref_primary_10_1093_cvr_cvac133 crossref_primary_10_1016_j_metabol_2021_154918 crossref_primary_10_1093_cvr_cvaa196 crossref_primary_10_3390_ijms25158280 crossref_primary_10_1097_CRD_0000000000000637 crossref_primary_10_1186_s12933_022_01679_2 crossref_primary_10_1016_j_phrs_2022_106515 crossref_primary_10_1007_s10522_024_10093_y crossref_primary_10_1097_CRD_0000000000000632 crossref_primary_10_3389_fcvm_2021_810791 crossref_primary_10_1097_CRD_0000000000000638 crossref_primary_10_1016_j_biopha_2024_116650 crossref_primary_10_1186_s13098_022_00951_5 crossref_primary_10_3389_fphar_2021_664181 crossref_primary_10_26442_00403660_2023_09_202368 crossref_primary_10_1016_j_biopha_2024_116536 crossref_primary_10_1016_j_foodres_2022_111818 crossref_primary_10_1093_cvr_cvaa064 crossref_primary_10_1016_j_biopha_2019_109526 crossref_primary_10_1016_j_abb_2021_108968 crossref_primary_10_1016_j_jacc_2022_03_353 crossref_primary_10_4330_wjc_v16_i5_240 crossref_primary_10_1016_j_medcle_2024_01_028 crossref_primary_10_1186_s12933_024_02520_8 crossref_primary_10_3390_jcdd10070268 crossref_primary_10_1002_adtp_202300451 crossref_primary_10_4093_jkd_2019_20_2_81 crossref_primary_10_1016_j_medcli_2024_01_027 crossref_primary_10_1007_s10557_023_07517_1 crossref_primary_10_1038_s41420_024_02214_w crossref_primary_10_3390_hearts5040039 crossref_primary_10_1016_j_lfs_2020_117908 crossref_primary_10_1111_1753_0407_70044 crossref_primary_10_1096_fj_202402886R crossref_primary_10_1007_s00204_022_03298_y crossref_primary_10_1080_10520295_2023_2262390 crossref_primary_10_4239_wjd_v15_i2_137 crossref_primary_10_18087_cardio_2024_7_n2545 crossref_primary_10_3390_ijms23137261 crossref_primary_10_1007_s13410_023_01271_8 crossref_primary_10_1016_j_cellsig_2020_109826 crossref_primary_10_1155_2022_8861911 crossref_primary_10_1016_j_vph_2022_107095 crossref_primary_10_14336_AD_2020_1229 crossref_primary_10_1152_ajpheart_00438_2021 crossref_primary_10_1016_j_resp_2019_103316 crossref_primary_10_3390_ijms22115937 crossref_primary_10_1186_s40635_023_00562_y crossref_primary_10_3389_fphar_2021_708177 crossref_primary_10_1016_j_jsps_2022_03_005 crossref_primary_10_1038_s41581_021_00393_8 crossref_primary_10_3390_ph17030267 crossref_primary_10_1155_2021_5593589 crossref_primary_10_1007_s10557_022_07396_y crossref_primary_10_1080_13543784_2021_1868432 crossref_primary_10_3389_fimmu_2023_1213473 crossref_primary_10_3389_fphar_2022_988408 crossref_primary_10_3389_fphar_2022_898718 crossref_primary_10_1016_j_ejphar_2024_176934 crossref_primary_10_1016_j_fct_2021_112406 crossref_primary_10_3390_biomedicines11082236 crossref_primary_10_1097_XCE_0000000000000178 crossref_primary_10_3389_fphys_2024_1294369 crossref_primary_10_2147_VHRM_S287082 crossref_primary_10_1111_bph_15820 crossref_primary_10_1111_jdi_13981 crossref_primary_10_3389_fphar_2020_561494 crossref_primary_10_3390_biom12020176 crossref_primary_10_1016_j_lfs_2021_120070 crossref_primary_10_3390_ijms20133289 crossref_primary_10_1155_2022_2531458 crossref_primary_10_1002_ejhf_1954 crossref_primary_10_3389_fcvm_2022_845878 crossref_primary_10_1155_2022_3293054 crossref_primary_10_3390_ijms25095027 crossref_primary_10_1016_j_jbc_2023_103031 crossref_primary_10_1080_10408363_2021_1993439 crossref_primary_10_1016_j_ijcha_2023_101332 crossref_primary_10_3389_fphar_2024_1415879 crossref_primary_10_1007_s11010_024_05076_z crossref_primary_10_1186_s13062_025_00618_x crossref_primary_10_1002_adbi_202300211 crossref_primary_10_1016_j_vph_2023_107212 crossref_primary_10_3390_ijms23105634 crossref_primary_10_3389_fphar_2025_1523727 crossref_primary_10_3389_fendo_2022_917761 crossref_primary_10_38053_acmj_1098603 crossref_primary_10_3390_antiox10081166 crossref_primary_10_3390_cells12131796 crossref_primary_10_3390_antiox11050799 crossref_primary_10_1080_13543784_2024_2326024 crossref_primary_10_1186_s13098_023_01116_8 crossref_primary_10_3389_fendo_2022_907757 crossref_primary_10_1016_j_mce_2023_111996 crossref_primary_10_1016_j_ejphar_2023_175531 crossref_primary_10_1166_mex_2023_2425 crossref_primary_10_3390_jcm13237391 crossref_primary_10_1007_s12035_024_04499_5 crossref_primary_10_3390_cancers14061577 crossref_primary_10_3892_mmr_2024_13197 crossref_primary_10_1016_j_tem_2024_02_003 crossref_primary_10_3390_toxics11050398 crossref_primary_10_1111_jdi_13989 crossref_primary_10_1007_s10753_022_01677_2 crossref_primary_10_1016_j_cbi_2024_111229 crossref_primary_10_1016_j_surg_2023_09_043 crossref_primary_10_1186_s43044_021_00218_w crossref_primary_10_23736_S2724_6507_21_03425_4 crossref_primary_10_3390_jcm10112385 crossref_primary_10_56782_pps_240 crossref_primary_10_15252_emmm_201910865 crossref_primary_10_3389_fendo_2023_1274686 crossref_primary_10_3390_ph18030313 crossref_primary_10_1159_000504694 crossref_primary_10_1097_MD_0000000000030310 crossref_primary_10_61186_armaghanj_29_2_172 crossref_primary_10_1080_10641963_2024_2326022 crossref_primary_10_1093_eurheartj_ehaa360 crossref_primary_10_3390_biomedicines12061314 crossref_primary_10_3390_ijms24032988 crossref_primary_10_3390_nu14183737 crossref_primary_10_3389_fphar_2022_873108 crossref_primary_10_3390_biology9110347 crossref_primary_10_1186_s12933_023_01914_4 crossref_primary_10_17816_RCF192131_143 crossref_primary_10_1002_jmri_28121 crossref_primary_10_1186_s12933_020_01040_5 crossref_primary_10_3390_antiox13060671 crossref_primary_10_1152_ajpheart_00539_2024 crossref_primary_10_3389_fphar_2022_1009025 crossref_primary_10_1016_j_freeradbiomed_2024_01_015 crossref_primary_10_22141_2224_0721_20_3_2024_1385 crossref_primary_10_31083_j_rcm2401031 crossref_primary_10_1007_s10741_020_10041_1 crossref_primary_10_3389_fcvm_2022_923014 crossref_primary_10_1016_j_ahj_2020_07_014 crossref_primary_10_1080_17512433_2023_2173574 crossref_primary_10_3389_fcell_2021_757068 crossref_primary_10_1016_j_phrs_2024_107268 crossref_primary_10_3389_fcvm_2020_00012 crossref_primary_10_1016_j_tips_2022_04_005 crossref_primary_10_1007_s11357_022_00610_7 crossref_primary_10_3390_biomedicines10112983 crossref_primary_10_1186_s12933_022_01532_6 crossref_primary_10_1038_s41392_023_01430_7 crossref_primary_10_1016_j_ijcard_2021_05_050 crossref_primary_10_1016_j_phrs_2020_105009 crossref_primary_10_31083_j_rcm2204133 crossref_primary_10_3390_biom12020272 crossref_primary_10_1016_j_cellsig_2023_110853 crossref_primary_10_1016_j_ymthe_2021_09_004 crossref_primary_10_15829_1728_8800_2023_3457 crossref_primary_10_1134_S0022093024070159 crossref_primary_10_17925_HI_2021_15_1_42 crossref_primary_10_1186_s12933_020_01209_y crossref_primary_10_1186_s12933_023_01816_5 crossref_primary_10_1016_j_heliyon_2023_e19873 crossref_primary_10_34067_KID_0000000000000250 crossref_primary_10_1152_physiol_00004_2023 crossref_primary_10_3390_medicina60030395 crossref_primary_10_2217_fca_2020_0138 crossref_primary_10_1096_fj_202200243R crossref_primary_10_1016_j_ejphar_2023_175565 crossref_primary_10_12677_acm_2024_1482233 crossref_primary_10_1155_2022_5913374 crossref_primary_10_1016_j_pharmthera_2021_107975 |
Cites_doi | 10.14814/phy2.13741 10.1161/CIRCRESAHA.110.223545 10.1097/01.ASN.0000077407.90309.65 10.1186/s12933-018-0708-x 10.1371/journal.pone.0147391 10.1016/j.chroma.2008.10.011 10.1007/s00210-018-1544-y 10.1186/s12933-017-0621-8 10.1186/s12933-017-0510-1 10.1016/j.clinthera.2016.03.031 10.1186/s12933-016-0442-1 10.2337/dc16-1889 10.1016/j.freeradbiomed.2017.01.035 10.1016/j.diabet.2018.07.003 10.1186/s12933-016-0473-7 10.2337/dcS15-3006 10.1186/s12933-018-0717-9 10.1016/j.diabres.2014.02.014 10.1152/ajpheart.01332.2008 10.1016/j.metabol.2012.05.014 10.1016/j.coph.2018.08.002 10.1186/s12933-018-0750-8 10.1016/j.redox.2017.06.009 10.4093/dmj.2017.0095 10.1186/s12933-014-0148-1 10.1016/j.redox.2014.01.012 10.1152/ajpendo.00047.2011 10.4093/dmj.2014.38.4.261 10.1186/s12933-018-0775-z 10.1186/s12933-016-0409-2 10.3389/fimmu.2017.01461 10.1016/j.jacc.2018.07.071 10.2174/1574887111666160829145810 10.1615/CritRevEukaryotGeneExpr.2013006875 10.1016/j.diabres.2018.02.023 10.1136/heartjnl-2017-311448 10.1016/j.jacc.2005.09.050 10.1139/cjpp-2018-0466 10.5588/pha.13.0024 10.2337/dc16-0330 10.1186/s12933-018-0695-y 10.1038/nrendo.2011.243 10.1161/01.CIR.0000012748.58444.08 10.1186/s12933-018-0745-5 10.1186/s12933-017-0511-0 10.1016/j.yjmcc.2015.12.011 10.2337/db16-0049 10.1186/s12933-016-0489-z 10.1016/j.jacbts.2017.07.003 10.1124/jpet.109.162271 10.1073/pnas.85.11.4046 10.1186/s12933-017-0615-6 10.3390/ijms14022684 10.1016/j.redox.2017.12.019 |
ContentType | Journal Article |
Copyright | Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2019 |
Copyright_xml | – notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12933-019-0816-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1475-2840 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_4ba6523e673b443a95b9427ec8314d14 PMC6359811 30710997 10_1186_s12933_019_0816_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Beijing China China |
GeographicLocations_xml | – name: China – name: Beijing China |
GrantInformation_xml | – fundername: ; grantid: 15ZXHLSY00460; 18JCYBJC26100; 18JCZDJC35500 – fundername: ; grantid: 81470187; 31800722 |
GroupedDBID | --- 0R~ 29B 2WC 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM 3V. 7T5 7XB 8FK AZQEC DWQXO H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c560t-4a2250dc7c59ed505ea471e22ac109c80af3edb39224d571f09cef9a8aa782393 |
IEDL.DBID | M48 |
ISSN | 1475-2840 |
IngestDate | Wed Aug 27 01:29:59 EDT 2025 Thu Aug 21 13:45:23 EDT 2025 Fri Jul 11 10:28:41 EDT 2025 Fri Jul 25 20:00:25 EDT 2025 Thu Apr 03 06:49:50 EDT 2025 Tue Jul 01 04:19:49 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Empagliflozin Oxidative stress Myocardial fibrosis Type 2 diabetes mellitus SGLT2 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-4a2250dc7c59ed505ea471e22ac109c80af3edb39224d571f09cef9a8aa782393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12933-019-0816-2 |
PMID | 30710997 |
PQID | 2183054766 |
PQPubID | 42570 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ba6523e673b443a95b9427ec8314d14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6359811 proquest_miscellaneous_2179497422 proquest_journals_2183054766 pubmed_primary_30710997 crossref_citationtrail_10_1186_s12933_019_0816_2 crossref_primary_10_1186_s12933_019_0816_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-02 |
PublicationDateYYYYMMDD | 2019-02-02 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Cardiovascular diabetology |
PublicationTitleAlternate | Cardiovasc Diabetol |
PublicationYear | 2019 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | AD Harries (816_CR1) 2013; 3 AJ Theron (816_CR45) 2017; 8 ST Cheng (816_CR13) 2016; 11 J Oyama (816_CR53) 2016; 15 M Joubert (816_CR29) 2018 F Jiang (816_CR11) 2014; 2 Y Olgar (816_CR37) 2018 D Matsutani (816_CR4) 2018; 17 T Inoguchi (816_CR31) 2003; 14 F Soga (816_CR49) 2018; 17 S Lahnwong (816_CR18) 2018; 17 M Pfeifer (816_CR5) 2017; 16 J Rosas-Guzman (816_CR23) 2017; 12 C Ott (816_CR42) 2017; 16 LM Aleksunes (816_CR33) 2010; 333 CH Jung (816_CR19) 2014; 38 KA Lee (816_CR21) 2018; 42 JL Zweier (816_CR35) 1988; 85 A Solini (816_CR43) 2017; 16 F Briand (816_CR25) 2016; 65 B Lin (816_CR54) 2014; 13 FM Hasan (816_CR24) 2014; 104 TJ Guzik (816_CR32) 2002; 105 M Lytrivi (816_CR6) 2018; 43 NJ Byrne (816_CR12) 2017; 2 I Russo (816_CR9) 2016; 90 JD Newman (816_CR3) 2018; 72 V Liakopoulos (816_CR28) 2017; 2017 AJ Wilson (816_CR8) 2018; 104 MS Bitar (816_CR34) 2011; 301 S Steven (816_CR44) 2017; 13 H Zhou (816_CR40) 2018; 15 G Ndrepepa (816_CR52) 2012; 61 S Matsushima (816_CR30) 2009; 297 DM Lee (816_CR41) 2018; 17 TM Chen (816_CR36) 2013; 14 TM Lee (816_CR50) 2017; 104 H Kusaka (816_CR46) 2016; 15 NAT Abbas (816_CR48) 2018; 391 A Natali (816_CR7) 2017; 16 J Asbun (816_CR39) 2006; 47 E Ferrannini (816_CR51) 2016; 39 J Morales (816_CR10) 2014; 24 M Mizuno (816_CR20) 2018; 6 NH Cho (816_CR2) 2018; 138 S Kohler (816_CR26) 2016; 38 CM Rosa (816_CR15) 2016; 15 AR Aroor (816_CR14) 2018; 17 P Fioretto (816_CR47) 2016; 39 AC Armstrong (816_CR38) 2017; 40 ML Colgrave (816_CR16) 2008; 1212 F Giacco (816_CR27) 2010; 107 J Habibi (816_CR55) 2017; 16 C Irace (816_CR17) 2018; 17 E Ferrannini (816_CR22) 2012; 8 |
References_xml | – volume: 6 start-page: e13741 issue: 12 year: 2018 ident: 816_CR20 publication-title: Physiol Rep. doi: 10.14814/phy2.13741 – volume: 107 start-page: 1058 issue: 9 year: 2010 ident: 816_CR27 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.223545 – volume: 14 start-page: S227 issue: 8 Suppl 3 year: 2003 ident: 816_CR31 publication-title: J Am Soc Nephrol doi: 10.1097/01.ASN.0000077407.90309.65 – volume: 17 start-page: 62 issue: 1 year: 2018 ident: 816_CR41 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-018-0708-x – volume: 11 start-page: e0147391 issue: 1 year: 2016 ident: 816_CR13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0147391 – volume: 1212 start-page: 150 issue: 1–2 year: 2008 ident: 816_CR16 publication-title: J Chromatogr A doi: 10.1016/j.chroma.2008.10.011 – volume: 391 start-page: 1347 issue: 12 year: 2018 ident: 816_CR48 publication-title: Naunyn Schmiedebergs Arch Pharmacol. doi: 10.1007/s00210-018-1544-y – volume: 16 start-page: 138 issue: 1 year: 2017 ident: 816_CR43 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-017-0621-8 – volume: 16 start-page: 26 issue: 1 year: 2017 ident: 816_CR42 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-017-0510-1 – volume: 38 start-page: 1299 issue: 6 year: 2016 ident: 816_CR26 publication-title: Clin Ther doi: 10.1016/j.clinthera.2016.03.031 – volume: 15 start-page: 126 issue: 1 year: 2016 ident: 816_CR15 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-016-0442-1 – volume: 40 start-page: 405 issue: 3 year: 2017 ident: 816_CR38 publication-title: Diabetes Care doi: 10.2337/dc16-1889 – volume: 104 start-page: 298 year: 2017 ident: 816_CR50 publication-title: Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2017.01.035 – year: 2018 ident: 816_CR29 publication-title: Diabetes Metab. doi: 10.1016/j.diabet.2018.07.003 – volume: 15 start-page: 157 issue: 1 year: 2016 ident: 816_CR46 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-016-0473-7 – volume: 39 start-page: S165 issue: Suppl 2 year: 2016 ident: 816_CR47 publication-title: Diabetes Care doi: 10.2337/dcS15-3006 – volume: 17 start-page: 73 issue: 1 year: 2018 ident: 816_CR4 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-018-0717-9 – volume: 104 start-page: 297 issue: 3 year: 2014 ident: 816_CR24 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2014.02.014 – volume: 297 start-page: H409 issue: 1 year: 2009 ident: 816_CR30 publication-title: Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.01332.2008 – volume: 61 start-page: 1780 issue: 12 year: 2012 ident: 816_CR52 publication-title: Metabolism. doi: 10.1016/j.metabol.2012.05.014 – volume: 43 start-page: 40 year: 2018 ident: 816_CR6 publication-title: Curr Opin Pharmacol doi: 10.1016/j.coph.2018.08.002 – volume: 17 start-page: 108 issue: 1 year: 2018 ident: 816_CR14 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-018-0750-8 – volume: 13 start-page: 370 year: 2017 ident: 816_CR44 publication-title: Redox Biol. doi: 10.1016/j.redox.2017.06.009 – volume: 42 start-page: 338 issue: 4 year: 2018 ident: 816_CR21 publication-title: Diabetes Metab J. doi: 10.4093/dmj.2017.0095 – volume: 13 start-page: 148 year: 2014 ident: 816_CR54 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-014-0148-1 – volume: 2 start-page: 267 year: 2014 ident: 816_CR11 publication-title: Redox Biol. doi: 10.1016/j.redox.2014.01.012 – volume: 301 start-page: E1119 issue: 6 year: 2011 ident: 816_CR34 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00047.2011 – volume: 38 start-page: 261 issue: 4 year: 2014 ident: 816_CR19 publication-title: Diabetes Metab J. doi: 10.4093/dmj.2014.38.4.261 – volume: 17 start-page: 132 issue: 1 year: 2018 ident: 816_CR49 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-018-0775-z – volume: 15 start-page: 87 year: 2016 ident: 816_CR53 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-016-0409-2 – volume: 8 start-page: 1461 year: 2017 ident: 816_CR45 publication-title: Front Immunol. doi: 10.3389/fimmu.2017.01461 – volume: 72 start-page: 1856 issue: 15 year: 2018 ident: 816_CR3 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2018.07.071 – volume: 12 start-page: 8 issue: 1 year: 2017 ident: 816_CR23 publication-title: Rev Recent Clin Trials. doi: 10.2174/1574887111666160829145810 – volume: 24 start-page: 15 issue: 1 year: 2014 ident: 816_CR10 publication-title: Crit Rev Eukaryot Gene Expr doi: 10.1615/CritRevEukaryotGeneExpr.2013006875 – volume: 138 start-page: 271 year: 2018 ident: 816_CR2 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2018.02.023 – volume: 104 start-page: 293 issue: 4 year: 2018 ident: 816_CR8 publication-title: Heart doi: 10.1136/heartjnl-2017-311448 – volume: 47 start-page: 693 issue: 4 year: 2006 ident: 816_CR39 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2005.09.050 – year: 2018 ident: 816_CR37 publication-title: Can J Physiol Pharmacol. doi: 10.1139/cjpp-2018-0466 – volume: 3 start-page: S3 issue: Suppl 1 year: 2013 ident: 816_CR1 publication-title: Public Health Action. doi: 10.5588/pha.13.0024 – volume: 39 start-page: 1108 issue: 7 year: 2016 ident: 816_CR51 publication-title: Diabetes Care doi: 10.2337/dc16-0330 – volume: 17 start-page: 52 issue: 1 year: 2018 ident: 816_CR17 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-018-0695-y – volume: 8 start-page: 495 issue: 8 year: 2012 ident: 816_CR22 publication-title: Nat Rev Endocrinol. doi: 10.1038/nrendo.2011.243 – volume: 105 start-page: 1656 issue: 14 year: 2002 ident: 816_CR32 publication-title: Circulation doi: 10.1161/01.CIR.0000012748.58444.08 – volume: 17 start-page: 101 issue: 1 year: 2018 ident: 816_CR18 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-018-0745-5 – volume: 16 start-page: 29 issue: 1 year: 2017 ident: 816_CR5 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-017-0511-0 – volume: 2017 start-page: 3494867 year: 2017 ident: 816_CR28 publication-title: Oxid Med Cell Longev. – volume: 90 start-page: 84 year: 2016 ident: 816_CR9 publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2015.12.011 – volume: 65 start-page: 2032 issue: 7 year: 2016 ident: 816_CR25 publication-title: Diabetes doi: 10.2337/db16-0049 – volume: 16 start-page: 9 issue: 1 year: 2017 ident: 816_CR55 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-016-0489-z – volume: 2 start-page: 347 issue: 4 year: 2017 ident: 816_CR12 publication-title: JACC Basic Transl Sci. doi: 10.1016/j.jacbts.2017.07.003 – volume: 333 start-page: 140 issue: 1 year: 2010 ident: 816_CR33 publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.109.162271 – volume: 85 start-page: 4046 issue: 11 year: 1988 ident: 816_CR35 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.85.11.4046 – volume: 16 start-page: 130 issue: 1 year: 2017 ident: 816_CR7 publication-title: Cardiovasc Diabetol. doi: 10.1186/s12933-017-0615-6 – volume: 14 start-page: 2684 issue: 2 year: 2013 ident: 816_CR36 publication-title: Int J Mol Sci doi: 10.3390/ijms14022684 – volume: 15 start-page: 335 year: 2018 ident: 816_CR40 publication-title: Redox Biol. doi: 10.1016/j.redox.2017.12.019 |
SSID | ssj0017861 |
Score | 2.6448634 |
Snippet | Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose... Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a... Abstract Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 15 |
SubjectTerms | Animals Antidiabetics Antioxidant Response Elements Antioxidants Antioxidants - pharmacology Apoptosis Benzhydryl Compounds - pharmacology Cardiomyopathy Cardiovascular disease Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - complications Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Diabetic Cardiomyopathies - etiology Diabetic Cardiomyopathies - metabolism Diabetic Cardiomyopathies - physiopathology Diabetic Cardiomyopathies - prevention & control Disease Models, Animal Echocardiography Empagliflozin Fibrosis Glucose Glucosides - pharmacology Growth factors Heart Hyperglycemia Immunohistochemistry Insulin Mice, Inbred C57BL Myocardial fibrosis Myocardium Myocardium - metabolism Myocardium - pathology NF-E2-Related Factor 2 - metabolism Original Investigation Oxidants Oxidative stress Oxidative Stress - drug effects Phosphorylation Rodents SGLT2 Signal Transduction - drug effects Smad protein Smad Proteins - metabolism Sodium Sodium-glucose cotransporter Sodium-Glucose Transporter 2 - metabolism Sodium-Glucose Transporter 2 Inhibitors - pharmacology Structure-function relationships Transforming growth factor Transforming Growth Factor beta1 - metabolism Transforming growth factor-b Type 2 diabetes mellitus Uric acid Ventricular Function, Left - drug effects Ventricular Remodeling - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k2gRUbihBQ1cRw_jm1FqRDlQiv1ZvkxoZEWp2J3JeDXM5NkV12E4IKUk-NEjmcm8409_oaxN6KTOnZClwCtLGUCUwahRFkniCoaomeh08jnn9TZpfxw1V7dKvVFOWETPfA0cYcyeIXBEijdBCkbb9tgpdAQTVPLNJawFujzNsHUvH-gjarnPczaqMMleTXKG7IlFZooxY4XGsn6_4Qwf0-UvOV5Th-w-zNk5EfTUB-yO5Afsbvn86b4Y5Y_v_94IXifr_swJmBxWlzlgIb-ZdF3i-FnnznRaOY1AUv-9Qf6L9KLBR--92lk_ubTmRHuc-IdRtDDsl_iG_m0NNtHTlXrOVW_Xj1hl6fvLk7OyrmMQhkRzqxK6dFmqxR1bC0kRDzg0SOBED7WlY2m8l0DKSBQEjK1uu6wETrrjfcIHxrbPGV7ecjwnHERfNtUgUj4o7RgjAVpIHmjwFZR1AWrNtPq4swxTqUuFm6MNYxykyQcSsKRJJwo2NvtIzcTwcbfOh-TrLYdiRt7bECNcbPGuH9pTMH2N5J2s8EuHSFFRK9aqYK93t5GU6P9E59hWFMf_Hlh_CVwHM8mxdiOpCGoZq0umN5RmZ2h7t7J_fVI562IRLGuX_yPb3vJ7olRywVe-2xv9W0NB4iaVuHVaCC_ANlpFCo priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96gvgifls9JYJPQrkmTfPxJCqeh3i-eAf7FtJkelfYS8_rLqh_vZk2u7oiB31K0hI6M5nfJJPfEPKad0L5jqsSoBGlCKDLlktesgBeeo30LHgb-firPDoVnxfNIm-4jTmtcrMmTgt1GDzukR-gK0_wQkn59vJ7iVWj8HQ1l9C4SW4hdRmmdKnFNuBiSkuWTzKZlgcj-jbMHjIllpso-Y4vmij7_4cz_02X_Mv_HN4jdzNwpO9mSd8nNyA-ILeP89H4QxK_ffpywmkfz_t2SsOiuMVKIZn72bLvlsOvPlIk04xrhJf04mfyYqgdSzr86MPE_03nmyPUxUC7FEcPYz-mL9J5g7b3FGvXU6yBvXpETg8_nnw4KnMxhdInULMqhUuWWwWvfGMgJNwDLvkl4Nx5VhmvK9fVENoEl7gIjWJdaoTOOO1cAhG1qR-TvThEeEoob11TVy1S8XthQGsDQkNwWoKpPGcFqTa_1frMNI4FL5Z2iji0tLMkbJKERUlYXpA321cuZ5qN6wa_R1ltByJD9tQwXJ3ZbHBWtE6mIBukqlshamea1giuwOuaicBEQfY3krbZbEf7R8kK8mrbnQwOT1FchGGNY9ISlqIwnubxZFaM7UxqBGzGqIKoHZXZmepuT-zPJ1JviVSKjD27flrPyR0-6S9Pzz7ZW12t4UVCRav25aT6vwFYdgy3 priority: 102 providerName: ProQuest |
Title | SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30710997 https://www.proquest.com/docview/2183054766 https://www.proquest.com/docview/2179497422 https://pubmed.ncbi.nlm.nih.gov/PMC6359811 https://doaj.org/article/4ba6523e673b443a95b9427ec8314d14 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7rLogv4t3qOkTwSai2aZrLg4gruy7iLKI7MG8lTdLdQk11LrDrr_ecXkZHBkHoU5KGkHNOzndy-Q4hL1jFpa2YjL3PecydV3HJBItT562wCulZ8DXy9EyczvjHeT7fI2N6q2EClztDO8wnNVs0r65-XL8Fg3_TGbwSr5fos_BWkI4xjUQMK_IBOCaJdjrlvw8VpOrpU7nMY1iVx0POnV1suamOzX8XBP37JuUfrunkDrk9YEr6rleCu2TPh3vk5nQ4Nb9PwtcPn84ZrcNlXXY3tCjuvlIPK8FFU1dN-7MOFHk2wxqRJ_12DQ4OFaeh7VXtOmpw2j8qoSY4WkGI3S7rJfRI-73b2lJMa08xPfbqAZmdHJ-_P42HPAuxBbyzirkBo06clTbX3gEk8gZclmfM2DTRViWmyrwrAUkx7nKZVlDoK22UMYAvMp09JPuhDf4xoaw0eZaUyNJvufZKac-Vd0YJrxPL0ogk47QWdiAhx1wYTdEFI0oUvSQKkESBkihYRF5ufvneM3D8q_ERymrTEMmzu4J2cVEMtljw0giIv72QWcl5ZnReas6ktypLuUt5RA5HSRejQhYIJQHeSiEi8nxTDbaIBywm-HaNbWB1gwCNwTge9YqxGUmGWE5rGRG5pTJbQ92uCfVlx_ctkGUxTZ_8z0Q8JbdYp80MvkOyv1qs_TOAT6tyQm7IuZyQg6Pjs89fJt0mxKQzlF9I1BiY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemTgIuiG8CA4wEF6RoieM49gEhBhsdaysEnbSbcWxni9QlY20F44_ib-S9JA0Uod0m5eQ4keX37ff8e4S8YAXPbMGy0PuUh9x5GeZMsDB23gorEZ4FbyOPJ2J4yD8epUcb5NfqLgyWVa50YqOoXW3xjHwbTTm4F5kQb86-hdg1CrOrqxYaLVsc-IvvELLNX--_B_q-ZGxvd_puGHZdBUIL1n0RcgMsHDmb2VR5Bw6AN6CgPWPGxpGyMjJF4l0OfgPjLs3iAgZ9oYw0BqxpguBLoPI3eQKhzIBs7uxOPn3u8xaZFHGXO42l2J6jNcV6JRVig4uQrVm_pknA_zzbfws0_7J4e7fIzc5VpW9b3rpNNnx1h1wbd8n4u6T68mE0ZbSsTsq8KfyieKhLPSiY41lZzOqfZUURvrNaokNLTy_AbiI_zmj9o3QN4jht76pQUzlaQORez8s5_JG2R8KlpaegyCh23V7cI4dXstH3yaCqK_-QUJabNIlyBP-3XHkplefSOyOFV5FlcUCi1bZq22GbY4uNmW5iHCl0SwkNlNBICc0C8qr_5KwF9rhs8g7Sqp-ImNzNQH1-rDsR1zw3AsJ6L7Ik5zwxKs0VZ5m3Mom5i3lAtlaU1p2imOs_bB2Q5_1rEHHM25jK10ucA0oT4j4G63jQMka_kgRdRKWygGRrLLO21PU3VXnSwIgLBG-M40eXL-sZuT6cjkd6tD85eExusIaXGTxbZLA4X_on4JMt8qedIFDy9apl7zfZT0sI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SGLT2+inhibition+with+empagliflozin+attenuates+myocardial+oxidative+stress+and+fibrosis+in+diabetic+mice+heart&rft.jtitle=Cardiovascular+diabetology&rft.au=Li%2C+Chenguang&rft.au=Zhang%2C+Jie&rft.au=Xue%2C+Mei&rft.au=Li%2C+Xiaoyu&rft.date=2019-02-02&rft.issn=1475-2840&rft.eissn=1475-2840&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12933-019-0816-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12933_019_0816_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2840&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2840&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2840&client=summon |