Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing A...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 36; pp. 14771 - 14776 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
National Academy of Sciences
03.09.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1302212110 |
Cover
Abstract | Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu’s effects in a mouse model of Alzheimer’s disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP ˢʷ/⁰ mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu’s effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain. |
---|---|
AbstractList | The causes of the sporadic form of Alzheimer’s disease (AD) are unknown. In this study we show that copper (Cu) critically regulates low-density lipoprotein receptor-related protein 1–mediated Aβ clearance across the blood–brain barrier (BBB) in normal mice. Faulty Aβ clearance across the BBB due to increased Cu levels in the aging brain vessels may lead to accumulation of neurotoxic Aβ in brains. In a mouse model of AD low levels of Cu also influences Aβ production and neuroinflammation. Our study suggests that Cu may also increase the severity of AD.
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu’s effects in a mouse model of Alzheimer’s disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In
APP
sw/0
mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu’s effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain. Whereas amyloid- beta (A beta ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to A beta accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing A beta precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced A beta accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an A beta transporter, and higher brain A beta levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in A beta synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP... mice, Cu not only down-regulated LRP1 in brain capillaries but also increased A beta production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain A beta homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic A beta levels in the aging brain. (ProQuest: ... denotes formulae/symbols omitted.) Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain. Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain. Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu’s effects in a mouse model of Alzheimer’s disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP ˢʷ/⁰ mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu’s effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain. Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APPsw/o mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain. |
Author | Ciszewski, Joseph Zhong, Elaine Parisi, Margaret Deane, Richard J. Coma, Mireia Deane, Rashid Sagare, Abhay P. Perlmutter, David Gelein, Robert Kasper, R. Tristan Singh, Itender Bell, Robert D. |
Author_xml | – sequence: 1 givenname: Itender surname: Singh fullname: Singh, Itender – sequence: 2 givenname: Abhay P. surname: Sagare fullname: Sagare, Abhay P. – sequence: 3 givenname: Mireia surname: Coma fullname: Coma, Mireia – sequence: 4 givenname: David surname: Perlmutter fullname: Perlmutter, David – sequence: 5 givenname: Robert surname: Gelein fullname: Gelein, Robert – sequence: 6 givenname: Robert D. surname: Bell fullname: Bell, Robert D. – sequence: 7 givenname: Richard J. surname: Deane fullname: Deane, Richard J. – sequence: 8 givenname: Elaine surname: Zhong fullname: Zhong, Elaine – sequence: 9 givenname: Margaret surname: Parisi fullname: Parisi, Margaret – sequence: 10 givenname: Joseph surname: Ciszewski fullname: Ciszewski, Joseph – sequence: 11 givenname: R. Tristan surname: Kasper fullname: Kasper, R. Tristan – sequence: 12 givenname: Rashid surname: Deane fullname: Deane, Rashid |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27833813$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23959870$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFNSvAGyQ2ae1rO3Y2SKjiTxqJBXRtOY4zdeWJg50pmtfiQfpMdTTTKSAhWHlxvnOu788JOhri4BB6TskZJZKdj4PJZ5QRAAqUkkdoQUlDq5o35AgtCAFZKQ78GJ3kfE0IaYQiT9AxsEY0SpIFapfxBw7uxoWMY49tHEeXcOdz2owTbpPxAzbrbYi-q25_4qu4djFPJvuM2y02YXLJDyvsp4zHFLuNnXwsjqHDNjiTzGDdU_S4NyG7Z_v3FF1-eP_t4lO1_PLx88W7ZWVFTaYK6toxCTW0PZPOSimJYII2vKXQ8VYpZxuwvQHe9bXrKROC9a2RjaLGiUayU_R2lztu2rXrrBumZIIek1-btNXReP27MvgrvYo3mslalkIl4M0-IMXvG5cnvfbZuhDM4OIma6oIowCKwr9RzhUAEzX7D5SRsg4Bc-rLXzs4fP1-XQV4vQdMtib083x9fuCkYkzRuabYcTbFnJPrtfWTmVdTGvdBU6Ln89Hz-eiH8ym-8z9899F_d-D9j2bhQBec1aU1KWlBXuyQ6zzFdGA4FI2qeeyvdnpvojarVBq6_AqE1oRQDgw4uwPwV-U4 |
CODEN | PNASA6 |
CitedBy_id | crossref_primary_10_3233_JAD_150601 crossref_primary_10_1016_j_ccr_2018_04_004 crossref_primary_10_1021_acs_chemrestox_6b00373 crossref_primary_10_1016_j_toxlet_2023_09_004 crossref_primary_10_1016_j_biopha_2025_117814 crossref_primary_10_1038_s41586_020_2453_z crossref_primary_10_1007_s12640_023_00672_1 crossref_primary_10_3390_cells12202459 crossref_primary_10_1177_1535370219827907 crossref_primary_10_1007_s00216_022_04488_4 crossref_primary_10_1016_j_biochi_2014_06_009 crossref_primary_10_4103_1673_5374_386406 crossref_primary_10_1002_jsfa_12292 crossref_primary_10_1007_s12035_024_04473_1 crossref_primary_10_1007_s00267_019_01234_y crossref_primary_10_1007_s13668_015_0121_y crossref_primary_10_1016_j_ccr_2019_06_018 crossref_primary_10_1021_acs_molpharmaceut_7b00841 crossref_primary_10_3233_JAD_171153 crossref_primary_10_3390_bios14050247 crossref_primary_10_1007_s11064_017_2391_9 crossref_primary_10_1002_ana_24136 crossref_primary_10_3389_fnagi_2023_1300405 crossref_primary_10_1016_j_ccr_2016_04_013 crossref_primary_10_1039_C7MT00075H crossref_primary_10_1007_s10661_015_5078_1 crossref_primary_10_3390_biom11070960 crossref_primary_10_1021_acschemneuro_3c00343 crossref_primary_10_3233_JAD_143123 crossref_primary_10_1016_j_neuropharm_2017_12_026 crossref_primary_10_1002_jbt_22694 crossref_primary_10_1186_s12987_021_00267_y crossref_primary_10_3390_antiox11122357 crossref_primary_10_5487_TR_2013_29_4_235 crossref_primary_10_1093_toxsci_kfz084 crossref_primary_10_1007_s40520_021_02034_3 crossref_primary_10_1016_j_bmcl_2021_128316 crossref_primary_10_3390_ijms22147242 crossref_primary_10_1039_C8CS00034D crossref_primary_10_1074_jbc_M113_525212 crossref_primary_10_3390_toxics12100755 crossref_primary_10_1039_C5TX00456J crossref_primary_10_2903_j_efsa_2023_7728 crossref_primary_10_3390_cells12101369 crossref_primary_10_1089_ars_2017_7272 crossref_primary_10_3233_JAD_170552 crossref_primary_10_1074_jbc_M115_684084 crossref_primary_10_1093_toxsci_kfy025 crossref_primary_10_1016_j_jtemb_2020_126578 crossref_primary_10_1515_revneuro_2015_0069 crossref_primary_10_3389_fnmol_2024_1504802 crossref_primary_10_1007_s12230_014_9390_z crossref_primary_10_1093_toxsci_kfw081 crossref_primary_10_1246_cl_190281 crossref_primary_10_3390_biom10060897 crossref_primary_10_4103_NRR_NRR_D_24_00642 crossref_primary_10_1039_D3RA06218J crossref_primary_10_17816_phbn641854 crossref_primary_10_1021_acsami_9b14849 crossref_primary_10_1016_j_ccr_2018_05_020 crossref_primary_10_1177_1533317517709549 crossref_primary_10_3390_ijms21207660 crossref_primary_10_3233_JAD_160427 crossref_primary_10_1186_s12974_021_02322_9 crossref_primary_10_3390_biom11111598 crossref_primary_10_1016_j_jconrel_2018_01_024 crossref_primary_10_3390_biom4010101 crossref_primary_10_1007_s10534_022_00399_0 crossref_primary_10_1007_s00204_014_1272_0 crossref_primary_10_1016_j_msec_2019_04_022 crossref_primary_10_1039_C5DT03939H crossref_primary_10_3389_fnagi_2014_00093 crossref_primary_10_1016_j_dscb_2023_100076 crossref_primary_10_1007_s10495_024_01993_y crossref_primary_10_1039_d0mt00136h crossref_primary_10_2139_ssrn_3158775 crossref_primary_10_3390_biomedicines9101351 crossref_primary_10_1016_j_foodchem_2021_131388 crossref_primary_10_1186_s40478_021_01293_5 crossref_primary_10_3389_fnins_2021_755475 crossref_primary_10_4236_aad_2014_34014 crossref_primary_10_1038_s41392_022_01229_y crossref_primary_10_1039_C4CS00138A crossref_primary_10_1093_braincomms_fcac039 crossref_primary_10_1002_chem_201704555 crossref_primary_10_3390_cells8121598 crossref_primary_10_1111_bph_13378 crossref_primary_10_3389_fnagi_2017_00446 crossref_primary_10_1126_sciadv_adp1115 crossref_primary_10_3390_antiox12020415 crossref_primary_10_1016_j_freeradbiomed_2017_11_015 crossref_primary_10_2174_1570159X22666231103085859 crossref_primary_10_1002_elan_201500138 crossref_primary_10_1111_cns_12427 crossref_primary_10_1007_s10895_023_03220_4 crossref_primary_10_3389_fncel_2023_1132092 crossref_primary_10_1016_j_neuroscience_2020_11_021 crossref_primary_10_1016_j_ccr_2017_05_007 crossref_primary_10_3390_diagnostics11091655 crossref_primary_10_1016_j_molstruc_2024_138837 crossref_primary_10_1093_toxsci_kfy082 crossref_primary_10_1016_j_etap_2014_11_030 crossref_primary_10_1039_C5CS00798D crossref_primary_10_1097_WAD_0000000000000280 crossref_primary_10_1016_j_ica_2017_07_060 crossref_primary_10_1016_j_jinorgbio_2014_06_003 crossref_primary_10_3390_nu7125513 crossref_primary_10_1111_ejn_14181 crossref_primary_10_1007_s13738_021_02181_4 crossref_primary_10_1016_j_arr_2024_102210 crossref_primary_10_1016_j_pneurobio_2016_06_004 crossref_primary_10_3389_fnins_2021_735928 crossref_primary_10_1002_ijch_201600105 crossref_primary_10_1016_j_jtemb_2014_06_018 crossref_primary_10_1080_15376516_2021_1964665 crossref_primary_10_3390_ijms23063327 crossref_primary_10_1093_toxsci_kfz043 crossref_primary_10_1016_j_jinorgbio_2013_12_003 crossref_primary_10_1038_s41598_017_13759_5 crossref_primary_10_1039_C6TB01215A crossref_primary_10_1016_j_nbd_2016_05_015 crossref_primary_10_1007_s00204_018_2163_6 crossref_primary_10_1016_j_neuropharm_2015_07_023 crossref_primary_10_1265_jjh_69_155 crossref_primary_10_1016_S1474_4422_14_70190_5 crossref_primary_10_1039_C6FO00809G crossref_primary_10_1016_j_pneurobio_2015_12_004 crossref_primary_10_1152_ajpcell_00515_2019 crossref_primary_10_1016_j_biopha_2024_117182 crossref_primary_10_2174_0113816128263992231012113847 crossref_primary_10_1016_j_pneurobio_2016_04_001 crossref_primary_10_1007_s10534_014_9799_3 crossref_primary_10_3390_biom10030408 crossref_primary_10_1155_2016_4647830 crossref_primary_10_3390_ijms252212154 crossref_primary_10_1016_j_jmb_2019_01_018 crossref_primary_10_1016_j_jtemb_2021_126779 crossref_primary_10_1016_j_bmc_2018_01_030 crossref_primary_10_1002_fsn3_2490 crossref_primary_10_1021_ja410812r crossref_primary_10_1016_j_neuro_2019_04_001 crossref_primary_10_1039_D0NR07449G crossref_primary_10_1007_s10570_018_2083_x crossref_primary_10_1016_j_neuro_2014_05_005 crossref_primary_10_1016_j_arr_2024_102199 crossref_primary_10_1371_journal_pone_0170749 crossref_primary_10_4103_1673_5374_266046 crossref_primary_10_3390_biom10010044 crossref_primary_10_1007_s12035_015_9664_6 crossref_primary_10_1016_j_ijbiomac_2021_01_091 crossref_primary_10_14348_molcells_2016_2198 crossref_primary_10_3390_ijerph13100956 crossref_primary_10_1155_2018_1483791 crossref_primary_10_3389_fgene_2020_616083 crossref_primary_10_1155_2021_6634181 crossref_primary_10_1007_s10953_017_0693_9 crossref_primary_10_1038_s41598_017_08292_4 crossref_primary_10_3233_JAD_201556 crossref_primary_10_3390_ijms25189947 crossref_primary_10_1016_j_jtemb_2016_07_006 crossref_primary_10_1016_j_toxlet_2016_10_009 crossref_primary_10_1111_nyas_12354 crossref_primary_10_1016_j_brainresbull_2018_09_003 crossref_primary_10_1016_j_neuint_2020_104794 crossref_primary_10_1073_pnas_1409796111 crossref_primary_10_1111_jpi_12502 crossref_primary_10_3390_molecules28145467 crossref_primary_10_3389_fnins_2018_00668 crossref_primary_10_3390_biomedicines8030045 crossref_primary_10_1515_chempap_2015_0134 crossref_primary_10_3390_ijerph15010002 crossref_primary_10_1007_s10534_023_00530_9 crossref_primary_10_3109_09553002_2016_1135266 crossref_primary_10_1016_j_jtemb_2014_06_004 crossref_primary_10_1007_s11356_020_09964_x crossref_primary_10_3389_fnins_2017_00317 crossref_primary_10_3389_fnins_2024_1467333 crossref_primary_10_1038_srep04881 crossref_primary_10_1002_adma_201801362 crossref_primary_10_1080_10408444_2020_1838441 crossref_primary_10_1177_1756286420947986 |
Cites_doi | 10.1039/c0mt00006j 10.1146/annurev.nutr.20.1.291 10.1097/00000441-198612000-00002 10.1172/JCI58642 10.1093/jn/128.8.1276 10.1016/j.nbd.2005.10.004 10.1073/pnas.1832769100 10.1111/j.1471-4159.2011.07402.x 10.1093/ajcn/67.5.1054S 10.1016/S1474-4422(08)70167-4 10.1111/j.1749-6632.1994.tb21836.x 10.1038/srep00011 10.1042/BJ20061736 10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A 10.1111/j.1471-4159.1990.tb02337.x 10.1016/S0891-5849(02)00794-3 10.1080/07315724.2009.10719777 10.1016/j.nurt.2008.05.001 10.1172/JCI36663 10.1016/j.pneurobio.2005.06.001 10.3233/JAD-2004-6310 10.1016/j.freeradbiomed.2011.10.446 10.1074/jbc.M109.019521 10.1016/j.brainres.2008.10.056 10.1016/j.pharmthera.2005.03.010 10.3233/JAD-2005-8212 10.1074/jbc.M313572200 10.1111/j.1471-4159.2011.07278.x 10.1016/j.jtemb.2012.04.012 10.1016/S0896-6273(01)00475-5 10.1007/s00401-006-0115-3 10.1042/bj3440461 10.1212/01.wnl.0000223343.82809.cf 10.1093/brain/awh492 10.1093/ajcn/88.3.826S 10.1385/MN:23:1:53 10.1074/jbc.M204379200 10.1016/S0022-510X(98)00092-6 10.2174/187152709787601867 10.3181/00379727-158-40152 10.1016/j.neuron.2008.01.003 10.1007/s00249-007-0234-3 10.2174/156720507780362245 10.1073/pnas.2332818100 10.1073/pnas.1110789109 10.1038/nm1287 10.1046/j.1471-4159.2003.02221.x 10.1074/jbc.274.52.37111 10.1523/JNEUROSCI.17-08-02653.1997 10.1126/scitranslmed.3003748 10.1021/tx025666g 10.1074/jbc.M110.163964 10.1073/pnas.2332851100 10.1016/j.neuron.2004.07.017 10.1021/bi972827k 10.1212/WNL.59.8.1153 10.3233/JAD-2010-1390 10.1111/j.1471-4159.1989.tb11778.x 10.1021/bi0358824 10.1046/j.1471-4159.1999.0731288.x 10.1002/biof.1005 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright National Academy of Sciences – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 7S9 L.6 5PM |
DOI | 10.1073/pnas.1302212110 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Neurosciences Abstracts MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Dysregulation of brain Aβ homeostasis by Cu |
EISSN | 1091-6490 |
EndPage | 14776 |
ExternalDocumentID | PMC3767519 23959870 27833813 10_1073_pnas_1302212110 110_36_14771 42713189 US201600142324 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG029481 – fundername: NIA NIH HHS grantid: R01 AG029481 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION AFHIN AFQQW IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c560t-266e37262bf37ec7770535194b12d4b88ec92cfa24df6ef13553fba7981ae5973 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:11:18 EDT 2025 Thu Sep 04 17:35:08 EDT 2025 Thu Sep 04 21:38:38 EDT 2025 Thu Sep 04 16:53:03 EDT 2025 Thu Apr 03 07:08:12 EDT 2025 Wed Apr 02 07:35:50 EDT 2025 Tue Jul 01 03:39:49 EDT 2025 Thu Apr 24 22:55:39 EDT 2025 Wed Nov 11 00:30:25 EST 2020 Thu May 29 08:40:50 EDT 2025 Wed Dec 27 19:14:13 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | BACE1 BBB environmental β Amyloid protein Toxicity Central nervous system Homeostasis cerebrovascular Clearance Copper Encephalon toxicity |
Language | English |
License | CC BY 4.0 Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c560t-266e37262bf37ec7770535194b12d4b88ec92cfa24df6ef13553fba7981ae5973 |
Notes | http://dx.doi.org/10.1073/pnas.1302212110 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved July 18, 2013 (received for review February 2, 2013) Author contributions: R.D. designed research; I.S., A.P.S., M.C., D.P., R.G., R.D.B., R.J.D., E.Z., M.P., J.C., and R.T.K. performed research; I.S., A.P.S., M. C., D.P., R.G., R.D.B., R.J.D. and R.D. analyzed data; and R.D. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/110/36/14771.full.pdf |
PMID | 23959870 |
PQID | 1430395522 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1302212110 proquest_miscellaneous_1448223563 pubmed_primary_23959870 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767519 proquest_miscellaneous_1803122812 proquest_miscellaneous_1430395522 crossref_primary_10_1073_pnas_1302212110 pnas_primary_110_36_14771 jstor_primary_42713189 pascalfrancis_primary_27833813 fao_agris_US201600142324 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-03 |
PublicationDateYYYYMMDD | 2013-09-03 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 Sparks DL (e_1_3_3_15_2) 2006; 10 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 Weiss KC (e_1_3_3_37_2) 1985; 249 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 Wirth PL (e_1_3_3_38_2) 1985; 75 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 662866 - Proc Soc Exp Biol Med. 1978 May;158(1):113-6 11642543 - Mol Neurobiol. 2001 Feb;23(1):53-67 22307640 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1737-42 18215617 - Neuron. 2008 Jan 24;57(2):178-201 22565015 - J Trace Elem Med Biol. 2012 Jun;26(2-3):93-6 9092586 - J Neurosci. 1997 Apr 15;17(8):2653-7 12215434 - J Biol Chem. 2002 Nov 22;277(47):44670-6 22438177 - Biofactors. 2012 Mar-Apr;38(2):107-13 3860683 - J Natl Cancer Inst. 1985 Aug;75(2):277-84 15817516 - Brain. 2005 Jul;128(Pt 7):1613-21 18779302 - Am J Clin Nutr. 2008 Sep;88(3):826S-9S 22355530 - Sci Rep. 2011;1:11 11683988 - Neuron. 2001 Oct 25;32(2):177-80 2106011 - J Neurochem. 1990 Mar;54(3):905-14 16886094 - J Nutr Health Aging. 2006 Jul-Aug;10(4):247-54 17430246 - Curr Alzheimer Res. 2007 Apr;4(2):191-7 22406537 - J Clin Invest. 2012 Apr;122(4):1377-92 12920183 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11065-9 21517843 - J Neurochem. 2011 Jul;118(1):105-12 17155929 - Biochem J. 2007 Feb 15;402(1):17-23 2760621 - J Neurochem. 1989 Sep;53(3):817-24 16832081 - Neurology. 2006 Jul 11;67(1):76-82 18030462 - Eur Biophys J. 2008 Mar;37(3):269-79 10567229 - Biochem J. 1999 Dec 1;344 Pt 2:461-7 14617772 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14193-8 18672400 - Lancet Neurol. 2008 Sep;7(9):779-86 21797865 - J Neurochem. 2011 Oct;119(1):220-30 20164561 - J Alzheimers Dis. 2010;20(2):509-16 14717612 - Biochemistry. 2004 Jan 20;43(2):560-8 12391342 - Neurology. 2002 Oct 22;59(8):1153-61 19275634 - CNS Neurol Disord Drug Targets. 2009 Mar;8(1):16-30 15201484 - J Alzheimers Dis. 2004 Jun;6(3):291-301 16865397 - Acta Neuropathol. 2006 Oct;112(4):405-15 10461923 - J Neurochem. 1999 Sep;73(3):1288-92 16116430 - Nat Med. 2005 Sep;11(9):959-65 15294142 - Neuron. 2004 Aug 5;43(3):333-44 9587151 - Am J Clin Nutr. 1998 May;67(5 Suppl):1054S-1060S 7832455 - Ann N Y Acad Sci. 1994 Nov 17;738:447-54 20150596 - J Am Coll Nutr. 2009 Jun;28(3):238-42 12031889 - Free Radic Biol Med. 2002 Jun 1;32(11):1050-60 16112736 - Pharmacol Ther. 2005 Nov;108(2):129-48 21072351 - Metallomics. 2010 Sep;2(9):596-608 3925789 - Am J Physiol. 1985 Jul;249(1 Pt 1):E77-88 10940336 - Annu Rev Nutr. 2000;20:291-310 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111 14617773 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14187-92 19542222 - J Biol Chem. 2009 Aug 14;284(33):21899-907 14756801 - J Neurochem. 2004 Feb;88(4):813-20 9667777 - J Neurol Sci. 1998 Jun 11;158(1):47-52 19033669 - J Clin Invest. 2008 Dec;118(12):4002-13 9687544 - J Nutr. 1998 Aug;128(8):1276-82 19014916 - Brain Res. 2009 Jan 12;1248:14-21 9581871 - J Cell Biochem. 1998 Jun 1;69(3):326-35 18625454 - Neurotherapeutics. 2008 Jul;5(3):421-32 16308488 - J Alzheimers Dis. 2005 Nov;8(2):201-6; discussion 209-15 22080049 - Free Radic Biol Med. 2012 Jan 15;52(2):298-302 16115721 - Prog Neurobiol. 2005 Jun;76(2):126-52 21239495 - J Biol Chem. 2011 Mar 18;286(11):9776-86 16378731 - Neurobiol Dis. 2006 Apr;22(1):76-87 9585530 - Biochemistry. 1998 May 19;37(20):7185-93 14978032 - J Biol Chem. 2004 Apr 30;279(18):18169-77 12703970 - Chem Res Toxicol. 2003 Apr;16(4):531-5 3799705 - Am J Med Sci. 1986 Dec;292(6):344-9 10601271 - J Biol Chem. 1999 Dec 24;274(52):37111-6 |
References_xml | – ident: e_1_3_3_2_2 doi: 10.1039/c0mt00006j – ident: e_1_3_3_4_2 doi: 10.1146/annurev.nutr.20.1.291 – ident: e_1_3_3_40_2 doi: 10.1097/00000441-198612000-00002 – ident: e_1_3_3_60_2 doi: 10.1172/JCI58642 – ident: e_1_3_3_42_2 doi: 10.1093/jn/128.8.1276 – ident: e_1_3_3_54_2 doi: 10.1016/j.nbd.2005.10.004 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1832769100 – ident: e_1_3_3_62_2 doi: 10.1111/j.1471-4159.2011.07402.x – ident: e_1_3_3_36_2 doi: 10.1093/ajcn/67.5.1054S – ident: e_1_3_3_61_2 doi: 10.1016/S1474-4422(08)70167-4 – ident: e_1_3_3_45_2 doi: 10.1111/j.1749-6632.1994.tb21836.x – ident: e_1_3_3_8_2 doi: 10.1038/srep00011 – ident: e_1_3_3_29_2 doi: 10.1042/BJ20061736 – ident: e_1_3_3_44_2 doi: 10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A – ident: e_1_3_3_33_2 doi: 10.1111/j.1471-4159.1990.tb02337.x – volume: 249 start-page: E77 year: 1985 ident: e_1_3_3_37_2 article-title: Copper transport in rats involving a new plasma protein publication-title: Am J Physiol – ident: e_1_3_3_47_2 doi: 10.1016/S0891-5849(02)00794-3 – ident: e_1_3_3_39_2 doi: 10.1080/07315724.2009.10719777 – ident: e_1_3_3_7_2 doi: 10.1016/j.nurt.2008.05.001 – ident: e_1_3_3_27_2 doi: 10.1172/JCI36663 – ident: e_1_3_3_52_2 doi: 10.1016/j.pneurobio.2005.06.001 – ident: e_1_3_3_57_2 doi: 10.3233/JAD-2004-6310 – volume: 75 start-page: 277 year: 1985 ident: e_1_3_3_38_2 article-title: Distribution of copper among components of human serum publication-title: J Natl Cancer Inst – volume: 10 start-page: 247 year: 2006 ident: e_1_3_3_15_2 article-title: Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology publication-title: J Nutr Health Aging – ident: e_1_3_3_12_2 doi: 10.1016/j.freeradbiomed.2011.10.446 – ident: e_1_3_3_58_2 doi: 10.1074/jbc.M109.019521 – ident: e_1_3_3_41_2 doi: 10.1016/j.brainres.2008.10.056 – ident: e_1_3_3_23_2 doi: 10.1016/j.pharmthera.2005.03.010 – ident: e_1_3_3_19_2 doi: 10.3233/JAD-2005-8212 – ident: e_1_3_3_50_2 doi: 10.1074/jbc.M313572200 – ident: e_1_3_3_31_2 doi: 10.1111/j.1471-4159.2011.07278.x – ident: e_1_3_3_6_2 doi: 10.1016/j.jtemb.2012.04.012 – ident: e_1_3_3_21_2 doi: 10.1016/S0896-6273(01)00475-5 – ident: e_1_3_3_26_2 doi: 10.1007/s00401-006-0115-3 – ident: e_1_3_3_20_2 doi: 10.1042/bj3440461 – ident: e_1_3_3_11_2 doi: 10.1212/01.wnl.0000223343.82809.cf – ident: e_1_3_3_55_2 doi: 10.1093/brain/awh492 – ident: e_1_3_3_1_2 doi: 10.1093/ajcn/88.3.826S – ident: e_1_3_3_49_2 doi: 10.1385/MN:23:1:53 – ident: e_1_3_3_18_2 doi: 10.1074/jbc.M204379200 – ident: e_1_3_3_9_2 doi: 10.1016/S0022-510X(98)00092-6 – ident: e_1_3_3_63_2 doi: 10.2174/187152709787601867 – ident: e_1_3_3_3_2 doi: 10.3181/00379727-158-40152 – ident: e_1_3_3_32_2 doi: 10.1016/j.neuron.2008.01.003 – ident: e_1_3_3_48_2 doi: 10.1007/s00249-007-0234-3 – ident: e_1_3_3_22_2 doi: 10.2174/156720507780362245 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.2332818100 – ident: e_1_3_3_59_2 doi: 10.1073/pnas.1110789109 – ident: e_1_3_3_64_2 doi: 10.1038/nm1287 – ident: e_1_3_3_34_2 doi: 10.1046/j.1471-4159.2003.02221.x – ident: e_1_3_3_46_2 doi: 10.1074/jbc.274.52.37111 – ident: e_1_3_3_53_2 doi: 10.1523/JNEUROSCI.17-08-02653.1997 – ident: e_1_3_3_24_2 doi: 10.1126/scitranslmed.3003748 – ident: e_1_3_3_56_2 doi: 10.1021/tx025666g – ident: e_1_3_3_43_2 doi: 10.1074/jbc.M110.163964 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.2332851100 – ident: e_1_3_3_25_2 doi: 10.1016/j.neuron.2004.07.017 – ident: e_1_3_3_28_2 doi: 10.1021/bi972827k – ident: e_1_3_3_10_2 doi: 10.1212/WNL.59.8.1153 – ident: e_1_3_3_13_2 doi: 10.3233/JAD-2010-1390 – ident: e_1_3_3_35_2 doi: 10.1111/j.1471-4159.1989.tb11778.x – ident: e_1_3_3_51_2 doi: 10.1021/bi0358824 – ident: e_1_3_3_30_2 doi: 10.1046/j.1471-4159.1999.0731288.x – ident: e_1_3_3_5_2 doi: 10.1002/biof.1005 – reference: 3925789 - Am J Physiol. 1985 Jul;249(1 Pt 1):E77-88 – reference: 9687544 - J Nutr. 1998 Aug;128(8):1276-82 – reference: 2106011 - J Neurochem. 1990 Mar;54(3):905-14 – reference: 7832455 - Ann N Y Acad Sci. 1994 Nov 17;738:447-54 – reference: 11642543 - Mol Neurobiol. 2001 Feb;23(1):53-67 – reference: 16115721 - Prog Neurobiol. 2005 Jun;76(2):126-52 – reference: 22355530 - Sci Rep. 2011;1:11 – reference: 11683988 - Neuron. 2001 Oct 25;32(2):177-80 – reference: 16832081 - Neurology. 2006 Jul 11;67(1):76-82 – reference: 19033669 - J Clin Invest. 2008 Dec;118(12):4002-13 – reference: 22438177 - Biofactors. 2012 Mar-Apr;38(2):107-13 – reference: 662866 - Proc Soc Exp Biol Med. 1978 May;158(1):113-6 – reference: 22406537 - J Clin Invest. 2012 Apr;122(4):1377-92 – reference: 12215434 - J Biol Chem. 2002 Nov 22;277(47):44670-6 – reference: 2760621 - J Neurochem. 1989 Sep;53(3):817-24 – reference: 12391342 - Neurology. 2002 Oct 22;59(8):1153-61 – reference: 14978032 - J Biol Chem. 2004 Apr 30;279(18):18169-77 – reference: 18625454 - Neurotherapeutics. 2008 Jul;5(3):421-32 – reference: 14617772 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14193-8 – reference: 14617773 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14187-92 – reference: 14717612 - Biochemistry. 2004 Jan 20;43(2):560-8 – reference: 9585530 - Biochemistry. 1998 May 19;37(20):7185-93 – reference: 18030462 - Eur Biophys J. 2008 Mar;37(3):269-79 – reference: 12920183 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11065-9 – reference: 21517843 - J Neurochem. 2011 Jul;118(1):105-12 – reference: 10940336 - Annu Rev Nutr. 2000;20:291-310 – reference: 16112736 - Pharmacol Ther. 2005 Nov;108(2):129-48 – reference: 22080049 - Free Radic Biol Med. 2012 Jan 15;52(2):298-302 – reference: 3799705 - Am J Med Sci. 1986 Dec;292(6):344-9 – reference: 20150596 - J Am Coll Nutr. 2009 Jun;28(3):238-42 – reference: 10567229 - Biochem J. 1999 Dec 1;344 Pt 2:461-7 – reference: 16865397 - Acta Neuropathol. 2006 Oct;112(4):405-15 – reference: 3860683 - J Natl Cancer Inst. 1985 Aug;75(2):277-84 – reference: 18779302 - Am J Clin Nutr. 2008 Sep;88(3):826S-9S – reference: 19275634 - CNS Neurol Disord Drug Targets. 2009 Mar;8(1):16-30 – reference: 9587151 - Am J Clin Nutr. 1998 May;67(5 Suppl):1054S-1060S – reference: 9092586 - J Neurosci. 1997 Apr 15;17(8):2653-7 – reference: 18672400 - Lancet Neurol. 2008 Sep;7(9):779-86 – reference: 15294142 - Neuron. 2004 Aug 5;43(3):333-44 – reference: 16116430 - Nat Med. 2005 Sep;11(9):959-65 – reference: 20164561 - J Alzheimers Dis. 2010;20(2):509-16 – reference: 19014916 - Brain Res. 2009 Jan 12;1248:14-21 – reference: 14756801 - J Neurochem. 2004 Feb;88(4):813-20 – reference: 16886094 - J Nutr Health Aging. 2006 Jul-Aug;10(4):247-54 – reference: 18215617 - Neuron. 2008 Jan 24;57(2):178-201 – reference: 21239495 - J Biol Chem. 2011 Mar 18;286(11):9776-86 – reference: 10601271 - J Biol Chem. 1999 Dec 24;274(52):37111-6 – reference: 22307640 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1737-42 – reference: 15201484 - J Alzheimers Dis. 2004 Jun;6(3):291-301 – reference: 15817516 - Brain. 2005 Jul;128(Pt 7):1613-21 – reference: 19542222 - J Biol Chem. 2009 Aug 14;284(33):21899-907 – reference: 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111 – reference: 17430246 - Curr Alzheimer Res. 2007 Apr;4(2):191-7 – reference: 21072351 - Metallomics. 2010 Sep;2(9):596-608 – reference: 21797865 - J Neurochem. 2011 Oct;119(1):220-30 – reference: 16308488 - J Alzheimers Dis. 2005 Nov;8(2):201-6; discussion 209-15 – reference: 9581871 - J Cell Biochem. 1998 Jun 1;69(3):326-35 – reference: 16378731 - Neurobiol Dis. 2006 Apr;22(1):76-87 – reference: 22565015 - J Trace Elem Med Biol. 2012 Jun;26(2-3):93-6 – reference: 12703970 - Chem Res Toxicol. 2003 Apr;16(4):531-5 – reference: 17155929 - Biochem J. 2007 Feb 15;402(1):17-23 – reference: 9667777 - J Neurol Sci. 1998 Jun 11;158(1):47-52 – reference: 10461923 - J Neurochem. 1999 Sep;73(3):1288-92 – reference: 12031889 - Free Radic Biol Med. 2002 Jun 1;32(11):1050-60 |
SSID | ssj0009580 |
Score | 2.5289965 |
Snippet | Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could... The causes of the sporadic form of Alzheimer’s disease (AD) are unknown. In this study we show that copper (Cu) critically regulates low-density lipoprotein... Whereas amyloid- beta (A beta ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14771 |
SubjectTerms | Age Factors Alzheimer disease Alzheimers disease Amyloid beta-Peptides - metabolism Amyloid beta-Peptides - pharmacokinetics Amyloid beta-Protein Precursor - genetics Amyloid beta-Protein Precursor - metabolism animal models Animals Biological and medical sciences Biological Sciences Blood brain barrier Blood plasma Blood-Brain Barrier - metabolism Blotting, Western brain Brain - blood supply Brain - drug effects Brain - metabolism Capillaries Capillaries - drug effects Capillaries - metabolism Cell Survival - drug effects Cells, Cultured Copper Copper - metabolism Copper - pharmacology Dose-Response Relationship, Drug drinking water Endothelial cells Endothelial Cells - cytology Endothelial Cells - drug effects Endothelial Cells - metabolism Fundamental and applied biological sciences. Psychology gene overexpression Homeostasis Homeostasis - drug effects Humans Iodine Radioisotopes - pharmacokinetics low density lipoprotein Metabolic Clearance Rate Mice Mice, Inbred C57BL Mice, Knockout Mice, Transgenic neurotoxicity Parenchyma Platelet Endothelial Cell Adhesion Molecule-1 - metabolism Potable water prions Quantification Receptors, LDL - genetics Receptors, LDL - metabolism Time Factors transgenic animals Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism Vertebrates: nervous system and sense organs |
Title | Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance |
URI | https://www.jstor.org/stable/42713189 http://www.pnas.org/content/110/36/14771.abstract https://www.ncbi.nlm.nih.gov/pubmed/23959870 https://www.proquest.com/docview/1430395522 https://www.proquest.com/docview/1448223563 https://www.proquest.com/docview/1803122812 https://pubmed.ncbi.nlm.nih.gov/PMC3767519 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGuOEGMWAs_ExGYtJQlNLY-b0c02AgNlXaJu0ushNnq7Q2VdMKjcfiQXgBXoZzbOen05hgN1GbOnGa8-X4HOf4-wh5x1gJVg-VN4xFDAlKzryURcoLhWRJUiSqkDjfcXQcHZ4FX8_D87W1372qpeVCDvIft64ruY9VYR_YFVfJ_odl25PCDvgM9oUtWBi2_2Tjb9V39wqrfmpTHT6bod73uJ4vZwtXoviDKyaQkY8Lb2f_YOcjcy-riaogIEQaEgg89btyvaplUWOpVrG0yuG42A0FJVpM2Ph11I53dVNdcNxMJ-51i1Osx6hdzx0dd1LHJ3Ccnsb5omfe27rgE4Fiu9pNyUtx7Y4G7auRaiJMdf9cjUXnx-dXE62wvVqWb2cvUEki9Ya8K-644xL7bpvBUBqYxdYDZTw1BDpeFBit0daV2xJZg1ne98x-EButFzvM4_fo1jEEnB4KH09FjVLZjCEJ3rDfEkAwm2hIMZ6GaWKUT27Qdo-O9jVRDlLSPmTQN7rfz-d-jxE6Meuj7H9reKdi_uFG30hYbTtaiZ4elKJqymixplfU8FiXRo8FuXrhLLflTTfLf3vx1OkT8tgmQnTPoHqDrKnpU7LRWIXuWj7098-IBJhTA3NaldTAnFqYUw1z2sD810_agziV17SBOAWI0w7iFCBOW4g_J2efDk73Dz0rDeLlEKIvPAgrFY9ZxGTJY5XHcYw8RX4aSJ8VgUwSlacsLwULijJSpQ9RNS-liNPEFwpyaL5J1qfVVG0RGuSQI8kCnFMRBpJFgsF5S87yoMjDQvgOGTS3PMstbz7Kt1xlun4j5hne6Kwzl0N22wNmhjLm7023wIaZuIABPTs7YUj3OPSxdiJwyKY2bHuKgMU-DMCpQ7ZXLN02QM0ciL-5QxzdTds3dM6jTD8ADnnb4CGDcQRfDoqpqpZwUQEEs2kI6dhdbQLIJ3gY8TvaJBAmMAZ5g0NeGJx1V2hR7JB4BYFtA-S6X_1lOr7UnPf2WXp57yNfkUed_3lN1hfzpXoD-cRCbuvn8g9-QR-h |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+levels+of+copper+disrupt+brain+amyloid-%CE%B2+homeostasis+by+altering+its+production+and+clearance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Singh%2C+Itender&rft.au=Sagare%2C+Abhay+P.&rft.au=Coma%2C+Mireia&rft.au=Perlmutter%2C+David&rft.date=2013-09-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=36&rft.spage=14771&rft.epage=14776&rft_id=info:doi/10.1073%2Fpnas.1302212110&rft_id=info%3Apmid%2F23959870&rft.externalDocID=PMC3767519 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif |