Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles
Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the...
Saved in:
Published in | Journal of neuroengineering and rehabilitation Vol. 16; no. 1; pp. 55 - 16 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
09.05.2019
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions. |
---|---|
AbstractList | Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions. Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions.Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions. Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions. Keywords: Assistance, Compliant actuation, Mechanical compliance, Mechanical design, Lower limb exoskeleton, Rehabilitation Abstract Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions. |
ArticleNumber | 55 |
Audience | Academic |
Author | Torricelli, Diego Moreno, Juan C. Gonzalez-Vargas, Jose Pons, Jose L. Sanchez-Villamañan, Maria del Carmen |
Author_xml | – sequence: 1 givenname: Maria del Carmen surname: Sanchez-Villamañan fullname: Sanchez-Villamañan, Maria del Carmen – sequence: 2 givenname: Jose surname: Gonzalez-Vargas fullname: Gonzalez-Vargas, Jose – sequence: 3 givenname: Diego surname: Torricelli fullname: Torricelli, Diego – sequence: 4 givenname: Juan C. surname: Moreno fullname: Moreno, Juan C. – sequence: 5 givenname: Jose L. surname: Pons fullname: Pons, Jose L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31072370$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURD_gB3BBkbhwSfHYsZNwQKpWFCpV4gIHTpZjT3a9OPZiZ7fw7-uwLXQrkA8ejZ95RzN-T4sjHzwWxUsg5wCteJuAdm1dEegqwqGpuifFCTQ1qwgh7OhBfFycprTOQU14_aw4ZkAayhpyUnxbhHHjrPJT6cINxtLZsS_xZ0jf0eEUfHpXqlJnKOIKfbI7LCPuLN6UwZcj6pXyVitXGkx26ctNtF7bjcP0vHg6KJfwxd19Vny9_PBl8am6_vzxanFxXWkuyFSx3ghKRcsU9rzugTIDqgMFIFjDG0MIpVz07SBUbxSpEc0AjFPOtQCiKTsrrva6Jqi1zP1HFX_JoKz8nQhxKVWcrHYoO6Bm0FQ1tBM1aUirKVCsuRk6Qo3qstb7vdZm249oNPopKncgevji7Uouw04KTkQnIAu8uROI4ccW0yRHmzQ6pzyGbZKUMsi92rbO6OtH6Dpso8-ryhTN39OKmv2llioPYP0Qcl89i8oL3grOO0rmHZz_g8rH4Gh1Ns1gc_6g4NXDQf9MeG-MDDR7QMeQUsRBajupyYZ5buskEDlbUO4tKLMF5WxBOe8QHlXei_-_5hby-tvh |
CitedBy_id | crossref_primary_10_1016_j_bbe_2020_09_004 crossref_primary_10_1177_09544119211032010 crossref_primary_10_3390_s24217095 crossref_primary_10_3390_electronics12163436 crossref_primary_10_3390_s23218801 crossref_primary_10_3390_s23136103 crossref_primary_10_1017_wtc_2022_28 crossref_primary_10_3390_brainsci11040412 crossref_primary_10_1016_j_robot_2021_103846 crossref_primary_10_1016_j_ijmecsci_2022_107687 crossref_primary_10_1007_s42454_023_00048_y crossref_primary_10_1177_20556683221114790 crossref_primary_10_1007_s12206_022_0832_0 crossref_primary_10_1016_j_sna_2024_115207 crossref_primary_10_1186_s12984_022_01122_3 crossref_primary_10_1021_acsami_4c17667 crossref_primary_10_1186_s12984_023_01144_5 crossref_primary_10_1109_TMECH_2022_3206530 crossref_primary_10_3389_frobt_2020_596185 crossref_primary_10_3390_s22062411 crossref_primary_10_1186_s12984_022_00990_z crossref_primary_10_1109_TRO_2024_3381556 crossref_primary_10_1142_S0219876221420123 crossref_primary_10_1186_s12984_023_01269_7 crossref_primary_10_3390_s22239091 crossref_primary_10_3390_robotics9010016 crossref_primary_10_1109_TRO_2024_3502226 crossref_primary_10_1109_TNSRE_2021_3136088 crossref_primary_10_3390_s23136237 crossref_primary_10_1186_s12984_022_01031_5 crossref_primary_10_3389_fbioe_2024_1391322 crossref_primary_10_1007_s42235_022_00289_8 crossref_primary_10_3389_fnhum_2023_1194702 crossref_primary_10_1109_ACCESS_2021_3091649 crossref_primary_10_1155_2023_2052231 crossref_primary_10_3390_brainsci12020198 crossref_primary_10_1007_s40313_021_00863_1 crossref_primary_10_3389_fnbot_2021_620928 crossref_primary_10_3390_app12115393 crossref_primary_10_1038_s41598_023_47430_z crossref_primary_10_1007_s12369_020_00662_9 crossref_primary_10_1109_ACCESS_2024_3414175 crossref_primary_10_3390_s22030884 crossref_primary_10_1016_j_bbe_2020_12_010 crossref_primary_10_3390_app14167108 crossref_primary_10_54097_q2ckxk70 crossref_primary_10_3389_fnbot_2022_948093 crossref_primary_10_1016_j_mechatronics_2024_103171 crossref_primary_10_3390_pr11123278 crossref_primary_10_1080_10255842_2021_1892658 crossref_primary_10_3390_app11010076 crossref_primary_10_1038_s41551_022_00984_1 crossref_primary_10_3390_bioengineering10020187 crossref_primary_10_1109_TMRB_2023_3290982 crossref_primary_10_3389_fbioe_2022_842294 crossref_primary_10_1016_j_apergo_2021_103589 crossref_primary_10_1186_s12938_021_00920_5 crossref_primary_10_1109_ACCESS_2021_3110595 crossref_primary_10_1371_journal_pone_0238247 crossref_primary_10_3389_frobt_2021_602878 crossref_primary_10_14531_ss2020_4_54_67 crossref_primary_10_3389_fnins_2021_660726 crossref_primary_10_1115_1_4066136 crossref_primary_10_1016_j_cobme_2021_100338 crossref_primary_10_1017_wtc_2021_13 crossref_primary_10_3390_electronics13214164 crossref_primary_10_3390_app13021064 crossref_primary_10_1017_S0263574725000220 crossref_primary_10_1007_s11431_022_2145_x crossref_primary_10_1016_j_compbiomed_2024_108752 crossref_primary_10_1109_JSEN_2024_3352005 crossref_primary_10_1515_bmt_2022_0262 crossref_primary_10_3389_frobt_2020_00013 crossref_primary_10_3389_fneur_2024_1361235 crossref_primary_10_1016_j_mechatronics_2021_102608 crossref_primary_10_1016_j_medengphy_2022_103830 crossref_primary_10_1186_s12984_021_00946_9 crossref_primary_10_3389_frobt_2025_1528266 crossref_primary_10_1109_TMRB_2020_3042255 crossref_primary_10_1038_s41467_024_55591_2 crossref_primary_10_1109_TMECH_2022_3167014 crossref_primary_10_3389_fnbot_2023_1127994 crossref_primary_10_1021_acsami_3c15179 crossref_primary_10_1088_1748_3190_ac2e0d crossref_primary_10_1186_s12984_021_00815_5 crossref_primary_10_1109_TMECH_2022_3159506 crossref_primary_10_1097_TGR_0000000000000384 crossref_primary_10_1186_s12984_024_01386_x crossref_primary_10_3390_s22062244 crossref_primary_10_3390_app11115143 crossref_primary_10_1109_LRA_2022_3186066 crossref_primary_10_1109_LRA_2021_3130639 crossref_primary_10_1109_ACCESS_2024_3418452 crossref_primary_10_3390_act12110406 crossref_primary_10_1080_15397734_2023_2252492 crossref_primary_10_1109_ACCESS_2023_3311352 crossref_primary_10_3390_s22113999 crossref_primary_10_1109_TMECH_2021_3063374 crossref_primary_10_3390_act13080284 crossref_primary_10_1016_j_mechmachtheory_2022_104746 crossref_primary_10_1109_TMRB_2020_3048224 crossref_primary_10_3389_frobt_2024_1341580 crossref_primary_10_1109_OJIES_2024_3412809 crossref_primary_10_3390_s23198329 crossref_primary_10_1177_09544119241291194 crossref_primary_10_4995_riai_2023_17839 crossref_primary_10_1007_s11431_020_1802_2 crossref_primary_10_3233_WOR_205012 crossref_primary_10_3390_machines11110997 crossref_primary_10_1007_s12008_024_02076_7 crossref_primary_10_1109_LRA_2021_3091698 crossref_primary_10_3389_frobt_2020_561774 crossref_primary_10_47836_mjmhs_19_6_41 crossref_primary_10_1146_annurev_control_071822_095355 crossref_primary_10_1186_s12984_020_00750_x crossref_primary_10_3390_s20154346 crossref_primary_10_1109_TMECH_2023_3299117 |
Cites_doi | 10.1016/j.robot.2014.08.015 10.1142/S0219843607001126 10.1145/3133793.3133810 10.1109/BIOROB.2014.6913827 10.1109/ICSTCC.2013.6688977 10.1109/ICORR.2015.7281185 10.1007/978-3-662-43645-5 10.1109/IROS.2009.5354029 10.1109/BIOROB.2014.6913857 10.1109/TNSRE.2003.823266 10.1115/1.4031123 10.1109/ICORR.2013.6650381 10.1109/TRO.2012.2226381 10.1109/ICORR.2011.5975452 10.1109/ICORR.2011.5975471 10.1186/s12984-017-0247-9 10.1109/IROS.2012.6386260 10.1136/rmdopen-2015-000202 10.1007/s11633-006-0271-x 10.1109/TRO.2015.2457314 10.1155/2011/284352 10.1177/1687814015590988 10.1080/10790268.2017.1319033 10.1117/12.548000 10.1109/IROS.2017.8205981 10.1109/ICAR.2013.6766567 10.1109/IROS.2016.7759140 10.1109/ICRA.2015.7139347 10.1007/s10514-016-9591-z 10.1109/ICORR.2015.7281263 10.1109/BIOROB.2014.6913859 10.1109/EMBC.2012.6347391 10.1007/s11465-011-0206-2 10.1109/TNSRE.2014.2365697 10.1109/BIOROB.2014.6913824 10.1109/BIOROB.2006.1639137 10.1109/BIOROB.2016.7523798 10.1109/TRO.2011.2178151 10.1145/3197768.3197779 10.1007/978-3-319-46532-6_4 10.1109/ICRA.2013.6631046 10.1109/ICRA.2013.6630870 10.1109/ICORR.2017.8009487 10.1145/2769493.2769589 10.1109/37.833638 10.1109/ICEEE.2012.6421205 10.1109/AIM.1999.803231 10.1109/ROBOT.2008.4543387 10.1109/ROBOT.2007.363543 10.1109/MRA.2008.927689 10.1109/ICIEA.2017.8283080 10.1088/1748-3182/9/1/016007 10.1007/978-3-319-46532-6_42 10.1155/2017/5813154 10.1109/ROBOT.2004.1307425 10.1089/soro.2016.0070 10.1109/TMECH.2013.2268942 10.1109/ROBIO.2012.6490954 10.1016/j.mechmachtheory.2016.08.004 10.1002/mds.20266 10.1007/978-3-319-46532-6_13 10.1109/IROS.2013.6696472 10.2514/6.2013-5510 10.1109/BIOROB.2010.5626010 10.1109/BIOROB.2016.7523696 10.1016/j.robot.2013.06.009 10.1115/1.4007695 10.1186/1743-0003-6-23 10.1109/EMBC.2014.6944497 10.1109/BIOROB.2014.6913902 10.1002/9780470987667 10.1109/JSEN.2018.2852363 10.1115/1.2264391 10.1163/016918611X558225 10.1109/IROS.2018.8594211 10.1109/URAI.2014.7057413 10.1007/978-1-4471-4141-9 10.1109/ICRA.2016.7487530 10.1115/DSCC2017-5373 10.1108/IR-06-2014-0350 10.1109/MIM.2015.7271219 10.1111/irfi.12020 10.1177/0278364914562476 10.1016/j.medengphy.2016.01.010 10.1109/ICORR.2013.6650455 10.1109/JSYST.2014.2351491 10.3233/BME-151356 10.1109/ICORR.2015.7281186 10.1109/ICORR.2011.5975468 10.1109/ROBOT.2007.363952 10.1126/scitranslmed.aai9084 10.5772/56927 10.1186/1743-0003-11-80 10.1109/MRA.2015.244827 10.1126/scirobotics.aah4416 10.1186/s12984-015-0048-y 10.1177/0278364914566515 10.1109/TMECH.2010.2100046 10.1109/ICORR.2005.1501150 10.13140/RG.2.1.2874.5687 10.1109/BioRob.2012.6290757 10.1109/TNSRE.2016.2521160 10.3182/20140824-6-ZA-1003.00987 10.1186/s12984-018-0360-4 10.1109/ICORR.2017.8009260 10.1109/TMECH.2014.2324036 10.1186/s12984-017-0237-y 10.1007/s10514-016-9551-7 10.1109/MRA.2014.2360283 10.1109/RoMoCo.2013.6614575 10.1109/TMECH.2017.2704665 10.1109/IEMBS.2006.259397 10.1007/978-981-10-9038-7_117 10.1016/j.gaitpost.2005.05.004 10.1088/1748-3190/11/5/051002 10.3389/fnbot.2017.00068 10.1186/s12984-016-0196-8 10.1007/s40430-013-0092-0 10.1109/BIOROB.2010.5627030 10.1109/TNSRE.2016.2523250 10.1109/ICORR.2013.6650387 10.1016/j.robot.2006.02.013 10.1109/TNSRE.2007.903919 10.1080/11762320902879961 10.1186/s12984-016-0150-9 10.1016/j.conengprac.2015.09.008 10.1109/EMBC.2013.6611023 10.1016/j.mechmachtheory.2016.04.012 10.3389/fnins.2016.00359 10.1109/MRA.2009.933629 10.1080/09638280110066352 10.1109/IROS.2011.6048620 10.1186/s12984-016-0111-3 10.5075/epfl-thesis-1906 10.1109/ICARSC.2016.51 10.1109/ROBOT.2008.4543504 10.1109/ICORR.2015.7281188 10.1016/j.clinbiomech.2017.02.013 10.1109/MEMB.2010.936548 10.1109/TRO.2009.2019788.A 10.1109/TMECH.2015.2465849 10.1109/ICInfA.2017.8078920 10.1109/ROBOT.2009.5152394 10.1080/11762320902784393 10.1109/CA.1999.781200 10.1177/1687814015627982 10.1109/ICORR.2011.5975366 10.1016/j.jbiomech.2005.05.018 10.1109/IROS.2013.6696467 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TB 7TK 7TS 7X7 7XB 88C 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 L6V LK8 M0S M0T M1P M7P M7S NAPCQ P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1186/s12984-019-0517-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Databases Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Biological Science Database Engineering Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Occupational Therapy & Rehabilitation Physical Therapy |
EISSN | 1743-0003 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_912dfc2a729640708c212e45df902da9 PMC6506961 A586559202 31072370 10_1186_s12984_019_0517_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GeographicLocations | Singapore |
GeographicLocations_xml | – name: Singapore |
GrantInformation_xml | – fundername: ; grantid: 779963 |
GroupedDBID | --- 0R~ 29L 2QV 2WC 53G 5GY 5VS 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO IHR INH INR IPY ITC KQ8 L6V LK8 M0T M1P M48 M7P M7S ML0 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7QO 7TB 7TK 7TS 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c560t-3bd622683aeb54b123d1a91a1163757d002256b8f6abda04eedf135255c610c23 |
IEDL.DBID | M48 |
ISSN | 1743-0003 |
IngestDate | Wed Aug 27 01:24:53 EDT 2025 Thu Aug 21 13:59:50 EDT 2025 Fri Jul 11 11:29:42 EDT 2025 Fri Jul 25 19:07:02 EDT 2025 Tue Jun 17 21:06:14 EDT 2025 Tue Jun 10 20:22:07 EDT 2025 Thu Jan 02 22:59:21 EST 2025 Thu Apr 24 23:00:12 EDT 2025 Tue Jul 01 02:19:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Mechanical compliance Lower limb exoskeleton Mechanical design Rehabilitation Compliant actuation Assistance |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-3bd622683aeb54b123d1a91a1163757d002256b8f6abda04eedf135255c610c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-019-0517-9 |
PMID | 31072370 |
PQID | 2227238643 |
PQPubID | 55356 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_912dfc2a729640708c212e45df902da9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6506961 proquest_miscellaneous_2231902884 proquest_journals_2227238643 gale_infotracmisc_A586559202 gale_infotracacademiconefile_A586559202 pubmed_primary_31072370 crossref_citationtrail_10_1186_s12984_019_0517_9 crossref_primary_10_1186_s12984_019_0517_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-09 |
PublicationDateYYYYMMDD | 2019-05-09 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of neuroengineering and rehabilitation |
PublicationTitleAlternate | J Neuroeng Rehabil |
PublicationYear | 2019 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | Quy-Thinh Dao (517_CR147) 2018 J Zhang (517_CR18) 2017; 11 517_CR1 Yong-Lae Park (517_CR150) 2014; 9 517_CR51 517_CR158 517_CR157 A Schiele (517_CR91) 2009; 6 H Yu (517_CR41) 2015; 31 517_CR56 517_CR57 517_CR58 517_CR59 Y Ding (517_CR154) 2017; 25 517_CR54 M Cestari (517_CR21) 2015; 20 F Sergi (517_CR128) 2011; 6 JF Veneman (517_CR93) 2007; 15 A Erdogan (517_CR52) 2017; 41 A Calanca (517_CR88) 2016; 21 LM Mooney (517_CR159) 2016; 13 B Vanderborght (517_CR19) 2013; 61 JS Sulzer (517_CR85) 2009; 25 517_CR149 B Jardim (517_CR144) 2014; 36 517_CR148 DP Ferris (517_CR151) 2006; 23 AT Asbeck (517_CR78) 2015; 34 517_CR155 Dino Accoto (517_CR26) 2013; 10 P Beyl (517_CR43) 2014; 19 517_CR44 Jesús Ortiz (517_CR80) 2018 CJ Walsh (517_CR94) 2007; 4 Alan T. Asbeck (517_CR100) 2014; 21 H Vallery (517_CR9) 2008; 15 A Pirjan (517_CR104) 2013; 7 YL Park (517_CR111) 2014; 9 517_CR34 517_CR35 517_CR36 D Paluska (517_CR13) 2006; 54 517_CR30 P Beyl (517_CR46) 2011; 25 517_CR33 517_CR39 X Guan (517_CR83) 2017; 40 H Stolze (517_CR6) 2005; 20 JL Pons (517_CR49) 2008 B Tondu (517_CR45) 2000; 20 GS Sawicki (517_CR153) 2008; 211 Wilian M. dos Santos (517_CR136) 2014; 47 E Lovasz (517_CR2) 2016; 107 MB Yandell (517_CR101) 2017; 14 DW Robinson (517_CR10) 2000 V Grosu (517_CR121) 2017; 22 517_CR22 JL Pons (517_CR5) 2010; 29 AG Leal-Junior (517_CR102) 2018; 18 S Wang (517_CR25) 2015; 23 517_CR28 N d’Elia (517_CR92) 2017; 14 Louis N. Awad (517_CR71) 2017; 9 517_CR117 LM Mooney (517_CR76) 2014; 11 517_CR119 517_CR114 517_CR113 517_CR90 517_CR116 Anil K. Raj (517_CR130) 2011; 2011 517_CR115 517_CR12 F Giovacchini (517_CR53) 2014; 73 517_CR120 517_CR14 517_CR123 517_CR15 517_CR122 517_CR97 N Costa (517_CR146) 2006; 3 GA Holzapfel (517_CR96) 2001; 3 517_CR98 517_CR11 517_CR99 517_CR16 Karen Junius (517_CR55) 2017; 2017 AJ Veale (517_CR7) 2016; 38 517_CR17 G Chen (517_CR31) 2016; 103 Kaci E. Madden (517_CR103) 2015; 137 WM dos Santos (517_CR24) 2017; 58 517_CR81 517_CR82 517_CR106 K Kong (517_CR139) 2012; 17 517_CR84 517_CR108 M Bortole (517_CR3) 2015; 12 L. Demers (517_CR107) 2002; 24 517_CR89 517_CR110 Diego Torricelli (517_CR20) 2016; 11 P Beyl (517_CR42) 2009; 6 517_CR86 517_CR87 V Grosu (517_CR118) 2015; 18 SO Schrade (517_CR40) 2018; 15 W Choi (517_CR29) 2017; 41 M Cestari (517_CR37) 2014; 41 G Morel (517_CR48) 2012; 28 B. T. Quinlivan (517_CR75) 2017; 2 (517_CR134) 2014 517_CR70 KW Hollander (517_CR142) 2006; 128 Khamis H. Al-Yahyaee (517_CR72) 2013; 14 D Torricelli (517_CR109) 2015; 22 517_CR73 Manuel Cestari (517_CR38) 2017; 4 517_CR135 517_CR138 517_CR137 517_CR143 517_CR79 VR Ham (517_CR112) 2009; 16 Giorgio Carpino (517_CR27) 2012; 134 517_CR74 JA Blaya (517_CR145) 2004; 12 517_CR141 517_CR77 517_CR140 C Zhang (517_CR65) 2016; 8 H Aguilar-Sierra (517_CR47) 2015; 7 JC Dean (517_CR105) 2017; 44 M Cempini (517_CR50) 2013; 29 KE Gordon (517_CR152) 2006; 39 GS Sawicki (517_CR69) 2009; 6 C Zhang (517_CR32) 2015; 26 G Grioli (517_CR23) 2013; 34 517_CR129 517_CR60 517_CR62 517_CR125 517_CR124 517_CR127 517_CR126 W Huo (517_CR8) 2014; 10 517_CR67 517_CR132 Y Ding (517_CR156) 2016; 13 517_CR68 517_CR131 517_CR133 517_CR63 517_CR64 517_CR66 (517_CR61) 2012 517_CR4 AJ Young (517_CR95) 2017; 25 |
References_xml | – ident: 517_CR113 – volume: 73 start-page: 123 year: 2014 ident: 517_CR53 publication-title: Rob Auton Syst. doi: 10.1016/j.robot.2014.08.015 – volume: 4 start-page: 487 year: 2007 ident: 517_CR94 publication-title: Int J Humanoid Robot doi: 10.1142/S0219843607001126 – ident: 517_CR66 doi: 10.1145/3133793.3133810 – ident: 517_CR68 doi: 10.1109/BIOROB.2014.6913827 – ident: 517_CR132 doi: 10.1109/ICSTCC.2013.6688977 – ident: 517_CR90 doi: 10.1109/ICORR.2015.7281185 – volume-title: Towards Autonomous Robotic Systems year: 2014 ident: 517_CR134 doi: 10.1007/978-3-662-43645-5 – ident: 517_CR108 doi: 10.1109/IROS.2009.5354029 – ident: 517_CR138 doi: 10.1109/BIOROB.2014.6913857 – volume: 12 start-page: 24 year: 2004 ident: 517_CR145 publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2003.823266 – volume: 137 start-page: 111417 issue: 11 year: 2015 ident: 517_CR103 publication-title: Journal of Mechanical Design doi: 10.1115/1.4031123 – ident: 517_CR115 doi: 10.1109/ICORR.2013.6650381 – volume: 29 start-page: 236 year: 2013 ident: 517_CR50 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2012.2226381 – ident: 517_CR149 doi: 10.1109/ICORR.2011.5975452 – ident: 517_CR14 doi: 10.1109/ICORR.2011.5975471 – volume: 14 start-page: 40 year: 2017 ident: 517_CR101 publication-title: J Neuroeng Rehabil. doi: 10.1186/s12984-017-0247-9 – ident: 517_CR129 doi: 10.1109/IROS.2012.6386260 – volume: 211 start-page: 1402 year: 2008 ident: 517_CR153 publication-title: J Exp Bilogy doi: 10.1136/rmdopen-2015-000202 – volume: 3 start-page: 271 year: 2006 ident: 517_CR146 publication-title: Int J Autom Comput doi: 10.1007/s11633-006-0271-x – volume: 31 start-page: 1089 year: 2015 ident: 517_CR41 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2015.2457314 – volume: 2011 start-page: 1 year: 2011 ident: 517_CR130 publication-title: Journal of Robotics doi: 10.1155/2011/284352 – volume: 7 start-page: 1 year: 2015 ident: 517_CR47 publication-title: Adv Mech Eng. doi: 10.1177/1687814015590988 – volume: 40 start-page: 463 year: 2017 ident: 517_CR83 publication-title: J Spinal Cord Med doi: 10.1080/10790268.2017.1319033 – ident: 517_CR15 doi: 10.1117/12.548000 – ident: 517_CR79 doi: 10.1109/IROS.2017.8205981 – ident: 517_CR137 doi: 10.1109/ICAR.2013.6766567 – ident: 517_CR54 doi: 10.1109/IROS.2016.7759140 – ident: 517_CR63 doi: 10.1109/ICRA.2015.7139347 – volume: 41 start-page: 1221 year: 2017 ident: 517_CR29 publication-title: Auton Robots. doi: 10.1007/s10514-016-9591-z – ident: 517_CR33 doi: 10.1109/ICORR.2015.7281263 – ident: 517_CR59 doi: 10.1109/BIOROB.2014.6913859 – ident: 517_CR99 doi: 10.1109/EMBC.2012.6347391 – volume: 6 start-page: 61 year: 2011 ident: 517_CR128 publication-title: Front Mech Eng doi: 10.1007/s11465-011-0206-2 – volume: 23 start-page: 277 year: 2015 ident: 517_CR25 publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2014.2365697 – ident: 517_CR124 doi: 10.1109/BIOROB.2014.6913824 – ident: 517_CR67 doi: 10.1109/BIOROB.2006.1639137 – ident: 517_CR56 doi: 10.1109/BIOROB.2016.7523798 – ident: 517_CR36 – volume: 28 start-page: 697 year: 2012 ident: 517_CR48 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2011.2178151 – ident: 517_CR74 doi: 10.1145/3197768.3197779 – ident: 517_CR4 doi: 10.1007/978-3-319-46532-6_4 – ident: 517_CR44 doi: 10.1109/ICRA.2013.6631046 – ident: 517_CR135 doi: 10.1109/ICRA.2013.6630870 – ident: 517_CR22 doi: 10.1109/ICORR.2017.8009487 – ident: 517_CR110 doi: 10.1145/2769493.2769589 – ident: 517_CR87 – volume: 20 start-page: 15 year: 2000 ident: 517_CR45 publication-title: IEEE Control Syst doi: 10.1109/37.833638 – ident: 517_CR133 doi: 10.1109/ICEEE.2012.6421205 – ident: 517_CR17 doi: 10.1109/AIM.1999.803231 – ident: 517_CR98 doi: 10.1109/ROBOT.2008.4543387 – ident: 517_CR143 doi: 10.1109/ROBOT.2007.363543 – volume: 15 start-page: 60 year: 2008 ident: 517_CR9 publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2008.927689 – start-page: 351 volume-title: Biosystems & Biorobotics year: 2018 ident: 517_CR80 – ident: 517_CR131 doi: 10.1109/ICIEA.2017.8283080 – volume: 9 start-page: 016007 issue: 1 year: 2014 ident: 517_CR150 publication-title: Bioinspiration & Biomimetics doi: 10.1088/1748-3182/9/1/016007 – ident: 517_CR122 doi: 10.1007/978-3-319-46532-6_42 – volume: 2017 start-page: 1 year: 2017 ident: 517_CR55 publication-title: Applied Bionics and Biomechanics doi: 10.1155/2017/5813154 – ident: 517_CR140 doi: 10.1109/ROBOT.2004.1307425 – volume: 4 start-page: 135 issue: 2 year: 2017 ident: 517_CR38 publication-title: Soft Robotics doi: 10.1089/soro.2016.0070 – volume: 19 start-page: 1046 year: 2014 ident: 517_CR43 publication-title: IEEE/ASME Trans Mechatronics doi: 10.1109/TMECH.2013.2268942 – ident: 517_CR60 doi: 10.1109/ROBIO.2012.6490954 – volume: 107 start-page: 384 year: 2016 ident: 517_CR2 publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2016.08.004 – volume: 20 start-page: 89 year: 2005 ident: 517_CR6 publication-title: Mov Disord Off J Mov Disord Soc doi: 10.1002/mds.20266 – ident: 517_CR58 doi: 10.1007/978-3-319-46532-6_13 – ident: 517_CR51 doi: 10.1109/IROS.2013.6696472 – ident: 517_CR64 doi: 10.2514/6.2013-5510 – ident: 517_CR16 doi: 10.1109/BIOROB.2010.5626010 – ident: 517_CR1 doi: 10.1109/BIOROB.2016.7523696 – volume: 61 start-page: 1601 year: 2013 ident: 517_CR19 publication-title: Rob Auton Syst doi: 10.1016/j.robot.2013.06.009 – volume: 134 start-page: 121002 issue: 12 year: 2012 ident: 517_CR27 publication-title: Journal of Mechanical Design doi: 10.1115/1.4007695 – volume: 6 start-page: 1 year: 2009 ident: 517_CR69 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-6-23 – ident: 517_CR114 doi: 10.1109/EMBC.2014.6944497 – ident: 517_CR34 doi: 10.1109/BIOROB.2014.6913902 – volume-title: Wearable robots: biomechatronic exoskeletons year: 2008 ident: 517_CR49 doi: 10.1002/9780470987667 – volume: 18 start-page: 7085 year: 2018 ident: 517_CR102 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2852363 – volume: 128 start-page: 788 year: 2006 ident: 517_CR142 publication-title: J Biomech Eng doi: 10.1115/1.2264391 – volume: 25 start-page: 513 year: 2011 ident: 517_CR46 publication-title: Adv Robot doi: 10.1163/016918611X558225 – ident: 517_CR86 doi: 10.1109/IROS.2018.8594211 – ident: 517_CR127 doi: 10.1109/URAI.2014.7057413 – volume-title: Advances in Reconfigurable Mechanisms and Robots I year: 2012 ident: 517_CR61 doi: 10.1007/978-1-4471-4141-9 – ident: 517_CR157 doi: 10.1109/ICRA.2016.7487530 – ident: 517_CR117 – ident: 517_CR12 doi: 10.1115/DSCC2017-5373 – volume: 41 start-page: 518 year: 2014 ident: 517_CR37 publication-title: Ind Rob doi: 10.1108/IR-06-2014-0350 – volume: 18 start-page: 5 year: 2015 ident: 517_CR118 publication-title: IEEE Instrum Meas Mag doi: 10.1109/MIM.2015.7271219 – volume: 14 start-page: 295 issue: 2 year: 2013 ident: 517_CR72 publication-title: International Review of Finance doi: 10.1111/irfi.12020 – volume: 34 start-page: 744 year: 2015 ident: 517_CR78 publication-title: Int J Robot Res doi: 10.1177/0278364914562476 – volume: 38 start-page: 317 year: 2016 ident: 517_CR7 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2016.01.010 – ident: 517_CR81 doi: 10.1109/ICORR.2013.6650455 – volume: 10 start-page: 1068 year: 2014 ident: 517_CR8 publication-title: IEEE Syst J doi: 10.1109/JSYST.2014.2351491 – volume: 26 start-page: S647 year: 2015 ident: 517_CR32 publication-title: Biomed Mater Eng doi: 10.3233/BME-151356 – ident: 517_CR30 doi: 10.1109/ICORR.2015.7281186 – ident: 517_CR70 doi: 10.1109/ICORR.2011.5975468 – ident: 517_CR28 doi: 10.1109/ROBOT.2007.363952 – volume: 9 start-page: eaai9084 issue: 400 year: 2017 ident: 517_CR71 publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.aai9084 – volume: 10 start-page: 359 issue: 10 year: 2013 ident: 517_CR26 publication-title: International Journal of Advanced Robotic Systems doi: 10.5772/56927 – volume: 11 start-page: 80 year: 2014 ident: 517_CR76 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-11-80 – volume: 22 start-page: 103 year: 2015 ident: 517_CR109 publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2015.244827 – volume: 2 start-page: eaah4416 issue: 2 year: 2017 ident: 517_CR75 publication-title: Science Robotics doi: 10.1126/scirobotics.aah4416 – volume: 12 start-page: 54 year: 2015 ident: 517_CR3 publication-title: J Neuroeng Rehabil. doi: 10.1186/s12984-015-0048-y – volume: 34 start-page: 727 year: 2013 ident: 517_CR23 publication-title: Int J Robot Res doi: 10.1177/0278364914566515 – ident: 517_CR84 – volume: 17 start-page: 288 year: 2012 ident: 517_CR139 publication-title: IEEE/ASME Trans Mechatronics. doi: 10.1109/TMECH.2010.2100046 – ident: 517_CR125 doi: 10.1109/ICORR.2005.1501150 – ident: 517_CR155 doi: 10.13140/RG.2.1.2874.5687 – volume-title: Design and analysis of series elasticity in closed-loop actuator force control year: 2000 ident: 517_CR10 – ident: 517_CR35 doi: 10.1109/BioRob.2012.6290757 – volume: 25 start-page: 171 year: 2017 ident: 517_CR95 publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2016.2521160 – volume: 47 start-page: 4801 issue: 3 year: 2014 ident: 517_CR136 publication-title: IFAC Proceedings Volumes doi: 10.3182/20140824-6-ZA-1003.00987 – volume: 15 start-page: 18 year: 2018 ident: 517_CR40 publication-title: J Neuroeng Rehabil. doi: 10.1186/s12984-018-0360-4 – volume: 7 start-page: 360 year: 2013 ident: 517_CR104 publication-title: J Inf Syst Oper Manag – ident: 517_CR123 doi: 10.1109/ICORR.2017.8009260 – volume: 20 start-page: 889 year: 2015 ident: 517_CR21 publication-title: IEEE/ASME Trans Mechatronics. doi: 10.1109/TMECH.2014.2324036 – ident: 517_CR11 – volume: 14 start-page: 29 year: 2017 ident: 517_CR92 publication-title: J Neuroeng Rehabil. doi: 10.1186/s12984-017-0237-y – volume: 41 start-page: 743 year: 2017 ident: 517_CR52 publication-title: Auton Robots doi: 10.1007/s10514-016-9551-7 – volume: 21 start-page: 22 issue: 4 year: 2014 ident: 517_CR100 publication-title: IEEE Robotics & Automation Magazine doi: 10.1109/MRA.2014.2360283 – ident: 517_CR119 doi: 10.1109/RoMoCo.2013.6614575 – volume: 22 start-page: 1777 year: 2017 ident: 517_CR121 publication-title: IEEE/ASME Trans Mechatronics. doi: 10.1109/TMECH.2017.2704665 – ident: 517_CR126 doi: 10.1109/IEMBS.2006.259397 – start-page: 631 volume-title: IFMBE Proceedings year: 2018 ident: 517_CR147 doi: 10.1007/978-981-10-9038-7_117 – volume: 23 start-page: 425 year: 2006 ident: 517_CR151 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.05.004 – volume: 11 start-page: 051002 issue: 5 year: 2016 ident: 517_CR20 publication-title: Bioinspiration & Biomimetics doi: 10.1088/1748-3190/11/5/051002 – volume: 11 start-page: 1 year: 2017 ident: 517_CR18 publication-title: Front Neurorobot doi: 10.3389/fnbot.2017.00068 – volume: 13 start-page: 87 year: 2016 ident: 517_CR156 publication-title: J Neuroeng Rehabil. doi: 10.1186/s12984-016-0196-8 – volume: 36 start-page: 501 year: 2014 ident: 517_CR144 publication-title: J Brazilian Soc Mech Sci Eng doi: 10.1007/s40430-013-0092-0 – ident: 517_CR120 doi: 10.1109/BIOROB.2010.5627030 – volume: 25 start-page: 119 year: 2017 ident: 517_CR154 publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2016.2523250 – ident: 517_CR57 doi: 10.1109/ICORR.2013.6650387 – volume: 54 start-page: 667 year: 2006 ident: 517_CR13 publication-title: Rob Auton Syst. doi: 10.1016/j.robot.2006.02.013 – volume: 15 start-page: 379 year: 2007 ident: 517_CR93 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2007.903919 – volume: 6 start-page: 157 year: 2009 ident: 517_CR91 publication-title: Appl Bionics Biomech. doi: 10.1080/11762320902879961 – ident: 517_CR77 doi: 10.1186/s12984-016-0150-9 – volume: 58 start-page: 307 year: 2017 ident: 517_CR24 publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2015.09.008 – ident: 517_CR148 doi: 10.1109/EMBC.2013.6611023 – volume: 103 start-page: 51 year: 2016 ident: 517_CR31 publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2016.04.012 – ident: 517_CR106 doi: 10.3389/fnins.2016.00359 – volume: 16 start-page: 81 year: 2009 ident: 517_CR112 publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2009.933629 – volume: 24 start-page: 21 issue: 1-3 year: 2002 ident: 517_CR107 publication-title: Disability and Rehabilitation doi: 10.1080/09638280110066352 – ident: 517_CR73 doi: 10.1109/IROS.2011.6048620 – volume: 13 start-page: 4 year: 2016 ident: 517_CR159 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-016-0111-3 – ident: 517_CR97 doi: 10.5075/epfl-thesis-1906 – ident: 517_CR39 doi: 10.1109/ICARSC.2016.51 – ident: 517_CR141 doi: 10.1109/ROBOT.2008.4543504 – volume: 9 start-page: 17 year: 2014 ident: 517_CR111 publication-title: Bioinspir Biomim. doi: 10.1088/1748-3182/9/1/016007 – ident: 517_CR158 doi: 10.1109/ICORR.2015.7281188 – volume: 44 start-page: 14 year: 2017 ident: 517_CR105 publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2017.02.013 – volume: 29 start-page: 57 year: 2010 ident: 517_CR5 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2010.936548 – volume: 25 start-page: 539 year: 2009 ident: 517_CR85 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2009.2019788.A – volume: 21 start-page: 613 year: 2016 ident: 517_CR88 publication-title: IEEE/ASME Trans Mechatronics. doi: 10.1109/TMECH.2015.2465849 – ident: 517_CR62 doi: 10.1109/ICInfA.2017.8078920 – ident: 517_CR82 doi: 10.1109/ROBOT.2009.5152394 – volume: 6 start-page: 229 year: 2009 ident: 517_CR42 publication-title: Appl Bionics Biomech doi: 10.1080/11762320902784393 – volume: 3 start-page: 1049 year: 2001 ident: 517_CR96 publication-title: Handb Mater Behav Model doi: 10.1109/CA.1999.781200 – volume: 8 start-page: 1 year: 2016 ident: 517_CR65 publication-title: Adv Mech Eng doi: 10.1177/1687814015627982 – ident: 517_CR89 doi: 10.1109/ICORR.2011.5975366 – volume: 39 start-page: 1832 year: 2006 ident: 517_CR152 publication-title: J Biomech doi: 10.1016/j.jbiomech.2005.05.018 – ident: 517_CR116 doi: 10.1109/IROS.2013.6696467 |
SSID | ssj0034054 |
Score | 2.5651324 |
SecondaryResourceType | review_article |
Snippet | Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and... Abstract Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 55 |
SubjectTerms | Actuation Adaptability Ankle Artificial legs Assistance Automation Biomechanics Compliant actuation Data sheets Design and construction End users Equipment Design Exoskeleton Exoskeleton Device Exoskeletons Feasibility studies Gait Humans International conferences Lower Extremity Lower limb exoskeleton Mechanical compliance Mechanical design Mechanical engineering Mechanical properties Rehabilitation Review Robotics Robots Technology Walking |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KDqU99LF9uU2LCn1AwUS2ZVnqLQ0NoZBSSgLpSei1JHTjDfEG-vM7Y9mLTaG99GqNjKQZzXy2Zj4BvJGIQnR0KpfecSLV5jmiVpV7GYRrxFJpSQXOx1_l0an4clafTa76opywRA-cFm5PF2VY-tI2dD6I9qk8Otso6rDUvAy2L93DmDd-TCUfXCEMEcMZZqHkXodRTVG2hc6JkyrXsyjUk_X_6ZInMWmeLzkJQIcP4N6AHNl-GvFDuBXbBdyd8Aku4PbxcFK-gLdT-mB2krgD2Dv2fcbMvYD73wZFjTKP4MdBn2aOS85WdIcaW11cOhZ_rbufGKMQK3YfmWWUi34dz1P-O0sVMGzdsstItcT9G0OfHcKuxv_53WM4Pfx8cnCUDzcw5B6R0CavXJCIz1Rlo6uFwygXCqsLWyCKa-omEAKopVNLaV2wXGDAXRZEsFp7hGW-rJ7ATrtu4zNgUcWmcCHyBgFniMppFSsv6zJKLiphM-CjRowfFoFuyViZ_jNFSZOUaFCJhpRodAYftl2uEjfH34Q_kZq3gkSr3T9AYzODsZl_GVsG78lIDG1-HJy3Qw0DTpFotMx-TXW-uuRlBrszSdy0ft48mpkZnEZnqCwZERRixAxeb5upJyXCtXF9QzLoMxETKpHB02SV2ykhUsf-Dc-gmdnrbM7zlvbivKcUR5wutSye_49FegF3yrTTcq53YWdzfRNfInLbuFf9Jv0NQeQ-gQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFD7oCqIPXsZbdZUIXkAI22ua-CLr4rgIKyK7sD6F5lJ3cbYdp7Pgz_ecNh2nCPs6SUrTc3K-b5JzvgC8EshClDeSC2tiEtWOObJWya1wuSnzWipBBc5HX8XhSf7ltDgNG25dSKscY2IfqF1raY98j2o2EV4QQD8sf3O6NYpOV8MVGtfhRoJIQyldcv55jMQZkpE8nGQmUux1iG2Sci4UJ2UqriZY1Ev2_x-Yt5BpmjW5BUPze3An8Ee2Pxj8PlzzzQxub6kKzuDmUTgvn8HrbRFhdjwoCLA37PtEn3sGd78Fc419HsCPgz7ZHD88W9BNamxxfmGY_9N2vxCpkDF271nFKCN95c-GLHg21MGwtmEXniqK-ye6PkeELcdd_e4hnMw_HR8c8nAPA7fIh9Y8M04gS5NZ5U2RG8Q6l1QqqRLkcmVROuIBhTCyFpVxVZwj7NYJyawWFsmZTbNHsNO0jX8CzEtfJsb5uETa6bw0SvrMiiL1Is6zvIogHi2ibfgIdFfGQvd_VqTQgxE1GlGTEbWK4N1myHJQ6Liq80cy86YjiWv3P7SrnzqsVa2S1NU2rUo6ksaQKC3iu88LV6s4dRU-5C05iaYQgC9nq1DJgFMkMS29X1C1r0rjNILdSU9cunbaPLqZDqGj0_8cPYKXm2YaSelwjW8vqQ9GTmSGMo_g8eCVmykhX8fxZRxBOfHXyZynLc35WS8sjmxdKJE8vfq1nsGtdFhDPFa7sLNeXfrnyMzW5kW__P4CXrM2pw priority: 102 providerName: ProQuest |
Title | Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31072370 https://www.proquest.com/docview/2227238643 https://www.proquest.com/docview/2231902884 https://pubmed.ncbi.nlm.nih.gov/PMC6506961 https://doaj.org/article/912dfc2a729640708c212e45df902da9 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEB5yQGkferiX2tRsoQcUlOrco1BKEuKGgkMIMbhPi_ZwE-rIqe1A-u87o8NYNBT64gftgXdnZueTduYbgDccUYjyRobcmohItaMQUasMLXeZEdlEKk4JzsNjfjTKvo3z8Qa05a2aDVzc-mpH9aRG8-nuza_fX9DgP1cGL_nHBfosSbEUKiTGqVBtwjY6JkEFDYbZ6lIhRWyS1fmRKSVTp80l561TdNxUxeb_95m95rS6AZVrHmrwEO430JLt1brwCDZ82YN7a4SDPbgzbK7Se_B2nV-YndXkAuwdO-1Qd_fgwUkjybbPY_h-UMWho0zYlIqssenFpWH-Zrb4iU4MweTiEysYBavP_XkdIM_qFBk2K9mlp2TjakZXhY-wq_aD_-IJjAaHZwdHYVOiIbQIlZZhahxHACfTwps8M-gGXVyouIgR5olcOIIIOTdywgvjiihDjzyJiYE1t4jbbJI-ha1yVvrnwLz0IjbORwIRqfPSKOlTy_PE8yhLsyKAqJWIts0mUBmNqa7eYyTXtRA1ClGTELUK4MNqyFVN3vGvzvsk5lVH4t2uHszmP3RjxlrFiZvYpBB0W42npbTo-n2Wu4mKElfgJO9JSTTpK_45WzRJDrhE4tnSezklAqskSgLY6fREq7bd5lbNdGsUmvKWEWIhiAzg9aqZRlKkXOln19QHD1UEjTIL4FmtlaslIZTH8SIKQHT0tbPmbkt5cV5xjiOQ54rHL_5nR1_C3aS2qDBSO7C1nF_7VwjhlqYPm2Is8FcOvvZhe__w-OS0X30O6Vcm-wf0ckOB |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB5VReJ44AjXQgEjUZCQVt3TayMhVAohpU2FUCqVJ7M-QivSbMimAv4Uv5GZPUJWSH3ra2yv1pnxfJ_XM58BnnFkIdJp4XOjAxLVDnxkrcI33CY6S8ZCcipwHh7wwWHy8Sg9WoM_bS0MpVW2MbEK1LYw9I18i2o2EV4QQN_Mfvh0axSdrrZXaNRused-_8QtW_l69x3adzOK-u9HOwO_uVXAN4juCz_WliPnEHHudJpojNw2zGWYh8hMsjSzhGop12LMc23zIEEQGYckGpoapBqGhA4w5F9KYkRyqkzvf2gjf4zkJ2lOTkPBt0rEUkE5HtInJSxfdrCvuiLgfyBYQcJuluYK7PVvwvWGr7Lt2sFuwZqb9uDaiophDy4Pm_P5HmyuihazUa1YwJ6zzx098B7c-NS4R9vnNnzZqZLb0dBsQje3scnJqWbuV1F-R2REhlq-YjmjDPi5O66z7lldd8OKKTt1VMFcPdFWOSls1p4ilHfg8EIsdBfWp8XU3QfmhMtCbV2QIc21TmgpXGx4GjkeJHGSexC0FlGm-RPobo6JqjZHgqvaiAqNqMiISnrwcjlkViuCnNf5LZl52ZHEvKsfivk31cQGJcPIjk2UZ3QEjiFYGOQTLkntWAaRzfEhL8hJFIUcfDmTN5UTOEUS71LbKVUXyyiIPNjo9MRQYbrNrZupJlSV6t_C8uDpsplGUvrd1BVn1AcjNTJRkXhwr_bK5ZRwf4Djs8CDrOOvnTl3W6Ynx5WQOe4OuOThg_Nf6wlcGYyG-2p_92DvIVyN6vXkB3ID1hfzM_cIWeFCP66WIoOvF732_wLmo3I5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compliant+lower+limb+exoskeletons%3A+a+comprehensive+review+on+mechanical+design+principles&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Sanchez-Villama%C3%B1an%2C+Maria+del+Carmen&rft.au=Gonzalez-Vargas%2C+Jose&rft.au=Torricelli%2C+Diego&rft.au=Moreno%2C+Juan+C.&rft.date=2019-05-09&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12984-019-0517-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12984_019_0517_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon |