DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium
Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 3; p. 970 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium. |
---|---|
AbstractList | Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium. Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium.Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary structures, including the G-quadruplex. These structures can exist within gene promoters, telomeric DNA, and regions of the genome frequently found altered in human cancers. DNA is also subject to hydrolytic and oxidative damage, and its local structure can influence the type of damage and its magnitude. Although the repair of endogenous DNA damage by the base excision repair (BER) pathway has been extensively studied in duplex DNA, substantially less is known about repair in non-duplex DNA structures. Therefore, we wanted to better understand the effect of DNA damage and repair on quadruplex structure. We first examined the effect of placing pyrimidine damage products uracil, 5-hydroxymethyluracil, the chemotherapy agent 5-fluorouracil, and an abasic site into the loop region of a 22-base telomeric repeat sequence known to form a G-quadruplex. Quadruplex formation was unaffected by these analogs. However, the activity of the BER enzymes were negatively impacted. Uracil DNA glycosylase (UDG) and single-strand selective monofunctional uracil DNA glycosylase (SMUG1) were inhibited, and apurinic/apyrimidinic endonuclease 1 (APE1) activity was completely blocked. Interestingly, when we performed studies placing DNA repair intermediates into the strand opposite the quadruplex, we found that they destabilized the duplex and promoted quadruplex formation. We propose that while duplex is the preferred configuration, there is kinetic conversion between duplex and quadruplex. This is supported by our studies using a quadruplex stabilizing molecule, pyridostatin, that is able to promote quadruplex formation starting from duplex DNA. Our results suggest how DNA damage and repair intermediates can alter duplex-quadruplex equilibrium. |
Audience | Academic |
Author | Sowers, Mark L. Conrad, James W. Chang-Gu, Bruce Cherryhomes, Ellie Hackfeld, Linda C. Sowers, Lawrence C. |
AuthorAffiliation | 1 Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA 3 Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA 2 MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA |
AuthorAffiliation_xml | – name: 2 MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA – name: 3 Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA – name: 1 Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA |
Author_xml | – sequence: 1 givenname: Mark L. surname: Sowers fullname: Sowers, Mark L. – sequence: 2 givenname: James W. surname: Conrad fullname: Conrad, James W. – sequence: 3 givenname: Bruce orcidid: 0000-0001-8617-0294 surname: Chang-Gu fullname: Chang-Gu, Bruce – sequence: 4 givenname: Ellie surname: Cherryhomes fullname: Cherryhomes, Ellie – sequence: 5 givenname: Linda C. surname: Hackfeld fullname: Hackfeld, Linda C. – sequence: 6 givenname: Lawrence C. surname: Sowers fullname: Sowers, Lawrence C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36770637$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1uEzEQx1eoiH7xAFzQSlx6SfHX2rsXpLQNEKmCguBseb3j4Mi7Tu11VW68A2_Ik-A0LUoKyIfxjP_zs2b0Pyz2Bj9AUbzA6JTSBr3uvQOdHERSI4oagZ4UB5gRNKGINXtb9_3iMMYlQgQzXD0r9ikXAnEqDoqriw_T8kxFKGe32kbrh_IzrJQN5XwYIfTQWTVCzJlxCQYN5UVaObj99ePnp6S6cJeUs-tknW2DTf1x8dQoF-H5fTwqvr6dfTl_P7n8-G5-Pr2c6IqjcUI6WqOq5aapO46rDkOLdS0MdB2phaq56QArjXCL26quK97mwDCjSFOKDKZHxXzD7bxaylWwvQrfpVdW3hV8WEgVRqsdSEUpw0RT0wJjVPGWc1FpzvI-Kmy4yKw3G9YqtXliDcMYlNuB7r4M9ptc-BvZNAQJSjLg5B4Q_HWCOMreRg3OqQF8ipIIUXFcc4qy9NUj6dKnMORVrVWsYbgmW6qFygPYwfj8r15D5VQwSjBuGp5Vp_9Q5dNBb3X2irG5vtPwcnvQPxM--CELxEagg48xgJHajmrMtshk6yRGcu08-Zfzcid-1PkA_3_Pbyg63TI |
CitedBy_id | crossref_primary_10_3390_ijms26010337 crossref_primary_10_3390_biom13091308 |
Cites_doi | 10.1016/j.dnarep.2021.103051 10.1021/tx700221x 10.1093/nar/gkab057 10.1093/nar/gkr563 10.1093/nar/gkf597 10.1021/bi0273213 10.1007/s12551-022-00952-8 10.3389/fcell.2020.595687 10.1021/jp410034d 10.1016/0921-8734(90)90001-8 10.1021/bi00081a025 10.1080/07391102.1990.10507825 10.1073/pnas.77.4.1956 10.1093/nar/gkv252 10.1093/nar/gkac530 10.1101/cshperspect.a012583 10.1021/acschembio.2c00342 10.3389/fgene.2022.959258 10.1074/jbc.M113.479055 10.1016/j.dnarep.2014.03.017 10.1016/j.bpj.2011.08.049 10.1093/mutage/gev083 10.1016/j.jmb.2014.01.009 10.1021/jacs.8b12748 10.1021/ja902281d 10.1093/nar/gkj421 10.1111/j.1742-4658.2009.07462.x 10.1158/0008-5472.CAN-06-2960 10.1021/bi026997v 10.1073/pnas.1912355117 10.1021/bi00769a019 10.1074/jbc.274.24.17379 10.1038/nbt.3295 10.1093/nar/gki961 10.3390/ijms222212599 10.1038/nchembio.780 10.1371/journal.pbio.1000091 10.1093/nar/gku602 10.1093/nar/gky561 10.1093/nar/gkl348 10.1021/acsbiomedchemau.1c00031 10.1074/jbc.M005962200 10.1073/pnas.48.12.2013 10.3390/biom11091284 10.1007/BF00261686 10.1016/j.dnarep.2014.03.030 10.1038/362709a0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules28030970 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_a33412c3fbe443a6b6675c6400251f67 PMC9920732 A743211996 36770637 10_3390_molecules28030970 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: P30 ES030285 – fundername: NCI NIH HHS grantid: CA228085 – fundername: NSF grantid: EFRI1933321 – fundername: CPRIT grantid: RP170593 – fundername: NIH NCI grantid: R01CA228085 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c560t-2d3805b6f98d615d1eb1c87fedd287a86fde1ac01b1b58856bb5841430c330f13 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:32:15 EDT 2025 Thu Aug 21 18:38:39 EDT 2025 Fri Jul 11 02:46:57 EDT 2025 Fri Jul 25 09:32:29 EDT 2025 Tue Jun 17 22:03:51 EDT 2025 Tue Jun 10 21:02:45 EDT 2025 Wed Feb 19 02:23:04 EST 2025 Tue Jul 01 01:21:48 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | base excision repair pyridostatin duplex-quadruplex equilibrium glycosylase DNA quadruplex telomere |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c560t-2d3805b6f98d615d1eb1c87fedd287a86fde1ac01b1b58856bb5841430c330f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8617-0294 |
OpenAccessLink | https://doaj.org/article/a33412c3fbe443a6b6675c6400251f67 |
PMID | 36770637 |
PQID | 2774941820 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a33412c3fbe443a6b6675c6400251f67 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920732 proquest_miscellaneous_2775618630 proquest_journals_2774941820 gale_infotracmisc_A743211996 gale_infotracacademiconefile_A743211996 pubmed_primary_36770637 crossref_citationtrail_10_3390_molecules28030970 crossref_primary_10_3390_molecules28030970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230118 |
PublicationDateYYYYMMDD | 2023-01-18 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Rodriguez (ref_45) 2012; 8 Mullaart (ref_19) 1990; 237 Satange (ref_4) 2018; 46 Li (ref_35) 2014; 118 Jaumot (ref_24) 2006; 34 Gellert (ref_7) 1962; 48 ref_11 ref_10 Chambers (ref_6) 2015; 33 Wang (ref_3) 2014; 19 Wallace (ref_1) 2014; 19 Simonsson (ref_32) 1999; 274 Chaires (ref_9) 2010; 277 ref_38 Masaoka (ref_27) 2003; 42 Pettersen (ref_40) 2011; 39 Dianov (ref_44) 1991; 225 Bansal (ref_5) 2022; 13 Holton (ref_28) 2016; 31 Kuznetsova (ref_15) 2020; 8 Panattoni (ref_42) 2022; 17 Bielskute (ref_17) 2021; 49 Zhou (ref_13) 2015; 43 Gray (ref_33) 2014; 426 An (ref_39) 2007; 67 Palumbo (ref_48) 2009; 131 Hsu (ref_26) 2022; 50 Guschlbauer (ref_8) 1990; 8 Bielskute (ref_16) 2019; 141 Theruvathu (ref_30) 2014; 42 Ambrus (ref_21) 2006; 34 Kumar (ref_34) 2005; 33 Lindahl (ref_18) 1993; 362 Phan (ref_22) 2002; 30 Mellac (ref_25) 1993; 32 Bordin (ref_20) 2021; 99 Risitano (ref_23) 2003; 42 Zhou (ref_12) 2013; 288 Goulian (ref_37) 1980; 77 Lech (ref_14) 2011; 101 Fleming (ref_29) 2021; 1 Rangan (ref_36) 2001; 276 Roychoudhury (ref_46) 2020; 117 Lindahl (ref_31) 1972; 11 Boorstein (ref_43) 1992; 12 Rogstad (ref_41) 2007; 20 Krokan (ref_2) 2013; 5 (ref_47) 2022; 14 |
References_xml | – volume: 99 start-page: 103051 year: 2021 ident: ref_20 article-title: Cellular Response to Endogenous DNA Damage: DNA Base Modifications in Gene Expression Regulation publication-title: DNA Repair doi: 10.1016/j.dnarep.2021.103051 – volume: 20 start-page: 1787 year: 2007 ident: ref_41 article-title: Measurement of the Incorporation and Repair of Exogenous 5-Hydroxymethyl-2′-Deoxyuridine in Human Cells in Culture Using Gas Chromatography-Negative Chemical Ionization-Mass Spectrometry publication-title: Chem. Res. Toxicol. doi: 10.1021/tx700221x – volume: 49 start-page: 2346 year: 2021 ident: ref_17 article-title: Oxidative Lesions Modulate G-Quadruplex Stability and Structure in the Human BCL2 Promoter publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab057 – volume: 39 start-page: 8430 year: 2011 ident: ref_40 article-title: UNG-Initiated Base Excision Repair Is the Major Repair Route for 5-Fluorouracil in DNA, but 5-Fluorouracil Cytotoxicity Depends Mainly on RNA Incorporation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr563 – volume: 30 start-page: 4618 year: 2002 ident: ref_22 article-title: Human Telomeric DNA: G-Quadruplex, i-Motif and Watson-Crick Double Helix publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf597 – volume: 42 start-page: 5003 year: 2003 ident: ref_27 article-title: Mammalian 5-Formyluracil-DNA Glycosylase. 2. Role of SMUG1 Uracil-DNA Glycosylase in Repair of 5-Formyluracil and Other Oxidized And publication-title: Biochemistry doi: 10.1021/bi0273213 – volume: 14 start-page: 635 year: 2022 ident: ref_47 article-title: G4-Quadruplex-Binding Proteins: Review and Insights into Selectivity publication-title: Biophys. Rev. doi: 10.1007/s12551-022-00952-8 – volume: 8 start-page: 595687 year: 2020 ident: ref_15 article-title: Lesion Recognition and Cleavage of Damage-Containing Quadruplexes and Bulged Structures by DNA Glycosylases publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.595687 – volume: 118 start-page: 931 year: 2014 ident: ref_35 article-title: Unfolding Kinetics of Human Telomeric G-Quadruplexes Studied by NMR Spectroscopy publication-title: J. Phys. Chem. B doi: 10.1021/jp410034d – volume: 237 start-page: 189 year: 1990 ident: ref_19 article-title: DNA Damage Metabolism and Aging publication-title: Mutat. Res. doi: 10.1016/0921-8734(90)90001-8 – volume: 32 start-page: 7779 year: 1993 ident: ref_25 article-title: Structures of Base Pairs with 5-(Hydroxymethyl)-2′-Deoxyuridine in DNA Determined by NMR Spectroscopy publication-title: Biochemistry doi: 10.1021/bi00081a025 – volume: 8 start-page: 491 year: 1990 ident: ref_8 article-title: Four-Stranded Nucleic Acid Structures 25 Years Later: From Guanosine Gels to Telomer Dna publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.1990.10507825 – volume: 77 start-page: 1956 year: 1980 ident: ref_37 article-title: Methotrexate-Induced Misincorporation of Uracil into DNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.77.4.1956 – volume: 43 start-page: 4039 year: 2015 ident: ref_13 article-title: The NEIL Glycosylases Remove Oxidized Guanine Lesions from Telomeric and Promoter Quadruplex DNA Structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv252 – volume: 50 start-page: 7406 year: 2022 ident: ref_26 article-title: A Combinatorial System to Examine the Enzymatic Repair of Multiply Damaged DNA Substrates publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac530 – volume: 5 start-page: a012583 year: 2013 ident: ref_2 article-title: Base Excision Repair publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a012583 – volume: 17 start-page: 2781 year: 2022 ident: ref_42 article-title: Epigenetic Pyrimidine Nucleotides in Competition with Natural dNTPs as Substrates for Diverse DNA Polymerases publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.2c00342 – volume: 13 start-page: 959258 year: 2022 ident: ref_5 article-title: Non-Canonical DNA Structures: Diversity and Disease Association publication-title: Front. Genet. doi: 10.3389/fgene.2022.959258 – volume: 288 start-page: 27263 year: 2013 ident: ref_12 article-title: Neil3 and NEIL1 DNA Glycosylases Remove Oxidative Damages from Quadruplex DNA and Exhibit Preferences for Lesions in the Telomeric Sequence Context publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.479055 – volume: 19 start-page: 143 year: 2014 ident: ref_3 article-title: Impact of Alternative DNA Structures on DNA Damage, DNA Repair, and Genetic Instability publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.03.017 – volume: 101 start-page: 1987 year: 2011 ident: ref_14 article-title: Effects of Site-Specific Guanine C8-Modifications on an Intramolecular DNA G-Quadruplex publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.08.049 – volume: 31 start-page: 385 year: 2016 ident: ref_28 article-title: G-Quadruplex DNA Structures Can Interfere with Uracil Glycosylase Activity in Vitro publication-title: Mutagenesis doi: 10.1093/mutage/gev083 – volume: 426 start-page: 1629 year: 2014 ident: ref_33 article-title: Folding and Unfolding Pathways of the Human Telomeric G-Quadruplex publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2014.01.009 – volume: 141 start-page: 2594 year: 2019 ident: ref_16 article-title: Impact of Oxidative Lesions on the Human Telomeric G-Quadruplex publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12748 – volume: 131 start-page: 10878 year: 2009 ident: ref_48 article-title: Formation of a Unique End-to-End Stacked Pair of G-Quadruplexes in the HTERT Core Promoter with Implications for Inhibition of Telomerase by G-Quadruplex-Interactive Ligands publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902281d – volume: 34 start-page: 206 year: 2006 ident: ref_24 article-title: Resolution of a Structural Competition Involving Dimeric G-Quadruplex and Its C-Rich Complementary Strand publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj421 – volume: 277 start-page: 1098 year: 2010 ident: ref_9 article-title: Human Telomeric G-Quadruplex: Thermodynamic and Kinetic Studies of Telomeric Quadruplex Stability publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.07462.x – volume: 67 start-page: 940 year: 2007 ident: ref_39 article-title: 5-Fluorouracil Incorporated into DNA Is Excised by the Smug1 DNA Glycosylase to Reduce Drug Cytotoxicity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2960 – volume: 42 start-page: 6507 year: 2003 ident: ref_23 article-title: Stability of Intramolecular DNA Quadruplexes: Comparison with DNA Duplexes publication-title: Biochemistry doi: 10.1021/bi026997v – volume: 117 start-page: 11409 year: 2020 ident: ref_46 article-title: Endogenous Oxidized DNA Bases and APE1 Regulate the Formation of G-Quadruplex Structures in the Genome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1912355117 – volume: 11 start-page: 3618 year: 1972 ident: ref_31 article-title: Rate of Chain Breakage at Apurinic Sites Double-Stranded Deoxyribonucleic Acid publication-title: Biochemistry doi: 10.1021/bi00769a019 – volume: 274 start-page: 17379 year: 1999 ident: ref_32 article-title: DNA Tetraplex Formation Studied with Fluorescence Resonance Energy Transfer publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.24.17379 – volume: 33 start-page: 877 year: 2015 ident: ref_6 article-title: High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3295 – volume: 33 start-page: 6723 year: 2005 ident: ref_34 article-title: The Effect of Osmolytes and Small Molecule on Quadruplex-WC Duplex Equilibrium: A Fluorescence Resonance Energy Transfer Study publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki961 – ident: ref_11 doi: 10.3390/ijms222212599 – volume: 12 start-page: 5536 year: 1992 ident: ref_43 article-title: A Mammalian Cell Line Deficient in Activity of the DNA Repair Enzyme 5-Hydroxymethyluracil-DNA Glycosylase Is Resistant to the Toxic Effects of the Thymidine Analog 5-Hydroxymethyl-2’-Deoxyuridine publication-title: Mol. Cell. Biol. – volume: 8 start-page: 301 year: 2012 ident: ref_45 article-title: Small-Molecule-Induced DNA Damage Identifies Alternative DNA Structures in Human Genes publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.780 – ident: ref_38 doi: 10.1371/journal.pbio.1000091 – volume: 42 start-page: 9063 year: 2014 ident: ref_30 article-title: The Effect of Pot1 Binding on the Repair of Thymine Analogs in a Telomeric DNA Sequence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku602 – volume: 46 start-page: 6416 year: 2018 ident: ref_4 article-title: A Survey of Recent Unusual High-Resolution DNA Structures Provoked by Mismatches, Repeats and Ligand Binding publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky561 – volume: 34 start-page: 2723 year: 2006 ident: ref_21 article-title: Human Telomeric Sequence Forms a Hybrid-Type Intramolecular G-Quadruplex Structure with Mixed Parallel / Antiparallel Strands in Potassium Solution publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl348 – volume: 1 start-page: 44 year: 2021 ident: ref_29 article-title: Binding of AP Endonuclease-1 to G-Quadruplex DNA Depends on the N-Terminal Domain, Mg 2+, and Ionic Strength publication-title: ACS Bio. Med. Chem. Au. doi: 10.1021/acsbiomedchemau.1c00031 – volume: 276 start-page: 4640 year: 2001 ident: ref_36 article-title: Induction of Duplex to G-Quadruplex Transition in the c-Myc Promoter Region by a Small Molecule publication-title: J. Biol. Chem. doi: 10.1074/jbc.M005962200 – volume: 48 start-page: 2013 year: 1962 ident: ref_7 article-title: Helix Formation by Guanylic Acid publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.48.12.2013 – ident: ref_10 doi: 10.3390/biom11091284 – volume: 225 start-page: 448 year: 1991 ident: ref_44 article-title: Repair of Uracil Residues Closely Spaced on the Opposite Strands of Plasmid DNA Results in Double-Strand Break and Deletion Formation publication-title: Mol. Gen. Genet. doi: 10.1007/BF00261686 – volume: 19 start-page: 14 year: 2014 ident: ref_1 article-title: Base Excision Repair: A Critical Player in Many Games publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.03.030 – volume: 362 start-page: 709 year: 1993 ident: ref_18 article-title: Instability and Decay of the Primary Structure of DNA publication-title: Nature doi: 10.1038/362709a0 |
SSID | ssj0021415 |
Score | 2.3886697 |
Snippet | Although genomic DNA is predominantly duplex under physiological conditions, particular sequence motifs can favor the formation of alternative secondary... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 970 |
SubjectTerms | Analysis base excision repair Chemical equilibrium DNA - chemistry DNA Damage DNA quadruplex DNA Repair duplex-quadruplex equilibrium Enzymes Equilibrium Evaluation Gene expression Genomes glycosylase Humans Nucleotides Oxidation Oxidative Stress - genetics pyridostatin Spectrum analysis telomere Uracil-DNA Glycosidase - genetics Uracil-DNA Glycosidase - metabolism |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmgvoU1fTtPiQqFQMLE1tmydyibZEAoNLTSwN6OX24XEu9ldQ479D_2H_SWdkbWbNYGcjK0xSBpp5hs95mPsYwnWWqFdYgBEkkOZJdJVkEjQ4LisVOq3Yr5diPPL_OukmIQFt2U4Vrm2id5Q25mhNfIjjjhF5pRu_Mv8JiHWKNpdDRQaj9kupS6jI13l5C7gytA79TuZgKH90XVPOOuWxMiUSuIn3vJFPmX_fcO85ZmGpya33NDZM7YX8GM86hX-nD1y7T57crKmbXvBvp9ejOJj9E3x-Lanz4kRZKvpIvaLf_6mCMJLfAvsJPFpN79yt__-_P3RKbvwL_H4ppv62wDd9Ut2eTb-eXKeBNqExCB8WSXcQpUWWjSysohXbIbm2FRl46zF8EhVorEuUybNdKaLqiqExkeOuClFfaVNBq_YTjtr3RsWS6nLVEhnixJyUFy6HAEAh1zwBrtURSxdd2BtQk5xora4qjG2oD6v7_V5xD5vfpn3CTUeEj4mrWwEKRe2_zBb_KrD1KoVoCfmBhqNtQMltMAgyIjch0-NKCP2iXRa04zFyhkVLh5gEyn3VT1CEEV57qSI2OFAEjVnhsXrUVGHmb6s78ZlxD5siulPOr3WulnnZQriJQCUed0Pok2TQJTYxYC1LAfDa9DmYUk7_e3zgEvJ0UDzg4er9ZY95QjMaNkoqw7ZzmrRuXcIpFb6vZ8t_wH_Qx6T priority: 102 providerName: ProQuest |
Title | DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36770637 https://www.proquest.com/docview/2774941820 https://www.proquest.com/docview/2775618630 https://pubmed.ncbi.nlm.nih.gov/PMC9920732 https://doaj.org/article/a33412c3fbe443a6b6675c6400251f67 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NBeSt91mi4uFAoFE1uy9TjuJrsNhS5paWBvQi_ThcRJN2vIMf-h_7C_pCPZu6wJtJdebGyNQRqNNN_I0nwA7zl1zjHjM0spy0rKi0x6QTNJDfVECp3HXzFf5uzkrPy8qBY7VF9hT1iXHrhT3KGmOM8SS2vjy5JqZhhCXMvKCI5rFs-Ro8_bBFN9qFWgX-r-YVIM6g8vOqpZfx24mHIZmIl3vFBM1n93St7xScP9kjsOaPYEHvfIMR13NX4K93zzDB4ebQjbnsPp8XycTtArpdObjjgnRXitl6s0LvvFMyIILPGp5yVJj9urc3_z-_bX11a7VXxIpz_bZTwH0F68gLPZ9PvRSdYTJmQWgcs6I46KvDKslsIhUnEFTsRW8No7h4GRFqx2vtA2L0xhKiEqZvBWImLKsafyuqAvYa-5bPxrSKU0PGfSu4pTVDuRqP0coVLJSI0q1QnkGwUq22cTD6QW5wqjiqBzdUfnCXzcfnLVpdL4m_Ak9MpWMGTBji_QNlRvG-pftpHAh9CnKoxVrJzV_ZEDbGLIeqXGCJ9ChjvJEjgYSGLP2WHxxipUP8avFUHkLMuQAD-Bd9vi8GXYt9b4yzbKVIGRgKLMq86Itk2ijKOKKdaSD8xr0OZhSbP8ETOAS0lwaib7_0NJb-ARQeAWlpUKcQB761Xr3yLQWpsR3OcLjlcx-zSCB5Pp_PTbKI6zPw2DKVE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeBgviDvZBgQJhIQULbETx35AqFtbOrZVIG3S3rz4Eqi0pV3biPHGf-B_8KP4JRw7FxpN2tueqtQnkX18rr6cD6E3KdFaU2kCRQgNYpJGATeMBJxIYjBnWei2Yo7GdHQSfz5NTtfQn-YujD1W2dhEZ6j1VNk18h0McQqPbbnxj7PLwKJG2d3VBkKjEosD8_MHpGyLD_t9mN-3GA8Hx3ujoEYVCBR492WANWFhImnOmQZ3riOwVoqludEasoeM0VybKFNhJCOZMJZQCT8xhBUhDCfMIwLfvYPuxoRwq1Fs-KlN8CLwhtXOKTSGOxcVwK1ZWASokFs85BXf5yACrjuCFU_YPaW54vaGD9D9Ol71e5WAPURrpniENvYamLjH6Et_3PN3wRf6g6sKrseHoD6bzH232OhupkA4C081GorfL2fn5urvr99fy0zP3YM_uCwn7vZBefEEndwKQ5-i9WJamOfI51ymIeVGJymJSYa5iSHgwCSmOAeWZh4KGwYKVdcwt1Aa5wJyGctzcY3nHnrfvjKrCnjcRLxrZ6UltLW33R_T-TdRq7LICHh-rEguoXcko5JC0qVo7NK1nKYeemfnVFgLAZ1TWX3RAYZoa22JHgRttq4epx7a7lDCzKlucyMVorYsC_FfDzz0um22b9rTcoWZlo4msTgIBGieVULUDonQFFhMoJdpR7w6Y-62FJPvru445xgcAt68uVuv0Mbo-OhQHO6PD7bQPQxBoV2yitg2Wl_OS_MCgrilfOk0x0dnt62q_wBUC1sr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkIAXxJ2OAUECISFFTXwSO35AqFtbbQyqITGpb1l8Cau0pV3biPHGf-Df8HP4JRw7Sddo0t72VKU-iezjc_XlfIS85aC1ZtL4CoD5EfDQFyYBX4AEQ0WSBW4r5uuI7R1Fn8fxeIP8be7C2GOVjU10hlpPlV0j71KMU0Rky4138_pYxGF_-Gl27lsEKbvT2sBpVCJyYH79xPRt8XG_j3P9jtLh4Pvunl8jDPgKPf3SpxqSIJYsF4lG165DtFwq4bnRGjOJLGG5NmGmglCGMk6SmEn8iTDECHBoQR4CfvcWuc0hDq2O8fFlsheiZ6x2UQFE0D2rwG7NwqJBBcJiI6_5QQcXcNUprHnF9onNNRc4fEDu17Gr16uE7SHZMMUjcne3gYx7TA77o563g37RG1xU0D0eBvjZZO65hUd3SwVDW3yqkVG8fjk7NRf_fv_5VmZ67h68wXk5cTcRyrMn5OhGGPqUbBbTwjwnnhCSB0wYHXOIIKPCRBh8UIgYzZGlWYcEDQNTVdczt7AapynmNZbn6RWed8iH1SuzqpjHdcQ7dlZWhLYOt_tjOv-R1mqdZoBRAFWQS-wdZEwyTMAUi1zqljPeIe_tnKbWWmDnVFZfesAh2rpbaQ8DOFtjT7AO2W5R4sypdnMjFWltZRbppU50yJtVs33TnpwrzLR0NLHFRACkeVYJ0WpIwDiyGLCXvCVerTG3W4rJiatBLgRF50C3ru_Wa3IHlTT9sj86eEHuUYwP7epVmGyTzeW8NC8xnlvKV05xPHJ805r6H0OWX1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Base+Excision+Repair+Intermediates+Influence+Duplex%E2%80%93Quadruplex+Equilibrium&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Sowers%2C+Mark+L.&rft.au=Conrad%2C+James+W.&rft.au=Chang-Gu%2C+Bruce&rft.au=Cherryhomes%2C+Ellie&rft.date=2023-01-18&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=3&rft.spage=970&rft_id=info:doi/10.3390%2Fmolecules28030970&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules28030970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |