A Comparative Analysis of Speed Profile Models for Ankle Pointing Movements: Evidence that Lower and Upper Extremity Discrete Movements are Controlled by a Single Invariant Strategy

Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cereb...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 8; p. 962
Main Authors Michmizos, Konstantinos P., Vaisman, Lev, Krebs, Hermano Igo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 27.11.2014
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2014.00962

Cover

Abstract Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal-plantar and inversion-eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different "human" hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots.
AbstractList Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal-plantar and inversion-eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different "human" hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots.
Little is known about whether our knowledge of how the central nervous system controls the upper extremities, can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually-evoked, visually-guided and target-directed discrete pointing movements with their ankle in dorsal–plantar and inversion–eversion directions. Using a nonlinear, least-squares error-minimization procedure, we estimated the parameters for 19 models which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top performing models that described the speed profiles of ankle pointing movements and the ones previously found for the upper extremities both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different human hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots.
Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal-plantar and inversion-eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different "human" hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots.Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal-plantar and inversion-eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different "human" hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots.
Author Michmizos, Konstantinos P.
Krebs, Hermano Igo
Vaisman, Lev
AuthorAffiliation 5 Department of Neurology, Division of Rehabilitation, School of Medicine, University of Maryland , College Park, MD , USA
1 Martinos Center for Biomedical Imaging, Massachusetts Institute of Technology, Massachusetts General Hospital, Harvard Medical School , Charlestown, MA , USA
2 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, MA , USA
3 Department of Anatomy and Neurobiology, School of Medicine, Boston University , Boston, MA , USA
4 Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, MA , USA
6 Department of Physical Medicine and Rehabilitation, Fujita Health University , Nagoya , Japan
7 Institute of Neuroscience, University of Newcastle , Newcastle upon Tyne , UK
AuthorAffiliation_xml – name: 1 Martinos Center for Biomedical Imaging, Massachusetts Institute of Technology, Massachusetts General Hospital, Harvard Medical School , Charlestown, MA , USA
– name: 3 Department of Anatomy and Neurobiology, School of Medicine, Boston University , Boston, MA , USA
– name: 6 Department of Physical Medicine and Rehabilitation, Fujita Health University , Nagoya , Japan
– name: 7 Institute of Neuroscience, University of Newcastle , Newcastle upon Tyne , UK
– name: 5 Department of Neurology, Division of Rehabilitation, School of Medicine, University of Maryland , College Park, MD , USA
– name: 2 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, MA , USA
– name: 4 Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, MA , USA
Author_xml – sequence: 1
  givenname: Konstantinos P.
  surname: Michmizos
  fullname: Michmizos, Konstantinos P.
– sequence: 2
  givenname: Lev
  surname: Vaisman
  fullname: Vaisman, Lev
– sequence: 3
  givenname: Hermano Igo
  surname: Krebs
  fullname: Krebs, Hermano Igo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25505881$$D View this record in MEDLINE/PubMed
BookMark eNp1kk9vEzEQxVeoiP6BOydkiQuXBNu79u5yQIpCgEpFVCo9W7Pe2cRh115sJ5APxvfDaVpoK3GyZb_5zbPnnWZH1lnMspeMTvO8qt92drUZppyyYkppLfmT7IRJySeCSXZ0b3-cnYawplRyKdiz7JgLQUVVsZPs94zM3TCCh2i2SGYW-l0wgbiOXI2ILbn0rjM9ki-uxT6Qzvkk-p4OLp2x0dhlutnigDaGd2SxNS1ajSSuIJIL9xM9AduS63FMu8Wv6HEwcUc-mKA9RvxXS8BjcmKjd32f2jY7AuQq4VOnc7sFb8BGchWTT1zunmdPO-gDvrhdz7Lrj4tv88-Ti6-fzuezi4kWksZJUdY55rRsWF3wAriuBAXBoWhpA4KxIudaYMULbCEvsaxZg7RjlOVJw5jOz7LzA7d1sFajNwP4nXJg1M2B80sFPhrdo8KCC1nSqmh4WfC6BNC0oVxL0Lpsqjyx3h9Y46YZsNXp1R76B9CHN9as1NJtVbKeZlUnwJtbgHc_NhiiGtI3Yt-DRbcJism8FLIuapmkrx9J127j02yD4rzmtOS12ANf3Xf018pdOpJAHgTauxA8dkqbmIKyHxOYXjGq9jFUNzFU-xiqmximQvqo8I7935I_cA_i1w
CitedBy_id crossref_primary_10_1109_LRA_2018_2885165
crossref_primary_10_1007_s00221_015_4454_y
crossref_primary_10_1186_s12984_021_00829_z
crossref_primary_10_3390_robotics8040096
crossref_primary_10_1109_TNSRE_2015_2410773
crossref_primary_10_1186_s12984_023_01293_7
crossref_primary_10_1038_s41598_022_05079_0
Cites_doi 10.1109/PROC.1968.6455
10.1152/jn.1976.39.2.435
10.1007/s00422-012-0527-1
10.1080/09638280500158422
10.1161/STROKEAHA.113.002296
10.4021/jocmr984w
10.1080/00222895.1983.10735302
10.1109/10.81578
10.1007/BF00335240
10.1109/TNSRE.2012.2231943
10.1016/S0021-9290(01)00101-4
10.1682/JRRD.2010.04.0078
10.1016/S0966-6362(98)00010-1
10.1073/pnas.95.3.861
10.1186/1743-0003-7-23
10.1161/STROKEAHA.107.504779
10.1023/A:1024494031121
10.1152/jn.1984.51.2.210
10.1002/9780470549148
10.1126/science.424729
10.1177/1545968307305457
10.1177/1545968309343214
10.1007/s00422-003-0407-9
10.1056/NEJMoa1010790
10.1109/86.662623
10.1161/STR.0b013e3181e7512b
10.1007/BF00336740
10.1177/1545968310388291
10.1007/s00221-014-4032-8
10.1016/S0966-6362(97)00038-6
10.1152/jn.1995.74.5.2174
10.1016/j.jbiomech.2011.02.072
10.1152/jn.1998.80.4.1787
10.1109/TRO.2009.2019783
10.1073/pnas.96.8.4645
10.1093/ptj/70.12.763
10.1123/ijsb.3.3.264
10.1523/JNEUROSCI.22-18-08297.2002
10.1017/S0140525X97001441
10.1126/science.272.5269.1791
10.1007/BF00228196
10.1152/jn.1988.59.6.1814
10.1523/JNEUROSCI.01-07-00710.1981
10.1016/j.jbiomech.2007.04.008
10.1016/j.neunet.2008.03.014
10.1007/s00221-013-3773-0
10.3233/nre-130931
10.1038/nn1104-1279
10.1007/978-0-387-77064-2_24
10.1016/S0079-6123(08)61829-4
10.1016/S0166-4115(09)60079-0
10.1093/brain/105.2.331
10.1177/1545968308326632
10.1109/TNSRE.2013.2262689
10.2307/1164979
10.1177/107110070602701010
10.1093/oso/9780195171792.001.0001
10.1007/BF00318713
10.1682/JRRD.2005.06.0103
10.1161/01.cir.0000441139.02102.80
10.1016/S0268-0033(02)00062-1
10.1113/jphysiol.1965.sp007718
10.1007/s002210050377
10.1177/1545968312439687
10.1038/nn.2752
10.1007/s00221-007-0899-y
10.1016/j.cortex.2008.02.008
10.1371/journal.pone.0073139
10.1016/j.jbiomech.2011.04.028
10.1177/1545968314521004
10.1007/BF00226195
10.1212/WNL.54.10.1938
10.1007/BF00248865
10.1007/s001170050469
10.1137/0806023
10.1007/s004220050543
10.1016/j.jbiomech.2010.11.016
10.1523/JNEUROSCI.05-07-01688.1985
10.1152/japplphysiol.90448.2008
10.1523/JNEUROSCI.14-05-03208.1994
ContentType Journal Article
Copyright 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2014 Michmizos, Vaisman and Krebs. 2014
Copyright_xml – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2014 Michmizos, Vaisman and Krebs. 2014
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2014.00962
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_e42567084b274297aac0b02c6acc7b83
PMC4245889
25505881
10_3389_fnhum_2014_00962
Genre Journal Article
GeographicLocations United States--US
Massachusetts
GeographicLocations_xml – name: Massachusetts
– name: United States--US
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD069776
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c560t-4793e307b19424a2c850a52a4d0ba511432c5e824eda37e791be0f10132a411c3
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:30:22 EDT 2025
Thu Aug 21 13:45:23 EDT 2025
Fri Sep 05 13:19:26 EDT 2025
Fri Jul 25 11:50:52 EDT 2025
Thu Apr 03 07:02:26 EDT 2025
Tue Jul 01 03:44:08 EDT 2025
Thu Apr 24 23:04:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cerebral palsy
rehabilitation robotics
stroke
neurorehabilitation of motor function
sensorimotor control
ankle movements
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-4793e307b19424a2c850a52a4d0ba511432c5e824eda37e791be0f10132a411c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Jascha Ruesseler, University of Bamberg, Germany; Domenico Formica, Università Campus Bio-Medico di Roma, Italy
Edited by: Lorenzo Masia, Nanyang Technological University, Singapore
This article was submitted to the journal Frontiers in Human Neuroscience.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2014.00962
PMID 25505881
PQID 2292072959
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_e42567084b274297aac0b02c6acc7b83
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4245889
proquest_miscellaneous_1637569496
proquest_journals_2292072959
pubmed_primary_25505881
crossref_citationtrail_10_3389_fnhum_2014_00962
crossref_primary_10_3389_fnhum_2014_00962
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-27
PublicationDateYYYYMMDD 2014-11-27
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-27
  day: 27
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2014
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Wackerly (B96) 2007
Novacheck (B68) 1998; 7
Susko (B92) 2014
Kelso (B40) 1979; 203
Plamondon (B76) 2003; 89
Palmer (B71) 2002
Coleman (B11) 1996; 6
Marsh (B54) 1981; 51
McGowan (B55) 2008; 105
Abend (B1) 1982; 105
Lee (B49) 2014; 22
Roy (B84) 2011; 48
Bizzi (B7) 1976; 39
Kim (B42) 2011; 44
Plamondon (B77) 1986
Kamm (B38) 1990; 70
Rossi (B83) 2013; 8
Hollerbach (B32) 1981; 39
Maarse (B52) 1987
Krebs (B44) 1999; 96
Gutman (B27) 1991
Edelman (B16) 1987; 57
Schaal (B86) 2004; 7
Hogan (B29) 2006; 43
Plamondon (B74) 1997; 20
Michmizos (B59) 2014a
Bahlsen (B3) 1987; 3
Pretterklieber (B78) 1999; 39
Nagasaki (B65) 1989; 74
Wolfgang (B101) 1991
Plamondon (B75) 1993; 69
Perrine (B72) 1977; 10
Roy (B85) 2009; 25
Lee (B50) 2011; 44
Kwakkel (B48) 2008; 22
Gibson (B25) 1966
Krebs (B46) 2014; 45
Kitaoka (B43) 2006; 27
Robinson (B80) 1968; 56
Volpe (B95) 2000; 54
Hornby (B33) 2008; 39
Robinson (B79) 1965; 180
Jenkyn (B37) 2007; 40
Bernacchia (B4) 2011; 14
Miller (B62) 2010; 41
Motulsky (B64) 2004
Rogers (B81) 2010
Legault-Moore (B51) 2012; 4
Vaisman (B93) 2013; 21
Games (B24) 1976; 1
Dobkin (B13) 2012; 26
Michmizos (B57) 2012a
Nudo (B69) 1996; 272
Michmizos (B58) 2012b
Perry (B73) 1992
Dipietro (B12) 2009; 45
Schmidt (B87) 1988
Schmidt (B88) 2004
Winter (B100) 2009
Winter (B99) 1983; 15
Michmizos (B61) 2014c; 232
Doeringer (B14) 1998; 80
Soechting (B90) 1981; 1
Hidler (B28) 2009; 23
Charles (B10) 2011; 44
Duncan (B15) 2011; 364
Forrester (B21) 2014; 28
Galiana (B22) 1991; 38
Hogan (B30) 2007; 181
Au (B2) 2006
Bosecker (B8) 2010; 24
Van de Crommert (B94) 1998; 7
Forrester (B19) 2013; 33
Stein (B91) 1988; 59
Krebs (B45) 1998; 6
Go (B26) 2014; 129
Karni (B39) 1998; 95
Jaric (B35) 1998; 120
Flanagan (B17) 1995; 74
Krebs (B47) 2003; 15
Rohrer (B82) 2002; 22
Newell (B67) 2009
Carson (B9) 2001; 34
Khanna (B41) 2010; 7
Bernstein (B5) 1967
Jenkins (B36) 1987; 71
Michmizos (B60) 2014b; 232
Forrester (B20) 2011; 25
Galiana (B23) 1984; 51
Ijspeert (B34) 2008; 21
McNair (B56) 2002; 17
Waugh (B97) 2014
Netter (B66) 2014
Wiegner (B98) 1992; 88
Hogan (B31) 2012; 106
Shadmehr (B89) 1994; 14
Morasso (B63) 1982; 45
Bhushan (B6) 1999; 81
Flash (B18) 1985; 5
Management of Stroke Rehabilitation Working Group (B53) 2010; 47
Odding (B70) 2006; 28
References_xml – volume: 56
  start-page: 1032
  year: 1968
  ident: B80
  article-title: The oculomotor control system: a review
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1968.6455
– volume-title: Atlas of Human Anatomy
  year: 2014
  ident: B66
– volume: 39
  start-page: 435
  year: 1976
  ident: B7
  article-title: Mechanisms underlying achievement of final head position
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1976.39.2.435
– volume: 106
  start-page: 727
  year: 2012
  ident: B31
  article-title: Dynamic primitives of motor behavior
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-012-0527-1
– volume: 28
  start-page: 183
  year: 2006
  ident: B70
  article-title: The epidemiology of cerebral palsy: incidence, impairments and risk factors
  publication-title: Disabil. Rehabil.
  doi: 10.1080/09638280500158422
– volume: 10
  start-page: 159
  year: 1977
  ident: B72
  article-title: Muscle force-velocity and power-velocity relationships under isokinetic loading
  publication-title: Med. Sci. Sports
– volume: 45
  start-page: 200
  year: 2014
  ident: B46
  article-title: Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.002296
– volume: 4
  start-page: 259
  year: 2012
  ident: B51
  article-title: Multisegment foot kinematics during walking in younger and older adults
  publication-title: J. Clin. Med. Res.
  doi: 10.4021/jocmr984w
– volume-title: Mathematical Statistics with Applications
  year: 2007
  ident: B96
– volume: 15
  start-page: 302
  year: 1983
  ident: B99
  article-title: Biomechanical motor patterns in normal walking
  publication-title: J. Mot. Behav.
  doi: 10.1080/00222895.1983.10735302
– volume: 38
  start-page: 532
  year: 1991
  ident: B22
  article-title: A nystagmus strategy to linearize the vestibulo-ocular reflex
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.81578
– volume: 45
  start-page: 131
  year: 1982
  ident: B63
  article-title: Trajectory formation and handwriting: a computational model
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00335240
– volume: 21
  start-page: 756
  year: 2013
  ident: B93
  article-title: A comparative analysis of speed profile models for wrist pointing movements
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2231943
– volume: 34
  start-page: 1299
  year: 2001
  ident: B9
  article-title: Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00101-4
– start-page: 2939
  year: 2006
  ident: B2
  article-title: “An ankle-foot emulation system for the study of human walking biomechanics,”
– volume: 48
  start-page: 417
  year: 2011
  ident: B84
  article-title: Short-term ankle motor performance with ankle robotics training in chronic hemiparetic stroke
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2010.04.0078
– volume: 7
  start-page: 251
  year: 1998
  ident: B94
  article-title: Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(98)00010-1
– volume: 95
  start-page: 861
  year: 1998
  ident: B39
  article-title: The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.3.861
– volume: 47
  start-page: 1
  year: 2010
  ident: B53
  article-title: VA/DOD clinical practice guideline for the management of stroke rehabilitation
  publication-title: J. Rehabil. Res. Dev.
– volume-title: Gait Analysis: Normal and Pathological Function
  year: 1992
  ident: B73
– volume: 7
  start-page: 23
  year: 2010
  ident: B41
  article-title: Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-7-23
– volume: 39
  start-page: 1786
  year: 2008
  ident: B33
  article-title: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.504779
– volume: 15
  start-page: 7
  year: 2003
  ident: B47
  article-title: Rehabilitation robotics: performance-based progressive robot-assisted therapy
  publication-title: Auton. Robots
  doi: 10.1023/A:1024494031121
– year: 1991
  ident: B27
  article-title: Exponential model with nonlinear time of reaching movement: trajectory time profile, strategies, variability
– volume: 51
  start-page: 210
  year: 1984
  ident: B23
  article-title: A bilateral model for central neural pathways in vestibuloocular reflex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1984.51.2.210
– volume-title: Biomechanics and Motor Control of Human Movement
  year: 2009
  ident: B100
  doi: 10.1002/9780470549148
– volume-title: Motor Learning and Performance
  year: 2004
  ident: B88
– volume: 203
  start-page: 1029
  year: 1979
  ident: B40
  article-title: On the nature of human interlimb coordination
  publication-title: Science
  doi: 10.1126/science.424729
– volume: 22
  start-page: 111
  year: 2008
  ident: B48
  article-title: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968307305457
– volume-title: Bone and Muscle: Structure, Force, and Motion
  year: 2010
  ident: B81
– volume: 24
  start-page: 62
  year: 2010
  ident: B8
  article-title: Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968309343214
– volume: 89
  start-page: 126
  year: 2003
  ident: B76
  article-title: A kinematic theory of rapid human movement. Part IV: a formal mathematical proof and new insights
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-003-0407-9
– volume: 364
  start-page: 2026
  year: 2011
  ident: B15
  article-title: Body-weight-supported treadmill rehabilitation after stroke
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1010790
– volume: 6
  start-page: 75
  year: 1998
  ident: B45
  article-title: Robot-aided neurorehabilitation
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.662623
– volume-title: The Senses Considered as Perceptual Systems
  year: 1966
  ident: B25
– volume: 41
  start-page: 2402
  year: 2010
  ident: B62
  article-title: Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient a scientific statement from the American Heart Association
  publication-title: Stroke
  doi: 10.1161/STR.0b013e3181e7512b
– volume: 39
  start-page: 139
  year: 1981
  ident: B32
  article-title: An oscillation theory of handwriting
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00336740
– volume: 25
  start-page: 369
  year: 2011
  ident: B20
  article-title: Ankle training with a robotic device improves hemiparetic gait after a stroke
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968310388291
– volume: 232
  start-page: 3475
  year: 2014c
  ident: B61
  article-title: Reaction time in ankle movements: a diffusion model analysis
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-014-4032-8
– volume: 7
  start-page: 77
  year: 1998
  ident: B68
  article-title: The biomechanics of running
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(97)00038-6
– volume: 74
  start-page: 2174
  year: 1995
  ident: B17
  article-title: Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1995.74.5.2174
– volume: 44
  start-page: 1253
  year: 2011
  ident: B42
  article-title: Leg stiffness increases with speed to modulate gait frequency and propulsion energy
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.02.072
– volume: 80
  start-page: 1787
  year: 1998
  ident: B14
  article-title: Intermittency in preplanned elbow movements persists in the absence of visual feedback
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.4.1787
– volume: 25
  start-page: 569
  year: 2009
  ident: B85
  article-title: Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation
  publication-title: Int. J. Biomech.
  doi: 10.1109/TRO.2009.2019783
– volume: 96
  start-page: 4645
  year: 1999
  ident: B44
  article-title: Quantization of continuous arm movements in humans with brain injury
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.8.4645
– volume: 70
  start-page: 763
  year: 1990
  ident: B38
  article-title: A dynamical systems approach to motor development
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/70.12.763
– volume: 3
  start-page: 264
  year: 1987
  ident: B3
  article-title: Influence of attached masses on impact forces and running style in heel-toe running
  publication-title: Int. J. Sport Biomech.
  doi: 10.1123/ijsb.3.3.264
– start-page: 677
  year: 2014
  ident: B92
  article-title: “MIT-skywalker: a novel environment for neural gait rehabilitation,”
– volume-title: Sagittal Plane Characterization of Normal Human Ankle Function Across a Range of Walking Gait Speeds
  year: 2002
  ident: B71
– volume: 22
  start-page: 8297
  year: 2002
  ident: B82
  article-title: Movement smoothness changes during stroke recovery
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-18-08297.2002
– volume: 20
  start-page: 279
  year: 1997
  ident: B74
  article-title: Speed/accuracy trade-offs in target-directed movements
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X97001441
– volume: 272
  start-page: 1791
  year: 1996
  ident: B69
  article-title: Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct
  publication-title: Science
  doi: 10.1126/science.272.5269.1791
– volume: 88
  start-page: 665
  year: 1992
  ident: B98
  article-title: Kinematic models and human elbow flexion movements: quantitative analysis
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00228196
– volume: 59
  start-page: 1814
  year: 1988
  ident: B91
  article-title: The trajectory of human wrist movements
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1988.59.6.1814
– volume: 1
  start-page: 710
  year: 1981
  ident: B90
  article-title: Invariant characteristics of a pointing movement in man
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.01-07-00710.1981
– volume: 40
  start-page: 3271
  year: 2007
  ident: B37
  article-title: A multi-segment kinematic model of the foot with a novel definition of forefoot motion for use in clinical gait analysis during walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.04.008
– volume: 21
  start-page: 642
  year: 2008
  ident: B34
  article-title: Central pattern generators for locomotion control in animals and robots: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2008.03.014
– volume: 232
  start-page: 647
  year: 2014b
  ident: B60
  article-title: Pointing with the ankle: the speed-accuracy tradeoff
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-013-3773-0
– volume: 33
  start-page: 85
  year: 2013
  ident: B19
  article-title: Clinical application of a modular ankle robot for stroke rehabilitation
  publication-title: NeuroRehabilitation
  doi: 10.3233/nre-130931
– volume: 7
  start-page: 1136
  year: 2004
  ident: B86
  article-title: Rhythmic arm movement is not discrete
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1104-1279
– start-page: 457
  volume-title: Progress in Motor Control
  year: 2009
  ident: B67
  article-title: “Time scales, difficulty/skill duality, and the dynamics of motor learning,”
  doi: 10.1007/978-0-387-77064-2_24
– volume: 71
  start-page: 249
  year: 1987
  ident: B36
  article-title: Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(08)61829-4
– start-page: 542
  year: 2014a
  ident: B59
  article-title: “Modeling reaction time in the ankle,”
– start-page: 169
  volume-title: Graphonomics: Contemporary Research in Handwriting
  year: 1986
  ident: B77
  article-title: “Modelization of handwriting: a system approach,”
  doi: 10.1016/S0166-4115(09)60079-0
– volume: 105
  start-page: 331
  year: 1982
  ident: B1
  article-title: Human arm trajectory formation
  publication-title: Brain
  doi: 10.1093/brain/105.2.331
– volume: 23
  start-page: 5
  year: 2009
  ident: B28
  article-title: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968308326632
– volume-title: Motor Control and Learning
  year: 1988
  ident: B87
– volume: 22
  start-page: 44
  year: 2014
  ident: B49
  article-title: Multivariable static ankle mechanical impedance with active muscles
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2262689
– volume: 51
  start-page: 160
  year: 1981
  ident: B54
  article-title: Influence of joint position on ankle dorsiflexion in humans
  publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
– volume: 1
  start-page: 113
  year: 1976
  ident: B24
  article-title: Pairwise multiple comparison procedures with unequal N’s and/or variances: a Monte Carlo study
  publication-title: J. Educ. Behav. Stat.
  doi: 10.2307/1164979
– volume: 27
  start-page: 808
  year: 2006
  ident: B43
  article-title: Foot and ankle kinematics and ground reaction forces during ambulation
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110070602701010
– volume-title: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting
  year: 2004
  ident: B64
  doi: 10.1093/oso/9780195171792.001.0001
– volume: 57
  start-page: 25
  year: 1987
  ident: B16
  article-title: A model of handwriting
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00318713
– volume: 43
  start-page: 605
  year: 2006
  ident: B29
  article-title: Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2005.06.0103
– volume: 129
  start-page: e28
  year: 2014
  ident: B26
  article-title: Heart disease and stroke statistics – 2014 update: a report from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/01.cir.0000441139.02102.80
– volume: 17
  start-page: 536
  year: 2002
  ident: B56
  article-title: Stiffness and passive peak force changes at the ankle joint: the effect of different joint angular velocities
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(02)00062-1
– volume-title: Ross and Wilson Anatomy and Physiology in Health and Illness
  year: 2014
  ident: B97
– volume: 180
  start-page: 569
  year: 1965
  ident: B79
  article-title: The mechanics of human smooth pursuit eye movement
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1965.sp007718
– volume: 120
  start-page: 52
  year: 1998
  ident: B35
  article-title: Changes in the symmetry of rapid movements. Effects of velocity and viscosity
  publication-title: Exp. Brain Res.
  doi: 10.1007/s002210050377
– volume-title: The Study of Handwriting Movement: Peripheral Models and Signal-Processing Techniques
  year: 1987
  ident: B52
– volume: 26
  start-page: 308
  year: 2012
  ident: B13
  article-title: Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate?
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968312439687
– volume: 14
  start-page: 366
  year: 2011
  ident: B4
  article-title: A reservoir of time constants for memory traces in cortical neurons
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2752
– volume: 181
  start-page: 13
  year: 2007
  ident: B30
  article-title: On rhythmic and discrete movements: reflections, definitions and implications for motor control
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-007-0899-y
– volume: 45
  start-page: 318
  year: 2009
  ident: B12
  article-title: Submovement changes characterize generalization of motor recovery after stroke
  publication-title: Cortex
  doi: 10.1016/j.cortex.2008.02.008
– volume-title: The Co-Ordination and Regulation of Movements
  year: 1967
  ident: B5
– volume: 8
  start-page: e73139
  year: 2013
  ident: B83
  article-title: Feasibility study of a wearable exoskeleton for children: is the gait altered by adding masses on lower limbs?
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0073139
– volume: 44
  start-page: 1901
  year: 2011
  ident: B50
  article-title: Multivariable static ankle mechanical impedance with relaxed muscles
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.04.028
– volume: 28
  start-page: 678
  year: 2014
  ident: B21
  article-title: Modular ankle robotics training in early subacute stroke a randomized controlled pilot study
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968314521004
– volume: 69
  start-page: 119
  year: 1993
  ident: B75
  article-title: Modelling velocity profiles of rapid movements: a comparative study
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00226195
– volume: 54
  start-page: 1938
  year: 2000
  ident: B95
  article-title: A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation
  publication-title: Neurology
  doi: 10.1212/WNL.54.10.1938
– volume: 74
  start-page: 319
  year: 1989
  ident: B65
  article-title: Asymmetric velocity and acceleration profiles of human arm movements
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00248865
– volume: 39
  start-page: 1
  year: 1999
  ident: B78
  article-title: Anatomy and kinematics of the human ankle joint
  publication-title: Radiologe
  doi: 10.1007/s001170050469
– start-page: 1710
  year: 2012b
  ident: B58
  article-title: “Serious games for the pediatric anklebot,”
– volume: 6
  start-page: 418
  year: 1996
  ident: B11
  article-title: An interior trust region approach for nonlinear minimization subject to bounds
  publication-title: SIAM J. Optim.
  doi: 10.1137/0806023
– start-page: 1081
  year: 2012a
  ident: B57
  article-title: “Assist-as-needed in lower extremity robotic therapy for children with cerebral palsy,”
– volume: 81
  start-page: 39
  year: 1999
  ident: B6
  article-title: Computational nature of human adaptive control during learning of reaching movements in force fields
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050543
– volume: 44
  start-page: 614
  year: 2011
  ident: B10
  article-title: Dynamics of wrist rotations
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.11.016
– volume: 5
  start-page: 1688
  year: 1985
  ident: B18
  article-title: The coordination of arm movements: an experimentally confirmed mathematical model
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.05-07-01688.1985
– volume-title: Eye Movements
  year: 1991
  ident: B101
  article-title: “Saccades,”
– volume: 105
  start-page: 486
  year: 2008
  ident: B55
  article-title: Independent effects of weight and mass on plantar flexor activity during walking: implications for their contributions to body support and forward propulsion
  publication-title: J. Appl. Physiol. (1985)
  doi: 10.1152/japplphysiol.90448.2008
– volume: 14
  start-page: 3208
  year: 1994
  ident: B89
  article-title: Adaptive representation of dynamics during learning of a motor task
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.14-05-03208.1994
SSID ssj0062651
Score 2.1611924
Snippet Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the...
Little is known about whether our knowledge of how the central nervous system controls the upper extremities, can generalize, and to what extent to the lower...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 962
SubjectTerms Ankle
ankle movements
Arm
Central nervous system
Cerebral Palsy
Comparative analysis
Fitness equipment
Gait
Kinematics
Limbs
Motor task performance
neurorehabilitation of motor function
Neuroscience
Neurosciences
Paralysis
Posture
Rehabilitation
rehabilitation robotics
Robotics
Robots
Sensorimotor control
Stroke
Walking
Working groups
Wrist
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQTlwQMH4EBnpICIlDVMex45hbGZsGAjRpVNrNsh1HrdalVZsi-ofx__HsJN2KEFy4RbaTOHkv9vf5Od8j5LUytVHM1qlnNRIURUWqClekCn0rgDkpotjzl6_F2YR_uhSXt1J9hT1hnTxw9-JGHp2qkLTkNgQVlTTGUUuZK4xz0pZR55MqOpCpbgxGlC6yLiiJFEyN6ma6Cb-dZ0EqWxVsbxKKWv1_Api_75O8NfGc3if3esQI466nD8gd3zwkh-MG2fL1Ft5A3MMZF8cPyc8xHN_IecOgOAKLGi6WOE_BeZeiG0IKtPkaELFioyssOF_MYs4IrIkK4u36HQwZR6GdmhY-h3xqYJoKJsslHp38aFf-GkE8fJjh2IPg--ZcMCsP_S74Od7WbsHABV4e7_Sx-Y78HA0KvTLu9hGZnJ58Oz5L-8QMqUOA1MbVOI-Dg80UZ9wwVwpqBDO8otYgguM5c8KXjPvK5NJLlVlP6yyEdQzPMpc_JgfNovFPCXgsdLmoc1EJZIpCVa7mirGsQsovpE3IaLCUdr1qeUieMdfIXoJtdbStDrbV0bYJebs7Y9kpdvyl7ftg_F27oLUdC9ADde-B-l8emJCjwXV0PwCsNQtZwNDXhUrIq101frohHmMav9isNUJhKQrFVZGQJ52n7XrCAnMsyywhcs8H97q6X9PMplEePMSyy1I9-x_P9pzcDW8r_HzJ5BE5aFcb_wJRWGtfxg_uFxWZMoM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFAeMjbKBDQkg8RE2cOIl5QV3pNBBMFaPS3iLHcWhFl2Rtiugfxv_HnZO0FKG9Rf5IrNz5_Duf_TvGXktVKMmzwjW8QAdFesKVkY5cibpFYC4Wluz5y0V0Pg0_XYmrbsNt1R2r7G2iNdR5pWmPfMAprRJ2FvJ9feNS1iiKrnYpNO6yQzTBCer54en4YvK1t8WI1oXfBifRFZODopyt6fq5T5TZMuJ7i5Hl7P8f0Pz3vORfC9DZA3a_Q44wbEX9kN0x5SN2NCzRa77ewBuwZzntJvkR-z2E0Y7WG3rmEagKuKxxvYJJm6obKBXaYgWIXLHRDyyYVHObOwJrLJN4s3oHfeZRaGaqgc-UVw1UmcO0rvFp_KtZmmsE8_BhjjYIQfiuL6ilgVF7Gn6Bn802oOASX49f-lj-RD8dBQsdQ-7mMZuejb-Nzt0uQYOrESg1dlfOoJHIfBnyUHGdCE8JrsLcyxQiuTDgWpiEhyZXQWxi6WfGK3wK76jQ93XwhB2UVWmeMTBYqANRBCIX6DEKmesilJz7Obr-Is4cNuglleqOvZySaCxS9GJItqmVbUqyTa1sHfZ226NumTtuaXtKwt-2I85tW1Atv6fdFE4Nmrco9pIwo_C2jJXSXuZxHSmt4ywJHHbSq07aGYJVulNbh73aVuMUpriMKk21XqUIiWMRyVBGDnvaatp2JJw8yCTxHRbv6eDeUPdryvnM0oRTTDtJ5PPbh3XM7tF_oOuVPD5hB81ybV4gzmqyl91k-gMzAiut
  priority: 102
  providerName: ProQuest
Title A Comparative Analysis of Speed Profile Models for Ankle Pointing Movements: Evidence that Lower and Upper Extremity Discrete Movements are Controlled by a Single Invariant Strategy
URI https://www.ncbi.nlm.nih.gov/pubmed/25505881
https://www.proquest.com/docview/2292072959
https://www.proquest.com/docview/1637569496
https://pubmed.ncbi.nlm.nih.gov/PMC4245889
https://doaj.org/article/e42567084b274297aac0b02c6acc7b83
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbQ9sILAsaPwKiMhJB4KEscO4mREOpKx0BsqhiV-hbZjkMruqS0KVr_MP4_7pykpajwEkW240S5O_s7n_0dIS-kypVkOu9aloODIn3RlZGJuhJ0C8FcLBzZ88VldD7in8ZivD0e3fzA5V7XDvNJjRaz1zc_1u_A4N-ixwnz7UleTFZ4qDxAImyJA_IhzEsRumIXfBNTAOTukjEGUQTuFwCdOmi5twekCEboniTBznzlaP33YdG_t1T-MUed3SV3GnBJe7U23CO3bHGfHPUKcKyv1_Qldds93Tr6EfnVo_0t8zdtyUlomdOrOUxpdFhn86aYLW22pABuodF3KBiWU5deAmoc2Xi1fEPb5KS0mqiKfsbUa1QVGR3N53A3uKkW9hrwPn0_hWEKcPr2WaoWlvbrDfMzeK1eU0WvoHt408fiJ7jyIHvakOiuH5DR2eBr_7zb5HDoGsBSlVu4szCO6EByxhUzifCVYIpnvlYA9njIjLAJ4zZTYWxjGWjr5wFGgBQPAhM-JAdFWdjHhFooNKHIQ5EJcCqFzEzOJWNBZjUMPNojJ62kUtMQnGOejVkKjg6KOXViTlHMqROzR15tnpjX5B7_aXuKwt-0Q1puV1AuvqWNlacWRsAo9hOuMQIuY6WMr31mImVMrJPQI8et6qStqqcME4aBWQjpkeebarByDN2owparZQqoORaR5DLyyKNa0zZf0mqqR-IdHdz51N2aYjpxTOIY9k4S-eSffT4lt_EX4OFLFh-Tg2qxss8AhVW6Qw5PB5fDLx23igHXD-Og4wzuN0peMyA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCBgfgQFGAiQeqiVOnMRICHVdp5Z1VcVWaW-Z4zi0oktKmwL9p3jj_-POSVqK0N72FvkjsXLn8_189v0IeS1kKgWL06ZmKQAUYfOm8JXfFKBb6MwF3CR7Ph343ZH36YJf7JBf9V0YPFZZ20RjqJNc4R75AUNaJejMxcfZtyayRmF0tabQKNXiRK9-AGRbfOgdgXzfMHbcOW93mxWrQFPB6l6YrSQNmh0DfGeeZCrktuRMeokdS3A_PJcprkPm6US6gQ6EE2s7dTAmIT3HUS689xbZ9fBGa4PsHnYGw8-17Qd0wJ0yGArQTxyk2XiJ190dTNEtfLa1-BmOgP85tv-ez_xrwTu-R-5Wniptlap1n-zo7AHZa2WA0q9W9C01Z0fNpvwe-d2i7U0acVpnOqF5Ss9msD7SYUkNTpF6bbqg4ClDo69QMMwnhqsCakzm8mLxntZMp7QYy4L2kceNyiyho9kMnjo_i7m-AvBAjyZg88Dp3_Slcq5puzx9P4XPxisq6Rm8Hr7Uy75LmG1ZQauMvKuHZHQjontEGlme6SeEaihULk9dnnBAqFwkKvUEY06iY7BisUUOaklFqsqWjqQd0whQE8o2MrKNULaRka1F3q17zMpMIde0PUThr9thjm9TkM-_RJXJiDSYUz-wQy_GcLoIpFR2bDPlS6WCOHQtsl-rTlQZnkW0mSYWebWuBpOBcSCZ6Xy5iMAFD7gvPOFb5HGpaeuRMESsYehYJNjSwa2hbtdkk7FJS44x9DAUT68f1ktyu3t-2o_6vcHJM3IH_wle7WTBPmkU86V-Dj5eEb-oJhYllzc9l_8AffJmgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDA-AgMOCZB4qJo4cRIjIdT1QysbVcWotLfMcRxa0SWlTYH-Ybzw13F2kpYitLe9VY6dWL3z3f189v0IeclFKjiN06aiKQIUbrMm96Xf5KhbOpgLmCn2_HHoH4-9D-fsfI_8ru_C6GOVtU00hjrJpd4jb1FNq4SDGW-l1bGIUbf_fv6tqRmkdKa1ptMoVeRErX8gfFu-G3RR1q8o7fc-d46bFcNAU6KnL8y2kkItjxHKU09QGTJbMCq8xI4FhiKeSyVTIfVUItxABdyJlZ06Oj8hPMeRLr73BtkP0Ct6DbJ_1BuOPtV-AJECc8rEKMJAnHU2Wemr744u1819uuMIDV_A_4Lcf89q_uX8-nfI7SpqhXapZnfJnsrukYN2hoj9cg2vwZwjNRv0B-RXGzrbkuJQVz2BPIWzOfpKGJU04aBp2GZLwKgZO33FhlE-NbwV-MRUMS-Wb6FmPYViIgo41ZxuILIExvM5_ur9LBbqEoEEdKdo_xAAbMeCWCjolCfxZ_jZeA0CzvD1-KVB9l3gyssKqKrzru-T8bWI7gFpZHmmHhFQ2ChdlrosYYhWGU9k6nFKnUTFaNFii7RqSUWyqpyuCTxmESIoLdvIyDbSso2MbC3yZjNiXlYNuaLvkRb-pp-u920a8sWXqDIfkULT6gd26MU6tc4DIaQd21T6QsogDl2LHNaqE1VGaBltl4xFXmweo_nQOSGRqXy1jDAcD5jPPe5b5GGpaZuZUI1ew9CxSLCjgztT3X2STSemRLnOp4chf3z1tJ6Tm7iGo9PB8OQJuaX_En3LkwaHpFEsVuophntF_KxaV0Aurnsp_wHzHWqs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Analysis+of+Speed+Profile+Models+for+Ankle+Pointing+Movements%3A+Evidence+that+Lower+and+Upper+Extremity+Discrete+Movements+are+Controlled+by+a+Single+Invariant+Strategy&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Michmizos%2C+Konstantinos+P&rft.au=Vaisman%2C+Lev&rft.au=Krebs%2C+Hermano+Igo&rft.date=2014-11-27&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=8&rft.spage=962&rft_id=info:doi/10.3389%2Ffnhum.2014.00962&rft_id=info%3Apmid%2F25505881&rft.externalDocID=25505881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon