DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium

Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 28; no. 3; p. 970
Main Authors Sowers, Mark L., Conrad, James W., Chang-Gu, Bruce, Cherryhomes, Ellie, Hackfeld, Linda C., Sowers, Lawrence C.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.
AbstractList Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.
Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.
Audience Academic
Author Sowers, Mark L.
Conrad, James W.
Chang-Gu, Bruce
Cherryhomes, Ellie
Hackfeld, Linda C.
Sowers, Lawrence C.
AuthorAffiliation 1 Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
3 Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
2 MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
AuthorAffiliation_xml – name: 2 MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
– name: 3 Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
– name: 1 Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
Author_xml – sequence: 1
  givenname: Mark L.
  surname: Sowers
  fullname: Sowers, Mark L.
– sequence: 2
  givenname: James W.
  surname: Conrad
  fullname: Conrad, James W.
– sequence: 3
  givenname: Bruce
  orcidid: 0000-0001-8617-0294
  surname: Chang-Gu
  fullname: Chang-Gu, Bruce
– sequence: 4
  givenname: Ellie
  surname: Cherryhomes
  fullname: Cherryhomes, Ellie
– sequence: 5
  givenname: Linda C.
  surname: Hackfeld
  fullname: Hackfeld, Linda C.
– sequence: 6
  givenname: Lawrence C.
  surname: Sowers
  fullname: Sowers, Lawrence C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36770637$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1uEzEQx1eoiH7xAFzQSlx6SfHX2rsXpLQNEKmCguBseb3j4Mi7Tu11VW68A2_Ik-A0LUoKyIfxjP_zs2b0Pyz2Bj9AUbzA6JTSBr3uvQOdHERSI4oagZ4UB5gRNKGINXtb9_3iMMYlQgQzXD0r9ikXAnEqDoqriw_T8kxFKGe32kbrh_IzrJQN5XwYIfTQWTVCzJlxCQYN5UVaObj99ePnp6S6cJeUs-tknW2DTf1x8dQoF-H5fTwqvr6dfTl_P7n8-G5-Pr2c6IqjcUI6WqOq5aapO46rDkOLdS0MdB2phaq56QArjXCL26quK97mwDCjSFOKDKZHxXzD7bxaylWwvQrfpVdW3hV8WEgVRqsdSEUpw0RT0wJjVPGWc1FpzvI-Kmy4yKw3G9YqtXliDcMYlNuB7r4M9ptc-BvZNAQJSjLg5B4Q_HWCOMreRg3OqQF8ipIIUXFcc4qy9NUj6dKnMORVrVWsYbgmW6qFygPYwfj8r15D5VQwSjBuGp5Vp_9Q5dNBb3X2irG5vtPwcnvQPxM--CELxEagg48xgJHajmrMtshk6yRGcu08-Zfzcid-1PkA_3_Pbyg63TI
CitedBy_id crossref_primary_10_3390_ijms26010337
crossref_primary_10_3390_biom13091308
Cites_doi 10.1016/j.dnarep.2021.103051
10.1021/tx700221x
10.1093/nar/gkab057
10.1093/nar/gkr563
10.1093/nar/gkf597
10.1021/bi0273213
10.1007/s12551-022-00952-8
10.3389/fcell.2020.595687
10.1021/jp410034d
10.1016/0921-8734(90)90001-8
10.1021/bi00081a025
10.1080/07391102.1990.10507825
10.1073/pnas.77.4.1956
10.1093/nar/gkv252
10.1093/nar/gkac530
10.1101/cshperspect.a012583
10.1021/acschembio.2c00342
10.3389/fgene.2022.959258
10.1074/jbc.M113.479055
10.1016/j.dnarep.2014.03.017
10.1016/j.bpj.2011.08.049
10.1093/mutage/gev083
10.1016/j.jmb.2014.01.009
10.1021/jacs.8b12748
10.1021/ja902281d
10.1093/nar/gkj421
10.1111/j.1742-4658.2009.07462.x
10.1158/0008-5472.CAN-06-2960
10.1021/bi026997v
10.1073/pnas.1912355117
10.1021/bi00769a019
10.1074/jbc.274.24.17379
10.1038/nbt.3295
10.1093/nar/gki961
10.3390/ijms222212599
10.1038/nchembio.780
10.1371/journal.pbio.1000091
10.1093/nar/gku602
10.1093/nar/gky561
10.1093/nar/gkl348
10.1021/acsbiomedchemau.1c00031
10.1074/jbc.M005962200
10.1073/pnas.48.12.2013
10.3390/biom11091284
10.1007/BF00261686
10.1016/j.dnarep.2014.03.030
10.1038/362709a0
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules28030970
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_a33412c3fbe443a6b6675c6400251f67
PMC9920732
A743211996
36770637
10_3390_molecules28030970
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P30 ES030285
– fundername: NCI NIH HHS
  grantid: CA228085
– fundername: NSF
  grantid: EFRI1933321
– fundername: CPRIT
  grantid: RP170593
– fundername: NIH NCI
  grantid: R01CA228085
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c560t-2d3805b6f98d615d1eb1c87fedd287a86fde1ac01b1b58856bb5841430c330f13
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:32:15 EDT 2025
Thu Aug 21 18:38:39 EDT 2025
Fri Jul 11 02:46:57 EDT 2025
Fri Jul 25 09:32:29 EDT 2025
Tue Jun 17 22:03:51 EDT 2025
Tue Jun 10 21:02:45 EDT 2025
Wed Feb 19 02:23:04 EST 2025
Tue Jul 01 01:21:48 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords base excision repair
pyridostatin
duplex-quadruplex equilibrium
glycosylase
DNA quadruplex
telomere
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-2d3805b6f98d615d1eb1c87fedd287a86fde1ac01b1b58856bb5841430c330f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8617-0294
OpenAccessLink https://doaj.org/article/a33412c3fbe443a6b6675c6400251f67
PMID 36770637
PQID 2774941820
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_a33412c3fbe443a6b6675c6400251f67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920732
proquest_miscellaneous_2775618630
proquest_journals_2774941820
gale_infotracmisc_A743211996
gale_infotracacademiconefile_A743211996
pubmed_primary_36770637
crossref_citationtrail_10_3390_molecules28030970
crossref_primary_10_3390_molecules28030970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230118
PublicationDateYYYYMMDD 2023-01-18
PublicationDate_xml – month: 1
  year: 2023
  text: 20230118
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Rodriguez (ref_45) 2012; 8
Mullaart (ref_19) 1990; 237
Satange (ref_4) 2018; 46
Li (ref_35) 2014; 118
Jaumot (ref_24) 2006; 34
Gellert (ref_7) 1962; 48
ref_11
ref_10
Chambers (ref_6) 2015; 33
Wang (ref_3) 2014; 19
Wallace (ref_1) 2014; 19
Simonsson (ref_32) 1999; 274
Chaires (ref_9) 2010; 277
ref_38
Masaoka (ref_27) 2003; 42
Pettersen (ref_40) 2011; 39
Dianov (ref_44) 1991; 225
Bansal (ref_5) 2022; 13
Holton (ref_28) 2016; 31
Kuznetsova (ref_15) 2020; 8
Panattoni (ref_42) 2022; 17
Bielskute (ref_17) 2021; 49
Zhou (ref_13) 2015; 43
Gray (ref_33) 2014; 426
An (ref_39) 2007; 67
Palumbo (ref_48) 2009; 131
Hsu (ref_26) 2022; 50
Guschlbauer (ref_8) 1990; 8
Bielskute (ref_16) 2019; 141
Theruvathu (ref_30) 2014; 42
Ambrus (ref_21) 2006; 34
Kumar (ref_34) 2005; 33
Lindahl (ref_18) 1993; 362
Phan (ref_22) 2002; 30
Mellac (ref_25) 1993; 32
Bordin (ref_20) 2021; 99
Risitano (ref_23) 2003; 42
Zhou (ref_12) 2013; 288
Goulian (ref_37) 1980; 77
Lech (ref_14) 2011; 101
Fleming (ref_29) 2021; 1
Rangan (ref_36) 2001; 276
Roychoudhury (ref_46) 2020; 117
Lindahl (ref_31) 1972; 11
Boorstein (ref_43) 1992; 12
Rogstad (ref_41) 2007; 20
Krokan (ref_2) 2013; 5
(ref_47) 2022; 14
References_xml – volume: 99
  start-page: 103051
  year: 2021
  ident: ref_20
  article-title: Cellular Response to Endogenous DNA Damage: DNA Base Modifications in Gene Expression Regulation
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2021.103051
– volume: 20
  start-page: 1787
  year: 2007
  ident: ref_41
  article-title: Measurement of the Incorporation and Repair of Exogenous 5-Hydroxymethyl-2′-Deoxyuridine in Human Cells in Culture Using Gas Chromatography-Negative Chemical Ionization-Mass Spectrometry
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx700221x
– volume: 49
  start-page: 2346
  year: 2021
  ident: ref_17
  article-title: Oxidative Lesions Modulate G-Quadruplex Stability and Structure in the Human BCL2 Promoter
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab057
– volume: 39
  start-page: 8430
  year: 2011
  ident: ref_40
  article-title: UNG-Initiated Base Excision Repair Is the Major Repair Route for 5-Fluorouracil in DNA, but 5-Fluorouracil Cytotoxicity Depends Mainly on RNA Incorporation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr563
– volume: 30
  start-page: 4618
  year: 2002
  ident: ref_22
  article-title: Human Telomeric DNA: G-Quadruplex, i-Motif and Watson-Crick Double Helix
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf597
– volume: 42
  start-page: 5003
  year: 2003
  ident: ref_27
  article-title: Mammalian 5-Formyluracil-DNA Glycosylase. 2. Role of SMUG1 Uracil-DNA Glycosylase in Repair of 5-Formyluracil and Other Oxidized And
  publication-title: Biochemistry
  doi: 10.1021/bi0273213
– volume: 14
  start-page: 635
  year: 2022
  ident: ref_47
  article-title: G4-Quadruplex-Binding Proteins: Review and Insights into Selectivity
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-022-00952-8
– volume: 8
  start-page: 595687
  year: 2020
  ident: ref_15
  article-title: Lesion Recognition and Cleavage of Damage-Containing Quadruplexes and Bulged Structures by DNA Glycosylases
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.595687
– volume: 118
  start-page: 931
  year: 2014
  ident: ref_35
  article-title: Unfolding Kinetics of Human Telomeric G-Quadruplexes Studied by NMR Spectroscopy
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp410034d
– volume: 237
  start-page: 189
  year: 1990
  ident: ref_19
  article-title: DNA Damage Metabolism and Aging
  publication-title: Mutat. Res.
  doi: 10.1016/0921-8734(90)90001-8
– volume: 32
  start-page: 7779
  year: 1993
  ident: ref_25
  article-title: Structures of Base Pairs with 5-(Hydroxymethyl)-2′-Deoxyuridine in DNA Determined by NMR Spectroscopy
  publication-title: Biochemistry
  doi: 10.1021/bi00081a025
– volume: 8
  start-page: 491
  year: 1990
  ident: ref_8
  article-title: Four-Stranded Nucleic Acid Structures 25 Years Later: From Guanosine Gels to Telomer Dna
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.1990.10507825
– volume: 77
  start-page: 1956
  year: 1980
  ident: ref_37
  article-title: Methotrexate-Induced Misincorporation of Uracil into DNA
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.4.1956
– volume: 43
  start-page: 4039
  year: 2015
  ident: ref_13
  article-title: The NEIL Glycosylases Remove Oxidized Guanine Lesions from Telomeric and Promoter Quadruplex DNA Structures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv252
– volume: 50
  start-page: 7406
  year: 2022
  ident: ref_26
  article-title: A Combinatorial System to Examine the Enzymatic Repair of Multiply Damaged DNA Substrates
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac530
– volume: 5
  start-page: a012583
  year: 2013
  ident: ref_2
  article-title: Base Excision Repair
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012583
– volume: 17
  start-page: 2781
  year: 2022
  ident: ref_42
  article-title: Epigenetic Pyrimidine Nucleotides in Competition with Natural dNTPs as Substrates for Diverse DNA Polymerases
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.2c00342
– volume: 13
  start-page: 959258
  year: 2022
  ident: ref_5
  article-title: Non-Canonical DNA Structures: Diversity and Disease Association
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.959258
– volume: 288
  start-page: 27263
  year: 2013
  ident: ref_12
  article-title: Neil3 and NEIL1 DNA Glycosylases Remove Oxidative Damages from Quadruplex DNA and Exhibit Preferences for Lesions in the Telomeric Sequence Context
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.479055
– volume: 19
  start-page: 143
  year: 2014
  ident: ref_3
  article-title: Impact of Alternative DNA Structures on DNA Damage, DNA Repair, and Genetic Instability
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2014.03.017
– volume: 101
  start-page: 1987
  year: 2011
  ident: ref_14
  article-title: Effects of Site-Specific Guanine C8-Modifications on an Intramolecular DNA G-Quadruplex
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.08.049
– volume: 31
  start-page: 385
  year: 2016
  ident: ref_28
  article-title: G-Quadruplex DNA Structures Can Interfere with Uracil Glycosylase Activity in Vitro
  publication-title: Mutagenesis
  doi: 10.1093/mutage/gev083
– volume: 426
  start-page: 1629
  year: 2014
  ident: ref_33
  article-title: Folding and Unfolding Pathways of the Human Telomeric G-Quadruplex
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2014.01.009
– volume: 141
  start-page: 2594
  year: 2019
  ident: ref_16
  article-title: Impact of Oxidative Lesions on the Human Telomeric G-Quadruplex
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12748
– volume: 131
  start-page: 10878
  year: 2009
  ident: ref_48
  article-title: Formation of a Unique End-to-End Stacked Pair of G-Quadruplexes in the HTERT Core Promoter with Implications for Inhibition of Telomerase by G-Quadruplex-Interactive Ligands
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902281d
– volume: 34
  start-page: 206
  year: 2006
  ident: ref_24
  article-title: Resolution of a Structural Competition Involving Dimeric G-Quadruplex and Its C-Rich Complementary Strand
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj421
– volume: 277
  start-page: 1098
  year: 2010
  ident: ref_9
  article-title: Human Telomeric G-Quadruplex: Thermodynamic and Kinetic Studies of Telomeric Quadruplex Stability
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.07462.x
– volume: 67
  start-page: 940
  year: 2007
  ident: ref_39
  article-title: 5-Fluorouracil Incorporated into DNA Is Excised by the Smug1 DNA Glycosylase to Reduce Drug Cytotoxicity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2960
– volume: 42
  start-page: 6507
  year: 2003
  ident: ref_23
  article-title: Stability of Intramolecular DNA Quadruplexes: Comparison with DNA Duplexes
  publication-title: Biochemistry
  doi: 10.1021/bi026997v
– volume: 117
  start-page: 11409
  year: 2020
  ident: ref_46
  article-title: Endogenous Oxidized DNA Bases and APE1 Regulate the Formation of G-Quadruplex Structures in the Genome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1912355117
– volume: 11
  start-page: 3618
  year: 1972
  ident: ref_31
  article-title: Rate of Chain Breakage at Apurinic Sites Double-Stranded Deoxyribonucleic Acid
  publication-title: Biochemistry
  doi: 10.1021/bi00769a019
– volume: 274
  start-page: 17379
  year: 1999
  ident: ref_32
  article-title: DNA Tetraplex Formation Studied with Fluorescence Resonance Energy Transfer
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.24.17379
– volume: 33
  start-page: 877
  year: 2015
  ident: ref_6
  article-title: High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3295
– volume: 33
  start-page: 6723
  year: 2005
  ident: ref_34
  article-title: The Effect of Osmolytes and Small Molecule on Quadruplex-WC Duplex Equilibrium: A Fluorescence Resonance Energy Transfer Study
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki961
– ident: ref_11
  doi: 10.3390/ijms222212599
– volume: 12
  start-page: 5536
  year: 1992
  ident: ref_43
  article-title: A Mammalian Cell Line Deficient in Activity of the DNA Repair Enzyme 5-Hydroxymethyluracil-DNA Glycosylase Is Resistant to the Toxic Effects of the Thymidine Analog 5-Hydroxymethyl-2’-Deoxyuridine
  publication-title: Mol. Cell. Biol.
– volume: 8
  start-page: 301
  year: 2012
  ident: ref_45
  article-title: Small-Molecule-Induced DNA Damage Identifies Alternative DNA Structures in Human Genes
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.780
– ident: ref_38
  doi: 10.1371/journal.pbio.1000091
– volume: 42
  start-page: 9063
  year: 2014
  ident: ref_30
  article-title: The Effect of Pot1 Binding on the Repair of Thymine Analogs in a Telomeric DNA Sequence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku602
– volume: 46
  start-page: 6416
  year: 2018
  ident: ref_4
  article-title: A Survey of Recent Unusual High-Resolution DNA Structures Provoked by Mismatches, Repeats and Ligand Binding
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky561
– volume: 34
  start-page: 2723
  year: 2006
  ident: ref_21
  article-title: Human Telomeric Sequence Forms a Hybrid-Type Intramolecular G-Quadruplex Structure with Mixed Parallel / Antiparallel Strands in Potassium Solution
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl348
– volume: 1
  start-page: 44
  year: 2021
  ident: ref_29
  article-title: Binding of AP Endonuclease-1 to G-Quadruplex DNA Depends on the N-Terminal Domain, Mg 2+, and Ionic Strength
  publication-title: ACS Bio. Med. Chem. Au.
  doi: 10.1021/acsbiomedchemau.1c00031
– volume: 276
  start-page: 4640
  year: 2001
  ident: ref_36
  article-title: Induction of Duplex to G-Quadruplex Transition in the c-Myc Promoter Region by a Small Molecule
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M005962200
– volume: 48
  start-page: 2013
  year: 1962
  ident: ref_7
  article-title: Helix Formation by Guanylic Acid
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.48.12.2013
– ident: ref_10
  doi: 10.3390/biom11091284
– volume: 225
  start-page: 448
  year: 1991
  ident: ref_44
  article-title: Repair of Uracil Residues Closely Spaced on the Opposite Strands of Plasmid DNA Results in Double-Strand Break and Deletion Formation
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00261686
– volume: 19
  start-page: 14
  year: 2014
  ident: ref_1
  article-title: Base Excision Repair: A Critical Player in Many Games
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2014.03.030
– volume: 362
  start-page: 709
  year: 1993
  ident: ref_18
  article-title: Instability and Decay of the Primary Structure of DNA
  publication-title: Nature
  doi: 10.1038/362709a0
SSID ssj0021415
Score 2.3886697
Snippet Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 970
SubjectTerms Analysis
base excision repair
Chemical equilibrium
DNA - chemistry
DNA Damage
DNA quadruplex
DNA Repair
duplex-quadruplex equilibrium
Enzymes
Equilibrium
Evaluation
Gene expression
Genomes
glycosylase
Humans
Nucleotides
Oxidation
Oxidative Stress - genetics
pyridostatin
Spectrum analysis
telomere
Uracil-DNA Glycosidase - genetics
Uracil-DNA Glycosidase - metabolism
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmgvoU1fTtPiQqFQMLE1tmydyibZEAoNLTSwN6OX24XEu9ldQ479D_2H_SWdkbWbNYGcjK0xSBpp5hs95mPsYwnWWqFdYgBEkkOZJdJVkEjQ4LisVOq3Yr5diPPL_OukmIQFt2U4Vrm2id5Q25mhNfIjjjhF5pRu_Mv8JiHWKNpdDRQaj9kupS6jI13l5C7gytA79TuZgKH90XVPOOuWxMiUSuIn3vJFPmX_fcO85ZmGpya33NDZM7YX8GM86hX-nD1y7T57crKmbXvBvp9ejOJj9E3x-Lanz4kRZKvpIvaLf_6mCMJLfAvsJPFpN79yt__-_P3RKbvwL_H4ppv62wDd9Ut2eTb-eXKeBNqExCB8WSXcQpUWWjSysohXbIbm2FRl46zF8EhVorEuUybNdKaLqiqExkeOuClFfaVNBq_YTjtr3RsWS6nLVEhnixJyUFy6HAEAh1zwBrtURSxdd2BtQk5xora4qjG2oD6v7_V5xD5vfpn3CTUeEj4mrWwEKRe2_zBb_KrD1KoVoCfmBhqNtQMltMAgyIjch0-NKCP2iXRa04zFyhkVLh5gEyn3VT1CEEV57qSI2OFAEjVnhsXrUVGHmb6s78ZlxD5siulPOr3WulnnZQriJQCUed0Pok2TQJTYxYC1LAfDa9DmYUk7_e3zgEvJ0UDzg4er9ZY95QjMaNkoqw7ZzmrRuXcIpFb6vZ8t_wH_Qx6T
  priority: 102
  providerName: ProQuest
Title DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium
URI https://www.ncbi.nlm.nih.gov/pubmed/36770637
https://www.proquest.com/docview/2774941820
https://www.proquest.com/docview/2775618630
https://pubmed.ncbi.nlm.nih.gov/PMC9920732
https://doaj.org/article/a33412c3fbe443a6b6675c6400251f67
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NBeSt91mi4uFAoFE1uy9TjuJrsNhS5paWBvQi_ThcRJN2vIMf-h_7C_pCPZu6wJtJdebGyNQRqNNN_I0nwA7zl1zjHjM0spy0rKi0x6QTNJDfVECp3HXzFf5uzkrPy8qBY7VF9hT1iXHrhT3KGmOM8SS2vjy5JqZhhCXMvKCI5rFs-Ro8_bBFN9qFWgX-r-YVIM6g8vOqpZfx24mHIZmIl3vFBM1n93St7xScP9kjsOaPYEHvfIMR13NX4K93zzDB4ebQjbnsPp8XycTtArpdObjjgnRXitl6s0LvvFMyIILPGp5yVJj9urc3_z-_bX11a7VXxIpz_bZTwH0F68gLPZ9PvRSdYTJmQWgcs6I46KvDKslsIhUnEFTsRW8No7h4GRFqx2vtA2L0xhKiEqZvBWImLKsafyuqAvYa-5bPxrSKU0PGfSu4pTVDuRqP0coVLJSI0q1QnkGwUq22cTD6QW5wqjiqBzdUfnCXzcfnLVpdL4m_Ak9MpWMGTBji_QNlRvG-pftpHAh9CnKoxVrJzV_ZEDbGLIeqXGCJ9ChjvJEjgYSGLP2WHxxipUP8avFUHkLMuQAD-Bd9vi8GXYt9b4yzbKVIGRgKLMq86Itk2ijKOKKdaSD8xr0OZhSbP8ETOAS0lwaib7_0NJb-ARQeAWlpUKcQB761Xr3yLQWpsR3OcLjlcx-zSCB5Pp_PTbKI6zPw2DKVE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeBgviDvZBgQJhIQULbETx35AqFtbOrZVIG3S3rz4Eqi0pV3biPHGf-B_8KP4JRw7FxpN2tueqtQnkX18rr6cD6E3KdFaU2kCRQgNYpJGATeMBJxIYjBnWei2Yo7GdHQSfz5NTtfQn-YujD1W2dhEZ6j1VNk18h0McQqPbbnxj7PLwKJG2d3VBkKjEosD8_MHpGyLD_t9mN-3GA8Hx3ujoEYVCBR492WANWFhImnOmQZ3riOwVoqludEasoeM0VybKFNhJCOZMJZQCT8xhBUhDCfMIwLfvYPuxoRwq1Fs-KlN8CLwhtXOKTSGOxcVwK1ZWASokFs85BXf5yACrjuCFU_YPaW54vaGD9D9Ol71e5WAPURrpniENvYamLjH6Et_3PN3wRf6g6sKrseHoD6bzH232OhupkA4C081GorfL2fn5urvr99fy0zP3YM_uCwn7vZBefEEndwKQ5-i9WJamOfI51ymIeVGJymJSYa5iSHgwCSmOAeWZh4KGwYKVdcwt1Aa5wJyGctzcY3nHnrfvjKrCnjcRLxrZ6UltLW33R_T-TdRq7LICHh-rEguoXcko5JC0qVo7NK1nKYeemfnVFgLAZ1TWX3RAYZoa22JHgRttq4epx7a7lDCzKlucyMVorYsC_FfDzz0um22b9rTcoWZlo4msTgIBGieVULUDonQFFhMoJdpR7w6Y-62FJPvru445xgcAt68uVuv0Mbo-OhQHO6PD7bQPQxBoV2yitg2Wl_OS_MCgrilfOk0x0dnt62q_wBUC1sr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkIAXxJ2OAUECISFFTXwSO35AqFtbbQyqITGpb1l8Cau0pV3biPHGf-Df8HP4JRw7Sddo0t72VKU-iezjc_XlfIS85aC1ZtL4CoD5EfDQFyYBX4AEQ0WSBW4r5uuI7R1Fn8fxeIP8be7C2GOVjU10hlpPlV0j71KMU0Rky4138_pYxGF_-Gl27lsEKbvT2sBpVCJyYH79xPRt8XG_j3P9jtLh4Pvunl8jDPgKPf3SpxqSIJYsF4lG165DtFwq4bnRGjOJLGG5NmGmglCGMk6SmEn8iTDECHBoQR4CfvcWuc0hDq2O8fFlsheiZ6x2UQFE0D2rwG7NwqJBBcJiI6_5QQcXcNUprHnF9onNNRc4fEDu17Gr16uE7SHZMMUjcne3gYx7TA77o563g37RG1xU0D0eBvjZZO65hUd3SwVDW3yqkVG8fjk7NRf_fv_5VmZ67h68wXk5cTcRyrMn5OhGGPqUbBbTwjwnnhCSB0wYHXOIIKPCRBh8UIgYzZGlWYcEDQNTVdczt7AapynmNZbn6RWed8iH1SuzqpjHdcQ7dlZWhLYOt_tjOv-R1mqdZoBRAFWQS-wdZEwyTMAUi1zqljPeIe_tnKbWWmDnVFZfesAh2rpbaQ8DOFtjT7AO2W5R4sypdnMjFWltZRbppU50yJtVs33TnpwrzLR0NLHFRACkeVYJ0WpIwDiyGLCXvCVerTG3W4rJiatBLgRF50C3ru_Wa3IHlTT9sj86eEHuUYwP7epVmGyTzeW8NC8xnlvKV05xPHJ805r6H0OWX1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Base+Excision+Repair+Intermediates+Influence+Duplex%E2%80%93Quadruplex+Equilibrium&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Sowers%2C+Mark+L.&rft.au=Conrad%2C+James+W.&rft.au=Chang-Gu%2C+Bruce&rft.au=Cherryhomes%2C+Ellie&rft.date=2023-01-18&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=3&rft.spage=970&rft_id=info:doi/10.3390%2Fmolecules28030970&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules28030970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon