Identification of potential blood biomarkers for Parkinson's disease by gene expression and DNA methylation data integration analysis

Blood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible. Whole blood...

Full description

Saved in:
Bibliographic Details
Published inClinical epigenetics Vol. 11; no. 1; p. 24
Main Authors Wang, Changliang, Chen, Liang, Yang, Yang, Zhang, Menglei, Wong, Garry
Format Journal Article
LanguageEnglish
Published Germany BioMed Central Ltd 11.02.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Blood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible. Whole blood gene expression data and DNA methylation data were downloaded from Gene Expression Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and differentially methylated genes (DMGs) according to specific gene regions 5'-C-phosphate-G-3' (CpGs) or all gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene expression data integrated with methylation data. Eighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-altered region CpGs were constructed. All have a good prediction power for PD. Gene expression and methylation data integration analysis identified a blood-based 53-gene signature, which could be applied as a biomarker for PD.
AbstractList Abstract Background Blood-based gene expression or epigenetic biomarkers of Parkinson’s disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible. Methods Whole blood gene expression data and DNA methylation data were downloaded from Gene Expression Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and differentially methylated genes (DMGs) according to specific gene regions 5′—C—phosphate—G—3′ (CpGs) or all gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene expression data integrated with methylation data. Results Eighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-altered region CpGs were constructed. All have a good prediction power for PD. Conclusions Gene expression and methylation data integration analysis identified a blood-based 53-gene signature, which could be applied as a biomarker for PD.
BACKGROUNDBlood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible. METHODSWhole blood gene expression data and DNA methylation data were downloaded from Gene Expression Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and differentially methylated genes (DMGs) according to specific gene regions 5'-C-phosphate-G-3' (CpGs) or all gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene expression data integrated with methylation data. RESULTSEighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-altered region CpGs were constructed. All have a good prediction power for PD. CONCLUSIONSGene expression and methylation data integration analysis identified a blood-based 53-gene signature, which could be applied as a biomarker for PD.
Blood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible. Whole blood gene expression data and DNA methylation data were downloaded from Gene Expression Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and differentially methylated genes (DMGs) according to specific gene regions 5'-C-phosphate-G-3' (CpGs) or all gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene expression data integrated with methylation data. Eighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-altered region CpGs were constructed. All have a good prediction power for PD. Gene expression and methylation data integration analysis identified a blood-based 53-gene signature, which could be applied as a biomarker for PD.
Background Blood-based gene expression or epigenetic biomarkers of Parkinson’s disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible. Methods Whole blood gene expression data and DNA methylation data were downloaded from Gene Expression Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and differentially methylated genes (DMGs) according to specific gene regions 5′—C—phosphate—G—3′ (CpGs) or all gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene expression data integrated with methylation data. Results Eighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-altered region CpGs were constructed. All have a good prediction power for PD. Conclusions Gene expression and methylation data integration analysis identified a blood-based 53-gene signature, which could be applied as a biomarker for PD.
Blood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible. Whole blood gene expression data and DNA methylation data were downloaded from Gene Expression Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and differentially methylated genes (DMGs) according to specific gene regions 5'--C--phosphate--G--3' (CpGs) or all gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene expression data integrated with methylation data. Eighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-altered region CpGs were constructed. All have a good prediction power for PD. Gene expression and methylation data integration analysis identified a blood-based 53-gene signature, which could be applied as a biomarker for PD.
Background Blood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be improved, and methods for the integration of gene expression with epigenetic data need to be developed in order to make this feasible. Methods Whole blood gene expression data and DNA methylation data were downloaded from Gene Expression Omnibus (GEO) database. A linear model was used to identify significantly differentially expressed genes (DEGs) and differentially methylated genes (DMGs) according to specific gene regions 5'--C--phosphate--G--3' (CpGs) or all gene regions CpGs in PD. Gene set enrichment analysis was then applied to DEGs and DMGs. Subsequently, data integration analysis was performed to identify robust PD-associated blood biomarkers. Finally, the random forest algorithm and a leave-one-out cross validation method were performed to construct classifiers based on gene expression data integrated with methylation data. Results Eighty-five (85) significantly hypo-methylated and upregulated genes in PD patients compared to healthy controls were identified. The dominant hypo-methylated regions of these genes were significantly different. Some genes had a single dominant hypo-methylated region, while others had multiple dominant hypo-methylated regions. One gene expression classifier and two gene methylation classifiers based on all or dominant methylation-altered region CpGs were constructed. All have a good prediction power for PD. Conclusions Gene expression and methylation data integration analysis identified a blood-based 53-gene signature, which could be applied as a biomarker for PD. Keywords: Parkinson's disease, Data integration, DNA methylation, Gene expression
ArticleNumber 24
Audience Academic
Author Zhang, Menglei
Wang, Changliang
Chen, Liang
Yang, Yang
Wong, Garry
Author_xml – sequence: 1
  givenname: Changliang
  surname: Wang
  fullname: Wang, Changliang
  organization: Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R., Macau, China
– sequence: 2
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  organization: Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R., Macau, China
– sequence: 3
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R., Macau, China
– sequence: 4
  givenname: Menglei
  surname: Zhang
  fullname: Zhang, Menglei
  organization: Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R., Macau, China
– sequence: 5
  givenname: Garry
  orcidid: 0000-0003-4566-9958
  surname: Wong
  fullname: Wong, Garry
  email: GarryGWong@umac.mo
  organization: Cancer Centre, Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R., Macau, China. GarryGWong@umac.mo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30744671$$D View this record in MEDLINE/PubMed
BookMark eNptUk1v1DAUjFARLaU_gAuyxKFcUuzYiZML0qp8rVQBBzhbL_bz1kvWXuwsYn8A_xunKQuLsA-2xvPmeZ7mcXHig8eieMroFWNt8zIxzkRbUtaVtKlYWT8ozjLelpK2_ORwl_VpcZHSmubFu65j9FFxyqkUopHsrPi5NOhHZ52G0QVPgiXbME4QDKQfQjCkd2ED8SvGRGyI5FO-O5-Cv0zEuISQkPR7skKPBH9sI6Y0CYE35PWHBdngeLsfZnEDIxDnR1zFGQAPwz659KR4aGFIeHF_nhdf3r75fP2-vPn4bnm9uCl13dCxZJVsaqG5bKnNTgCY1IIJrVuLXWWMRQ5ttpwnIztkVnDOAQW2tu8NNcjPi-WsawKs1Ta6bGyvAjh1B4S4UhBHpwdUICgwCjVARYWpWG5pKmrrSmNXt6bLWq9mre2u36DReWYRhiPR4xfvbtUqfFcNl6yWbRZ4cS8Qw7cdplFtXNI4DOAx7JLKPetairarM_X5P9R12MU8vDsWF53ktPnDWkE24LwNua-eRNWibhlvuGBT26v_sPI2uHE6Z8y6jB8VsLlAx5BSRHvwyKiaoqjmKKocRTVFUU0ffvb3cA4Vv4PHfwEUudwt
CitedBy_id crossref_primary_10_1038_s41576_022_00465_w
crossref_primary_10_1038_s41598_023_43956_4
crossref_primary_10_1002_ana_26923
crossref_primary_10_3389_fgene_2021_640266
crossref_primary_10_1038_s43856_021_00042_y
crossref_primary_10_1080_15592294_2023_2231222
crossref_primary_10_3389_fcell_2021_688789
crossref_primary_10_3390_ijms21134718
crossref_primary_10_1016_j_jbior_2020_100753
crossref_primary_10_2174_1574893618666230227122331
crossref_primary_10_3389_fgene_2020_00778
crossref_primary_10_3389_fnins_2022_866666
crossref_primary_10_3389_fnmol_2022_762544
crossref_primary_10_1038_s41598_023_51034_y
crossref_primary_10_1038_s43587_021_00042_6
crossref_primary_10_1088_1478_3975_abc09a
crossref_primary_10_1089_cmb_2019_0281
crossref_primary_10_1007_s12539_023_00584_w
crossref_primary_10_3389_fneur_2019_01389
crossref_primary_10_3390_ijms22189839
crossref_primary_10_3390_genes12020178
crossref_primary_10_3390_ijms232012609
crossref_primary_10_3934_Neuroscience_2019_4_333
crossref_primary_10_1016_j_freeradbiomed_2020_12_002
crossref_primary_10_1186_s12859_021_04556_z
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1111_acel_13197
crossref_primary_10_1186_s41231_024_00169_9
crossref_primary_10_1002_em_22589
crossref_primary_10_1093_procel_pwae011
crossref_primary_10_3389_fgene_2022_971298
crossref_primary_10_3233_JPD_225080
crossref_primary_10_3389_fnins_2022_804261
crossref_primary_10_3390_ijms232416214
crossref_primary_10_3389_fnagi_2024_1417515
crossref_primary_10_1016_j_gendis_2023_01_014
crossref_primary_10_3389_fnagi_2022_971528
crossref_primary_10_1111_nan_12757
crossref_primary_10_1016_j_neulet_2021_135813
crossref_primary_10_3390_genes14040919
crossref_primary_10_1080_21655979_2021_1976502
crossref_primary_10_1016_j_csbj_2020_11_015
crossref_primary_10_1186_s13072_020_00338_8
crossref_primary_10_1016_j_gene_2022_146366
Cites_doi 10.1038/mtna.2015.14
10.1016/S0140-6736(14)61393-3
10.1111/nmo.12741
10.1093/nar/30.1.207
10.1038/ng.471
10.1007/BF00427222
10.1002/wsbm.64
10.3233/JPD-130250
10.1016/S1353-8020(13)70025-7
10.1186/s13073-017-0466-5
10.1371/journal.pone.0134087
10.1002/mds.26319
10.12968/bjon.1998.7.14.5636
10.1089/ars.2009.2490
10.1093/nar/gkw1108
10.1038/npjparkd.2016.12
10.1186/1471-2105-11-587
10.1101/605600
10.1038/nature22815
10.1186/1471-2105-9-307
10.1021/acschemneuro.6b00042
10.1212/WNL.0000000000004516
10.1038/75556
10.1371/journal.pone.0083940
10.1093/nar/28.1.27
10.1093/nar/gkv007
10.1089/omi.2011.0118
10.1016/j.imlet.2015.09.010
10.1080/01616412.2017.1368141
10.1093/bioinformatics/btm254
10.1126/science.1105136
10.1007/s00401-016-1590-9
10.1186/1471-2350-10-98
10.1002/ana.10487
10.1186/1471-2105-14-244
10.2217/bmm.09.84
10.1016/j.bbamcr.2008.07.014
10.1100/2012/489830
10.1093/bioinformatics/btn224
10.12688/f1000research.10100.1
10.1111/jnc.13646
10.1038/ejhg.2014.281
10.3233/JPD-140491
10.3389/fnmol.2017.00225
10.3389/fnmol.2016.00089
10.1016/j.jns.2013.11.033
10.1038/srep34579
10.1371/journal.pone.0181349
10.1186/s12859-016-1347-4
10.1198/106186006X133933
10.1038/srep24475
ContentType Journal Article
Copyright COPYRIGHT 2019 BioMed Central Ltd.
Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2019
Copyright_xml – notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13148-019-0621-5
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Biological Science Journals
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1868-7083
1868-7075
EndPage 24
ExternalDocumentID oai_doaj_org_article_a40a10a5aa204d2180fd20f52ce958d9
A581363418
10_1186_s13148_019_0621_5
30744671
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: MYRG2016-00101-FHS
GroupedDBID ---
-A0
0R~
2JY
3V.
4.4
53G
5C9
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
ABDBF
ABUWG
ACGFS
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CUY
CVF
DIK
EBLON
EBS
ECM
EIF
EJD
EN4
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HMCUK
HYE
HZ~
IAO
IHR
INH
INR
ITC
KOV
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O9I
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
QOS
R9I
RBZ
RNS
ROL
RPM
RSV
S27
SBL
SOJ
T13
U2A
UKHRP
WK8
AAYXX
CITATION
ABVAZ
AFGXO
AFNRJ
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c560t-127654c3780f991aa17c414cc8fe92ddfe3a870713179e1f4333ae4e8fbbd0de3
IEDL.DBID RPM
ISSN 1868-7075
1868-7083
IngestDate Tue Oct 22 15:14:51 EDT 2024
Tue Sep 17 21:23:55 EDT 2024
Fri Oct 25 06:56:46 EDT 2024
Thu Oct 10 16:18:33 EDT 2024
Thu Feb 22 23:35:23 EST 2024
Tue Nov 12 22:36:33 EST 2024
Thu Sep 12 19:28:35 EDT 2024
Sat Sep 28 08:29:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DNA methylation
Gene expression
Data integration
Parkinson’s disease
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c560t-127654c3780f991aa17c414cc8fe92ddfe3a870713179e1f4333ae4e8fbbd0de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4566-9958
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371578/
PMID 30744671
PQID 2183497306
PQPubID 2040146
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a40a10a5aa204d2180fd20f52ce958d9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6371578
proquest_miscellaneous_2185574895
proquest_journals_2183497306
gale_infotracmisc_A581363418
gale_infotracacademiconefile_A581363418
crossref_primary_10_1186_s13148_019_0621_5
pubmed_primary_30744671
PublicationCentury 2000
PublicationDate 2019-02-11
PublicationDateYYYYMMDD 2019-02-11
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-11
  day: 11
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: London
PublicationTitle Clinical epigenetics
PublicationTitleAlternate Clin Epigenetics
PublicationYear 2019
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References I Schmitt (621_CR14) 2015; 30
LM Chahine (621_CR8) 2014; 20
X Su (621_CR18) 2015; 10
JA Santiago (621_CR52) 2013; 8
Y Itoh (621_CR51) 2017; 12
M Ashburner (621_CR32) 2000; 25
A Doi (621_CR44) 2009; 41
G Yu (621_CR34) 2012; 16
E Miranda-Morales (621_CR10) 2017; 10
M Ihara (621_CR38) 2009; 61
621_CR4
CA DeMarshall (621_CR7) 2015; 168
S Mahurkar (621_CR20) 2016; 28
Wiener ALaM (621_CR35) 2002; 2
WH Oertel (621_CR2) 2017; 6
HE Allen Reish (621_CR13) 2015; 5
R Edgar (621_CR22) 2002; 30
S Davis (621_CR24) 2007; 23
L Weinhold (621_CR26) 2016; 17
T Yamada (621_CR42) 1992; 84
C Labbe (621_CR50) 2016; 132
IJ Siddiqui (621_CR11) 2016; 6
Consortium EP (621_CR43) 2004; 306
IE Eryilmaz (621_CR16) 2017; 39
SX Ai (621_CR48) 2014; 337
H Zhang (621_CR29) 2013; 14
M Kanehisa (621_CR33) 2000; 28
EL Eskelinen (621_CR39) 2009; 1793
M Takahashi (621_CR12) 2015; 4
The Gene Ontology C (621_CR31) 2017; 45
W Le (621_CR49) 2016; 9
U Wullner (621_CR17) 2016; 139
F Coppede (621_CR9) 2012; 2012
A Mastrokolias (621_CR23) 2015; 23
GT Kannarkat (621_CR41) 2013; 3
P Du (621_CR27) 2010; 11
JM Tan (621_CR40) 2009; 11
D Sulzer (621_CR45) 2017; 546
J Birtwistle (621_CR47) 1998; 7
LV Kalia (621_CR1) 2015; 386
JC Latourelle (621_CR54) 2009; 10
Z Siegfried (621_CR15) 2010; 2
LF Clark (621_CR6) 2016; 7
P Du (621_CR28) 2008; 24
R Shamir (621_CR21) 2017; 89
TT Warner (621_CR3) 2003; 53
ME Ritchie (621_CR25) 2015; 43
M Thambisetty (621_CR5) 2010; 4
YH Chuang (621_CR19) 2017; 9
621_CR36
621_CR37
C Strobl (621_CR46) 2008; 9
JA Santiago (621_CR53) 2016; 6
621_CR30
References_xml – volume: 4
  start-page: e241
  year: 2015
  ident: 621_CR12
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1038/mtna.2015.14
  contributor:
    fullname: M Takahashi
– volume: 386
  start-page: 896
  issue: 9996
  year: 2015
  ident: 621_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61393-3
  contributor:
    fullname: LV Kalia
– volume: 28
  start-page: 410
  issue: 3
  year: 2016
  ident: 621_CR20
  publication-title: Neurogastroenterol Motil
  doi: 10.1111/nmo.12741
  contributor:
    fullname: S Mahurkar
– volume: 30
  start-page: 207
  issue: 1
  year: 2002
  ident: 621_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.207
  contributor:
    fullname: R Edgar
– volume: 41
  start-page: 1350
  issue: 12
  year: 2009
  ident: 621_CR44
  publication-title: Nat Genet
  doi: 10.1038/ng.471
  contributor:
    fullname: A Doi
– volume: 2
  start-page: 18
  year: 2002
  ident: 621_CR35
  publication-title: R News
  contributor:
    fullname: Wiener ALaM
– volume: 84
  start-page: 100
  issue: 1
  year: 1992
  ident: 621_CR42
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00427222
  contributor:
    fullname: T Yamada
– volume: 2
  start-page: 362
  issue: 3
  year: 2010
  ident: 621_CR15
  publication-title: Wiley Interdiscip Rev Syst Biol Med
  doi: 10.1002/wsbm.64
  contributor:
    fullname: Z Siegfried
– volume: 3
  start-page: 493
  issue: 4
  year: 2013
  ident: 621_CR41
  publication-title: J Parkinsons Dis
  doi: 10.3233/JPD-130250
  contributor:
    fullname: GT Kannarkat
– volume: 61
  start-page: 419
  issue: 4
  year: 2009
  ident: 621_CR38
  publication-title: Brain Nerve
  contributor:
    fullname: M Ihara
– volume: 20
  start-page: S99
  issue: Suppl 1
  year: 2014
  ident: 621_CR8
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/S1353-8020(13)70025-7
  contributor:
    fullname: LM Chahine
– volume: 9
  start-page: 76
  issue: 1
  year: 2017
  ident: 621_CR19
  publication-title: Genome Med
  doi: 10.1186/s13073-017-0466-5
  contributor:
    fullname: YH Chuang
– volume: 10
  start-page: e0134087
  issue: 8
  year: 2015
  ident: 621_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134087
  contributor:
    fullname: X Su
– volume: 30
  start-page: 1794
  issue: 13
  year: 2015
  ident: 621_CR14
  publication-title: Mov Disord
  doi: 10.1002/mds.26319
  contributor:
    fullname: I Schmitt
– volume: 7
  start-page: 832
  issue: 14
  year: 1998
  ident: 621_CR47
  publication-title: Br J Nurs
  doi: 10.12968/bjon.1998.7.14.5636
  contributor:
    fullname: J Birtwistle
– volume: 11
  start-page: 2119
  issue: 9
  year: 2009
  ident: 621_CR40
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2009.2490
  contributor:
    fullname: JM Tan
– volume: 45
  start-page: D331
  issue: D1
  year: 2017
  ident: 621_CR31
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1108
  contributor:
    fullname: The Gene Ontology C
– ident: 621_CR4
  doi: 10.1038/npjparkd.2016.12
– volume: 11
  start-page: 587
  year: 2010
  ident: 621_CR27
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-587
  contributor:
    fullname: P Du
– ident: 621_CR30
  doi: 10.1101/605600
– volume: 546
  start-page: 656
  issue: 7660
  year: 2017
  ident: 621_CR45
  publication-title: Nature
  doi: 10.1038/nature22815
  contributor:
    fullname: D Sulzer
– volume: 9
  start-page: 307
  year: 2008
  ident: 621_CR46
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-307
  contributor:
    fullname: C Strobl
– volume: 7
  start-page: 520
  issue: 5
  year: 2016
  ident: 621_CR6
  publication-title: ACS Chem Neurosci
  doi: 10.1021/acschemneuro.6b00042
  contributor:
    fullname: LF Clark
– volume: 89
  start-page: 1676
  issue: 16
  year: 2017
  ident: 621_CR21
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000004516
  contributor:
    fullname: R Shamir
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 621_CR32
  publication-title: Nat Genet
  doi: 10.1038/75556
  contributor:
    fullname: M Ashburner
– volume: 8
  start-page: e83940
  issue: 12
  year: 2013
  ident: 621_CR52
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083940
  contributor:
    fullname: JA Santiago
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 621_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
  contributor:
    fullname: M Kanehisa
– volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 621_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
  contributor:
    fullname: ME Ritchie
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  ident: 621_CR34
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
  contributor:
    fullname: G Yu
– volume: 168
  start-page: 80
  issue: 1
  year: 2015
  ident: 621_CR7
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2015.09.010
  contributor:
    fullname: CA DeMarshall
– volume: 39
  start-page: 965
  issue: 11
  year: 2017
  ident: 621_CR16
  publication-title: Neurol Res
  doi: 10.1080/01616412.2017.1368141
  contributor:
    fullname: IE Eryilmaz
– volume: 23
  start-page: 1846
  issue: 14
  year: 2007
  ident: 621_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm254
  contributor:
    fullname: S Davis
– volume: 306
  start-page: 636
  issue: 5696
  year: 2004
  ident: 621_CR43
  publication-title: Science
  doi: 10.1126/science.1105136
  contributor:
    fullname: Consortium EP
– volume: 132
  start-page: 515
  issue: 4
  year: 2016
  ident: 621_CR50
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1590-9
  contributor:
    fullname: C Labbe
– volume: 10
  start-page: 98
  year: 2009
  ident: 621_CR54
  publication-title: BMC Med Genet
  doi: 10.1186/1471-2350-10-98
  contributor:
    fullname: JC Latourelle
– volume: 53
  start-page: S16
  issue: Suppl 3
  year: 2003
  ident: 621_CR3
  publication-title: Ann Neurol
  doi: 10.1002/ana.10487
  contributor:
    fullname: TT Warner
– volume: 14
  start-page: 244
  year: 2013
  ident: 621_CR29
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-244
  contributor:
    fullname: H Zhang
– ident: 621_CR37
– volume: 4
  start-page: 65
  issue: 1
  year: 2010
  ident: 621_CR5
  publication-title: Biomark Med
  doi: 10.2217/bmm.09.84
  contributor:
    fullname: M Thambisetty
– volume: 1793
  start-page: 664
  issue: 4
  year: 2009
  ident: 621_CR39
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2008.07.014
  contributor:
    fullname: EL Eskelinen
– volume: 2012
  start-page: 489830
  year: 2012
  ident: 621_CR9
  publication-title: ScientificWorldJournal
  doi: 10.1100/2012/489830
  contributor:
    fullname: F Coppede
– volume: 24
  start-page: 1547
  issue: 13
  year: 2008
  ident: 621_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn224
  contributor:
    fullname: P Du
– volume: 6
  start-page: 260
  year: 2017
  ident: 621_CR2
  publication-title: F1000Res
  doi: 10.12688/f1000research.10100.1
  contributor:
    fullname: WH Oertel
– volume: 139
  start-page: 108
  issue: Suppl 1
  year: 2016
  ident: 621_CR17
  publication-title: J Neurochem
  doi: 10.1111/jnc.13646
  contributor:
    fullname: U Wullner
– volume: 23
  start-page: 1349
  issue: 10
  year: 2015
  ident: 621_CR23
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2014.281
  contributor:
    fullname: A Mastrokolias
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 621_CR13
  publication-title: J Parkinsons Dis
  doi: 10.3233/JPD-140491
  contributor:
    fullname: HE Allen Reish
– volume: 10
  start-page: 225
  year: 2017
  ident: 621_CR10
  publication-title: Front Mol Neurosci
  doi: 10.3389/fnmol.2017.00225
  contributor:
    fullname: E Miranda-Morales
– volume: 9
  start-page: 89
  year: 2016
  ident: 621_CR49
  publication-title: Front Mol Neurosci
  doi: 10.3389/fnmol.2016.00089
  contributor:
    fullname: W Le
– volume: 337
  start-page: 123
  issue: 1–2
  year: 2014
  ident: 621_CR48
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2013.11.033
  contributor:
    fullname: SX Ai
– volume: 6
  start-page: 34579
  year: 2016
  ident: 621_CR53
  publication-title: Sci Rep
  doi: 10.1038/srep34579
  contributor:
    fullname: JA Santiago
– volume: 12
  start-page: e0181349
  issue: 7
  year: 2017
  ident: 621_CR51
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181349
  contributor:
    fullname: Y Itoh
– volume: 17
  start-page: 480
  issue: 1
  year: 2016
  ident: 621_CR26
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1347-4
  contributor:
    fullname: L Weinhold
– ident: 621_CR36
  doi: 10.1198/106186006X133933
– volume: 6
  start-page: 24475
  year: 2016
  ident: 621_CR11
  publication-title: Sci Rep
  doi: 10.1038/srep24475
  contributor:
    fullname: IJ Siddiqui
SSID ssj0000399910
Score 2.3929937
Snippet Blood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be improved,...
Background Blood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be...
Background Blood-based gene expression or epigenetic biomarkers of Parkinson’s disease (PD) are highly desirable. However, accuracy and specificity need to be...
BACKGROUNDBlood-based gene expression or epigenetic biomarkers of Parkinson's disease (PD) are highly desirable. However, accuracy and specificity need to be...
Abstract Background Blood-based gene expression or epigenetic biomarkers of Parkinson’s disease (PD) are highly desirable. However, accuracy and specificity...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 24
SubjectTerms Algorithms
Biochemistry
Biological markers
Biomarkers
Biomarkers - blood
Blood
Case-Control Studies
Chromosome Mapping
CpG Islands
Data collection
Data integration
Data processing
Deoxyribonucleic acid
DNA
DNA Methylation
Dopamine
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Female
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic
Gene set enrichment analysis
Genes
Genetic aspects
Genomes
Humans
Identification
Integration
Male
Medical research
Methylation
Movement disorders
Neurodegenerative diseases
Parkinson disease
Parkinson Disease - genetics
Parkinson's disease
Phosphates
Sequence Analysis, DNA - methods
Stem cells
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIb8dWiSAIQmjek1leH6W46MpCcRPyRDczpfcW7M6dv6F_z1_iSTL3cgcXblzOJDNMzvtkzvmC0BvquR5iDGTwRhOZlCdG-EwCG1wvqcw-VLTPM316Lj9fqIu9o75KTViDB26EO3aSOkadco5TGcEh0Rw5zYqHNCgTW-seHfaSqWqDRQl8ajek0Yb04BjnX5pwfbxmouyj0dK_ozkjauGUKnb_3xZ6z0Utyyf3_NHJA3R_DiTxqi3gIbqTxkfo7tepbpM_Rr9aB26et-TwlPHltCm34KFarY5L530pzrlaY4hccel_rq1gv3_ervH84wb7GwwilnD6MVfMjtiNEX88W-Fy-PRNK6XDpdAUb6En2qQGdvIEnZ98-vLhlMyHLpAAwc-GMN5rJYPogdBAQudYHySTIZicBh5jTsKBjkNuC6qcWJZCCJdkMtn7SGMST9HBOI3pOcIu9zQLL03ISsILPecJMqhERVaJZt6hd1uq28uGrWFrTmK0bSyywCJbWGRVh94XvuwmFljsegOExc7CYv8lLB16W7hqi_IC64KbexDgewsMll0pw4QGx246dLSYCUoXlsNbubCz0q9tiTblACZTd-j1brg8WQrZxjRd1zlKFcQfWNCzJka7JYG5heS8Zx3qFwK2WPNyZPz-rUKCa9EzsL0v_geRDtE9XlWDE8aO0MHm6jq9hMhr419VJfsD19ksKg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixQxEA66IngR37auEkEQhGbz7E6fZHwsi4c9uTB4CUk6US_dszOz4N68-Rv8e_4Sq9KZcRvBYyfpJul6pvJVhZCXzIum6_tQd940tYra10b6VAfeuVYxlXzI1T5Pm5Mz9XGplyXgtimwyp1OzIq6HwPGyI_QlKsO-LF5szqv8dYoPF0tV2hcJze4YA1Cutplu4-xMInuT86JNI2pW3A3ysEmPB9tuMRoGsMsnkbwWs9MU67g_6-evmKo5iDKK1bp-A65XdxJupjof5dci8M9cvPzmIPl98nPKQ83lcAcHRNdjVtsgpcyZp1i_j1CdNYbCv4rxSzonBD2-8evDS3HN9RfUmC0SOP3gpsdqBt6-v50QfEK6ssJUEcRbkp3BSimQVPJkwfk7PjDp3cndbl6oQ7gAm1rLtpGqyBbwxL8Qud4GxRXIZgUO9H3KUoHkg47XBDoyJOSUrqookne96yP8iE5GMYhPibUpZYl6ZUJSSv4oBciwj4qMpl0ZElU5PXur9vVVGHD5p2JaexEIgskskgiqyvyFumyH4jFsXPDuP5ii6xZp5jjzGnnBFM9MA5LvWBJixA7bfquIq-QqhZFGEgXXMlEgPliMSy70IbLBsy7qcjhbCSIXph37_jCFtHf2L-MWpEX-258E-FsQxwv8hitse4PLOjRxEb7JYHShS16yyvSzhhstuZ5z_Dtay4M3siWgwZ-8v9pPSW3RGZ6UXN-SA6264v4DDyrrX-execPe44jww
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA7jiOBGfFsdJYIgCNW8my5Ero9hcDErLwxuQp4qSDveewfm7tz5G_x7_hJP0vYyxVm6bdLSnPdJzvmC0DPimGpD8HXrtKpFlK7W3KXa09Y2gojkfEH7PFZHS_HxRJ7soel6q5GA60tTu3yf1HL1_eX5j-0bUPjXReG1erWmPG-LkdyOoxit5RV0lQlI1HMl3xjtF8PMczRUWiS10nUD3nI857z0KzNPVQD9_zXbF_zWvKbygpM6vIlujNElXgzicAvtxe42uva5L3vnd9CvoS03jft0uE_4tN_kR_BSKWHHuR0_V-ys1hjCWZybokt_2J-fv9d4PM3BbotB7iKO52MZbYdtF_D74wXON1Jvh_o6nKtP8YRHMUwaEFDuouXhh0_vjurxJobaQ0S0qSlrlBSeN5okIKG1tPGCCu91ii0LIUVuQfEh4QX9jjQB8bmNIurkXCAh8ntov-u7-ABhmxqSuBPaJyngg46xCGlVJDzJSBKr0IuJ6uZ0ANwwJVHRygwsMsAik1lkZIXeZr7sJmas7PKgX30xo-oZK4ilxEprGREBQhqSAiNJMh9bqUNboeeZqybLGLDO27ExAf43Y2OZhdSUK_D2ukIHs5mgiX4-PMmFmQTZ5BBUtGBHVYWe7obzm7m6rYv9WZkjZYYBggXdH8RotySwwZCxN7RCzUzAZmuej3TfvhaccMUbCgb54f8g0iN0nRXVYDWlB2h_szqLjyEc27gnRcn-Am4aM6w
  priority: 102
  providerName: Scholars Portal
Title Identification of potential blood biomarkers for Parkinson's disease by gene expression and DNA methylation data integration analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/30744671
https://www.proquest.com/docview/2183497306
https://search.proquest.com/docview/2185574895
https://pubmed.ncbi.nlm.nih.gov/PMC6371578
https://doaj.org/article/a40a10a5aa204d2180fd20f52ce958d9
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZJSqGX0v-6TRcVCoWCs_q15eMmTRoKWUJpYOlFSLLUBhp72d1Ac-utz9DX65N0JNtLTG-9GGxJxvJ8n2dGnhkh9IZYVlR17fLKqiIXXtpccRtyRytTCiKCdana57w4vRAfF3Kxg-SQC5OC9p29PGi-Xx00l99SbOXyyk2HOLHp-dlRwUsKSJvuol0A6C0XPX1-ebR5UiKkKlRegk7s_2bC-XRNeVxCIzF1p2A0jzvXAMzBKSrpSDWlCv7_fqdvKapxEOUtrXTyAN3vzUk86x77IdrxzSN090ubFssfo19dHm7oF-ZwG_Cy3cRLMCjFrOOYfx9DdFZrDPYrjlnQKSHsz8_fa9z_vsH2BgPQPPY_-rjZBpumxu_nMxy3oL7pAupwDDfFQwGKrlNX8uQJujg5_nx0mvdbL-QOTKBNTllZSOF4qUiAt2kMLZ2gwjkVfMXqOnhugOng4QKhPQ2Cc2688CpYW5Pa86dor2kb_xxhE0oSuBXKBSnghpYxD36UJzxITwLL0LvhretlV2FDJ89EFbqTlgZp6SgtLTN0GOWy7RiLY6cL7eqr7iGijSCGEiONYUTUYMOQUDMSJHO-kqquMvQ2SlVHCoPonOkzEeB5YzEsPZOK8gLUu8rQ_qgnUM-Nmwdc6J76ax1tTlEBLosMvd42x5ExnK3x7XXqI2Ws-wMTetbBaDulAY0ZKkcAG8153AI8SYXBe168-O-RL9E9lqjBckr30d5mde1fgdG1sROg2qKcoDuHx_PzT5O0dAHHDwsKxzOhJomEfwE3ozIC
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12068,21400,24330,27936,27937,31731,31732,33756,33757,43322,43817,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgEYIL4k1gASMhISFFazt24pxQeawKLD3tShUXy3HshUtSmq7E3rjxG_h7_BJmHLdshMSxsVPFnqfHM98Q8pw1oqzb1uV1o8tcetXkumhC7nhtK8lkaFxE-1yU8xP5YamWKeA2pLTKrU6MirrtHcbID9CUyxr4sXy1-pZj1yi8XU0tNC6TK4jDhR0MqmW1i7GwAt2fWBOpS51X4G6ki034fTDwAqNpDKt4SsFzNTFNEcH_Xz19wVBNkygvWKXDm-RGcifpbKT_LXLJd7fJ1c99DJbfIT_HOtyQAnO0D3TVb_ARvBRz1inW32OKznqg4L9SrIKOBWG_f_waaLq-oc05BUbz1H9PebMdtV1L3y5mFFtQn48JdRTTTekWgGKcNEKe3CUnh--O38zz1Hohd-ACbXIuqlJJV1SaBdhCa3nlJJfO6eBr0bbBFxYkHU64INCeB9j9wnrpdWialrW-uEf2ur7zDwi1oWKhaKR2QUn4w0YID-coz4qgPAsiIy-3u25WI8KGiScTXZqRRAZIZJBERmXkNdJlNxHBseODfn1qkqwZK5nlzCprBZMtMA4LrWBBCedrpds6Iy-QqgZFGEjnbKpEgO9FMCwzU5oXJZh3nZH9yUwQPTcd3vKFSaI_mL-MmpFnu2F8E9PZOt-fxTlKIe4PLOj-yEa7JYHShSN6xTNSTRhssubpSPf1SwQGL4uKgwZ--P_PekquzY8_HZmj94uPj8h1EQVA5Jzvk73N-sw_Bi9r0zyJovQHQMUmqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMQF8SZQwEhISEjp-h3nuLRU5bXqgUoVF8t2bKhEk9XuVqI3bvwG_h6_hLGTXW3EjWNiO4ozM54Z55vPCL0kjqm6aXxZO61KEaQrNXex9LS2lSAiOp_ZPmfq6ES8P5WnW0d9ZdC-d2d77ffzvfbsW8ZWzs_9ZI0Tmxx_2le8oqBpk3kTJ1fRNbBZorYS9bwI8xT55HJIrXRZgWcc_mnC9WRJedpII6mARzFapvNrQNkhNaroyEFlHv9_V-stdzWGUm75psPb6NYQVOJp__J30JXQ3kXXv3R5y_we-tVX48Zhew53Ec-7VboFgzJyHacq_ATUWSwxRLE41ULnsrA_P38v8fATB7tLDOoWcPgxoGdbbNsGH8ymOB1EfdnD6nACneI1DUXfqSc-uY9ODt9-3j8qhwMYSg-B0KqkrFJSeF5pEuFrWksrL6jwXsdQs6aJgVuwd8hzwawDjYJzboMIOjrXkCbwB2in7drwCGEbKxK5E9pHKeCBjrEA2VQgPMpAIivQ6_VXN_OeZ8Pk_EQr00vLgLRMkpaRBXqT5LLpmCiy841u8dUMimKsIJYSK61lRDQQyZDYMBIl86GWuqkL9CpJ1SRDBtF5O9QjwPsmSiwzlZpyBU5eF2h31BMM0I-b13phhgVgaVLkKWpYPlWBXmya08gEamtDd5H7SJnYf2BCD3s12kxprY0FqkYKNprzuAWsJdODD9bx-L9HPkc3jg8Ozcd3sw9P0E2WrYSVlO6indXiIjyFKGzlnmV7-wuKbjEq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+potential+blood+biomarkers+for+Parkinson%E2%80%99s+disease+by+gene+expression+and+DNA+methylation+data+integration+analysis&rft.jtitle=Clinical+epigenetics&rft.au=Changliang+Wang&rft.au=Liang+Chen&rft.au=Yang+Yang&rft.au=Menglei+Zhang&rft.date=2019-02-11&rft.pub=BMC&rft.issn=1868-7075&rft.eissn=1868-7083&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1186%2Fs13148-019-0621-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a40a10a5aa204d2180fd20f52ce958d9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-7075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-7075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-7075&client=summon