SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart

Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent m...

Full description

Saved in:
Bibliographic Details
Published inCardiovascular diabetology Vol. 18; no. 1; pp. 15 - 13
Main Authors Li, Chenguang, Zhang, Jie, Xue, Mei, Li, Xiaoyu, Han, Fei, Liu, Xiangyang, Xu, Linxin, Lu, Yunhong, Cheng, Ying, Li, Ting, Yu, Xiaochen, Sun, Bei, Chen, Liming
Format Journal Article
LanguageEnglish
Published England BioMed Central 02.02.2019
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice. Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson's trichrome stain and Western blot. Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling. Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy.
AbstractList Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice. Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson's trichrome stain and Western blot. Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling. Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy.
Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice.BACKGROUNDHyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice.Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson's trichrome stain and Western blot.METHODSThirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson's trichrome stain and Western blot.Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling.RESULTSResults showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling.Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy.CONCLUSIONSGlycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy.
Abstract Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice. Methods Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson’s trichrome stain and Western blot. Results Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling. Conclusions Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy.
Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has recently been reported to improve glycaemic control in patients with type 2 diabetes in an insulin-independent manner. The aim of this study was to investigate the effect of empagliflozin on myocardium injury and the potential mechanism in type 2 diabetic KK-Ay mice. Methods Thirty diabetic KK-Ay mice were administered empagliflozin (10 mg/kg/day) by oral gavage daily for 8 weeks. After 8 weeks, heart structure and function were evaluated by echocardiography. Oxidants and antioxidants were measured and cardiac fibrosis was analysed using immunohistochemistry, Masson’s trichrome stain and Western blot. Results Results showed that empagliflozin improved diabetic myocardial structure and function, decreased myocardial oxidative stress and ameliorated myocardial fibrosis. Further study indicated that empagliflozin suppressed oxidative stress and fibrosis through inhibition of the transforming growth factor β/Smad pathway and activation of Nrf2/ARE signaling. Conclusions Glycaemic control with empagliflozin significantly ameliorated myocardial oxidative stress injury and cardiac fibrosis in diabetic mice. Taken together, these results indicate that the empagliflozin is a promising agent for the prevention and treatment of diabetic cardiomyopathy.
ArticleNumber 15
Author Xue, Mei
Han, Fei
Yu, Xiaochen
Li, Chenguang
Cheng, Ying
Liu, Xiangyang
Sun, Bei
Xu, Linxin
Li, Xiaoyu
Li, Ting
Lu, Yunhong
Chen, Liming
Zhang, Jie
Author_xml – sequence: 1
  givenname: Chenguang
  surname: Li
  fullname: Li, Chenguang
– sequence: 2
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
– sequence: 3
  givenname: Mei
  surname: Xue
  fullname: Xue, Mei
– sequence: 4
  givenname: Xiaoyu
  surname: Li
  fullname: Li, Xiaoyu
– sequence: 5
  givenname: Fei
  surname: Han
  fullname: Han, Fei
– sequence: 6
  givenname: Xiangyang
  surname: Liu
  fullname: Liu, Xiangyang
– sequence: 7
  givenname: Linxin
  surname: Xu
  fullname: Xu, Linxin
– sequence: 8
  givenname: Yunhong
  surname: Lu
  fullname: Lu, Yunhong
– sequence: 9
  givenname: Ying
  surname: Cheng
  fullname: Cheng, Ying
– sequence: 10
  givenname: Ting
  surname: Li
  fullname: Li, Ting
– sequence: 11
  givenname: Xiaochen
  surname: Yu
  fullname: Yu, Xiaochen
– sequence: 12
  givenname: Bei
  surname: Sun
  fullname: Sun, Bei
– sequence: 13
  givenname: Liming
  surname: Chen
  fullname: Chen, Liming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30710997$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhSNURB_wA9ggS2zYBPyM4w0SqqBUGokFZW3dODczHiX2EDst5dfjYVrUVmJl6_rcT0c-57Q6CjFgVb1m9D1jbfMhMW6EqCkzNW1ZU_Nn1QmTWtW8lfTowf24Ok1pSynTbcNeVMeCakaN0SdV-H6xuuLEh43vfPYxkBufNwSnHaxHP4zxtw8EcsawQMZEptvoYO49jCT-8j1kf40k5RlTIhB6MvhujsmnQiRF1WH2jkzeIdkgzPll9XyAMeGru_Os-vHl89X513r17eLy_NOqdqqhuZbAuaK9004Z7BVVCFIz5Bxc8e1aCoPAvhOGc9krzYYyxMFAC6BbLow4qy4P3D7C1u5mP8F8ayN4-3cQ57Utbrwb0coOGsUFNlp0UgowqjOSa3StYLJnsrA-Hli7pZuwdxjyDOMj6OOX4Dd2Ha9tI5RpGSuAd3eAOf5cMGU7-eRwHCFgXJLlTBtptOS8SN8-kW7jMofyVUXVCqqkbpqievPQ0T8r97EWgT4IXAkjzThY5zPs4y0G_WgZtfsC2UOBbCmQ3RfI7g2wJ5v38P_v_AGjAsjZ
CitedBy_id crossref_primary_10_3389_fcvm_2022_995216
crossref_primary_10_1007_s00424_024_02967_4
crossref_primary_10_1007_s00232_021_00192_z
crossref_primary_10_3390_jpm12020271
crossref_primary_10_1080_14656566_2023_2219840
crossref_primary_10_1113_EP087449
crossref_primary_10_1016_j_tice_2023_102200
crossref_primary_10_3390_ijms20225668
crossref_primary_10_1186_s12933_020_01042_3
crossref_primary_10_30629_0023_2149_2021_99_3_172_176
crossref_primary_10_1210_endocr_bqab079
crossref_primary_10_3390_biomedicines12122720
crossref_primary_10_1016_j_chemphyslip_2021_105138
crossref_primary_10_1016_j_intimp_2023_110072
crossref_primary_10_1093_eurheartj_ehad389
crossref_primary_10_3390_jcm11164660
crossref_primary_10_1016_j_addr_2021_113904
crossref_primary_10_3233_THC_220601
crossref_primary_10_3389_fcvm_2022_1011429
crossref_primary_10_1016_j_bbadis_2020_165729
crossref_primary_10_3390_cells13090764
crossref_primary_10_1002_ehf2_14186
crossref_primary_10_1016_j_intimp_2024_113711
crossref_primary_10_1111_jcmm_18052
crossref_primary_10_1155_2022_3955914
crossref_primary_10_1186_s13098_024_01553_z
crossref_primary_10_2174_0118761429246636230919122745
crossref_primary_10_3389_fcell_2021_686848
crossref_primary_10_1007_s00210_023_02607_1
crossref_primary_10_1016_j_lfs_2019_117090
crossref_primary_10_1093_europace_euab177
crossref_primary_10_1186_s12933_020_01066_9
crossref_primary_10_1186_s12933_024_02200_7
crossref_primary_10_3390_ijms22157976
crossref_primary_10_1016_j_bbrc_2022_12_055
crossref_primary_10_1007_s11897_021_00529_8
crossref_primary_10_3390_jcdd10040171
crossref_primary_10_1186_s12933_022_01461_4
crossref_primary_10_3390_ijms241210164
crossref_primary_10_1016_j_cellsig_2024_111409
crossref_primary_10_1007_s40261_022_01166_2
crossref_primary_10_3390_ph18010134
crossref_primary_10_1093_cvr_cvaa323
crossref_primary_10_2337_db19_0991
crossref_primary_10_1002_cbin_11573
crossref_primary_10_3390_cells11020240
crossref_primary_10_3390_medicina60111796
crossref_primary_10_3390_jcdd9070225
crossref_primary_10_3390_ijms24076842
crossref_primary_10_1016_j_yjmcc_2022_03_005
crossref_primary_10_1186_s12933_019_0910_5
crossref_primary_10_1007_s10557_021_07307_7
crossref_primary_10_2147_DDDT_S269514
crossref_primary_10_1016_j_biopha_2023_115953
crossref_primary_10_3389_fphys_2020_00912
crossref_primary_10_1016_j_biopha_2021_112169
crossref_primary_10_1016_j_jdiacomp_2024_108941
crossref_primary_10_1016_j_diabres_2025_112050
crossref_primary_10_1016_j_ejphar_2022_175194
crossref_primary_10_1002_advs_202206171
crossref_primary_10_2147_IJNRD_S268811
crossref_primary_10_3390_biom12101349
crossref_primary_10_1016_j_ahjo_2023_100281
crossref_primary_10_1016_j_intimp_2024_113403
crossref_primary_10_1016_j_jacbts_2020_02_004
crossref_primary_10_1038_s41598_024_65410_9
crossref_primary_10_1007_s11906_023_01240_w
crossref_primary_10_1016_j_ijcard_2019_04_004
crossref_primary_10_5114_aoms_174228
crossref_primary_10_3390_ijms24097789
crossref_primary_10_2147_DMSO_S243170
crossref_primary_10_1016_j_jjcc_2024_09_005
crossref_primary_10_1038_s41598_024_64006_7
crossref_primary_10_1007_s10741_021_10079_9
crossref_primary_10_1681_ASN_0000000515
crossref_primary_10_1007_s10528_025_11038_x
crossref_primary_10_1016_j_lfs_2021_119731
crossref_primary_10_1093_cvr_cvz073
crossref_primary_10_2217_fca_2022_0058
crossref_primary_10_3389_fphar_2021_758080
crossref_primary_10_1038_s42003_022_03605_4
crossref_primary_10_1186_s12933_021_01346_y
crossref_primary_10_1152_physiol_00008_2024
crossref_primary_10_3390_ijms22116105
crossref_primary_10_3390_ijms23158631
crossref_primary_10_1016_j_jdiacomp_2022_108362
crossref_primary_10_1007_s11010_024_05084_z
crossref_primary_10_1155_2021_3625662
crossref_primary_10_1007_s12265_022_10220_5
crossref_primary_10_1186_s13098_023_01061_6
crossref_primary_10_1016_j_lfs_2023_122354
crossref_primary_10_1097_FJC_0000000000001511
crossref_primary_10_1172_JCI176708
crossref_primary_10_1007_s00228_023_03495_3
crossref_primary_10_1007_s42000_024_00621_3
crossref_primary_10_1111_jce_16369
crossref_primary_10_1186_s12933_023_01822_7
crossref_primary_10_1016_j_atherosclerosis_2023_03_011
crossref_primary_10_1007_s00109_021_02037_7
crossref_primary_10_1042_CS20190585
crossref_primary_10_1016_j_heliyon_2024_e29486
crossref_primary_10_3390_ijms26051887
crossref_primary_10_1016_j_jchf_2021_05_019
crossref_primary_10_1002_ehf2_14331
crossref_primary_10_1042_CS20241477
crossref_primary_10_1186_s12947_019_0177_8
crossref_primary_10_1007_s12272_020_01237_y
crossref_primary_10_1038_s41598_021_01759_5
crossref_primary_10_1007_s12265_023_10379_5
crossref_primary_10_1016_j_ijcard_2023_131419
crossref_primary_10_1161_JAHA_120_019995
crossref_primary_10_3389_fphys_2021_752370
crossref_primary_10_1016_j_jnutbio_2022_109161
crossref_primary_10_1016_j_bcp_2024_116135
crossref_primary_10_2147_DMSO_S446904
crossref_primary_10_3389_fphar_2021_690371
crossref_primary_10_4236_jbm_2024_129022
crossref_primary_10_1177_03000605221097490
crossref_primary_10_1177_2040622320974833
crossref_primary_10_1097_FJC_0000000000001380
crossref_primary_10_3389_fcvm_2022_859253
crossref_primary_10_1016_j_genrep_2022_101522
crossref_primary_10_3390_ijms24119481
crossref_primary_10_1002_tox_23667
crossref_primary_10_1080_0886022X_2022_2118066
crossref_primary_10_3390_antiox11122371
crossref_primary_10_3390_biomedicines12030588
crossref_primary_10_1007_s11357_022_00563_x
crossref_primary_10_3389_fphar_2022_800490
crossref_primary_10_1136_ard_2023_224242
crossref_primary_10_1007_s43188_023_00204_1
crossref_primary_10_1016_j_lfs_2021_119638
crossref_primary_10_1016_j_freeradbiomed_2024_05_018
crossref_primary_10_1161_JAHA_120_016270
crossref_primary_10_1097_XCS_0000000000001021
crossref_primary_10_1536_ihj_22_151
crossref_primary_10_3389_fcell_2021_701788
crossref_primary_10_1371_journal_pone_0263285
crossref_primary_10_1186_s12931_023_02373_x
crossref_primary_10_1007_s12265_021_10192_y
crossref_primary_10_1016_j_jjcc_2024_02_002
crossref_primary_10_1007_s11010_022_04474_5
crossref_primary_10_3390_v16010121
crossref_primary_10_15829_1560_4071_2024_5580
crossref_primary_10_3389_fcvm_2024_1379765
crossref_primary_10_3390_life12101663
crossref_primary_10_1016_j_heliyon_2024_e29160
crossref_primary_10_1016_j_intimp_2021_107374
crossref_primary_10_3389_fcvm_2022_903902
crossref_primary_10_3390_ijerph20176671
crossref_primary_10_3390_ijms23073651
crossref_primary_10_1002_jcp_31264
crossref_primary_10_1038_s41569_020_0406_8
crossref_primary_10_1155_2020_5732956
crossref_primary_10_1186_s12933_020_00997_7
crossref_primary_10_1152_ajpheart_00058_2022
crossref_primary_10_1139_cjpp_2022_0392
crossref_primary_10_3390_life13061265
crossref_primary_10_1186_s12933_021_01266_x
crossref_primary_10_1126_scisignal_abp9586
crossref_primary_10_3390_antiox11091822
crossref_primary_10_1002_ehf2_13055
crossref_primary_10_3389_fcvm_2023_1005408
crossref_primary_10_1161_CIRCIMAGING_120_011000
crossref_primary_10_1186_s12944_021_01430_y
crossref_primary_10_1007_s12020_023_03352_4
crossref_primary_10_3389_fcvm_2024_1388337
crossref_primary_10_1016_j_bbadis_2024_167473
crossref_primary_10_1097_FJC_0000000000001466
crossref_primary_10_1016_j_ejphar_2024_177002
crossref_primary_10_3390_biom10111573
crossref_primary_10_3390_ijms23062960
crossref_primary_10_1186_s12916_021_02185_0
crossref_primary_10_3390_antiox14030336
crossref_primary_10_1007_s10557_021_07216_9
crossref_primary_10_1016_j_metop_2022_100169
crossref_primary_10_1007_s00011_023_01845_6
crossref_primary_10_1093_cvr_cvae047
crossref_primary_10_1007_s10741_020_09996_y
crossref_primary_10_1007_s43440_021_00224_4
crossref_primary_10_1016_j_metabol_2023_155626
crossref_primary_10_1002_jcp_30158
crossref_primary_10_3390_antiox13111388
crossref_primary_10_1007_s11886_019_1219_4
crossref_primary_10_3389_fphar_2020_593633
crossref_primary_10_1080_17469899_2022_2111302
crossref_primary_10_3390_biomedicines8030043
crossref_primary_10_1016_j_biopha_2021_112455
crossref_primary_10_1186_s12933_019_0889_y
crossref_primary_10_1007_s40256_021_00486_6
crossref_primary_10_3389_fcvm_2022_985020
crossref_primary_10_1007_s11033_025_10260_5
crossref_primary_10_1016_j_jtcvs_2024_06_004
crossref_primary_10_1016_j_hrtlng_2023_02_009
crossref_primary_10_1186_s12953_024_00232_1
crossref_primary_10_31083_j_fbl2809231
crossref_primary_10_3390_antiox11122500
crossref_primary_10_1016_j_jcmg_2023_01_022
crossref_primary_10_1038_s41598_020_71449_1
crossref_primary_10_3389_fphys_2022_817542
crossref_primary_10_1186_s12933_020_01004_9
crossref_primary_10_1016_j_ecoenv_2024_116110
crossref_primary_10_3390_biomedicines10123294
crossref_primary_10_1016_j_ejphar_2023_175701
crossref_primary_10_1111_jdi_13329
crossref_primary_10_1007_s12265_022_10324_y
crossref_primary_10_1016_j_actbio_2023_07_039
crossref_primary_10_1016_j_cardfail_2019_09_002
crossref_primary_10_25259_AJPPS_2023_019
crossref_primary_10_1016_j_intimp_2023_110747
crossref_primary_10_1186_s12933_020_01016_5
crossref_primary_10_3390_ijms22031177
crossref_primary_10_1016_j_intimp_2022_109494
crossref_primary_10_1016_j_jaccao_2024_01_007
crossref_primary_10_1016_j_biopha_2023_115213
crossref_primary_10_1093_cvr_cvae016
crossref_primary_10_3390_jcm9092723
crossref_primary_10_2174_0109298673251493231011192520
crossref_primary_10_3390_molecules25163606
crossref_primary_10_1186_s12933_020_01169_3
crossref_primary_10_3390_biomedicines12102314
crossref_primary_10_1038_s41598_024_80829_w
crossref_primary_10_1016_j_dsx_2023_102934
crossref_primary_10_1093_cvr_cvad157
crossref_primary_10_1093_eurheartj_ehab420
crossref_primary_10_3390_ijms22115863
crossref_primary_10_1016_j_freeradbiomed_2021_03_046
crossref_primary_10_3389_fendo_2024_1421838
crossref_primary_10_2174_1389450124666230907115831
crossref_primary_10_1016_j_bbr_2023_114830
crossref_primary_10_1080_14656566_2024_2408376
crossref_primary_10_1021_acs_jafc_1c07574
crossref_primary_10_1186_s12933_020_01071_y
crossref_primary_10_1186_s12933_019_0980_4
crossref_primary_10_1097_MD_0000000000036299
crossref_primary_10_3390_antiox10091379
crossref_primary_10_1016_j_coph_2022_102272
crossref_primary_10_1007_s10787_020_00732_4
crossref_primary_10_1016_j_lfs_2022_120543
crossref_primary_10_1093_cvr_cvac133
crossref_primary_10_1016_j_metabol_2021_154918
crossref_primary_10_1093_cvr_cvaa196
crossref_primary_10_3390_ijms25158280
crossref_primary_10_1097_CRD_0000000000000637
crossref_primary_10_1186_s12933_022_01679_2
crossref_primary_10_1016_j_phrs_2022_106515
crossref_primary_10_1007_s10522_024_10093_y
crossref_primary_10_1097_CRD_0000000000000632
crossref_primary_10_3389_fcvm_2021_810791
crossref_primary_10_1097_CRD_0000000000000638
crossref_primary_10_1016_j_biopha_2024_116650
crossref_primary_10_1186_s13098_022_00951_5
crossref_primary_10_3389_fphar_2021_664181
crossref_primary_10_26442_00403660_2023_09_202368
crossref_primary_10_1016_j_biopha_2024_116536
crossref_primary_10_1016_j_foodres_2022_111818
crossref_primary_10_1093_cvr_cvaa064
crossref_primary_10_1016_j_biopha_2019_109526
crossref_primary_10_1016_j_abb_2021_108968
crossref_primary_10_1016_j_jacc_2022_03_353
crossref_primary_10_4330_wjc_v16_i5_240
crossref_primary_10_1016_j_medcle_2024_01_028
crossref_primary_10_1186_s12933_024_02520_8
crossref_primary_10_3390_jcdd10070268
crossref_primary_10_1002_adtp_202300451
crossref_primary_10_4093_jkd_2019_20_2_81
crossref_primary_10_1016_j_medcli_2024_01_027
crossref_primary_10_1007_s10557_023_07517_1
crossref_primary_10_1038_s41420_024_02214_w
crossref_primary_10_3390_hearts5040039
crossref_primary_10_1016_j_lfs_2020_117908
crossref_primary_10_1111_1753_0407_70044
crossref_primary_10_1096_fj_202402886R
crossref_primary_10_1007_s00204_022_03298_y
crossref_primary_10_1080_10520295_2023_2262390
crossref_primary_10_4239_wjd_v15_i2_137
crossref_primary_10_18087_cardio_2024_7_n2545
crossref_primary_10_3390_ijms23137261
crossref_primary_10_1007_s13410_023_01271_8
crossref_primary_10_1016_j_cellsig_2020_109826
crossref_primary_10_1155_2022_8861911
crossref_primary_10_1016_j_vph_2022_107095
crossref_primary_10_14336_AD_2020_1229
crossref_primary_10_1152_ajpheart_00438_2021
crossref_primary_10_1016_j_resp_2019_103316
crossref_primary_10_3390_ijms22115937
crossref_primary_10_1186_s40635_023_00562_y
crossref_primary_10_3389_fphar_2021_708177
crossref_primary_10_1016_j_jsps_2022_03_005
crossref_primary_10_1038_s41581_021_00393_8
crossref_primary_10_3390_ph17030267
crossref_primary_10_1155_2021_5593589
crossref_primary_10_1007_s10557_022_07396_y
crossref_primary_10_1080_13543784_2021_1868432
crossref_primary_10_3389_fimmu_2023_1213473
crossref_primary_10_3389_fphar_2022_988408
crossref_primary_10_3389_fphar_2022_898718
crossref_primary_10_1016_j_ejphar_2024_176934
crossref_primary_10_1016_j_fct_2021_112406
crossref_primary_10_3390_biomedicines11082236
crossref_primary_10_1097_XCE_0000000000000178
crossref_primary_10_3389_fphys_2024_1294369
crossref_primary_10_2147_VHRM_S287082
crossref_primary_10_1111_bph_15820
crossref_primary_10_1111_jdi_13981
crossref_primary_10_3389_fphar_2020_561494
crossref_primary_10_3390_biom12020176
crossref_primary_10_1016_j_lfs_2021_120070
crossref_primary_10_3390_ijms20133289
crossref_primary_10_1155_2022_2531458
crossref_primary_10_1002_ejhf_1954
crossref_primary_10_3389_fcvm_2022_845878
crossref_primary_10_1155_2022_3293054
crossref_primary_10_3390_ijms25095027
crossref_primary_10_1016_j_jbc_2023_103031
crossref_primary_10_1080_10408363_2021_1993439
crossref_primary_10_1016_j_ijcha_2023_101332
crossref_primary_10_3389_fphar_2024_1415879
crossref_primary_10_1007_s11010_024_05076_z
crossref_primary_10_1186_s13062_025_00618_x
crossref_primary_10_1002_adbi_202300211
crossref_primary_10_1016_j_vph_2023_107212
crossref_primary_10_3390_ijms23105634
crossref_primary_10_3389_fphar_2025_1523727
crossref_primary_10_3389_fendo_2022_917761
crossref_primary_10_38053_acmj_1098603
crossref_primary_10_3390_antiox10081166
crossref_primary_10_3390_cells12131796
crossref_primary_10_3390_antiox11050799
crossref_primary_10_1080_13543784_2024_2326024
crossref_primary_10_1186_s13098_023_01116_8
crossref_primary_10_3389_fendo_2022_907757
crossref_primary_10_1016_j_mce_2023_111996
crossref_primary_10_1016_j_ejphar_2023_175531
crossref_primary_10_1166_mex_2023_2425
crossref_primary_10_3390_jcm13237391
crossref_primary_10_1007_s12035_024_04499_5
crossref_primary_10_3390_cancers14061577
crossref_primary_10_3892_mmr_2024_13197
crossref_primary_10_1016_j_tem_2024_02_003
crossref_primary_10_3390_toxics11050398
crossref_primary_10_1111_jdi_13989
crossref_primary_10_1007_s10753_022_01677_2
crossref_primary_10_1016_j_cbi_2024_111229
crossref_primary_10_1016_j_surg_2023_09_043
crossref_primary_10_1186_s43044_021_00218_w
crossref_primary_10_23736_S2724_6507_21_03425_4
crossref_primary_10_3390_jcm10112385
crossref_primary_10_56782_pps_240
crossref_primary_10_15252_emmm_201910865
crossref_primary_10_3389_fendo_2023_1274686
crossref_primary_10_3390_ph18030313
crossref_primary_10_1159_000504694
crossref_primary_10_1097_MD_0000000000030310
crossref_primary_10_61186_armaghanj_29_2_172
crossref_primary_10_1080_10641963_2024_2326022
crossref_primary_10_1093_eurheartj_ehaa360
crossref_primary_10_3390_biomedicines12061314
crossref_primary_10_3390_ijms24032988
crossref_primary_10_3390_nu14183737
crossref_primary_10_3389_fphar_2022_873108
crossref_primary_10_3390_biology9110347
crossref_primary_10_1186_s12933_023_01914_4
crossref_primary_10_17816_RCF192131_143
crossref_primary_10_1002_jmri_28121
crossref_primary_10_1186_s12933_020_01040_5
crossref_primary_10_3390_antiox13060671
crossref_primary_10_1152_ajpheart_00539_2024
crossref_primary_10_3389_fphar_2022_1009025
crossref_primary_10_1016_j_freeradbiomed_2024_01_015
crossref_primary_10_22141_2224_0721_20_3_2024_1385
crossref_primary_10_31083_j_rcm2401031
crossref_primary_10_1007_s10741_020_10041_1
crossref_primary_10_3389_fcvm_2022_923014
crossref_primary_10_1016_j_ahj_2020_07_014
crossref_primary_10_1080_17512433_2023_2173574
crossref_primary_10_3389_fcell_2021_757068
crossref_primary_10_1016_j_phrs_2024_107268
crossref_primary_10_3389_fcvm_2020_00012
crossref_primary_10_1016_j_tips_2022_04_005
crossref_primary_10_1007_s11357_022_00610_7
crossref_primary_10_3390_biomedicines10112983
crossref_primary_10_1186_s12933_022_01532_6
crossref_primary_10_1038_s41392_023_01430_7
crossref_primary_10_1016_j_ijcard_2021_05_050
crossref_primary_10_1016_j_phrs_2020_105009
crossref_primary_10_31083_j_rcm2204133
crossref_primary_10_3390_biom12020272
crossref_primary_10_1016_j_cellsig_2023_110853
crossref_primary_10_1016_j_ymthe_2021_09_004
crossref_primary_10_15829_1728_8800_2023_3457
crossref_primary_10_1134_S0022093024070159
crossref_primary_10_17925_HI_2021_15_1_42
crossref_primary_10_1186_s12933_020_01209_y
crossref_primary_10_1186_s12933_023_01816_5
crossref_primary_10_1016_j_heliyon_2023_e19873
crossref_primary_10_34067_KID_0000000000000250
crossref_primary_10_1152_physiol_00004_2023
crossref_primary_10_3390_medicina60030395
crossref_primary_10_2217_fca_2020_0138
crossref_primary_10_1096_fj_202200243R
crossref_primary_10_1016_j_ejphar_2023_175565
crossref_primary_10_12677_acm_2024_1482233
crossref_primary_10_1155_2022_5913374
crossref_primary_10_1016_j_pharmthera_2021_107975
Cites_doi 10.14814/phy2.13741
10.1161/CIRCRESAHA.110.223545
10.1097/01.ASN.0000077407.90309.65
10.1186/s12933-018-0708-x
10.1371/journal.pone.0147391
10.1016/j.chroma.2008.10.011
10.1007/s00210-018-1544-y
10.1186/s12933-017-0621-8
10.1186/s12933-017-0510-1
10.1016/j.clinthera.2016.03.031
10.1186/s12933-016-0442-1
10.2337/dc16-1889
10.1016/j.freeradbiomed.2017.01.035
10.1016/j.diabet.2018.07.003
10.1186/s12933-016-0473-7
10.2337/dcS15-3006
10.1186/s12933-018-0717-9
10.1016/j.diabres.2014.02.014
10.1152/ajpheart.01332.2008
10.1016/j.metabol.2012.05.014
10.1016/j.coph.2018.08.002
10.1186/s12933-018-0750-8
10.1016/j.redox.2017.06.009
10.4093/dmj.2017.0095
10.1186/s12933-014-0148-1
10.1016/j.redox.2014.01.012
10.1152/ajpendo.00047.2011
10.4093/dmj.2014.38.4.261
10.1186/s12933-018-0775-z
10.1186/s12933-016-0409-2
10.3389/fimmu.2017.01461
10.1016/j.jacc.2018.07.071
10.2174/1574887111666160829145810
10.1615/CritRevEukaryotGeneExpr.2013006875
10.1016/j.diabres.2018.02.023
10.1136/heartjnl-2017-311448
10.1016/j.jacc.2005.09.050
10.1139/cjpp-2018-0466
10.5588/pha.13.0024
10.2337/dc16-0330
10.1186/s12933-018-0695-y
10.1038/nrendo.2011.243
10.1161/01.CIR.0000012748.58444.08
10.1186/s12933-018-0745-5
10.1186/s12933-017-0511-0
10.1016/j.yjmcc.2015.12.011
10.2337/db16-0049
10.1186/s12933-016-0489-z
10.1016/j.jacbts.2017.07.003
10.1124/jpet.109.162271
10.1073/pnas.85.11.4046
10.1186/s12933-017-0615-6
10.3390/ijms14022684
10.1016/j.redox.2017.12.019
ContentType Journal Article
Copyright Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2019
Copyright_xml – notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12933-019-0816-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1475-2840
EndPage 13
ExternalDocumentID oai_doaj_org_article_4ba6523e673b443a95b9427ec8314d14
PMC6359811
30710997
10_1186_s12933_019_0816_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GrantInformation_xml – fundername: ;
  grantid: 15ZXHLSY00460; 18JCYBJC26100; 18JCZDJC35500
– fundername: ;
  grantid: 81470187; 31800722
GroupedDBID ---
0R~
29B
2WC
53G
5GY
5VS
6J9
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c560t-4a2250dc7c59ed505ea471e22ac109c80af3edb39224d571f09cef9a8aa782393
IEDL.DBID M48
ISSN 1475-2840
IngestDate Wed Aug 27 01:29:59 EDT 2025
Thu Aug 21 13:45:23 EDT 2025
Fri Jul 11 10:28:41 EDT 2025
Fri Jul 25 20:00:25 EDT 2025
Thu Apr 03 06:49:50 EDT 2025
Tue Jul 01 04:19:49 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Empagliflozin
Oxidative stress
Myocardial fibrosis
Type 2 diabetes mellitus
SGLT2
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-4a2250dc7c59ed505ea471e22ac109c80af3edb39224d571f09cef9a8aa782393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12933-019-0816-2
PMID 30710997
PQID 2183054766
PQPubID 42570
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4ba6523e673b443a95b9427ec8314d14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6359811
proquest_miscellaneous_2179497422
proquest_journals_2183054766
pubmed_primary_30710997
crossref_citationtrail_10_1186_s12933_019_0816_2
crossref_primary_10_1186_s12933_019_0816_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-02
PublicationDateYYYYMMDD 2019-02-02
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Cardiovascular diabetology
PublicationTitleAlternate Cardiovasc Diabetol
PublicationYear 2019
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References AD Harries (816_CR1) 2013; 3
AJ Theron (816_CR45) 2017; 8
ST Cheng (816_CR13) 2016; 11
J Oyama (816_CR53) 2016; 15
M Joubert (816_CR29) 2018
F Jiang (816_CR11) 2014; 2
Y Olgar (816_CR37) 2018
D Matsutani (816_CR4) 2018; 17
T Inoguchi (816_CR31) 2003; 14
F Soga (816_CR49) 2018; 17
S Lahnwong (816_CR18) 2018; 17
M Pfeifer (816_CR5) 2017; 16
J Rosas-Guzman (816_CR23) 2017; 12
C Ott (816_CR42) 2017; 16
LM Aleksunes (816_CR33) 2010; 333
CH Jung (816_CR19) 2014; 38
KA Lee (816_CR21) 2018; 42
JL Zweier (816_CR35) 1988; 85
A Solini (816_CR43) 2017; 16
F Briand (816_CR25) 2016; 65
B Lin (816_CR54) 2014; 13
FM Hasan (816_CR24) 2014; 104
TJ Guzik (816_CR32) 2002; 105
M Lytrivi (816_CR6) 2018; 43
NJ Byrne (816_CR12) 2017; 2
I Russo (816_CR9) 2016; 90
JD Newman (816_CR3) 2018; 72
V Liakopoulos (816_CR28) 2017; 2017
AJ Wilson (816_CR8) 2018; 104
MS Bitar (816_CR34) 2011; 301
S Steven (816_CR44) 2017; 13
H Zhou (816_CR40) 2018; 15
G Ndrepepa (816_CR52) 2012; 61
S Matsushima (816_CR30) 2009; 297
DM Lee (816_CR41) 2018; 17
TM Chen (816_CR36) 2013; 14
TM Lee (816_CR50) 2017; 104
H Kusaka (816_CR46) 2016; 15
NAT Abbas (816_CR48) 2018; 391
A Natali (816_CR7) 2017; 16
J Asbun (816_CR39) 2006; 47
E Ferrannini (816_CR51) 2016; 39
J Morales (816_CR10) 2014; 24
M Mizuno (816_CR20) 2018; 6
NH Cho (816_CR2) 2018; 138
S Kohler (816_CR26) 2016; 38
CM Rosa (816_CR15) 2016; 15
AR Aroor (816_CR14) 2018; 17
P Fioretto (816_CR47) 2016; 39
AC Armstrong (816_CR38) 2017; 40
ML Colgrave (816_CR16) 2008; 1212
F Giacco (816_CR27) 2010; 107
J Habibi (816_CR55) 2017; 16
C Irace (816_CR17) 2018; 17
E Ferrannini (816_CR22) 2012; 8
References_xml – volume: 6
  start-page: e13741
  issue: 12
  year: 2018
  ident: 816_CR20
  publication-title: Physiol Rep.
  doi: 10.14814/phy2.13741
– volume: 107
  start-page: 1058
  issue: 9
  year: 2010
  ident: 816_CR27
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.223545
– volume: 14
  start-page: S227
  issue: 8 Suppl 3
  year: 2003
  ident: 816_CR31
  publication-title: J Am Soc Nephrol
  doi: 10.1097/01.ASN.0000077407.90309.65
– volume: 17
  start-page: 62
  issue: 1
  year: 2018
  ident: 816_CR41
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-018-0708-x
– volume: 11
  start-page: e0147391
  issue: 1
  year: 2016
  ident: 816_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0147391
– volume: 1212
  start-page: 150
  issue: 1–2
  year: 2008
  ident: 816_CR16
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2008.10.011
– volume: 391
  start-page: 1347
  issue: 12
  year: 2018
  ident: 816_CR48
  publication-title: Naunyn Schmiedebergs Arch Pharmacol.
  doi: 10.1007/s00210-018-1544-y
– volume: 16
  start-page: 138
  issue: 1
  year: 2017
  ident: 816_CR43
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-017-0621-8
– volume: 16
  start-page: 26
  issue: 1
  year: 2017
  ident: 816_CR42
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-017-0510-1
– volume: 38
  start-page: 1299
  issue: 6
  year: 2016
  ident: 816_CR26
  publication-title: Clin Ther
  doi: 10.1016/j.clinthera.2016.03.031
– volume: 15
  start-page: 126
  issue: 1
  year: 2016
  ident: 816_CR15
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-016-0442-1
– volume: 40
  start-page: 405
  issue: 3
  year: 2017
  ident: 816_CR38
  publication-title: Diabetes Care
  doi: 10.2337/dc16-1889
– volume: 104
  start-page: 298
  year: 2017
  ident: 816_CR50
  publication-title: Free Radic Biol Med.
  doi: 10.1016/j.freeradbiomed.2017.01.035
– year: 2018
  ident: 816_CR29
  publication-title: Diabetes Metab.
  doi: 10.1016/j.diabet.2018.07.003
– volume: 15
  start-page: 157
  issue: 1
  year: 2016
  ident: 816_CR46
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-016-0473-7
– volume: 39
  start-page: S165
  issue: Suppl 2
  year: 2016
  ident: 816_CR47
  publication-title: Diabetes Care
  doi: 10.2337/dcS15-3006
– volume: 17
  start-page: 73
  issue: 1
  year: 2018
  ident: 816_CR4
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-018-0717-9
– volume: 104
  start-page: 297
  issue: 3
  year: 2014
  ident: 816_CR24
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2014.02.014
– volume: 297
  start-page: H409
  issue: 1
  year: 2009
  ident: 816_CR30
  publication-title: Am J Physiol Heart Circ Physiol.
  doi: 10.1152/ajpheart.01332.2008
– volume: 61
  start-page: 1780
  issue: 12
  year: 2012
  ident: 816_CR52
  publication-title: Metabolism.
  doi: 10.1016/j.metabol.2012.05.014
– volume: 43
  start-page: 40
  year: 2018
  ident: 816_CR6
  publication-title: Curr Opin Pharmacol
  doi: 10.1016/j.coph.2018.08.002
– volume: 17
  start-page: 108
  issue: 1
  year: 2018
  ident: 816_CR14
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-018-0750-8
– volume: 13
  start-page: 370
  year: 2017
  ident: 816_CR44
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.06.009
– volume: 42
  start-page: 338
  issue: 4
  year: 2018
  ident: 816_CR21
  publication-title: Diabetes Metab J.
  doi: 10.4093/dmj.2017.0095
– volume: 13
  start-page: 148
  year: 2014
  ident: 816_CR54
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-014-0148-1
– volume: 2
  start-page: 267
  year: 2014
  ident: 816_CR11
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2014.01.012
– volume: 301
  start-page: E1119
  issue: 6
  year: 2011
  ident: 816_CR34
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00047.2011
– volume: 38
  start-page: 261
  issue: 4
  year: 2014
  ident: 816_CR19
  publication-title: Diabetes Metab J.
  doi: 10.4093/dmj.2014.38.4.261
– volume: 17
  start-page: 132
  issue: 1
  year: 2018
  ident: 816_CR49
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-018-0775-z
– volume: 15
  start-page: 87
  year: 2016
  ident: 816_CR53
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-016-0409-2
– volume: 8
  start-page: 1461
  year: 2017
  ident: 816_CR45
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2017.01461
– volume: 72
  start-page: 1856
  issue: 15
  year: 2018
  ident: 816_CR3
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.07.071
– volume: 12
  start-page: 8
  issue: 1
  year: 2017
  ident: 816_CR23
  publication-title: Rev Recent Clin Trials.
  doi: 10.2174/1574887111666160829145810
– volume: 24
  start-page: 15
  issue: 1
  year: 2014
  ident: 816_CR10
  publication-title: Crit Rev Eukaryot Gene Expr
  doi: 10.1615/CritRevEukaryotGeneExpr.2013006875
– volume: 138
  start-page: 271
  year: 2018
  ident: 816_CR2
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2018.02.023
– volume: 104
  start-page: 293
  issue: 4
  year: 2018
  ident: 816_CR8
  publication-title: Heart
  doi: 10.1136/heartjnl-2017-311448
– volume: 47
  start-page: 693
  issue: 4
  year: 2006
  ident: 816_CR39
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2005.09.050
– year: 2018
  ident: 816_CR37
  publication-title: Can J Physiol Pharmacol.
  doi: 10.1139/cjpp-2018-0466
– volume: 3
  start-page: S3
  issue: Suppl 1
  year: 2013
  ident: 816_CR1
  publication-title: Public Health Action.
  doi: 10.5588/pha.13.0024
– volume: 39
  start-page: 1108
  issue: 7
  year: 2016
  ident: 816_CR51
  publication-title: Diabetes Care
  doi: 10.2337/dc16-0330
– volume: 17
  start-page: 52
  issue: 1
  year: 2018
  ident: 816_CR17
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-018-0695-y
– volume: 8
  start-page: 495
  issue: 8
  year: 2012
  ident: 816_CR22
  publication-title: Nat Rev Endocrinol.
  doi: 10.1038/nrendo.2011.243
– volume: 105
  start-page: 1656
  issue: 14
  year: 2002
  ident: 816_CR32
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000012748.58444.08
– volume: 17
  start-page: 101
  issue: 1
  year: 2018
  ident: 816_CR18
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-018-0745-5
– volume: 16
  start-page: 29
  issue: 1
  year: 2017
  ident: 816_CR5
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-017-0511-0
– volume: 2017
  start-page: 3494867
  year: 2017
  ident: 816_CR28
  publication-title: Oxid Med Cell Longev.
– volume: 90
  start-page: 84
  year: 2016
  ident: 816_CR9
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2015.12.011
– volume: 65
  start-page: 2032
  issue: 7
  year: 2016
  ident: 816_CR25
  publication-title: Diabetes
  doi: 10.2337/db16-0049
– volume: 16
  start-page: 9
  issue: 1
  year: 2017
  ident: 816_CR55
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-016-0489-z
– volume: 2
  start-page: 347
  issue: 4
  year: 2017
  ident: 816_CR12
  publication-title: JACC Basic Transl Sci.
  doi: 10.1016/j.jacbts.2017.07.003
– volume: 333
  start-page: 140
  issue: 1
  year: 2010
  ident: 816_CR33
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.109.162271
– volume: 85
  start-page: 4046
  issue: 11
  year: 1988
  ident: 816_CR35
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.85.11.4046
– volume: 16
  start-page: 130
  issue: 1
  year: 2017
  ident: 816_CR7
  publication-title: Cardiovasc Diabetol.
  doi: 10.1186/s12933-017-0615-6
– volume: 14
  start-page: 2684
  issue: 2
  year: 2013
  ident: 816_CR36
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms14022684
– volume: 15
  start-page: 335
  year: 2018
  ident: 816_CR40
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.12.019
SSID ssj0017861
Score 2.6448634
Snippet Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a sodium-glucose...
Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a...
Abstract Background Hyperglycaemia associated with myocardial oxidative stress and fibrosis is the main cause of diabetic cardiomyopathy. Empagliflozin, a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 15
SubjectTerms Animals
Antidiabetics
Antioxidant Response Elements
Antioxidants
Antioxidants - pharmacology
Apoptosis
Benzhydryl Compounds - pharmacology
Cardiomyopathy
Cardiovascular disease
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - complications
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Diabetic Cardiomyopathies - etiology
Diabetic Cardiomyopathies - metabolism
Diabetic Cardiomyopathies - physiopathology
Diabetic Cardiomyopathies - prevention & control
Disease Models, Animal
Echocardiography
Empagliflozin
Fibrosis
Glucose
Glucosides - pharmacology
Growth factors
Heart
Hyperglycemia
Immunohistochemistry
Insulin
Mice, Inbred C57BL
Myocardial fibrosis
Myocardium
Myocardium - metabolism
Myocardium - pathology
NF-E2-Related Factor 2 - metabolism
Original Investigation
Oxidants
Oxidative stress
Oxidative Stress - drug effects
Phosphorylation
Rodents
SGLT2
Signal Transduction - drug effects
Smad protein
Smad Proteins - metabolism
Sodium
Sodium-glucose cotransporter
Sodium-Glucose Transporter 2 - metabolism
Sodium-Glucose Transporter 2 Inhibitors - pharmacology
Structure-function relationships
Transforming growth factor
Transforming Growth Factor beta1 - metabolism
Transforming growth factor-b
Type 2 diabetes mellitus
Uric acid
Ventricular Function, Left - drug effects
Ventricular Remodeling - drug effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k2gRUbihBQ1cRw_jm1FqRDlQiv1ZvkxoZEWp2J3JeDXM5NkV12E4IKUk-NEjmcm8409_oaxN6KTOnZClwCtLGUCUwahRFkniCoaomeh08jnn9TZpfxw1V7dKvVFOWETPfA0cYcyeIXBEijdBCkbb9tgpdAQTVPLNJawFujzNsHUvH-gjarnPczaqMMleTXKG7IlFZooxY4XGsn6_4Qwf0-UvOV5Th-w-zNk5EfTUB-yO5Afsbvn86b4Y5Y_v_94IXifr_swJmBxWlzlgIb-ZdF3i-FnnznRaOY1AUv-9Qf6L9KLBR--92lk_ubTmRHuc-IdRtDDsl_iG_m0NNtHTlXrOVW_Xj1hl6fvLk7OyrmMQhkRzqxK6dFmqxR1bC0kRDzg0SOBED7WlY2m8l0DKSBQEjK1uu6wETrrjfcIHxrbPGV7ecjwnHERfNtUgUj4o7RgjAVpIHmjwFZR1AWrNtPq4swxTqUuFm6MNYxykyQcSsKRJJwo2NvtIzcTwcbfOh-TrLYdiRt7bECNcbPGuH9pTMH2N5J2s8EuHSFFRK9aqYK93t5GU6P9E59hWFMf_Hlh_CVwHM8mxdiOpCGoZq0umN5RmZ2h7t7J_fVI562IRLGuX_yPb3vJ7olRywVe-2xv9W0NB4iaVuHVaCC_ANlpFCo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96gvgifls9JYJPQrkmTfPxJCqeh3i-eAf7FtJkelfYS8_rLqh_vZk2u7oiB31K0hI6M5nfJJPfEPKad0L5jqsSoBGlCKDLlktesgBeeo30LHgb-firPDoVnxfNIm-4jTmtcrMmTgt1GDzukR-gK0_wQkn59vJ7iVWj8HQ1l9C4SW4hdRmmdKnFNuBiSkuWTzKZlgcj-jbMHjIllpso-Y4vmij7_4cz_02X_Mv_HN4jdzNwpO9mSd8nNyA-ILeP89H4QxK_ffpywmkfz_t2SsOiuMVKIZn72bLvlsOvPlIk04xrhJf04mfyYqgdSzr86MPE_03nmyPUxUC7FEcPYz-mL9J5g7b3FGvXU6yBvXpETg8_nnw4KnMxhdInULMqhUuWWwWvfGMgJNwDLvkl4Nx5VhmvK9fVENoEl7gIjWJdaoTOOO1cAhG1qR-TvThEeEoob11TVy1S8XthQGsDQkNwWoKpPGcFqTa_1frMNI4FL5Z2iji0tLMkbJKERUlYXpA321cuZ5qN6wa_R1ltByJD9tQwXJ3ZbHBWtE6mIBukqlshamea1giuwOuaicBEQfY3krbZbEf7R8kK8mrbnQwOT1FchGGNY9ISlqIwnubxZFaM7UxqBGzGqIKoHZXZmepuT-zPJ1JviVSKjD27flrPyR0-6S9Pzz7ZW12t4UVCRav25aT6vwFYdgy3
  priority: 102
  providerName: ProQuest
Title SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart
URI https://www.ncbi.nlm.nih.gov/pubmed/30710997
https://www.proquest.com/docview/2183054766
https://www.proquest.com/docview/2179497422
https://pubmed.ncbi.nlm.nih.gov/PMC6359811
https://doaj.org/article/4ba6523e673b443a95b9427ec8314d14
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7rLogv4t3qOkTwSai2aZrLg4gruy7iLKI7MG8lTdLdQk11LrDrr_ecXkZHBkHoU5KGkHNOzndy-Q4hL1jFpa2YjL3PecydV3HJBItT562wCulZ8DXy9EyczvjHeT7fI2N6q2EClztDO8wnNVs0r65-XL8Fg3_TGbwSr5fos_BWkI4xjUQMK_IBOCaJdjrlvw8VpOrpU7nMY1iVx0POnV1suamOzX8XBP37JuUfrunkDrk9YEr6rleCu2TPh3vk5nQ4Nb9PwtcPn84ZrcNlXXY3tCjuvlIPK8FFU1dN-7MOFHk2wxqRJ_12DQ4OFaeh7VXtOmpw2j8qoSY4WkGI3S7rJfRI-73b2lJMa08xPfbqAZmdHJ-_P42HPAuxBbyzirkBo06clTbX3gEk8gZclmfM2DTRViWmyrwrAUkx7nKZVlDoK22UMYAvMp09JPuhDf4xoaw0eZaUyNJvufZKac-Vd0YJrxPL0ogk47QWdiAhx1wYTdEFI0oUvSQKkESBkihYRF5ufvneM3D8q_ERymrTEMmzu4J2cVEMtljw0giIv72QWcl5ZnReas6ktypLuUt5RA5HSRejQhYIJQHeSiEi8nxTDbaIBywm-HaNbWB1gwCNwTge9YqxGUmGWE5rGRG5pTJbQ92uCfVlx_ctkGUxTZ_8z0Q8JbdYp80MvkOyv1qs_TOAT6tyQm7IuZyQg6Pjs89fJt0mxKQzlF9I1BiY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemTgIuiG8CA4wEF6RoieM49gEhBhsdaysEnbSbcWxni9QlY20F44_ib-S9JA0Uod0m5eQ4keX37ff8e4S8YAXPbMGy0PuUh9x5GeZMsDB23gorEZ4FbyOPJ2J4yD8epUcb5NfqLgyWVa50YqOoXW3xjHwbTTm4F5kQb86-hdg1CrOrqxYaLVsc-IvvELLNX--_B_q-ZGxvd_puGHZdBUIL1n0RcgMsHDmb2VR5Bw6AN6CgPWPGxpGyMjJF4l0OfgPjLs3iAgZ9oYw0BqxpguBLoPI3eQKhzIBs7uxOPn3u8xaZFHGXO42l2J6jNcV6JRVig4uQrVm_pknA_zzbfws0_7J4e7fIzc5VpW9b3rpNNnx1h1wbd8n4u6T68mE0ZbSsTsq8KfyieKhLPSiY41lZzOqfZUURvrNaokNLTy_AbiI_zmj9o3QN4jht76pQUzlaQORez8s5_JG2R8KlpaegyCh23V7cI4dXstH3yaCqK_-QUJabNIlyBP-3XHkplefSOyOFV5FlcUCi1bZq22GbY4uNmW5iHCl0SwkNlNBICc0C8qr_5KwF9rhs8g7Sqp-ImNzNQH1-rDsR1zw3AsJ6L7Ik5zwxKs0VZ5m3Mom5i3lAtlaU1p2imOs_bB2Q5_1rEHHM25jK10ucA0oT4j4G63jQMka_kgRdRKWygGRrLLO21PU3VXnSwIgLBG-M40eXL-sZuT6cjkd6tD85eExusIaXGTxbZLA4X_on4JMt8qedIFDy9apl7zfZT0sI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SGLT2+inhibition+with+empagliflozin+attenuates+myocardial+oxidative+stress+and+fibrosis+in+diabetic+mice+heart&rft.jtitle=Cardiovascular+diabetology&rft.au=Li%2C+Chenguang&rft.au=Zhang%2C+Jie&rft.au=Xue%2C+Mei&rft.au=Li%2C+Xiaoyu&rft.date=2019-02-02&rft.issn=1475-2840&rft.eissn=1475-2840&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12933-019-0816-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12933_019_0816_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2840&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2840&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2840&client=summon