Empagliflozin Ameliorates Preeclampsia and Reduces Postpartum Susceptibility to Adriamycin in a Mouse Model Induced by Angiotensin Receptor Agonistic Autoantibodies

Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later in life. PE is associated with oversecretion of autoantibodies against angiotensin II type 1 receptor (AT1-AA) by the placenta into the mater...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Pharmacology Vol. 13; p. 826792
Main Authors Zhai, Ruonan, Liu, Yuan, Tong, Jiahao, Yu, Ying, Yang, Lin, Gu, Yong, Niu, Jianying
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media SA 23.03.2022
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later in life. PE is associated with oversecretion of autoantibodies against angiotensin II type 1 receptor (AT1-AA) by the placenta into the maternal circulation. Here, we sought to determine the therapeutic value of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin (EMPA) in mice with AT1-AA-induced preeclampsia. Pregnant mice were injected with AT1-AA at gestation day (GD) 13 and treated daily with EMPA until GD 19, at which point some of the maternal mice were sacrificed and assessed. The other maternal mice were labored on time and challenged with adriamycin (ADR) at 12 weeks postpartum; their offspring were assessed for fetal outcomes. We showed that EMPA treatment significantly relieved high systolic blood pressure and proteinuria and ameliorated kidney injury in PE mice without affecting fetal outcomes. EMPA also ameliorated podocyte injury and oxidative stress, reduced the expression of SGLT2 and activated the AMPK/SIRT1 signaling pathway in vivo and in vitro . Remarkably, EMPA treatment during pregnancy reduced ADR-induced kidney and podocyte injury postpartum. These findings suggest that EMPA could be a potential pharmacological agent for PE.
AbstractList Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later in life. PE is associated with oversecretion of autoantibodies against angiotensin II type 1 receptor (AT1-AA) by the placenta into the maternal circulation. Here, we sought to determine the therapeutic value of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin (EMPA) in mice with AT1-AA-induced preeclampsia. Pregnant mice were injected with AT1-AA at gestation day (GD) 13 and treated daily with EMPA until GD 19, at which point some of the maternal mice were sacrificed and assessed. The other maternal mice were labored on time and challenged with adriamycin (ADR) at 12 weeks postpartum; their offspring were assessed for fetal outcomes. We showed that EMPA treatment significantly relieved high systolic blood pressure and proteinuria and ameliorated kidney injury in PE mice without affecting fetal outcomes. EMPA also ameliorated podocyte injury and oxidative stress, reduced the expression of SGLT2 and activated the AMPK/SIRT1 signaling pathway in vivo and in vitro . Remarkably, EMPA treatment during pregnancy reduced ADR-induced kidney and podocyte injury postpartum. These findings suggest that EMPA could be a potential pharmacological agent for PE.
Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later in life. PE is associated with oversecretion of autoantibodies against angiotensin II type 1 receptor (AT1-AA) by the placenta into the maternal circulation. Here, we sought to determine the therapeutic value of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin (EMPA) in mice with AT1-AA-induced preeclampsia. Pregnant mice were injected with AT1-AA at gestation day (GD) 13 and treated daily with EMPA until GD 19, at which point some of the maternal mice were sacrificed and assessed. The other maternal mice were labored on time and challenged with adriamycin (ADR) at 12 weeks postpartum; their offspring were assessed for fetal outcomes. We showed that EMPA treatment significantly relieved high systolic blood pressure and proteinuria and ameliorated kidney injury in PE mice without affecting fetal outcomes. EMPA also ameliorated podocyte injury and oxidative stress, reduced the expression of SGLT2 and activated the AMPK/SIRT1 signaling pathway and . Remarkably, EMPA treatment during pregnancy reduced ADR-induced kidney and podocyte injury postpartum. These findings suggest that EMPA could be a potential pharmacological agent for PE.
Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later in life. PE is associated with oversecretion of autoantibodies against angiotensin II type 1 receptor (AT1-AA) by the placenta into the maternal circulation. Here, we sought to determine the therapeutic value of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin (EMPA) in mice with AT1-AA-induced preeclampsia. Pregnant mice were injected with AT1-AA at gestation day (GD) 13 and treated daily with EMPA until GD 19, at which point some of the maternal mice were sacrificed and assessed. The other maternal mice were labored on time and challenged with adriamycin (ADR) at 12 weeks postpartum; their offspring were assessed for fetal outcomes. We showed that EMPA treatment significantly relieved high systolic blood pressure and proteinuria and ameliorated kidney injury in PE mice without affecting fetal outcomes. EMPA also ameliorated podocyte injury and oxidative stress, reduced the expression of SGLT2 and activated the AMPK/SIRT1 signaling pathway in vivo and in vitro. Remarkably, EMPA treatment during pregnancy reduced ADR-induced kidney and podocyte injury postpartum. These findings suggest that EMPA could be a potential pharmacological agent for PE.Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later in life. PE is associated with oversecretion of autoantibodies against angiotensin II type 1 receptor (AT1-AA) by the placenta into the maternal circulation. Here, we sought to determine the therapeutic value of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin (EMPA) in mice with AT1-AA-induced preeclampsia. Pregnant mice were injected with AT1-AA at gestation day (GD) 13 and treated daily with EMPA until GD 19, at which point some of the maternal mice were sacrificed and assessed. The other maternal mice were labored on time and challenged with adriamycin (ADR) at 12 weeks postpartum; their offspring were assessed for fetal outcomes. We showed that EMPA treatment significantly relieved high systolic blood pressure and proteinuria and ameliorated kidney injury in PE mice without affecting fetal outcomes. EMPA also ameliorated podocyte injury and oxidative stress, reduced the expression of SGLT2 and activated the AMPK/SIRT1 signaling pathway in vivo and in vitro. Remarkably, EMPA treatment during pregnancy reduced ADR-induced kidney and podocyte injury postpartum. These findings suggest that EMPA could be a potential pharmacological agent for PE.
Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later in life. PE is associated with oversecretion of autoantibodies against angiotensin II type 1 receptor (AT1-AA) by the placenta into the maternal circulation. Here, we sought to determine the therapeutic value of the sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin (EMPA) in mice with AT1-AA-induced preeclampsia. Pregnant mice were injected with AT1-AA at gestation day (GD) 13 and treated daily with EMPA until GD 19, at which point some of the maternal mice were sacrificed and assessed. The other maternal mice were labored on time and challenged with adriamycin (ADR) at 12 weeks postpartum; their offspring were assessed for fetal outcomes. We showed that EMPA treatment significantly relieved high systolic blood pressure and proteinuria and ameliorated kidney injury in PE mice without affecting fetal outcomes. EMPA also ameliorated podocyte injury and oxidative stress, reduced the expression of SGLT2 and activated the AMPK/SIRT1 signaling pathway in vivo and in vitro. Remarkably, EMPA treatment during pregnancy reduced ADR-induced kidney and podocyte injury postpartum. These findings suggest that EMPA could be a potential pharmacological agent for PE.
Author Jianying Niu
Yuan Liu
Jiahao Tong
Ying Yu
Ruonan Zhai
Lin Yang
Yong Gu
AuthorAffiliation 1 Department of Nephrology , Shanghai Fifth People’s Hospital , Fudan University , Shanghai , China
2 Department of Nephrology , Huashan Hospital , Fudan University , Shanghai , China
AuthorAffiliation_xml – name: 1 Department of Nephrology , Shanghai Fifth People’s Hospital , Fudan University , Shanghai , China
– name: 2 Department of Nephrology , Huashan Hospital , Fudan University , Shanghai , China
Author_xml – sequence: 1
  givenname: Ruonan
  surname: Zhai
  fullname: Zhai, Ruonan
– sequence: 2
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
– sequence: 3
  givenname: Jiahao
  surname: Tong
  fullname: Tong, Jiahao
– sequence: 4
  givenname: Ying
  surname: Yu
  fullname: Yu, Ying
– sequence: 5
  givenname: Lin
  surname: Yang
  fullname: Yang, Lin
– sequence: 6
  givenname: Yong
  surname: Gu
  fullname: Gu, Yong
– sequence: 7
  givenname: Jianying
  surname: Niu
  fullname: Niu, Jianying
BackLink https://cir.nii.ac.jp/crid/1873679867416735744$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/35401209$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNUREvpA7BBXrBgM4NvceIN0qgqMFIRqMDaOklOpq4SO9gO0vA8PChOp1QtCyzLtnz-_zu-nOfFkfMOi-Ilo2shav22n64hrDnlfF1zVWn-pDhhSomVrhk_erA-Ls5ivKG5Ca2Fks-KY1FKyjjVJ8Xvi3GC3WD7wf-yjmxGHKwPkDCSLwGxHWCcogUCriNX2M3tEvAxTRDSPJKvc2xxSraxg017kjzZdMHCuG8zLHcgn_wcMY8dDmTrFkBHmj3ZuJ31CV3MoitcGD6Qzc47G5NtyWZOHlzm-s5ifFE87WGIeHY3nxbf3198O_-4uvz8YXu-uVy1paJpJTqtJOUStOgFFYyiQpUXVCva6KaCjuua9shKpVF1UrRCqgoFNAAlBxCnxfbA7TzcmCnYEcLeeLDmdsOHncnXtu2ABkrVlbKhuqlBcok167GSUOVUVa1LllnvDqxpbkbsWnQpwPAI-jji7LXZ-Z-m1rVkZZ0Bb-4Awf-YMSYz2vzYwwAO85sarqTmJa_kIn31MNd9kr_fnAXsIGiDjzFgfy9h1CzVZG6rySzVZA7VlD3VP57WJkjWL8e1w3-drw9OZ202LSOrK5FjtaokU5UoKynFH0-x3bs
CitedBy_id crossref_primary_10_1016_j_ejphar_2024_177140
crossref_primary_10_3390_diagnostics13040812
crossref_primary_10_1016_j_ekir_2023_12_019
crossref_primary_10_1080_14740338_2025_2462671
crossref_primary_10_3390_vaccines12090972
crossref_primary_10_3389_fphys_2023_1130116
crossref_primary_10_1007_s10522_023_10038_x
crossref_primary_10_1161_CIRCULATIONAHA_122_061732
crossref_primary_10_1016_j_gmg_2025_100041
crossref_primary_10_1038_s41598_023_46016_z
Cites_doi 10.2337/dc18-2207
10.1161/circulationaha.109.902890
10.1161/hypertensionaha.116.07971
10.1681/asn.v133630
10.7326/0003-4819-159-4-201308200-00007
10.1161/hypertensionaha.117.10803
10.1016/j.ajog.2021.03.024
10.1161/hypertensionaha.113.01115
10.1503/cmaj.190047
10.1016/j.kint.2017.12.027
10.1016/j.autrev.2004.07.002
10.1038/s41581-019-0119-6
10.3389/fendo.2018.00302
10.3810/pgm.2011.07.2302
10.1155/2019/8238727
10.1126/science.1094637
10.1056/NEJMoa2022190
10.1042/cs20100587
10.1242/jcs.001222
10.14814/phy2.13785
10.1038/nm.1856
10.1016/j.ajog.2007.02.007
10.1016/j.genm.2011.04.003
10.1016/j.kint.2019.03.033
10.3389/fendo.2019.00563
10.1177/1535370218755690
10.1155/2012/542042
10.2174/1389201019666180925121254
10.1016/j.jash.2014.01.007
10.1161/hypertensionaha.112.196352
10.1038/ki.2015.198
10.1136/bmj.l2381
10.1016/j.preghy.2018.03.002
10.1161/hypertensionaha.118.12300
10.1146/annurev-physiol-020911-153238
10.1371/journal.pmed.1002875
10.1681/asn.2017010107
10.1080/14767058.2018.1448774
10.1007/s10157-020-01854-3
10.1038/emm.2016.16
10.1016/j.jdiacomp.2018.04.011
10.1007/s12325-021-01735-5
10.1056/NEJMoa2024816
10.1111/j.1440-1797.2010.01383.x
10.1016/s2213-8587(19)30180-9
10.2353/ajpath.2007.070075
10.3390/ijms14023834
10.1161/circulationaha.119.045561
10.1161/hypertensionaha.110.150540
10.1016/s0140-6736(10)60518-1
10.1681/asn.2020010010
10.1172/jci4106
10.1016/j.cmet.2020.06.020
10.1172/jci14629
10.1155/2020/4561083
10.1056/NEJMoa1811744
10.1172/jci.insight.123130
10.1074/jbc.M110.163667
10.1172/jci.insight.98720
10.1152/ajprenal.00257.2015
10.1007/bf00240371
10.1161/hypertensionaha.109.140061
10.1159/000494744
10.3389/fendo.2018.00421
10.1056/NEJMoa0706790
10.1093/eurheartj/ehz486
ContentType Journal Article
Copyright Copyright © 2022 Zhai, Liu, Tong, Yu, Yang, Gu and Niu.
Copyright © 2022 Zhai, Liu, Tong, Yu, Yang, Gu and Niu. 2022 Zhai, Liu, Tong, Yu, Yang, Gu and Niu
Copyright_xml – notice: Copyright © 2022 Zhai, Liu, Tong, Yu, Yang, Gu and Niu.
– notice: Copyright © 2022 Zhai, Liu, Tong, Yu, Yang, Gu and Niu. 2022 Zhai, Liu, Tong, Yu, Yang, Gu and Niu
DBID RYH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphar.2022.826792
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Zhai et al
EISSN 1663-9812
ExternalDocumentID oai_doaj_org_article_a56d54b09b8a424e81fe74a796078951
PMC8984158
35401209
10_3389_fphar_2022_826792
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
RYH
AAYXX
CITATION
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c560t-3d964024a93f30310e6e63030960b9b7ad2980fe1569e6d43c3467e3abaa52aa3
IEDL.DBID M48
ISSN 1663-9812
IngestDate Wed Aug 27 01:05:43 EDT 2025
Thu Aug 21 13:40:19 EDT 2025
Fri Jul 11 00:29:23 EDT 2025
Thu Apr 03 07:00:47 EDT 2025
Tue Jul 01 03:27:58 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
Thu Jun 26 21:25:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords autoantibody against angiotensin II type 1 receptor
empagliflozin
preeclampsia
oxidative stress
podocyte
Language English
License Copyright © 2022 Zhai, Liu, Tong, Yu, Yang, Gu and Niu.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-3d964024a93f30310e6e63030960b9b7ad2980fe1569e6d43c3467e3abaa52aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Daniel Van Raalte, Academic Medical Center, Netherlands
Mark Smits, Amsterdam University Medical Center, Netherlands
Reviewed by: Tomohiro Nishimura, Keio University, Japan
This article was submitted to Renal Pharmacology, a section of the journal Frontiers in Pharmacology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphar.2022.826792
PMID 35401209
PQID 2649252748
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a56d54b09b8a424e81fe74a796078951
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8984158
proquest_miscellaneous_2649252748
pubmed_primary_35401209
crossref_primary_10_3389_fphar_2022_826792
crossref_citationtrail_10_3389_fphar_2022_826792
nii_cinii_1873679867416735744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-23
PublicationDateYYYYMMDD 2022-03-23
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-23
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in Pharmacology
PublicationTitleAlternate Front Pharmacol
PublicationYear 2022
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Hastie (B18) 2019; 73
Lee (B31) 2011; 16
Martinez-Fierro (B34) 2018; 243
Dechend (B13) 2005; 4
Heerspink (B19) 2018; 94
Parrish (B45) 2011; 8
Neuen (B39) 2019; 191
Xiong (B61) 2011; 286
Campbell (B7) 2018; 19
Packer (B42) 2020; 383
Kim (B29) 2016; 48
Viana-Mattioli (B55) 2020; 2020
Tenório (B52) 2019; 2019
Yu (B63) 2018; 43
Basile (B2) 2011; 123
Siddiqui (B51) 2010; 55
Tomita (B53) 2020; 32
Cosentino (B9) 2020; 41
Covella (B10) 2019; 96
Georgianos (B16) 2019; 42
Phipps (B47) 2019; 15
Brown (B3) 2018; 72
Garovic (B15) 2007; 196
Horio (B22) 2011; 121
Martin (B33) 2018; 9
Mima (B35) 2018; 32
Mosenzon (B37) 2019; 7
Perkovic (B46) 2019; 380
Greka (B17) 2012; 74
Yanagida-Asanuma (B62) 2007; 171
Kawachi (B25) 2020; 24
Kerjaschki (B26) 2001; 108
Burton (B6) 2019; 366
Wang (B60) 2018; 6
Irani (B24) 2010; 55
Zhou (B65) 2010; 121
Packer (B44); 31
Vasilakou (B54) 2013; 159
Khashan (B28) 2019; 16
Roset Bahmanyar (B48) 2021; 225
Vikse (B56) 2008; 359
Cassis (B8) 2018; 3
Mima (B36) 2021; 38
Osorio (B41) 2012; 2012
Zhou (B66) 2008; 14
Hogan (B21) 2010; 375
Huang (B23) 2007; 120
Packer (B43); 141
Saleem (B49) 2002; 13
Brunet (B4) 2004; 303
Salminen (B50) 2013; 14
Zhang (B64) 2017; 28
Koroglu (B30) 2019; 32
Lumbers (B32) 2019; 10
Wan (B58) 2018; 9
Dong (B14) 2015; 88
Heerspink (B20) 2020; 383
Wang (B59) 2015; 309
Craici (B11) 2013; 61
Osataphan (B40) 2019; 4
Wallukat (B57) 1999; 103
Baker (B1) 2014; 8
Mundel (B38) 1995; 192
Cunningham (B12) 2016; 68
Bullo (B5) 2012; 60
Kerley (B27) 2018; 14
References_xml – volume: 42
  start-page: 693
  year: 2019
  ident: B16
  article-title: Ambulatory Blood Pressure Reduction with SGLT-2 Inhibitors: Dose-Response Meta-Analysis and Comparative Evaluation with Low-Dose Hydrochlorothiazide
  publication-title: Diabetes Care
  doi: 10.2337/dc18-2207
– volume: 121
  start-page: 436
  year: 2010
  ident: B65
  article-title: Angiotensin Receptor Agonistic Autoantibody-Mediated Tumor Necrosis Factor-Alpha Induction Contributes to Increased Soluble Endoglin Production in Preeclampsia
  publication-title: Circulation
  doi: 10.1161/circulationaha.109.902890
– volume: 68
  start-page: 1308
  year: 2016
  ident: B12
  article-title: Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor Enhance Angiotensin II-Induced Renal Vascular Sensitivity and Reduce Renal Function during Pregnancy
  publication-title: Hypertens
  doi: 10.1161/hypertensionaha.116.07971
– volume: 13
  start-page: 630
  year: 2002
  ident: B49
  article-title: A Conditionally Immortalized Human Podocyte Cell Line Demonstrating Nephrin and Podocin Expression
  publication-title: J. Am. Soc. Nephrol. JASN
  doi: 10.1681/asn.v133630
– volume: 159
  start-page: 262
  year: 2013
  ident: B54
  article-title: Sodium-glucose Cotransporter 2 Inhibitors for Type 2 Diabetes: a Systematic Review and Meta-Analysis
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-159-4-201308200-00007
– volume: 72
  start-page: 24
  year: 2018
  ident: B3
  article-title: Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice
  publication-title: Hypertension
  doi: 10.1161/hypertensionaha.117.10803
– volume: 225
  start-page: 43
  year: 2021
  ident: B48
  article-title: Women and Babies Are Dying from Inertia: a Collaborative Framework for Obstetrical Drug Development Is Urgently Needed
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2021.03.024
– volume: 61
  start-page: 1289
  year: 2013
  ident: B11
  article-title: Podocyturia Predates Proteinuria and Clinical Features of Preeclampsia: Longitudinal Prospective Study
  publication-title: Hypertens
  doi: 10.1161/hypertensionaha.113.01115
– volume: 191
  start-page: E1128
  year: 2019
  ident: B39
  article-title: Sodium-glucose Cotransporter Inhibitors in Type 2 Diabetes: Thinking beyond Glucose Lowering
  publication-title: CMAJ : Can. Med. Assoc. J. = J. de l'Association medicale canadienne
  doi: 10.1503/cmaj.190047
– volume: 94
  start-page: 26
  year: 2018
  ident: B19
  article-title: Renoprotective Effects of Sodium-Glucose Cotransporter-2 Inhibitors
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2017.12.027
– volume: 4
  start-page: 61
  year: 2005
  ident: B13
  article-title: Activating Auto-Antibodies against the AT1 Receptor in Preeclampsia
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2004.07.002
– volume: 15
  start-page: 275
  year: 2019
  ident: B47
  article-title: Pre-eclampsia: Pathogenesis, Novel Diagnostics and Therapies
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-019-0119-6
– volume: 9
  start-page: 302
  year: 2018
  ident: B33
  article-title: Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and beyond
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2018.00302
– volume: 123
  start-page: 38
  year: 2011
  ident: B2
  article-title: A New Approach to Glucose Control in Type 2 Diabetes: the Role of Kidney Sodium-Glucose Co-transporter 2 Inhibition
  publication-title: Postgrad. Med.
  doi: 10.3810/pgm.2011.07.2302
– volume: 2019
  start-page: 8238727
  year: 2019
  ident: B52
  article-title: Cross-Talk between Oxidative Stress and Inflammation in Preeclampsia
  publication-title: Oxid. Med. Cel. Longev.
  doi: 10.1155/2019/8238727
– volume: 303
  start-page: 2011
  year: 2004
  ident: B4
  article-title: Stress-dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase
  publication-title: Science
  doi: 10.1126/science.1094637
– volume: 383
  start-page: 1413
  year: 2020
  ident: B42
  article-title: Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa2022190
– volume: 121
  start-page: 191
  year: 2011
  ident: B22
  article-title: Cellular and Molecular Effects of Sirtuins in Health and Disease
  publication-title: Clin. Sci.
  doi: 10.1042/cs20100587
– volume: 120
  start-page: 2479
  year: 2007
  ident: B23
  article-title: Dynamic FoxO Transcription Factors
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.001222
– volume: 6
  start-page: e13785
  year: 2018
  ident: B60
  article-title: Loss of Slit Protein Nephrin Is Associated with Reduced Antioxidant Superoxide Dismutase Expression in Podocytes Shed from Women with Preeclampsia
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.13785
– volume: 14
  start-page: 855
  year: 2008
  ident: B66
  article-title: Angiotensin Receptor Agonistic Autoantibodies Induce Pre-eclampsia in Pregnant Mice
  publication-title: Nat. Med.
  doi: 10.1038/nm.1856
– volume: 196
  start-page: 320e1
  year: 2007
  ident: B15
  article-title: Urinary Podocyte Excretion as a Marker for Preeclampsia
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2007.02.007
– volume: 8
  start-page: 184
  year: 2011
  ident: B45
  article-title: Angiotensin II Type 1 Autoantibody Induced Hypertension during Pregnancy Is Associated with Renal Endothelial Dysfunction
  publication-title: Gend. Med.
  doi: 10.1016/j.genm.2011.04.003
– volume: 96
  start-page: 711
  year: 2019
  ident: B10
  article-title: A Systematic Review and Meta-Analysis Indicates Long-Term Risk of Chronic and End-Stage Kidney Disease after Preeclampsia
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2019.03.033
– volume: 10
  start-page: 563
  year: 2019
  ident: B32
  article-title: Causes and Consequences of the Dysregulated Maternal Renin-Angiotensin System in Preeclampsia
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2019.00563
– volume: 243
  start-page: 576
  year: 2018
  ident: B34
  article-title: Current Model Systems for the Study of Preeclampsia
  publication-title: Exp. Biol. Med. (Maywood)
  doi: 10.1177/1535370218755690
– volume: 2012
  start-page: 542042
  year: 2012
  ident: B41
  article-title: Sodium-glucose Cotransporter Inhibition Prevents Oxidative Stress in the Kidney of Diabetic Rats
  publication-title: Oxid. Med. Cel. Longev.
  doi: 10.1155/2012/542042
– volume: 19
  start-page: 781
  year: 2018
  ident: B7
  article-title: The Role of Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor (AT1-AA) in Pathophysiology of Preeclampsia
  publication-title: Curr. Pharm. Biotechnol.
  doi: 10.2174/1389201019666180925121254
– volume: 8
  start-page: 262
  year: 2014
  ident: B1
  article-title: Effects of Sodium-Glucose Co-transporter 2 Inhibitors on Blood Pressure: a Systematic Review and Meta-Analysis
  publication-title: J. Am. Soc. Hypertens.
  doi: 10.1016/j.jash.2014.01.007
– volume: 60
  start-page: 444
  year: 2012
  ident: B5
  article-title: Pregnancy Outcome Following Exposure to Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Antagonists: a Systematic Review
  publication-title: Hypertens
  doi: 10.1161/hypertensionaha.112.196352
– volume: 88
  start-page: 684
  year: 2015
  ident: B14
  article-title: Towards an Understanding of Kidney Diseases Associated with WT1 Mutations
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.198
– volume: 366
  start-page: l2381
  year: 2019
  ident: B6
  article-title: Pre-eclampsia: Pathophysiology and Clinical Implications
  publication-title: BMJ (Clinical research ed.)
  doi: 10.1136/bmj.l2381
– volume: 14
  start-page: 265
  year: 2018
  ident: B27
  article-title: Biomarkers of Glomerular Dysfunction in Pre-eclampsia - A Systematic Review
  publication-title: Pregnancy Hypertens.
  doi: 10.1016/j.preghy.2018.03.002
– volume: 73
  start-page: 659
  year: 2019
  ident: B18
  article-title: EGFR (Epidermal Growth Factor Receptor) Signaling and the Mitochondria Regulate sFlt-1 (Soluble FMS-like Tyrosine Kinase-1) Secretion
  publication-title: Hypertension
  doi: 10.1161/hypertensionaha.118.12300
– volume: 74
  start-page: 299
  year: 2012
  ident: B17
  article-title: Cell Biology and Pathology of Podocytes
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-020911-153238
– volume: 16
  start-page: e1002875
  year: 2019
  ident: B28
  article-title: Preeclampsia and Risk of End Stage Kidney Disease: A Swedish Nationwide Cohort Study
  publication-title: Plos Med.
  doi: 10.1371/journal.pmed.1002875
– volume: 28
  start-page: 3300
  year: 2017
  ident: B64
  article-title: Lysophosphatidic Acid Receptor Antagonism Protects against Diabetic Nephropathy in a Type 2 Diabetic Model
  publication-title: J. Am. Soc. Nephrol. : JASN
  doi: 10.1681/asn.2017010107
– volume: 32
  start-page: 2735
  year: 2019
  ident: B30
  article-title: Maternal Serum AMP-Activated Protein Kinase Levels in Mild and Severe Preeclampsia
  publication-title: J. Matern. Fetal Neonatal. Med.
  doi: 10.1080/14767058.2018.1448774
– volume: 24
  start-page: 193
  year: 2020
  ident: B25
  article-title: New Insight into Podocyte Slit Diaphragm, a Therapeutic Target of Proteinuria
  publication-title: Clin. Exp. Nephrol.
  doi: 10.1007/s10157-020-01854-3
– volume: 48
  start-page: e224
  year: 2016
  ident: B29
  article-title: AMPK Activators: Mechanisms of Action and Physiological Activities
  publication-title: Exp. Mol. Med.
  doi: 10.1038/emm.2016.16
– volume: 32
  start-page: 720
  year: 2018
  ident: B35
  article-title: Renal protection by Sodium-Glucose Cotransporter 2 Inhibitors and its Underlying Mechanisms in Diabetic Kidney Disease
  publication-title: J. Diabetes Complications
  doi: 10.1016/j.jdiacomp.2018.04.011
– volume: 38
  start-page: 2201
  year: 2021
  ident: B36
  article-title: Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Non-diabetic Chronic Kidney Disease
  publication-title: Adv. Ther.
  doi: 10.1007/s12325-021-01735-5
– volume: 383
  start-page: 1436
  year: 2020
  ident: B20
  article-title: Dapagliflozin in Patients with Chronic Kidney Disease
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa2024816
– volume: 16
  start-page: 30
  year: 2011
  ident: B31
  article-title: Adriamycin Nephropathy: a Model of Focal Segmental Glomerulosclerosis
  publication-title: Nephrology (Carlton)
  doi: 10.1111/j.1440-1797.2010.01383.x
– volume: 7
  start-page: 606
  year: 2019
  ident: B37
  article-title: Effects of Dapagliflozin on Development and Progression of Kidney Disease in Patients with Type 2 Diabetes: an Analysis from the DECLARE-TIMI 58 Randomised Trial
  publication-title: Lancet. Diabetes Endocrinology
  doi: 10.1016/s2213-8587(19)30180-9
– volume: 171
  start-page: 415
  year: 2007
  ident: B62
  article-title: Synaptopodin Protects against Proteinuria by Disrupting Cdc42:IRSp53:Mena Signaling Complexes in Kidney Podocytes
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2007.070075
– volume: 14
  start-page: 3834
  year: 2013
  ident: B50
  article-title: Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms14023834
– volume: 141
  start-page: 2095
  ident: B43
  article-title: Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance
  publication-title: Circulation
  doi: 10.1161/circulationaha.119.045561
– volume: 55
  start-page: 1246
  year: 2010
  ident: B24
  article-title: Autoantibody-mediated Angiotensin Receptor Activation Contributes to Preeclampsia through Tumor Necrosis Factor-Alpha Signaling
  publication-title: Hypertension
  doi: 10.1161/hypertensionaha.110.150540
– volume: 375
  start-page: 1609
  year: 2010
  ident: B21
  article-title: Maternal Mortality for 181 Countries, 1980-2008: a Systematic Analysis of Progress towards Millennium Development Goal 5
  publication-title: Lancet (London, England)
  doi: 10.1016/s0140-6736(10)60518-1
– volume: 31
  start-page: 907
  ident: B44
  article-title: Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors
  publication-title: J. Am. Soc. Nephrol. : JASN
  doi: 10.1681/asn.2020010010
– volume: 103
  start-page: 945
  year: 1999
  ident: B57
  article-title: Patients with Preeclampsia Develop Agonistic Autoantibodies against the Angiotensin AT1 Receptor
  publication-title: J. Clin. Invest.
  doi: 10.1172/jci4106
– volume: 32
  start-page: 404
  year: 2020
  ident: B53
  article-title: SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2020.06.020
– volume: 108
  start-page: 1583
  year: 2001
  ident: B26
  article-title: Caught Flat-Footed: Podocyte Damage and the Molecular Bases of Focal Glomerulosclerosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/jci14629
– volume: 2020
  start-page: 4561083
  year: 2020
  ident: B55
  article-title: In VitroAnalysis of SIRT1 Expression in Plasma and in an Model of Preeclampsia
  publication-title: Oxid. Med. Cel. Longev.
  doi: 10.1155/2020/4561083
– volume: 380
  start-page: 2295
  year: 2019
  ident: B46
  article-title: Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa1811744
– volume: 4
  year: 2019
  ident: B40
  article-title: SGLT2 Inhibition Reprograms Systemic Metabolism via FGF21-dependent and -independent Mechanisms
  publication-title: JCI insight
  doi: 10.1172/jci.insight.123130
– volume: 286
  start-page: 5289
  year: 2011
  ident: B61
  article-title: FoxO1 Mediates an Autofeedback Loop Regulating SIRT1 Expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.163667
– volume: 3
  year: 2018
  ident: B8
  article-title: SGLT2 Inhibitor Dapagliflozin Limits Podocyte Damage in Proteinuric Nondiabetic Nephropathy
  publication-title: JCI insight
  doi: 10.1172/jci.insight.98720
– volume: 309
  start-page: F1009
  year: 2015
  ident: B59
  article-title: Increased Urinary Levels of Podocyte Glycoproteins, Matrix Metallopeptidases, Inflammatory Cytokines, and Kidney Injury Biomarkers in Women with Preeclampsia
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00257.2015
– volume: 192
  start-page: 385
  year: 1995
  ident: B38
  article-title: Structure and Function of Podocytes: an Update
  publication-title: Anat. Embryol. (Berl.)
  doi: 10.1007/bf00240371
– volume: 55
  start-page: 386
  year: 2010
  ident: B51
  article-title: Angiotensin Receptor Agonistic Autoantibody Is Highly Prevalent in Preeclampsia: Correlation with Disease Severity
  publication-title: Hypertension
  doi: 10.1161/hypertensionaha.109.140061
– volume: 43
  start-page: 1666
  year: 2018
  ident: B63
  article-title: Angiotensin II Type I Receptor Agonistic Autoantibody Induces Podocyte Injury via Activation of the TRPC6- Calcium/Calcineurin Pathway in Pre-eclampsia
  publication-title: Kidney Blood Press. Res.
  doi: 10.1159/000494744
– volume: 9
  start-page: 421
  year: 2018
  ident: B58
  article-title: The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity
  publication-title: Front. Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2018.00421
– volume: 359
  start-page: 800
  year: 2008
  ident: B56
  article-title: Preeclampsia and the Risk of End-Stage Renal Disease
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa0706790
– volume: 41
  start-page: 255
  year: 2020
  ident: B9
  article-title: 2019 ESC Guidelines on Diabetes, Pre-diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehz486
SSID ssj0000399364
Score 2.3468459
Snippet Preeclampsia (PE) is the leading cause of maternal and perinatal morbidity and mortality and also is a risk factor for cardiovascular and kidney disease later...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 826792
SubjectTerms autoantibody against angiotensin II type 1 receptor
empagliflozin
oxidative stress
Pharmacology
podocyte
preeclampsia
RM1-950
Therapeutics. Pharmacology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBajp13Gfs_rOjQYPYx6jSVZso7eaCmDjrC10JuRLDk1JHJInEP29-wP3XtymiZjbJdByCFyhKz3ye971tP3CHnfWKdEnbl0ZFidiqywqW4sSz1Db-eazEWx58uv8uJafLnJb3ZKfWFO2CAPPEzcqcmly4UdaVsYwYQvssYrYRQwb1XoeHiagc_bCabiMxj9rhTDNiZEYfq0md8a1P9k7CMwaqXZniOKev3gXkLb_olq_p4xueOCzh-TRxvuSMthzE_IAx-ekuPxID69PqFX92eplif0mI7vZanXz8jPM1j5k2nbTLsfbaDlzE_xeD5QTTpeeF8DNObL1lATHP2Ggq7Y0C37OczRaka_r5YxAyYm065p39HSAXhn6xo6g4-hl91q6SkWV5tSrAhSe0ftmpZh0nYxTz5Av9hHt6DlpAtRIpqWq74D67a2w3zG5-T6_Ozq80W6qdGQ1sCV-pQ7LSEEFUbzhqPMqJdecty3kSOrrTKO6WLUeAgTtZdO8JrDo9lzY43JmTH8BTkIXfCvCPVWN0L6TGtjhBbCALx4nUnoJLfGuoSM7gxW1RsBc6yjMa0gkEEbV9HGFdq4GmyckA_bv8wH9Y6_XfwJUbC9EIW34w8Ax2oDx-pfcEzIEWAIxoffWaE47nJJpL2K50qIhLy7Q1cFCxl3Z0zwYJ8KmKlmOVOiSMjLAW3boeDLOTzknBC1h8O9se63hPY2ioUXugCOVrz-Hzd3SB7ifGEKHuNvyEG_WPkj4GS9fRuX3y9RkTam
  priority: 102
  providerName: Directory of Open Access Journals
Title Empagliflozin Ameliorates Preeclampsia and Reduces Postpartum Susceptibility to Adriamycin in a Mouse Model Induced by Angiotensin Receptor Agonistic Autoantibodies
URI https://cir.nii.ac.jp/crid/1873679867416735744
https://www.ncbi.nlm.nih.gov/pubmed/35401209
https://www.proquest.com/docview/2649252748
https://pubmed.ncbi.nlm.nih.gov/PMC8984158
https://doaj.org/article/a56d54b09b8a424e81fe74a796078951
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBalg9GXsd9ztxYNRh9G3cWWbFkPY3ijpQwywtZC34xkyanBsbPEgXl_z_7Q3clOuoxsEPwQ24fs-6T7ZJ2-I-RNoY3geWD8kQpznweJ9mWhQ9-GGO1MERgn9jz-El9e88830c0eWZe3Gl7gcufUDutJXS-qsx_fuw_Q4d_jjBPi7btifqtQ2jMMz4AsCwkj8j0ITAL76Xhg-25gxmDsBKUCiLO-hNjWr3PutnJA7uNHEdxcuhW0nLY_hKK6LHfR0r-zK_8IVxcPyYOBZ9K0B8Yjsmfrx-Rk0gtVd6f06m7f1fKUntDJnYR194T8OodRYlqVRdX8LGuazmyFW_mBltLJwtocYDRfloqq2tCvKP6KJ5plOwcgrmb022rpsmVc4m1H24amBoA-63IwBj9Fx81qaSkWYqsoVg_JraG6o2k9LRuXU1-DXbTRLGg6bWonJ03TVdsAEkrdYO7jU3J9cX716dIf6jn4OfCq1mdGxjBd5UqygqEkqY1tzHCNJx5pqYUyoUxGhYUppbSx4SxnMIxbprRSUagUe0b266a2Lwi1WhY8toGUSnHJuQIosjyIwUiklTYeGa0dluWD2DnW3KgymPSguzPn7gzdnfXu9sjbzS3zXunjfxd_RBRsLkSRbvdHs5hmQ5_PVBSbiOuR1IniIbdJUFjBlYDHFQkwW48cAYagfXgMEsFwRSxGiixYJDj3yOs1ujLo9LiSo2oL_smAxcowCgVPPPK8R9umKWvMekRs4XCrrdtn6vLWCYsnMgE-lxz-0-ZLcoAvAXPwQvaK7LeLlT0CUtbqY_cx49h1uN_j3jWE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empagliflozin+Ameliorates+Preeclampsia+and+Reduces+Postpartum+Susceptibility+to+Adriamycin+in+a+Mouse+Model+Induced+by+Angiotensin+Receptor+Agonistic+Autoantibodies&rft.jtitle=Frontiers+in+pharmacology&rft.au=Zhai%2C+Ruonan&rft.au=Liu%2C+Yuan&rft.au=Tong%2C+Jiahao&rft.au=Yu%2C+Ying&rft.date=2022-03-23&rft.issn=1663-9812&rft.eissn=1663-9812&rft.volume=13&rft.spage=826792&rft_id=info:doi/10.3389%2Ffphar.2022.826792&rft_id=info%3Apmid%2F35401209&rft.externalDocID=35401209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon