Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance

Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing A...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 36; pp. 14771 - 14776
Main Authors Singh, Itender, Sagare, Abhay P., Coma, Mireia, Perlmutter, David, Gelein, Robert, Bell, Robert D., Deane, Richard J., Zhong, Elaine, Parisi, Margaret, Ciszewski, Joseph, Kasper, R. Tristan, Deane, Rashid
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences 03.09.2013
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1302212110

Cover

Abstract Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu’s effects in a mouse model of Alzheimer’s disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP ˢʷ/⁰ mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu’s effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.
AbstractList The causes of the sporadic form of Alzheimer’s disease (AD) are unknown. In this study we show that copper (Cu) critically regulates low-density lipoprotein receptor-related protein 1–mediated Aβ clearance across the blood–brain barrier (BBB) in normal mice. Faulty Aβ clearance across the BBB due to increased Cu levels in the aging brain vessels may lead to accumulation of neurotoxic Aβ in brains. In a mouse model of AD low levels of Cu also influences Aβ production and neuroinflammation. Our study suggests that Cu may also increase the severity of AD. Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu’s effects in a mouse model of Alzheimer’s disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP sw/0 mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu’s effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.
Whereas amyloid- beta (A beta ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to A beta accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing A beta precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced A beta accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an A beta transporter, and higher brain A beta levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in A beta synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP... mice, Cu not only down-regulated LRP1 in brain capillaries but also increased A beta production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain A beta homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic A beta levels in the aging brain. (ProQuest: ... denotes formulae/symbols omitted.)
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu’s effects in a mouse model of Alzheimer’s disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP ˢʷ/⁰ mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu’s effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APPsw/o mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.
Author Ciszewski, Joseph
Zhong, Elaine
Parisi, Margaret
Deane, Richard J.
Coma, Mireia
Deane, Rashid
Sagare, Abhay P.
Perlmutter, David
Gelein, Robert
Kasper, R. Tristan
Singh, Itender
Bell, Robert D.
Author_xml – sequence: 1
  givenname: Itender
  surname: Singh
  fullname: Singh, Itender
– sequence: 2
  givenname: Abhay P.
  surname: Sagare
  fullname: Sagare, Abhay P.
– sequence: 3
  givenname: Mireia
  surname: Coma
  fullname: Coma, Mireia
– sequence: 4
  givenname: David
  surname: Perlmutter
  fullname: Perlmutter, David
– sequence: 5
  givenname: Robert
  surname: Gelein
  fullname: Gelein, Robert
– sequence: 6
  givenname: Robert D.
  surname: Bell
  fullname: Bell, Robert D.
– sequence: 7
  givenname: Richard J.
  surname: Deane
  fullname: Deane, Richard J.
– sequence: 8
  givenname: Elaine
  surname: Zhong
  fullname: Zhong, Elaine
– sequence: 9
  givenname: Margaret
  surname: Parisi
  fullname: Parisi, Margaret
– sequence: 10
  givenname: Joseph
  surname: Ciszewski
  fullname: Ciszewski, Joseph
– sequence: 11
  givenname: R. Tristan
  surname: Kasper
  fullname: Kasper, R. Tristan
– sequence: 12
  givenname: Rashid
  surname: Deane
  fullname: Deane, Rashid
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27833813$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23959870$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFNSvAGyQ2ae1rO3Y2SKjiTxqJBXRtOY4zdeWJg50pmtfiQfpMdTTTKSAhWHlxvnOu788JOhri4BB6TskZJZKdj4PJZ5QRAAqUkkdoQUlDq5o35AgtCAFZKQ78GJ3kfE0IaYQiT9AxsEY0SpIFapfxBw7uxoWMY49tHEeXcOdz2owTbpPxAzbrbYi-q25_4qu4djFPJvuM2y02YXLJDyvsp4zHFLuNnXwsjqHDNjiTzGDdU_S4NyG7Z_v3FF1-eP_t4lO1_PLx88W7ZWVFTaYK6toxCTW0PZPOSimJYII2vKXQ8VYpZxuwvQHe9bXrKROC9a2RjaLGiUayU_R2lztu2rXrrBumZIIek1-btNXReP27MvgrvYo3mslalkIl4M0-IMXvG5cnvfbZuhDM4OIma6oIowCKwr9RzhUAEzX7D5SRsg4Bc-rLXzs4fP1-XQV4vQdMtib083x9fuCkYkzRuabYcTbFnJPrtfWTmVdTGvdBU6Ln89Hz-eiH8ym-8z9899F_d-D9j2bhQBec1aU1KWlBXuyQ6zzFdGA4FI2qeeyvdnpvojarVBq6_AqE1oRQDgw4uwPwV-U4
CODEN PNASA6
CitedBy_id crossref_primary_10_3233_JAD_150601
crossref_primary_10_1016_j_ccr_2018_04_004
crossref_primary_10_1021_acs_chemrestox_6b00373
crossref_primary_10_1016_j_toxlet_2023_09_004
crossref_primary_10_1016_j_biopha_2025_117814
crossref_primary_10_1038_s41586_020_2453_z
crossref_primary_10_1007_s12640_023_00672_1
crossref_primary_10_3390_cells12202459
crossref_primary_10_1177_1535370219827907
crossref_primary_10_1007_s00216_022_04488_4
crossref_primary_10_1016_j_biochi_2014_06_009
crossref_primary_10_4103_1673_5374_386406
crossref_primary_10_1002_jsfa_12292
crossref_primary_10_1007_s12035_024_04473_1
crossref_primary_10_1007_s00267_019_01234_y
crossref_primary_10_1007_s13668_015_0121_y
crossref_primary_10_1016_j_ccr_2019_06_018
crossref_primary_10_1021_acs_molpharmaceut_7b00841
crossref_primary_10_3233_JAD_171153
crossref_primary_10_3390_bios14050247
crossref_primary_10_1007_s11064_017_2391_9
crossref_primary_10_1002_ana_24136
crossref_primary_10_3389_fnagi_2023_1300405
crossref_primary_10_1016_j_ccr_2016_04_013
crossref_primary_10_1039_C7MT00075H
crossref_primary_10_1007_s10661_015_5078_1
crossref_primary_10_3390_biom11070960
crossref_primary_10_1021_acschemneuro_3c00343
crossref_primary_10_3233_JAD_143123
crossref_primary_10_1016_j_neuropharm_2017_12_026
crossref_primary_10_1002_jbt_22694
crossref_primary_10_1186_s12987_021_00267_y
crossref_primary_10_3390_antiox11122357
crossref_primary_10_5487_TR_2013_29_4_235
crossref_primary_10_1093_toxsci_kfz084
crossref_primary_10_1007_s40520_021_02034_3
crossref_primary_10_1016_j_bmcl_2021_128316
crossref_primary_10_3390_ijms22147242
crossref_primary_10_1039_C8CS00034D
crossref_primary_10_1074_jbc_M113_525212
crossref_primary_10_3390_toxics12100755
crossref_primary_10_1039_C5TX00456J
crossref_primary_10_2903_j_efsa_2023_7728
crossref_primary_10_3390_cells12101369
crossref_primary_10_1089_ars_2017_7272
crossref_primary_10_3233_JAD_170552
crossref_primary_10_1074_jbc_M115_684084
crossref_primary_10_1093_toxsci_kfy025
crossref_primary_10_1016_j_jtemb_2020_126578
crossref_primary_10_1515_revneuro_2015_0069
crossref_primary_10_3389_fnmol_2024_1504802
crossref_primary_10_1007_s12230_014_9390_z
crossref_primary_10_1093_toxsci_kfw081
crossref_primary_10_1246_cl_190281
crossref_primary_10_3390_biom10060897
crossref_primary_10_4103_NRR_NRR_D_24_00642
crossref_primary_10_1039_D3RA06218J
crossref_primary_10_17816_phbn641854
crossref_primary_10_1021_acsami_9b14849
crossref_primary_10_1016_j_ccr_2018_05_020
crossref_primary_10_1177_1533317517709549
crossref_primary_10_3390_ijms21207660
crossref_primary_10_3233_JAD_160427
crossref_primary_10_1186_s12974_021_02322_9
crossref_primary_10_3390_biom11111598
crossref_primary_10_1016_j_jconrel_2018_01_024
crossref_primary_10_3390_biom4010101
crossref_primary_10_1007_s10534_022_00399_0
crossref_primary_10_1007_s00204_014_1272_0
crossref_primary_10_1016_j_msec_2019_04_022
crossref_primary_10_1039_C5DT03939H
crossref_primary_10_3389_fnagi_2014_00093
crossref_primary_10_1016_j_dscb_2023_100076
crossref_primary_10_1007_s10495_024_01993_y
crossref_primary_10_1039_d0mt00136h
crossref_primary_10_2139_ssrn_3158775
crossref_primary_10_3390_biomedicines9101351
crossref_primary_10_1016_j_foodchem_2021_131388
crossref_primary_10_1186_s40478_021_01293_5
crossref_primary_10_3389_fnins_2021_755475
crossref_primary_10_4236_aad_2014_34014
crossref_primary_10_1038_s41392_022_01229_y
crossref_primary_10_1039_C4CS00138A
crossref_primary_10_1093_braincomms_fcac039
crossref_primary_10_1002_chem_201704555
crossref_primary_10_3390_cells8121598
crossref_primary_10_1111_bph_13378
crossref_primary_10_3389_fnagi_2017_00446
crossref_primary_10_1126_sciadv_adp1115
crossref_primary_10_3390_antiox12020415
crossref_primary_10_1016_j_freeradbiomed_2017_11_015
crossref_primary_10_2174_1570159X22666231103085859
crossref_primary_10_1002_elan_201500138
crossref_primary_10_1111_cns_12427
crossref_primary_10_1007_s10895_023_03220_4
crossref_primary_10_3389_fncel_2023_1132092
crossref_primary_10_1016_j_neuroscience_2020_11_021
crossref_primary_10_1016_j_ccr_2017_05_007
crossref_primary_10_3390_diagnostics11091655
crossref_primary_10_1016_j_molstruc_2024_138837
crossref_primary_10_1093_toxsci_kfy082
crossref_primary_10_1016_j_etap_2014_11_030
crossref_primary_10_1039_C5CS00798D
crossref_primary_10_1097_WAD_0000000000000280
crossref_primary_10_1016_j_ica_2017_07_060
crossref_primary_10_1016_j_jinorgbio_2014_06_003
crossref_primary_10_3390_nu7125513
crossref_primary_10_1111_ejn_14181
crossref_primary_10_1007_s13738_021_02181_4
crossref_primary_10_1016_j_arr_2024_102210
crossref_primary_10_1016_j_pneurobio_2016_06_004
crossref_primary_10_3389_fnins_2021_735928
crossref_primary_10_1002_ijch_201600105
crossref_primary_10_1016_j_jtemb_2014_06_018
crossref_primary_10_1080_15376516_2021_1964665
crossref_primary_10_3390_ijms23063327
crossref_primary_10_1093_toxsci_kfz043
crossref_primary_10_1016_j_jinorgbio_2013_12_003
crossref_primary_10_1038_s41598_017_13759_5
crossref_primary_10_1039_C6TB01215A
crossref_primary_10_1016_j_nbd_2016_05_015
crossref_primary_10_1007_s00204_018_2163_6
crossref_primary_10_1016_j_neuropharm_2015_07_023
crossref_primary_10_1265_jjh_69_155
crossref_primary_10_1016_S1474_4422_14_70190_5
crossref_primary_10_1039_C6FO00809G
crossref_primary_10_1016_j_pneurobio_2015_12_004
crossref_primary_10_1152_ajpcell_00515_2019
crossref_primary_10_1016_j_biopha_2024_117182
crossref_primary_10_2174_0113816128263992231012113847
crossref_primary_10_1016_j_pneurobio_2016_04_001
crossref_primary_10_1007_s10534_014_9799_3
crossref_primary_10_3390_biom10030408
crossref_primary_10_1155_2016_4647830
crossref_primary_10_3390_ijms252212154
crossref_primary_10_1016_j_jmb_2019_01_018
crossref_primary_10_1016_j_jtemb_2021_126779
crossref_primary_10_1016_j_bmc_2018_01_030
crossref_primary_10_1002_fsn3_2490
crossref_primary_10_1021_ja410812r
crossref_primary_10_1016_j_neuro_2019_04_001
crossref_primary_10_1039_D0NR07449G
crossref_primary_10_1007_s10570_018_2083_x
crossref_primary_10_1016_j_neuro_2014_05_005
crossref_primary_10_1016_j_arr_2024_102199
crossref_primary_10_1371_journal_pone_0170749
crossref_primary_10_4103_1673_5374_266046
crossref_primary_10_3390_biom10010044
crossref_primary_10_1007_s12035_015_9664_6
crossref_primary_10_1016_j_ijbiomac_2021_01_091
crossref_primary_10_14348_molcells_2016_2198
crossref_primary_10_3390_ijerph13100956
crossref_primary_10_1155_2018_1483791
crossref_primary_10_3389_fgene_2020_616083
crossref_primary_10_1155_2021_6634181
crossref_primary_10_1007_s10953_017_0693_9
crossref_primary_10_1038_s41598_017_08292_4
crossref_primary_10_3233_JAD_201556
crossref_primary_10_3390_ijms25189947
crossref_primary_10_1016_j_jtemb_2016_07_006
crossref_primary_10_1016_j_toxlet_2016_10_009
crossref_primary_10_1111_nyas_12354
crossref_primary_10_1016_j_brainresbull_2018_09_003
crossref_primary_10_1016_j_neuint_2020_104794
crossref_primary_10_1073_pnas_1409796111
crossref_primary_10_1111_jpi_12502
crossref_primary_10_3390_molecules28145467
crossref_primary_10_3389_fnins_2018_00668
crossref_primary_10_3390_biomedicines8030045
crossref_primary_10_1515_chempap_2015_0134
crossref_primary_10_3390_ijerph15010002
crossref_primary_10_1007_s10534_023_00530_9
crossref_primary_10_3109_09553002_2016_1135266
crossref_primary_10_1016_j_jtemb_2014_06_004
crossref_primary_10_1007_s11356_020_09964_x
crossref_primary_10_3389_fnins_2017_00317
crossref_primary_10_3389_fnins_2024_1467333
crossref_primary_10_1038_srep04881
crossref_primary_10_1002_adma_201801362
crossref_primary_10_1080_10408444_2020_1838441
crossref_primary_10_1177_1756286420947986
Cites_doi 10.1039/c0mt00006j
10.1146/annurev.nutr.20.1.291
10.1097/00000441-198612000-00002
10.1172/JCI58642
10.1093/jn/128.8.1276
10.1016/j.nbd.2005.10.004
10.1073/pnas.1832769100
10.1111/j.1471-4159.2011.07402.x
10.1093/ajcn/67.5.1054S
10.1016/S1474-4422(08)70167-4
10.1111/j.1749-6632.1994.tb21836.x
10.1038/srep00011
10.1042/BJ20061736
10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A
10.1111/j.1471-4159.1990.tb02337.x
10.1016/S0891-5849(02)00794-3
10.1080/07315724.2009.10719777
10.1016/j.nurt.2008.05.001
10.1172/JCI36663
10.1016/j.pneurobio.2005.06.001
10.3233/JAD-2004-6310
10.1016/j.freeradbiomed.2011.10.446
10.1074/jbc.M109.019521
10.1016/j.brainres.2008.10.056
10.1016/j.pharmthera.2005.03.010
10.3233/JAD-2005-8212
10.1074/jbc.M313572200
10.1111/j.1471-4159.2011.07278.x
10.1016/j.jtemb.2012.04.012
10.1016/S0896-6273(01)00475-5
10.1007/s00401-006-0115-3
10.1042/bj3440461
10.1212/01.wnl.0000223343.82809.cf
10.1093/brain/awh492
10.1093/ajcn/88.3.826S
10.1385/MN:23:1:53
10.1074/jbc.M204379200
10.1016/S0022-510X(98)00092-6
10.2174/187152709787601867
10.3181/00379727-158-40152
10.1016/j.neuron.2008.01.003
10.1007/s00249-007-0234-3
10.2174/156720507780362245
10.1073/pnas.2332818100
10.1073/pnas.1110789109
10.1038/nm1287
10.1046/j.1471-4159.2003.02221.x
10.1074/jbc.274.52.37111
10.1523/JNEUROSCI.17-08-02653.1997
10.1126/scitranslmed.3003748
10.1021/tx025666g
10.1074/jbc.M110.163964
10.1073/pnas.2332851100
10.1016/j.neuron.2004.07.017
10.1021/bi972827k
10.1212/WNL.59.8.1153
10.3233/JAD-2010-1390
10.1111/j.1471-4159.1989.tb11778.x
10.1021/bi0358824
10.1046/j.1471-4159.1999.0731288.x
10.1002/biof.1005
ContentType Journal Article
Copyright Copyright National Academy of Sciences
2015 INIST-CNRS
Copyright_xml – notice: Copyright National Academy of Sciences
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7S9
L.6
5PM
DOI 10.1073/pnas.1302212110
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Neurosciences Abstracts
MEDLINE
MEDLINE - Academic
AGRICOLA



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Dysregulation of brain Aβ homeostasis by Cu
EISSN 1091-6490
EndPage 14776
ExternalDocumentID PMC3767519
23959870
27833813
10_1073_pnas_1302212110
110_36_14771
42713189
US201600142324
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG029481
– fundername: NIA NIH HHS
  grantid: R01 AG029481
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
AFHIN
AFQQW
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7S9
L.6
5PM
ID FETCH-LOGICAL-c560t-266e37262bf37ec7770535194b12d4b88ec92cfa24df6ef13553fba7981ae5973
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:11:18 EDT 2025
Thu Sep 04 17:35:08 EDT 2025
Thu Sep 04 21:38:38 EDT 2025
Thu Sep 04 16:53:03 EDT 2025
Thu Apr 03 07:08:12 EDT 2025
Wed Apr 02 07:35:50 EDT 2025
Tue Jul 01 03:39:49 EDT 2025
Thu Apr 24 22:55:39 EDT 2025
Wed Nov 11 00:30:25 EST 2020
Thu May 29 08:40:50 EDT 2025
Wed Dec 27 19:14:13 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords BACE1
BBB
environmental
β Amyloid protein
Toxicity
Central nervous system
Homeostasis
cerebrovascular
Clearance
Copper
Encephalon
toxicity
Language English
License CC BY 4.0
Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c560t-266e37262bf37ec7770535194b12d4b88ec92cfa24df6ef13553fba7981ae5973
Notes http://dx.doi.org/10.1073/pnas.1302212110
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Thomas C. Südhof, Stanford University School of Medicine, Stanford, CA, and approved July 18, 2013 (received for review February 2, 2013)
Author contributions: R.D. designed research; I.S., A.P.S., M.C., D.P., R.G., R.D.B., R.J.D., E.Z., M.P., J.C., and R.T.K. performed research; I.S., A.P.S., M. C., D.P., R.G., R.D.B., R.J.D. and R.D. analyzed data; and R.D. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/110/36/14771.full.pdf
PMID 23959870
PQID 1430395522
PQPubID 23479
PageCount 6
ParticipantIDs crossref_citationtrail_10_1073_pnas_1302212110
proquest_miscellaneous_1448223563
pubmed_primary_23959870
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767519
proquest_miscellaneous_1803122812
proquest_miscellaneous_1430395522
crossref_primary_10_1073_pnas_1302212110
pnas_primary_110_36_14771
jstor_primary_42713189
pascalfrancis_primary_27833813
fao_agris_US201600142324
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-03
PublicationDateYYYYMMDD 2013-09-03
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-03
  day: 03
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
Sparks DL (e_1_3_3_15_2) 2006; 10
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
Weiss KC (e_1_3_3_37_2) 1985; 249
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
Wirth PL (e_1_3_3_38_2) 1985; 75
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
662866 - Proc Soc Exp Biol Med. 1978 May;158(1):113-6
11642543 - Mol Neurobiol. 2001 Feb;23(1):53-67
22307640 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1737-42
18215617 - Neuron. 2008 Jan 24;57(2):178-201
22565015 - J Trace Elem Med Biol. 2012 Jun;26(2-3):93-6
9092586 - J Neurosci. 1997 Apr 15;17(8):2653-7
12215434 - J Biol Chem. 2002 Nov 22;277(47):44670-6
22438177 - Biofactors. 2012 Mar-Apr;38(2):107-13
3860683 - J Natl Cancer Inst. 1985 Aug;75(2):277-84
15817516 - Brain. 2005 Jul;128(Pt 7):1613-21
18779302 - Am J Clin Nutr. 2008 Sep;88(3):826S-9S
22355530 - Sci Rep. 2011;1:11
11683988 - Neuron. 2001 Oct 25;32(2):177-80
2106011 - J Neurochem. 1990 Mar;54(3):905-14
16886094 - J Nutr Health Aging. 2006 Jul-Aug;10(4):247-54
17430246 - Curr Alzheimer Res. 2007 Apr;4(2):191-7
22406537 - J Clin Invest. 2012 Apr;122(4):1377-92
12920183 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11065-9
21517843 - J Neurochem. 2011 Jul;118(1):105-12
17155929 - Biochem J. 2007 Feb 15;402(1):17-23
2760621 - J Neurochem. 1989 Sep;53(3):817-24
16832081 - Neurology. 2006 Jul 11;67(1):76-82
18030462 - Eur Biophys J. 2008 Mar;37(3):269-79
10567229 - Biochem J. 1999 Dec 1;344 Pt 2:461-7
14617772 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14193-8
18672400 - Lancet Neurol. 2008 Sep;7(9):779-86
21797865 - J Neurochem. 2011 Oct;119(1):220-30
20164561 - J Alzheimers Dis. 2010;20(2):509-16
14717612 - Biochemistry. 2004 Jan 20;43(2):560-8
12391342 - Neurology. 2002 Oct 22;59(8):1153-61
19275634 - CNS Neurol Disord Drug Targets. 2009 Mar;8(1):16-30
15201484 - J Alzheimers Dis. 2004 Jun;6(3):291-301
16865397 - Acta Neuropathol. 2006 Oct;112(4):405-15
10461923 - J Neurochem. 1999 Sep;73(3):1288-92
16116430 - Nat Med. 2005 Sep;11(9):959-65
15294142 - Neuron. 2004 Aug 5;43(3):333-44
9587151 - Am J Clin Nutr. 1998 May;67(5 Suppl):1054S-1060S
7832455 - Ann N Y Acad Sci. 1994 Nov 17;738:447-54
20150596 - J Am Coll Nutr. 2009 Jun;28(3):238-42
12031889 - Free Radic Biol Med. 2002 Jun 1;32(11):1050-60
16112736 - Pharmacol Ther. 2005 Nov;108(2):129-48
21072351 - Metallomics. 2010 Sep;2(9):596-608
3925789 - Am J Physiol. 1985 Jul;249(1 Pt 1):E77-88
10940336 - Annu Rev Nutr. 2000;20:291-310
22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111
14617773 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14187-92
19542222 - J Biol Chem. 2009 Aug 14;284(33):21899-907
14756801 - J Neurochem. 2004 Feb;88(4):813-20
9667777 - J Neurol Sci. 1998 Jun 11;158(1):47-52
19033669 - J Clin Invest. 2008 Dec;118(12):4002-13
9687544 - J Nutr. 1998 Aug;128(8):1276-82
19014916 - Brain Res. 2009 Jan 12;1248:14-21
9581871 - J Cell Biochem. 1998 Jun 1;69(3):326-35
18625454 - Neurotherapeutics. 2008 Jul;5(3):421-32
16308488 - J Alzheimers Dis. 2005 Nov;8(2):201-6; discussion 209-15
22080049 - Free Radic Biol Med. 2012 Jan 15;52(2):298-302
16115721 - Prog Neurobiol. 2005 Jun;76(2):126-52
21239495 - J Biol Chem. 2011 Mar 18;286(11):9776-86
16378731 - Neurobiol Dis. 2006 Apr;22(1):76-87
9585530 - Biochemistry. 1998 May 19;37(20):7185-93
14978032 - J Biol Chem. 2004 Apr 30;279(18):18169-77
12703970 - Chem Res Toxicol. 2003 Apr;16(4):531-5
3799705 - Am J Med Sci. 1986 Dec;292(6):344-9
10601271 - J Biol Chem. 1999 Dec 24;274(52):37111-6
References_xml – ident: e_1_3_3_2_2
  doi: 10.1039/c0mt00006j
– ident: e_1_3_3_4_2
  doi: 10.1146/annurev.nutr.20.1.291
– ident: e_1_3_3_40_2
  doi: 10.1097/00000441-198612000-00002
– ident: e_1_3_3_60_2
  doi: 10.1172/JCI58642
– ident: e_1_3_3_42_2
  doi: 10.1093/jn/128.8.1276
– ident: e_1_3_3_54_2
  doi: 10.1016/j.nbd.2005.10.004
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1832769100
– ident: e_1_3_3_62_2
  doi: 10.1111/j.1471-4159.2011.07402.x
– ident: e_1_3_3_36_2
  doi: 10.1093/ajcn/67.5.1054S
– ident: e_1_3_3_61_2
  doi: 10.1016/S1474-4422(08)70167-4
– ident: e_1_3_3_45_2
  doi: 10.1111/j.1749-6632.1994.tb21836.x
– ident: e_1_3_3_8_2
  doi: 10.1038/srep00011
– ident: e_1_3_3_29_2
  doi: 10.1042/BJ20061736
– ident: e_1_3_3_44_2
  doi: 10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1471-4159.1990.tb02337.x
– volume: 249
  start-page: E77
  year: 1985
  ident: e_1_3_3_37_2
  article-title: Copper transport in rats involving a new plasma protein
  publication-title: Am J Physiol
– ident: e_1_3_3_47_2
  doi: 10.1016/S0891-5849(02)00794-3
– ident: e_1_3_3_39_2
  doi: 10.1080/07315724.2009.10719777
– ident: e_1_3_3_7_2
  doi: 10.1016/j.nurt.2008.05.001
– ident: e_1_3_3_27_2
  doi: 10.1172/JCI36663
– ident: e_1_3_3_52_2
  doi: 10.1016/j.pneurobio.2005.06.001
– ident: e_1_3_3_57_2
  doi: 10.3233/JAD-2004-6310
– volume: 75
  start-page: 277
  year: 1985
  ident: e_1_3_3_38_2
  article-title: Distribution of copper among components of human serum
  publication-title: J Natl Cancer Inst
– volume: 10
  start-page: 247
  year: 2006
  ident: e_1_3_3_15_2
  article-title: Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology
  publication-title: J Nutr Health Aging
– ident: e_1_3_3_12_2
  doi: 10.1016/j.freeradbiomed.2011.10.446
– ident: e_1_3_3_58_2
  doi: 10.1074/jbc.M109.019521
– ident: e_1_3_3_41_2
  doi: 10.1016/j.brainres.2008.10.056
– ident: e_1_3_3_23_2
  doi: 10.1016/j.pharmthera.2005.03.010
– ident: e_1_3_3_19_2
  doi: 10.3233/JAD-2005-8212
– ident: e_1_3_3_50_2
  doi: 10.1074/jbc.M313572200
– ident: e_1_3_3_31_2
  doi: 10.1111/j.1471-4159.2011.07278.x
– ident: e_1_3_3_6_2
  doi: 10.1016/j.jtemb.2012.04.012
– ident: e_1_3_3_21_2
  doi: 10.1016/S0896-6273(01)00475-5
– ident: e_1_3_3_26_2
  doi: 10.1007/s00401-006-0115-3
– ident: e_1_3_3_20_2
  doi: 10.1042/bj3440461
– ident: e_1_3_3_11_2
  doi: 10.1212/01.wnl.0000223343.82809.cf
– ident: e_1_3_3_55_2
  doi: 10.1093/brain/awh492
– ident: e_1_3_3_1_2
  doi: 10.1093/ajcn/88.3.826S
– ident: e_1_3_3_49_2
  doi: 10.1385/MN:23:1:53
– ident: e_1_3_3_18_2
  doi: 10.1074/jbc.M204379200
– ident: e_1_3_3_9_2
  doi: 10.1016/S0022-510X(98)00092-6
– ident: e_1_3_3_63_2
  doi: 10.2174/187152709787601867
– ident: e_1_3_3_3_2
  doi: 10.3181/00379727-158-40152
– ident: e_1_3_3_32_2
  doi: 10.1016/j.neuron.2008.01.003
– ident: e_1_3_3_48_2
  doi: 10.1007/s00249-007-0234-3
– ident: e_1_3_3_22_2
  doi: 10.2174/156720507780362245
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.2332818100
– ident: e_1_3_3_59_2
  doi: 10.1073/pnas.1110789109
– ident: e_1_3_3_64_2
  doi: 10.1038/nm1287
– ident: e_1_3_3_34_2
  doi: 10.1046/j.1471-4159.2003.02221.x
– ident: e_1_3_3_46_2
  doi: 10.1074/jbc.274.52.37111
– ident: e_1_3_3_53_2
  doi: 10.1523/JNEUROSCI.17-08-02653.1997
– ident: e_1_3_3_24_2
  doi: 10.1126/scitranslmed.3003748
– ident: e_1_3_3_56_2
  doi: 10.1021/tx025666g
– ident: e_1_3_3_43_2
  doi: 10.1074/jbc.M110.163964
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.2332851100
– ident: e_1_3_3_25_2
  doi: 10.1016/j.neuron.2004.07.017
– ident: e_1_3_3_28_2
  doi: 10.1021/bi972827k
– ident: e_1_3_3_10_2
  doi: 10.1212/WNL.59.8.1153
– ident: e_1_3_3_13_2
  doi: 10.3233/JAD-2010-1390
– ident: e_1_3_3_35_2
  doi: 10.1111/j.1471-4159.1989.tb11778.x
– ident: e_1_3_3_51_2
  doi: 10.1021/bi0358824
– ident: e_1_3_3_30_2
  doi: 10.1046/j.1471-4159.1999.0731288.x
– ident: e_1_3_3_5_2
  doi: 10.1002/biof.1005
– reference: 3925789 - Am J Physiol. 1985 Jul;249(1 Pt 1):E77-88
– reference: 9687544 - J Nutr. 1998 Aug;128(8):1276-82
– reference: 2106011 - J Neurochem. 1990 Mar;54(3):905-14
– reference: 7832455 - Ann N Y Acad Sci. 1994 Nov 17;738:447-54
– reference: 11642543 - Mol Neurobiol. 2001 Feb;23(1):53-67
– reference: 16115721 - Prog Neurobiol. 2005 Jun;76(2):126-52
– reference: 22355530 - Sci Rep. 2011;1:11
– reference: 11683988 - Neuron. 2001 Oct 25;32(2):177-80
– reference: 16832081 - Neurology. 2006 Jul 11;67(1):76-82
– reference: 19033669 - J Clin Invest. 2008 Dec;118(12):4002-13
– reference: 22438177 - Biofactors. 2012 Mar-Apr;38(2):107-13
– reference: 662866 - Proc Soc Exp Biol Med. 1978 May;158(1):113-6
– reference: 22406537 - J Clin Invest. 2012 Apr;122(4):1377-92
– reference: 12215434 - J Biol Chem. 2002 Nov 22;277(47):44670-6
– reference: 2760621 - J Neurochem. 1989 Sep;53(3):817-24
– reference: 12391342 - Neurology. 2002 Oct 22;59(8):1153-61
– reference: 14978032 - J Biol Chem. 2004 Apr 30;279(18):18169-77
– reference: 18625454 - Neurotherapeutics. 2008 Jul;5(3):421-32
– reference: 14617772 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14193-8
– reference: 14617773 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14187-92
– reference: 14717612 - Biochemistry. 2004 Jan 20;43(2):560-8
– reference: 9585530 - Biochemistry. 1998 May 19;37(20):7185-93
– reference: 18030462 - Eur Biophys J. 2008 Mar;37(3):269-79
– reference: 12920183 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11065-9
– reference: 21517843 - J Neurochem. 2011 Jul;118(1):105-12
– reference: 10940336 - Annu Rev Nutr. 2000;20:291-310
– reference: 16112736 - Pharmacol Ther. 2005 Nov;108(2):129-48
– reference: 22080049 - Free Radic Biol Med. 2012 Jan 15;52(2):298-302
– reference: 3799705 - Am J Med Sci. 1986 Dec;292(6):344-9
– reference: 20150596 - J Am Coll Nutr. 2009 Jun;28(3):238-42
– reference: 10567229 - Biochem J. 1999 Dec 1;344 Pt 2:461-7
– reference: 16865397 - Acta Neuropathol. 2006 Oct;112(4):405-15
– reference: 3860683 - J Natl Cancer Inst. 1985 Aug;75(2):277-84
– reference: 18779302 - Am J Clin Nutr. 2008 Sep;88(3):826S-9S
– reference: 19275634 - CNS Neurol Disord Drug Targets. 2009 Mar;8(1):16-30
– reference: 9587151 - Am J Clin Nutr. 1998 May;67(5 Suppl):1054S-1060S
– reference: 9092586 - J Neurosci. 1997 Apr 15;17(8):2653-7
– reference: 18672400 - Lancet Neurol. 2008 Sep;7(9):779-86
– reference: 15294142 - Neuron. 2004 Aug 5;43(3):333-44
– reference: 16116430 - Nat Med. 2005 Sep;11(9):959-65
– reference: 20164561 - J Alzheimers Dis. 2010;20(2):509-16
– reference: 19014916 - Brain Res. 2009 Jan 12;1248:14-21
– reference: 14756801 - J Neurochem. 2004 Feb;88(4):813-20
– reference: 16886094 - J Nutr Health Aging. 2006 Jul-Aug;10(4):247-54
– reference: 18215617 - Neuron. 2008 Jan 24;57(2):178-201
– reference: 21239495 - J Biol Chem. 2011 Mar 18;286(11):9776-86
– reference: 10601271 - J Biol Chem. 1999 Dec 24;274(52):37111-6
– reference: 22307640 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1737-42
– reference: 15201484 - J Alzheimers Dis. 2004 Jun;6(3):291-301
– reference: 15817516 - Brain. 2005 Jul;128(Pt 7):1613-21
– reference: 19542222 - J Biol Chem. 2009 Aug 14;284(33):21899-907
– reference: 22896675 - Sci Transl Med. 2012 Aug 15;4(147):147ra111
– reference: 17430246 - Curr Alzheimer Res. 2007 Apr;4(2):191-7
– reference: 21072351 - Metallomics. 2010 Sep;2(9):596-608
– reference: 21797865 - J Neurochem. 2011 Oct;119(1):220-30
– reference: 16308488 - J Alzheimers Dis. 2005 Nov;8(2):201-6; discussion 209-15
– reference: 9581871 - J Cell Biochem. 1998 Jun 1;69(3):326-35
– reference: 16378731 - Neurobiol Dis. 2006 Apr;22(1):76-87
– reference: 22565015 - J Trace Elem Med Biol. 2012 Jun;26(2-3):93-6
– reference: 12703970 - Chem Res Toxicol. 2003 Apr;16(4):531-5
– reference: 17155929 - Biochem J. 2007 Feb 15;402(1):17-23
– reference: 9667777 - J Neurol Sci. 1998 Jun 11;158(1):47-52
– reference: 10461923 - J Neurochem. 1999 Sep;73(3):1288-92
– reference: 12031889 - Free Radic Biol Med. 2002 Jun 1;32(11):1050-60
SSID ssj0009580
Score 2.5289965
Snippet Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could...
The causes of the sporadic form of Alzheimer’s disease (AD) are unknown. In this study we show that copper (Cu) critically regulates low-density lipoprotein...
Whereas amyloid- beta (A beta ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14771
SubjectTerms Age Factors
Alzheimer disease
Alzheimers disease
Amyloid beta-Peptides - metabolism
Amyloid beta-Peptides - pharmacokinetics
Amyloid beta-Protein Precursor - genetics
Amyloid beta-Protein Precursor - metabolism
animal models
Animals
Biological and medical sciences
Biological Sciences
Blood brain barrier
Blood plasma
Blood-Brain Barrier - metabolism
Blotting, Western
brain
Brain - blood supply
Brain - drug effects
Brain - metabolism
Capillaries
Capillaries - drug effects
Capillaries - metabolism
Cell Survival - drug effects
Cells, Cultured
Copper
Copper - metabolism
Copper - pharmacology
Dose-Response Relationship, Drug
drinking water
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Fundamental and applied biological sciences. Psychology
gene overexpression
Homeostasis
Homeostasis - drug effects
Humans
Iodine Radioisotopes - pharmacokinetics
low density lipoprotein
Metabolic Clearance Rate
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
neurotoxicity
Parenchyma
Platelet Endothelial Cell Adhesion Molecule-1 - metabolism
Potable water
prions
Quantification
Receptors, LDL - genetics
Receptors, LDL - metabolism
Time Factors
transgenic animals
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Vertebrates: nervous system and sense organs
Title Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance
URI https://www.jstor.org/stable/42713189
http://www.pnas.org/content/110/36/14771.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23959870
https://www.proquest.com/docview/1430395522
https://www.proquest.com/docview/1448223563
https://www.proquest.com/docview/1803122812
https://pubmed.ncbi.nlm.nih.gov/PMC3767519
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGuOEGMWAs_ExGYtJQlNLY-b0c02AgNlXaJu0ushNnq7Q2VdMKjcfiQXgBXoZzbOen05hgN1GbOnGa8-X4HOf4-wh5x1gJVg-VN4xFDAlKzryURcoLhWRJUiSqkDjfcXQcHZ4FX8_D87W1372qpeVCDvIft64ruY9VYR_YFVfJ_odl25PCDvgM9oUtWBi2_2Tjb9V39wqrfmpTHT6bod73uJ4vZwtXoviDKyaQkY8Lb2f_YOcjcy-riaogIEQaEgg89btyvaplUWOpVrG0yuG42A0FJVpM2Ph11I53dVNdcNxMJ-51i1Osx6hdzx0dd1LHJ3Ccnsb5omfe27rgE4Fiu9pNyUtx7Y4G7auRaiJMdf9cjUXnx-dXE62wvVqWb2cvUEki9Ya8K-644xL7bpvBUBqYxdYDZTw1BDpeFBit0daV2xJZg1ne98x-EButFzvM4_fo1jEEnB4KH09FjVLZjCEJ3rDfEkAwm2hIMZ6GaWKUT27Qdo-O9jVRDlLSPmTQN7rfz-d-jxE6Meuj7H9reKdi_uFG30hYbTtaiZ4elKJqymixplfU8FiXRo8FuXrhLLflTTfLf3vx1OkT8tgmQnTPoHqDrKnpU7LRWIXuWj7098-IBJhTA3NaldTAnFqYUw1z2sD810_agziV17SBOAWI0w7iFCBOW4g_J2efDk73Dz0rDeLlEKIvPAgrFY9ZxGTJY5XHcYw8RX4aSJ8VgUwSlacsLwULijJSpQ9RNS-liNPEFwpyaL5J1qfVVG0RGuSQI8kCnFMRBpJFgsF5S87yoMjDQvgOGTS3PMstbz7Kt1xlun4j5hne6Kwzl0N22wNmhjLm7023wIaZuIABPTs7YUj3OPSxdiJwyKY2bHuKgMU-DMCpQ7ZXLN02QM0ciL-5QxzdTds3dM6jTD8ADnnb4CGDcQRfDoqpqpZwUQEEs2kI6dhdbQLIJ3gY8TvaJBAmMAZ5g0NeGJx1V2hR7JB4BYFtA-S6X_1lOr7UnPf2WXp57yNfkUed_3lN1hfzpXoD-cRCbuvn8g9-QR-h
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+levels+of+copper+disrupt+brain+amyloid-%CE%B2+homeostasis+by+altering+its+production+and+clearance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Singh%2C+Itender&rft.au=Sagare%2C+Abhay+P.&rft.au=Coma%2C+Mireia&rft.au=Perlmutter%2C+David&rft.date=2013-09-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=36&rft.spage=14771&rft.epage=14776&rft_id=info:doi/10.1073%2Fpnas.1302212110&rft_id=info%3Apmid%2F23959870&rft.externalDocID=PMC3767519
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif