Past century changes in Araucaria angustifolia (Bertol.) Kuntze water use efficiency and growth in forest and grassland ecosystems of southern Brazil: implications for forest expansion
Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics of regional ecosystems where forest expansion over grasslands has been observed. Here, we evaluate the changes in intrinsic water use efficie...
Saved in:
Published in | Global change biology Vol. 15; no. 10; pp. 2387 - 2396 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.10.2009
Blackwell Publishing Ltd Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics of regional ecosystems where forest expansion over grasslands has been observed. Here, we evaluate the changes in intrinsic water use efficiency (iWUE) and basal area increment (BAI) of this species in response to atmospheric CO₂, temperature and precipitation over the last century. Our investigation is based on tree-rings taken from trees located in forest and grassland sites in southern Brazil. Differences in carbon isotopic composition (δ¹³C), ¹³CO₂ discrimination (Δ¹³C) and intracellular carbon concentration (Ci) are also reported. Our results indicate an age effect on Δ¹³C in forest trees during the first decades of growth. This age effect is not linked to an initial BAI suppression, suggesting the previous existence of nonforested vegetation in the forest sites. After maturity all trees show similar temporal trends in carbon isotope-derived variables and increasing iWUE, however, absolute values are significantly different between forest and grassland sites. The iWUE is higher in forest trees, indicating greater water competition or nutritional availability, relative to grassland, or both. BAI is also higher in forest trees, but it is not linked with iWUE or atmospheric CO₂. Nevertheless, in both forest and grassland sites A. angustifolia has had growth limitations corresponding to low precipitation and high temperatures observed in the 1940s. |
---|---|
AbstractList | Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics of regional ecosystems where forest expansion over grasslands has been observed. Here, we evaluate the changes in intrinsic water use efficiency (iWUE) and basal area increment (BAI) of this species in response to atmospheric CO2, temperature and precipitation over the last century. Our investigation is based on tree‐rings taken from trees located in forest and grassland sites in southern Brazil. Differences in carbon isotopic composition (δ13C), 13CO2 discrimination (Δ13C) and intracellular carbon concentration (Ci) are also reported. Our results indicate an age effect on Δ13C in forest trees during the first decades of growth. This age effect is not linked to an initial BAI suppression, suggesting the previous existence of nonforested vegetation in the forest sites. After maturity all trees show similar temporal trends in carbon isotope‐derived variables and increasing iWUE, however, absolute values are significantly different between forest and grassland sites. The iWUE is higher in forest trees, indicating greater water competition or nutritional availability, relative to grassland, or both. BAI is also higher in forest trees, but it is not linked with iWUE or atmospheric CO2. Nevertheless, in both forest and grassland sites A. angustifolia has had growth limitations corresponding to low precipitation and high temperatures observed in the 1940s. Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics of regional ecosystems where forest expansion over grasslands has been observed. Here, we evaluate the changes in intrinsic water use efficiency (iWUE) and basal area increment (BAI) of this species in response to atmospheric CO₂, temperature and precipitation over the last century. Our investigation is based on tree-rings taken from trees located in forest and grassland sites in southern Brazil. Differences in carbon isotopic composition (δ¹³C), ¹³CO₂ discrimination (Δ¹³C) and intracellular carbon concentration (Ci) are also reported. Our results indicate an age effect on Δ¹³C in forest trees during the first decades of growth. This age effect is not linked to an initial BAI suppression, suggesting the previous existence of nonforested vegetation in the forest sites. After maturity all trees show similar temporal trends in carbon isotope-derived variables and increasing iWUE, however, absolute values are significantly different between forest and grassland sites. The iWUE is higher in forest trees, indicating greater water competition or nutritional availability, relative to grassland, or both. BAI is also higher in forest trees, but it is not linked with iWUE or atmospheric CO₂. Nevertheless, in both forest and grassland sites A. angustifolia has had growth limitations corresponding to low precipitation and high temperatures observed in the 1940s. Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics of regional ecosystems where forest expansion over grasslands has been observed. Here, we evaluate the changes in intrinsic water use efficiency (iWUE) and basal area increment (BAI) of this species in response to atmospheric CO 2 , temperature and precipitation over the last century. Our investigation is based on tree‐rings taken from trees located in forest and grassland sites in southern Brazil. Differences in carbon isotopic composition ( δ 13 C), 13 CO 2 discrimination (Δ 13 C) and intracellular carbon concentration ( C i ) are also reported. Our results indicate an age effect on Δ 13 C in forest trees during the first decades of growth. This age effect is not linked to an initial BAI suppression, suggesting the previous existence of nonforested vegetation in the forest sites. After maturity all trees show similar temporal trends in carbon isotope‐derived variables and increasing iWUE, however, absolute values are significantly different between forest and grassland sites. The iWUE is higher in forest trees, indicating greater water competition or nutritional availability, relative to grassland, or both. BAI is also higher in forest trees, but it is not linked with iWUE or atmospheric CO 2 . Nevertheless, in both forest and grassland sites A. angustifolia has had growth limitations corresponding to low precipitation and high temperatures observed in the 1940s. Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics of regional ecosystems where forest expansion over grasslands has been observed. Here, we evaluate the changes in intrinsic water use efficiency (iWUE) and basal area increment (BAI) of this species in response to atmospheric CO2, temperature and precipitation over the last century. Our investigation is based on tree-rings taken from trees located in forest and grassland sites in southern Brazil. Differences in carbon isotopic composition ([delta]13C), 13CO2 discrimination ([Delta]13C) and intracellular carbon concentration (Ci) are also reported. Our results indicate an age effect on [Delta]13C in forest trees during the first decades of growth. This age effect is not linked to an initial BAI suppression, suggesting the previous existence of nonforested vegetation in the forest sites. After maturity all trees show similar temporal trends in carbon isotope-derived variables and increasing iWUE, however, absolute values are significantly different between forest and grassland sites. The iWUE is higher in forest trees, indicating greater water competition or nutritional availability, relative to grassland, or both. BAI is also higher in forest trees, but it is not linked with iWUE or atmospheric CO2. Nevertheless, in both forest and grassland sites A. angustifolia has had growth limitations corresponding to low precipitation and high temperatures observed in the 1940s. [PUBLICATION ABSTRACT] AbstractAraucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics of regional ecosystems where forest expansion over grasslands has been observed. Here, we evaluate the changes in intrinsic water use efficiency (iWUE) and basal area increment (BAI) of this species in response to atmospheric CO2, temperature and precipitation over the last century. Our investigation is based on tree-rings taken from trees located in forest and grassland sites in southern Brazil. Differences in carbon isotopic composition (d13C), 13CO2 discrimination (13C) and intracellular carbon concentration (Ci) are also reported. Our results indicate an age effect on 13C in forest trees during the first decades of growth. This age effect is not linked to an initial BA delta suppression, suggesting the previous existence of nonforested vegetation in the forest sites. After maturity all trees show similar temporal trends in carbon isotope-derived variables and increasing iWUE, however, absolute values are significantly different between forest and grassland sites. The iWUE is higher in forest trees, indicating greater water competition or nutritional availability, relative to grassland, or both. BA delta is also higher in forest trees, but it is not linked with iWUE or atmospheric CO2. Nevertheless, in both forest and grassland sites A. angustifolia has had growth limitations corresponding to low precipitation and high temperatures observed in the 1940s. |
Author | ANAND, MADHUR SILVA, LUCAS C. R. OLIVEIRA, JULIANO M. PILLAR, VALÉRIO D. |
Author_xml | – sequence: 1 fullname: SILVA, LUCAS C.R – sequence: 2 fullname: ANAND, MADHUR – sequence: 3 fullname: OLIVEIRA, JULIANO M – sequence: 4 fullname: PILLAR, VALÉRIO D |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21956231$$DView record in Pascal Francis |
BookMark | eNqNkt9u0zAUxiM0JLbCM2AhgdhFgv_EboIE0lqNgjrBJpiQuLFc127dpXaxHbXdk_F4OMvoxW6Yb3Jy_Pu-Y1vfSXZknVVZBhAsUFrvVgUijOa4rFiBIawLiCpaF7sn2fFh46iraZkjiMiz7CSEFYSQYMiOsz-XIkQglY2t3wO5FHahAjAWnHnRSuGNAKnVhmi0a9LP25Hy0TXFKZi2Nt4qsBVRedAGBZTWRhpl5T5J5mDh3TYuOyvtvEpD-qYIoekqJV3Yh6jWATgNgmvjUnkLRl7cmuY9MOtNY6SIxtnQGfwzUbuNsCF1n2dPtWiCenH_HWTXn85_jD_nF98mX8ZnF7mkDNb5bEYkk4oSjCSukYJEzmsoUTVjQ0bruR5qVpW6wlJVSkqm6awkpJxVNYQYEkgG2Zved-Pd7zYdga9NkKpJl1CuDbxkhJUQo_-CGFbJmNEEvnoArlzrbbpEYihmJUknGGSv7yERpGi0F1aawDferIXfc4xqyjDpplY9J70LwSt9QBDkXUD4inc54F0OeBcQfhcQvkvSjw-k0sS7F49emOYxBh96g61p1P7Rg_lkPOqqpM97vUk52B30wt9wNiRDyn9-nXA8_XU1ubqc8jLxL3teC8fFwqf3uP6OU6YhYkNKYE3-AjM28hQ |
CitedBy_id | crossref_primary_10_3390_rs6098923 crossref_primary_10_1371_journal_pone_0113136 crossref_primary_10_1002_eap_2830 crossref_primary_10_1016_j_ecoleng_2015_11_034 crossref_primary_10_1002_ece3_5289 crossref_primary_10_1080_0028825X_2020_1810712 crossref_primary_10_1016_j_foreco_2016_08_049 crossref_primary_10_1007_s11104_010_0358_6 crossref_primary_10_1111_j_1365_2486_2010_02373_x crossref_primary_10_1080_13416979_2022_2035903 crossref_primary_10_1111_j_1654_1103_2010_01229_x crossref_primary_10_3959_TRR2018_9 crossref_primary_10_1029_2019JG005294 crossref_primary_10_1111_j_1365_2486_2010_02222_x crossref_primary_10_1093_jpe_rtv079 crossref_primary_10_1016_j_dendro_2013_01_005 crossref_primary_10_1007_s11625_015_0319_3 crossref_primary_10_1016_j_polar_2013_12_002 crossref_primary_10_1556_ComEc_12_2011_2_7 crossref_primary_10_1073_pnas_1604987113 crossref_primary_10_1016_j_scitotenv_2018_08_393 crossref_primary_10_1038_s41467_017_00225_z crossref_primary_10_1139_cjb_2016_0315 crossref_primary_10_1016_j_agrformet_2017_05_005 crossref_primary_10_1093_treephys_tpy100 crossref_primary_10_1002_ece3_70 crossref_primary_10_1007_s11368_010_0249_8 crossref_primary_10_1371_journal_pone_0011543 crossref_primary_10_1038_s41598_017_18694_z crossref_primary_10_1080_0028825X_2014_979837 crossref_primary_10_1111_gcb_12170 crossref_primary_10_1126_science_339_6122_904_c crossref_primary_10_1016_j_foreco_2017_12_011 crossref_primary_10_1177_0959683611414930 crossref_primary_10_1007_s00468_012_0764_x crossref_primary_10_1002_2016JG003745 crossref_primary_10_1007_s11104_014_2337_9 crossref_primary_10_1111_nph_15384 crossref_primary_10_1016_j_polar_2018_10_008 crossref_primary_10_1556_ComEc_14_2013_2_11 crossref_primary_10_1111_ecog_05837 crossref_primary_10_1016_j_foreco_2021_119024 crossref_primary_10_1007_s11104_011_0868_x crossref_primary_10_1111_jvs_13053 crossref_primary_10_1111_j_1466_8238_2012_00783_x crossref_primary_10_1016_j_foreco_2018_02_008 crossref_primary_10_1111_j_1365_3040_2011_02333_x crossref_primary_10_1016_j_agrformet_2017_09_013 crossref_primary_10_1002_pei3_10025 crossref_primary_10_1007_s10531_019_01900_x crossref_primary_10_1007_s40626_014_0002_6 crossref_primary_10_1007_s00468_019_01836_3 crossref_primary_10_1016_j_chemgeo_2024_122522 crossref_primary_10_1016_j_gloplacha_2016_11_017 crossref_primary_10_1126_sciadv_aax7906 crossref_primary_10_1080_14614103_2016_1211382 crossref_primary_10_3390_geosciences9040151 crossref_primary_10_1016_j_foreco_2016_02_008 crossref_primary_10_3389_ffgc_2021_687749 crossref_primary_10_1002_2014JG002865 crossref_primary_10_1111_j_1466_8238_2010_00608_x crossref_primary_10_1093_treephys_tpaa043 crossref_primary_10_1007_s00334_012_0382_y crossref_primary_10_1016_j_polar_2019_02_001 crossref_primary_10_1111_gcb_15145 crossref_primary_10_1111_gcb_14135 crossref_primary_10_1371_journal_pone_0053089 crossref_primary_10_1007_s11368_014_0878_4 crossref_primary_10_1007_s10021_011_9486_y crossref_primary_10_1016_j_tfp_2022_100221 |
Cites_doi | 10.1890/0012-9658(1997)078[1588:VOWCAW]2.0.CO;2 10.1007/s00442-002-1047-9 10.1111/j.1469-8137.2007.02316.x 10.1046/j.1365-3040.1998.00304.x 10.1034/j.1600-0889.47.issue3.4.x 10.1556/ComEc.5.2004.2.8 10.1007/BF00379669 10.1046/j.1365-2486.2003.00577.x 10.1071/PP9820121 10.1007/s11104-006-9046-y 10.1017/S0266467401001031 10.1111/j.1365-2486.2008.01637.x 10.1071/BT98046 10.1111/j.1365-2486.2008.01563.x 10.1111/j.1365-2699.2007.01874.x 10.1007/BF00328786 10.1034/j.1600-0889.1999.t01-1-00005.x 10.1111/j.0016-8025.2003.01159.x 10.1139/x90-186 10.1016/S0034-6667(97)00049-3 10.1016/j.geoderma.2007.06.005 10.1139/x90-185 10.1111/j.1442-9993.2006.01602.x 10.2134/jeq2002.1676 10.1016/S0031-0182(01)00349-2 10.1098/rstb.2006.1984 10.1016/j.foreco.2007.11.026 10.1146/annurev.ecolsys.32.081501.114059 10.1163/22941932-90000179 10.1104/pp.47.3.380 10.1111/j.1365-2486.2007.01431.x 10.1016/j.dendro.2005.07.006 10.1016/S0034-6667(97)00044-4 10.1093/treephys/22.11.763 10.1007/s00468-006-0065-3 10.1139/x88-005 10.1007/s00442-005-0147-8 10.1038/30460 10.1029/2000JD900469 10.1111/j.1365-2486.2008.01603.x 10.1038/297028a0 10.1071/BT9840583 10.1007/s00468-004-0401-4 10.1111/j.1365-2486.2007.01467.x 10.1007/BF00317759 10.1111/j.1654-1103.2006.tb02503.x 10.1016/j.quascirev.2003.06.017 10.1046/j.1365-2486.1998.00204.x 10.1111/j.1529-8817.2003.00754.x |
ContentType | Journal Article |
Copyright | 2009 Blackwell Publishing Ltd 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 Blackwell Publishing Ltd – notice: 2009 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7ST 7U6 SOI 7S9 L.6 |
DOI | 10.1111/j.1365-2486.2009.01859.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Sustainability Science Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences Forestry Ecology |
EISSN | 1365-2486 |
EndPage | 2396 |
ExternalDocumentID | 1855073311 21956231 10_1111_j_1365_2486_2009_01859_x GCB1859 ark_67375_WNG_2KZQGQPK_4 US201301675309 |
Genre | article Feature |
GeographicLocations | South America Brazil America |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AEUQT AFPWT BSCLL ESX WRC WUP AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SN 7UA C1K F1W H97 L.G 7ST 7U6 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c5609-bb3c6ce5321c291e03cd90c18b67659df7f684f82ce8ecc6f5b4334b890020303 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Fri Jul 11 00:53:14 EDT 2025 Fri Jul 11 11:21:29 EDT 2025 Fri Jul 25 10:57:18 EDT 2025 Mon Jul 21 09:13:56 EDT 2025 Tue Jul 01 03:52:43 EDT 2025 Thu Apr 24 22:50:10 EDT 2025 Wed Jan 22 16:32:21 EST 2025 Wed Oct 30 09:49:59 EDT 2024 Thu Apr 03 09:45:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Grassland Forests Forest zone Growth basal area increment Water use efficiency Carbon Araucaria Dynamical climatology ecotones Climate change Basal area Tree ring Ecotone grasslands carbon isotope southern brazil forest expansion tree-rings Expansion Isotopes |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5609-bb3c6ce5321c291e03cd90c18b67659df7f684f82ce8ecc6f5b4334b890020303 |
Notes | http://dx.doi.org/10.1111/j.1365-2486.2009.01859.x istex:B7617F610FC33DDAF26C433FF0907A1F4495B1AA ArticleID:GCB1859 ark:/67375/WNG-2KZQGQPK-4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 205264343 |
PQPubID | 30327 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_46364021 proquest_miscellaneous_20833465 proquest_journals_205264343 pascalfrancis_primary_21956231 crossref_primary_10_1111_j_1365_2486_2009_01859_x crossref_citationtrail_10_1111_j_1365_2486_2009_01859_x wiley_primary_10_1111_j_1365_2486_2009_01859_x_GCB1859 istex_primary_ark_67375_WNG_2KZQGQPK_4 fao_agris_US201301675309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2009 |
PublicationDateYYYYMMDD | 2009-10-01 |
PublicationDate_xml | – month: 10 year: 2009 text: October 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Global change biology |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Li JB, Cook ER, D'Arrigo R, Chen FH, Gou XH, Peng JF, Huang JG (2008) Common tree growth anomalies over the northeastern Tibetan Plateau during the last six centuries: implications for regional moisture change. Global Change Biology, 14, 2096-2107. Duquesnay A, Breda N, Stivenard M et al. (1998) Changes of treering delta C-13 and water use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century. Plant, Cell and Environment, 21, 565-572. Lisi CS, Tomazello M, Botoss PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. Iawa Journal, 29, 189-207. Robertson A, Overpeck J, Rind D et al. (2001) Hypothesized climate forcing time series for the last 500 years. Journal of Geophysical Research, 106, 14783-14803. Betson NR, Johannisson C, Lofvenius MO et al. (2007) Variation in the d13C of foliage of Pinus sylvestris L. in relation to climate and additions of nitrogen: analysis of a 32 year chronology. Global Change Biology, 13, 2317-2328. Behling H (1998) Late quaternary vegetation and climatic changes in Brazil. Review of Palaeobotany and Palynology, 99, 143-156. Bert D, Leavitt SW, Dupouey J-L (1997) Variations of wood d13C and water-use efciency of Abies alba during the last century. Ecology, 78, 1588-1596. McDowell N, Phillips N, Lunch C, Bond BJ, Ryan MG (2002) An investigation of hydraulic limitation and compensation in large, Old Douglas-fir trees. Tree Physiology, 22, 763-774. Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring d13C at thesouthern range-edge of Fagus sylvatica: increasingwater-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology, 14, 1076-1088. Duarte LD, Dillenburg LR (2000) Ecophysiological responses of Araucaria angustifolia (Araucariaceae) seedlings to different irradiance levels. Austral Journal Botany, 48, 531-537. Francey RJ, Farquhar BD (1982) An explanation of 13C/12C variations in tree rings. Nature, 297, 28-31. Rizzini CT (1997) Tratado de fitogeografia do Brasil, 2nd edn. Ambito Cultural Edicoes, Rio de Janeiro, Brasil. Hueck K (1972) As Florestas da América do Sul. Editora da Universidade de Brasília, Brasília. Streck EV, Kampf N, Dalmolin RSD, Klamt E, Nascimento PC do, Schneider P (2002) Solos do Rio Grande do Sul. UFRGS Editora, Porto Alegre. Oliveira JM, Pillar VD (2004) Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil. Community Ecology, 5, 197-202. Zimmermann JK, Ehleringer JR (1990) Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Casasetum viriflavum. Oecologia, 83, 247-249. Duarte LS, Machado RE, Hartz SM, Pillar VD (2006b) What saplings can tell us about forest expansion over natural grasslands. Journal of Vegetation Science, 17, 799-808. Schulman E (1956) Dendroclimatic Change in Semiarid America. University of Arizona Press, Tucson, AZ, USA. Tang K, Feng X, Funkhouser G (1999) The δ13C of tree rings in full-bark and strip-bark bristlecone pine trees in the White Mountains of California. Global Change Biology, 5, 33-40. Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252. Schongart J, Piedade MTF, Wittmann FK, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia, 145, 454-461. Anderson WT, Sternberg LSL, Pinzon MC, Gann-Troxler T, Childersb DL, Duevere M (2005) Carbon isotopic composition of cypress trees from South Florida and changing hydrologic conditions. Dendrochronologia, 23, 1-10. Nimer E (1989) Climatologia do Brasil, 2nd edn. IBGE, Rio de Janeiro. Phipps RL, Whiton JC (1988) Decline in long-term growth trends of white oak. Canadian Journal of Forestry Research, 18, 24-32. Schongart J, Junk WJ, Piedade MTF, Ayres JM, Huettermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-southern oscillation effect. Global Change Biology, 10, 683-692. Duursma RA, Marshall JD (2006) Vertical canopy gradients in delta C-13 correspond with leaf nitrogen content in a mixed-species conifer forest. Trees - Structure and Function, 20, 496-506. Duarte LS, Dos Santos MMG, Hartz SM, Pillar VD (2006a) The role of nurse plants on Araucaria Forest expansion over grassland in south Brazil. Austral Ecology, 31, 520-528. Saurer M, Siegenthaler U, Schweingruber F (1995) The climate carbon isotope relationship in tree rings and the signicance of site conditions. Tellus, 147, 320-330. Kershaw P, Wagstaff B (2001) The southern conifer family Araucariaceae: history, status and value for paleoenvironmental reconstruction. Annual Review of Ecology and Systematics, 32, 397-414. Yu G, Song X, Wang Q et al. (2008) Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 177, 927-937. Dümig A, Schad P, Rumpel C, Dignac M, Kögel-Knabner I (2008) Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13C studies. Geoderma, 145, 143-147. LeBlanc DC (1990b) Red spruce decline on Whiteface mountain, New York. I. Relationships with elevation, tree age and competition. Canadian Journal of Forest Research, 20, 1408-1414. Enquist BJ, Lefler AJ (2001) Long-term tree-ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. Journal of Tropical Ecology, 17, 41-60. Behling H (2002) South and southeast Brazilian grasslands during late quaternary times: a synthesis. Palaeogeography Palaeoclimatology Palaeoecology, 177, 19-27. Ewe SML, Sternberg LSL (2002) Seasonal water-use by the invasive exotic, Schinus terebinthifolius. Oecologia, 133, 441-448. Schleser GF, Jayasekera R (1985) d13C variations in leaves of a forest as an indication of reassimilated CO2 from the soil. Oecologia, 65, 536-542. Francey RJ, Allison CE, Etheridge DM et al. (1999) A 1000-year high precision record of d13C in atmospheric CO. Tellus, 51, 170-193. Farquhar GD, O'Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121-137. Katinas L, Crisci JV (2008) Reconstructing the biogeographical history of two plant genera with different dispersion capabilities. Journal of Biogeography, 35, 1374-1384. Garbin ML, Zandavalli RB, Dillenburg LR (2006) Soil patches of inorganic nitrogen in subtropical Brazilian plant communities with Araucaria angustifolia. Plant and Soil, 286, 323-337. LeBlanc DC (1990a) Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface mountain, New York. Canadian Journal of Forest Research, 20, 1399-1407. Marshall JD, Monserud RA (1996) Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers. Oecologia, 105, 13-21. Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco - an interpretation of C-13/C-12 variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant, Cell and Environment, 27, 367-380. Holmes L R (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bulletin, 43, 69-78. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quaternary Science Reviews, 23, 771-801. Bond WJ, Midgley GF, Woodward FI (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology, 9, 973-982. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47, 380-394. Silva LCR, Sternberg LSL, Haridasan M, Hoffmann WA, Miralles-Wilhelm F, Franco AC (2008) Expansion of gallery forests into central Brazilian savannas. Global Change Biology, 14, 1-11. Behling H, Pillar VD (2007) Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philosophical transactions of the Royal Society of London. Biological Sciences, 362, 243-251. Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO2. Global Change Biology, 13, 2498-2508. Pereira F, Ganade G (2008) Spread of a Brazilian keystone-species in a landscape mosaic. Forest Ecology and Management, 255, 5-6. Stokes MA, Smiley TL (1968) An Introduction to Tree-ring Dating. The University of Chicago Press, Chicago. Duchesne L, Ouimet R, Houle D (2002) Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients. Journal of Environmental Quality, 31, 1676-1683. Ledru MP, Salgado-Labouriau ML, Lorscheiter ML (1998) Vegetation dynamics in southern and central Brazil during the last 10 000 yr BP. Review of Palaeobotany and Palynology, 99, 131-142. Haines RJ, Prakash N, Nikles DG (1984) Pollination in Araucaria Juss. Australian Journal of Botany, 32, 583-594. Franco AC, Duarte HM, Geβler A et al. (2005) In situ measurements of carbon and nitrogen distribution and composition, photochemical efficiency and stable isotope ratios in Araucaria angustifolia. Trees, 19, 422-430. 2000; 48 2004; 27 2004; 23 1971; 47 2008; 35 2004; 5 1972 2008; 145 1985; 65 1998; 393 2005; 23 2001; 106 1990a; 20 1996; 105 2006; 20 2005; 145 2008; 29 2006b; 17 1990b; 20 2003; 9 1982; 9 2006; 286 1982; 297 2001; 17 1999; 51 1998; 99 1989 2009; 23 1988; 18 2002; 31 2002; 177 2002; 133 2007; 362 2008; 14 1998 1997 1996 2007 2002 2006a; 31 1998; 21 1999; 5 2007; 13 1956 1990; 83 2004; 10 2005; 19 1984; 32 1997; 78 2002; 22 1983; 43 1995; 147 2008; 255 2008; 177 1968 2001; 32 e_1_2_7_5_1 Holmes L R (e_1_2_7_26_1) 1983; 43 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 Streck EV (e_1_2_7_57_1) 2002 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_49_1 e_1_2_7_28_1 Schulman E (e_1_2_7_53_1) 1956 Rizzini CT (e_1_2_7_47_1) 1997 Hueck K (e_1_2_7_27_1) 1972 Switsur R (e_1_2_7_58_1) 1998 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_29_1 Nimer E (e_1_2_7_40_1) 1989 Oliveira JM (e_1_2_7_43_1) 2009 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 Melillo JM (e_1_2_7_39_1) 1996 e_1_2_7_59_1 e_1_2_7_38_1 Stokes MA (e_1_2_7_56_1) 1968 |
References_xml | – reference: Schongart J, Piedade MTF, Wittmann FK, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia, 145, 454-461. – reference: Franco AC, Duarte HM, Geβler A et al. (2005) In situ measurements of carbon and nitrogen distribution and composition, photochemical efficiency and stable isotope ratios in Araucaria angustifolia. Trees, 19, 422-430. – reference: Oliveira JM, Pillar VD (2004) Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil. Community Ecology, 5, 197-202. – reference: Robertson A, Overpeck J, Rind D et al. (2001) Hypothesized climate forcing time series for the last 500 years. Journal of Geophysical Research, 106, 14783-14803. – reference: Duursma RA, Marshall JD (2006) Vertical canopy gradients in delta C-13 correspond with leaf nitrogen content in a mixed-species conifer forest. Trees - Structure and Function, 20, 496-506. – reference: Haines RJ, Prakash N, Nikles DG (1984) Pollination in Araucaria Juss. Australian Journal of Botany, 32, 583-594. – reference: LeBlanc DC (1990b) Red spruce decline on Whiteface mountain, New York. I. Relationships with elevation, tree age and competition. Canadian Journal of Forest Research, 20, 1408-1414. – reference: Behling H (1998) Late quaternary vegetation and climatic changes in Brazil. Review of Palaeobotany and Palynology, 99, 143-156. – reference: Bond WJ, Midgley GF, Woodward FI (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology, 9, 973-982. – reference: Duquesnay A, Breda N, Stivenard M et al. (1998) Changes of treering delta C-13 and water use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century. Plant, Cell and Environment, 21, 565-572. – reference: Marshall JD, Monserud RA (1996) Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers. Oecologia, 105, 13-21. – reference: Francey RJ, Allison CE, Etheridge DM et al. (1999) A 1000-year high precision record of d13C in atmospheric CO. Tellus, 51, 170-193. – reference: Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393, 249-252. – reference: Hueck K (1972) As Florestas da América do Sul. Editora da Universidade de Brasília, Brasília. – reference: Katinas L, Crisci JV (2008) Reconstructing the biogeographical history of two plant genera with different dispersion capabilities. Journal of Biogeography, 35, 1374-1384. – reference: Rizzini CT (1997) Tratado de fitogeografia do Brasil, 2nd edn. Ambito Cultural Edicoes, Rio de Janeiro, Brasil. – reference: Tang K, Feng X, Funkhouser G (1999) The δ13C of tree rings in full-bark and strip-bark bristlecone pine trees in the White Mountains of California. Global Change Biology, 5, 33-40. – reference: Schongart J, Junk WJ, Piedade MTF, Ayres JM, Huettermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-southern oscillation effect. Global Change Biology, 10, 683-692. – reference: Betson NR, Johannisson C, Lofvenius MO et al. (2007) Variation in the d13C of foliage of Pinus sylvestris L. in relation to climate and additions of nitrogen: analysis of a 32 year chronology. Global Change Biology, 13, 2317-2328. – reference: Farquhar GD, O'Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121-137. – reference: Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO2. Global Change Biology, 13, 2498-2508. – reference: Duarte LD, Dillenburg LR (2000) Ecophysiological responses of Araucaria angustifolia (Araucariaceae) seedlings to different irradiance levels. Austral Journal Botany, 48, 531-537. – reference: Silva LCR, Sternberg LSL, Haridasan M, Hoffmann WA, Miralles-Wilhelm F, Franco AC (2008) Expansion of gallery forests into central Brazilian savannas. Global Change Biology, 14, 1-11. – reference: Stokes MA, Smiley TL (1968) An Introduction to Tree-ring Dating. The University of Chicago Press, Chicago. – reference: Kershaw P, Wagstaff B (2001) The southern conifer family Araucariaceae: history, status and value for paleoenvironmental reconstruction. Annual Review of Ecology and Systematics, 32, 397-414. – reference: McDowell N, Phillips N, Lunch C, Bond BJ, Ryan MG (2002) An investigation of hydraulic limitation and compensation in large, Old Douglas-fir trees. Tree Physiology, 22, 763-774. – reference: Nimer E (1989) Climatologia do Brasil, 2nd edn. IBGE, Rio de Janeiro. – reference: Li JB, Cook ER, D'Arrigo R, Chen FH, Gou XH, Peng JF, Huang JG (2008) Common tree growth anomalies over the northeastern Tibetan Plateau during the last six centuries: implications for regional moisture change. Global Change Biology, 14, 2096-2107. – reference: Anderson WT, Sternberg LSL, Pinzon MC, Gann-Troxler T, Childersb DL, Duevere M (2005) Carbon isotopic composition of cypress trees from South Florida and changing hydrologic conditions. Dendrochronologia, 23, 1-10. – reference: Duarte LS, Machado RE, Hartz SM, Pillar VD (2006b) What saplings can tell us about forest expansion over natural grasslands. Journal of Vegetation Science, 17, 799-808. – reference: Zimmermann JK, Ehleringer JR (1990) Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Casasetum viriflavum. Oecologia, 83, 247-249. – reference: Schulman E (1956) Dendroclimatic Change in Semiarid America. University of Arizona Press, Tucson, AZ, USA. – reference: Francey RJ, Farquhar BD (1982) An explanation of 13C/12C variations in tree rings. Nature, 297, 28-31. – reference: Holmes L R (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bulletin, 43, 69-78. – reference: Ledru MP, Salgado-Labouriau ML, Lorscheiter ML (1998) Vegetation dynamics in southern and central Brazil during the last 10 000 yr BP. Review of Palaeobotany and Palynology, 99, 131-142. – reference: Phipps RL, Whiton JC (1988) Decline in long-term growth trends of white oak. Canadian Journal of Forestry Research, 18, 24-32. – reference: Streck EV, Kampf N, Dalmolin RSD, Klamt E, Nascimento PC do, Schneider P (2002) Solos do Rio Grande do Sul. UFRGS Editora, Porto Alegre. – reference: Behling H, Pillar VD (2007) Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philosophical transactions of the Royal Society of London. Biological Sciences, 362, 243-251. – reference: Bert D, Leavitt SW, Dupouey J-L (1997) Variations of wood d13C and water-use efciency of Abies alba during the last century. Ecology, 78, 1588-1596. – reference: Duchesne L, Ouimet R, Houle D (2002) Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients. Journal of Environmental Quality, 31, 1676-1683. – reference: Helle G, Schleser GH (2004) Beyond CO2-fixation by Rubisco - an interpretation of C-13/C-12 variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant, Cell and Environment, 27, 367-380. – reference: Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring d13C at thesouthern range-edge of Fagus sylvatica: increasingwater-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology, 14, 1076-1088. – reference: Yu G, Song X, Wang Q et al. (2008) Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 177, 927-937. – reference: Behling H (2002) South and southeast Brazilian grasslands during late quaternary times: a synthesis. Palaeogeography Palaeoclimatology Palaeoecology, 177, 19-27. – reference: Enquist BJ, Lefler AJ (2001) Long-term tree-ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. Journal of Tropical Ecology, 17, 41-60. – reference: Schleser GF, Jayasekera R (1985) d13C variations in leaves of a forest as an indication of reassimilated CO2 from the soil. Oecologia, 65, 536-542. – reference: Pereira F, Ganade G (2008) Spread of a Brazilian keystone-species in a landscape mosaic. Forest Ecology and Management, 255, 5-6. – reference: Ewe SML, Sternberg LSL (2002) Seasonal water-use by the invasive exotic, Schinus terebinthifolius. Oecologia, 133, 441-448. – reference: McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quaternary Science Reviews, 23, 771-801. – reference: LeBlanc DC (1990a) Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface mountain, New York. Canadian Journal of Forest Research, 20, 1399-1407. – reference: Lisi CS, Tomazello M, Botoss PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. Iawa Journal, 29, 189-207. – reference: Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47, 380-394. – reference: Duarte LS, Dos Santos MMG, Hartz SM, Pillar VD (2006a) The role of nurse plants on Araucaria Forest expansion over grassland in south Brazil. Austral Ecology, 31, 520-528. – reference: Garbin ML, Zandavalli RB, Dillenburg LR (2006) Soil patches of inorganic nitrogen in subtropical Brazilian plant communities with Araucaria angustifolia. Plant and Soil, 286, 323-337. – reference: Saurer M, Siegenthaler U, Schweingruber F (1995) The climate carbon isotope relationship in tree rings and the signicance of site conditions. Tellus, 147, 320-330. – reference: Dümig A, Schad P, Rumpel C, Dignac M, Kögel-Knabner I (2008) Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13C studies. Geoderma, 145, 143-147. – volume: 78 start-page: 1588 year: 1997 end-page: 1596 article-title: Variations of wood d13C and water‐use efciency of during the last century publication-title: Ecology – volume: 362 start-page: 243 year: 2007 end-page: 251 article-title: Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems publication-title: Philosophical transactions of the Royal Society of London. Biological Sciences – volume: 14 start-page: 1 year: 2008 end-page: 11 article-title: Expansion of gallery forests into central Brazilian savannas publication-title: Global Change Biology – volume: 147 start-page: 320 year: 1995 end-page: 330 article-title: The climate carbon isotope relationship in tree rings and the signicance of site conditions publication-title: Tellus – volume: 10 start-page: 683 year: 2004 end-page: 692 article-title: Teleconnection between tree growth in the Amazonian floodplains and the El Niño‐southern oscillation effect publication-title: Global Change Biology – year: 1956 – volume: 18 start-page: 24 year: 1988 end-page: 32 article-title: Decline in long‐term growth trends of white oak publication-title: Canadian Journal of Forestry Research – volume: 145 start-page: 143 year: 2008 end-page: 147 article-title: Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13C studies publication-title: Geoderma – start-page: 303 year: 1998 end-page: 321 – volume: 20 start-page: 1399 year: 1990a end-page: 1407 article-title: Relationships between breast‐height and whole‐stem growth indices for red spruce on Whiteface mountain, New York publication-title: Canadian Journal of Forest Research – volume: 29 start-page: 189 year: 2008 end-page: 207 article-title: Tree‐ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi‐deciduous forest in southeast Brazil publication-title: Iawa Journal – volume: 21 start-page: 565 year: 1998 end-page: 572 article-title: Changes of treering delta C‐13 and water use efficiency of beech ( L.) in north‐eastern France during the past century publication-title: Plant, Cell and Environment – year: 1989 – volume: 14 start-page: 1076 year: 2008 end-page: 1088 article-title: Twentieth century changes of tree‐ring d C at thesouthern range‐edge of Fagus sylvatica publication-title: Global Change Biology – volume: 23 start-page: 107 year: 2009 end-page: 115 – volume: 133 start-page: 441 year: 2002 end-page: 448 article-title: Seasonal water‐use by the invasive exotic, publication-title: Oecologia – volume: 9 start-page: 121 year: 1982 end-page: 137 article-title: On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves publication-title: Australian Journal of Plant Physiology – volume: 5 start-page: 197 year: 2004 end-page: 202 article-title: Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil publication-title: Community Ecology – volume: 19 start-page: 422 year: 2005 end-page: 430 article-title: In situ measurements of carbon and nitrogen distribution and composition, photochemical efficiency and stable isotope ratios in publication-title: Trees – volume: 13 start-page: 2498 year: 2007 end-page: 2508 article-title: Water savings in mature deciduous forest trees under elevated CO publication-title: Global Change Biology – volume: 177 start-page: 19 year: 2002 end-page: 27 article-title: South and southeast Brazilian grasslands during late quaternary times publication-title: Palaeogeography Palaeoclimatology Palaeoecology – volume: 31 start-page: 1676 year: 2002 end-page: 1683 article-title: Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients publication-title: Journal of Environmental Quality – start-page: 445 year: 1996 end-page: 481 – volume: 83 start-page: 247 year: 1990 end-page: 249 article-title: Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid publication-title: Oecologia – volume: 286 start-page: 323 year: 2006 end-page: 337 article-title: Soil patches of inorganic nitrogen in subtropical Brazilian plant communities with publication-title: Plant and Soil – year: 1997 – year: 1972 – volume: 20 start-page: 1408 year: 1990b end-page: 1414 article-title: Red spruce decline on Whiteface mountain, New York. I. Relationships with elevation, tree age and competition publication-title: Canadian Journal of Forest Research – volume: 31 start-page: 520 year: 2006a end-page: 528 article-title: The role of nurse plants on Araucaria Forest expansion over grassland in south Brazil publication-title: Austral Ecology – volume: 255 start-page: 5 year: 2008 end-page: 6 article-title: Spread of a Brazilian keystone‐species in a landscape mosaic publication-title: Forest Ecology and Management – volume: 22 start-page: 763 year: 2002 end-page: 774 article-title: An investigation of hydraulic limitation and compensation in large, Old Douglas‐fir trees publication-title: Tree Physiology – volume: 14 start-page: 2096 year: 2008 end-page: 2107 article-title: Common tree growth anomalies over the northeastern Tibetan Plateau during the last six centuries publication-title: Global Change Biology – volume: 393 start-page: 249 year: 1998 end-page: 252 article-title: Dynamic responses of terrestrial ecosystem carbon cycling to global climate change publication-title: Nature – volume: 20 start-page: 496 year: 2006 end-page: 506 article-title: Vertical canopy gradients in delta C‐13 correspond with leaf nitrogen content in a mixed‐species conifer forest publication-title: Trees – Structure and Function – volume: 17 start-page: 41 year: 2001 end-page: 60 article-title: Long‐term tree‐ring chronologies from sympatric tropical dry‐forest trees publication-title: Journal of Tropical Ecology – volume: 48 start-page: 531 year: 2000 end-page: 537 article-title: Ecophysiological responses of (Araucariaceae) seedlings to different irradiance levels publication-title: Austral Journal Botany – year: 1968 – volume: 23 start-page: 771 year: 2004 end-page: 801 article-title: Stable isotopes in tree rings publication-title: Quaternary Science Reviews – volume: 17 start-page: 799 year: 2006b end-page: 808 article-title: What saplings can tell us about forest expansion over natural grasslands publication-title: Journal of Vegetation Science – year: 2007 – volume: 5 start-page: 33 year: 1999 end-page: 40 article-title: The δ C of tree rings in full‐bark and strip‐bark bristlecone pine trees in the White Mountains of California publication-title: Global Change Biology – volume: 32 start-page: 397 year: 2001 end-page: 414 article-title: The southern conifer family Araucariaceae publication-title: Annual Review of Ecology and Systematics – volume: 145 start-page: 454 year: 2005 end-page: 461 article-title: Wood growth patterns of (Benth.) Benth. (Fabaceae) in Amazonian black‐water and white‐water floodplain forests publication-title: Oecologia – volume: 27 start-page: 367 year: 2004 end-page: 380 article-title: Beyond CO ‐fixation by Rubisco – an interpretation of C‐13/C‐12 variations in tree rings from novel intra‐seasonal studies on broad‐leaf trees publication-title: Plant, Cell and Environment – volume: 35 start-page: 1374 year: 2008 end-page: 1384 article-title: Reconstructing the biogeographical history of two plant genera with different dispersion capabilities publication-title: Journal of Biogeography – volume: 32 start-page: 583 year: 1984 end-page: 594 article-title: Pollination in Araucaria Juss publication-title: Australian Journal of Botany – volume: 297 start-page: 28 year: 1982 end-page: 31 article-title: An explanation of C/ C variations in tree rings publication-title: Nature – volume: 43 start-page: 69 year: 1983 end-page: 78 article-title: Computer‐assisted quality control in tree‐ring dating and measurement publication-title: Tree-ring Bulletin – volume: 47 start-page: 380 year: 1971 end-page: 394 article-title: Two categories of C/ C ratios for higher plants publication-title: Plant Physiology – volume: 177 start-page: 927 year: 2008 end-page: 937 article-title: Water‐use efficiency of forest ecosystems in eastern China and its relations to climatic variables publication-title: New Phytologist – volume: 9 start-page: 973 year: 2003 end-page: 982 article-title: The importance of low atmospheric CO and fire in promoting the spread of grasslands and savannas publication-title: Global Change Biology – year: 2002 – volume: 99 start-page: 131 year: 1998 end-page: 142 article-title: Vegetation dynamics in southern and central Brazil during the last 10 000 yr BP publication-title: Review of Palaeobotany and Palynology – volume: 51 start-page: 170 year: 1999 end-page: 193 article-title: A 1000‐year high precision record of d13C in atmospheric CO publication-title: Tellus – volume: 23 start-page: 1 year: 2005 end-page: 10 article-title: Carbon isotopic composition of cypress trees from South Florida and changing hydrologic conditions publication-title: Dendrochronologia – volume: 99 start-page: 143 year: 1998 end-page: 156 article-title: Late quaternary vegetation and climatic changes in Brazil publication-title: Review of Palaeobotany and Palynology – volume: 105 start-page: 13 year: 1996 end-page: 21 article-title: Homeostatic gas‐exchange parameters inferred from C/ C in tree rings of conifers publication-title: Oecologia – volume: 106 start-page: 14783 year: 2001 end-page: 14803 article-title: Hypothesized climate forcing time series for the last 500 years publication-title: Journal of Geophysical Research – volume: 65 start-page: 536 year: 1985 end-page: 542 article-title: d C variations in leaves of a forest as an indication of reassimilated CO from the soil publication-title: Oecologia – volume: 13 start-page: 2317 year: 2007 end-page: 2328 article-title: Variation in the d13C of foliage of L. in relation to climate and additions of nitrogen publication-title: Global Change Biology – ident: e_1_2_7_6_1 doi: 10.1890/0012-9658(1997)078[1588:VOWCAW]2.0.CO;2 – ident: e_1_2_7_18_1 doi: 10.1007/s00442-002-1047-9 – ident: e_1_2_7_60_1 doi: 10.1111/j.1469-8137.2007.02316.x – ident: e_1_2_7_15_1 doi: 10.1046/j.1365-3040.1998.00304.x – volume: 43 start-page: 69 year: 1983 ident: e_1_2_7_26_1 article-title: Computer‐assisted quality control in tree‐ring dating and measurement publication-title: Tree-ring Bulletin – ident: e_1_2_7_49_1 doi: 10.1034/j.1600-0889.47.issue3.4.x – ident: e_1_2_7_42_1 doi: 10.1556/ComEc.5.2004.2.8 – ident: e_1_2_7_50_1 doi: 10.1007/BF00379669 – ident: e_1_2_7_8_1 doi: 10.1046/j.1365-2486.2003.00577.x – ident: e_1_2_7_19_1 doi: 10.1071/PP9820121 – volume-title: As Florestas da América do Sul year: 1972 ident: e_1_2_7_27_1 – volume-title: Dendroclimatic Change in Semiarid America year: 1956 ident: e_1_2_7_53_1 – ident: e_1_2_7_23_1 doi: 10.1007/s11104-006-9046-y – ident: e_1_2_7_17_1 doi: 10.1017/S0266467401001031 – ident: e_1_2_7_54_1 doi: 10.1111/j.1365-2486.2008.01637.x – ident: e_1_2_7_10_1 doi: 10.1071/BT98046 – ident: e_1_2_7_41_1 – ident: e_1_2_7_44_1 doi: 10.1111/j.1365-2486.2008.01563.x – ident: e_1_2_7_28_1 doi: 10.1111/j.1365-2699.2007.01874.x – ident: e_1_2_7_36_1 doi: 10.1007/BF00328786 – ident: e_1_2_7_20_1 doi: 10.1034/j.1600-0889.1999.t01-1-00005.x – ident: e_1_2_7_25_1 doi: 10.1111/j.0016-8025.2003.01159.x – ident: e_1_2_7_31_1 doi: 10.1139/x90-186 – ident: e_1_2_7_32_1 doi: 10.1016/S0034-6667(97)00049-3 – ident: e_1_2_7_14_1 doi: 10.1016/j.geoderma.2007.06.005 – ident: e_1_2_7_30_1 doi: 10.1139/x90-185 – ident: e_1_2_7_11_1 doi: 10.1111/j.1442-9993.2006.01602.x – ident: e_1_2_7_13_1 doi: 10.2134/jeq2002.1676 – ident: e_1_2_7_4_1 doi: 10.1016/S0031-0182(01)00349-2 – volume-title: Solos do Rio Grande do Sul year: 2002 ident: e_1_2_7_57_1 – ident: e_1_2_7_5_1 doi: 10.1098/rstb.2006.1984 – ident: e_1_2_7_45_1 doi: 10.1016/j.foreco.2007.11.026 – volume-title: Climatologia do Brasil year: 1989 ident: e_1_2_7_40_1 – ident: e_1_2_7_29_1 doi: 10.1146/annurev.ecolsys.32.081501.114059 – ident: e_1_2_7_35_1 doi: 10.1163/22941932-90000179 – ident: e_1_2_7_55_1 doi: 10.1104/pp.47.3.380 – ident: e_1_2_7_7_1 doi: 10.1111/j.1365-2486.2007.01431.x – ident: e_1_2_7_2_1 doi: 10.1016/j.dendro.2005.07.006 – start-page: 303 volume-title: Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes year: 1998 ident: e_1_2_7_58_1 – ident: e_1_2_7_3_1 doi: 10.1016/S0034-6667(97)00044-4 – ident: e_1_2_7_38_1 doi: 10.1093/treephys/22.11.763 – volume-title: An Introduction to Tree‐ring Dating year: 1968 ident: e_1_2_7_56_1 – ident: e_1_2_7_16_1 doi: 10.1007/s00468-006-0065-3 – ident: e_1_2_7_46_1 doi: 10.1139/x88-005 – volume-title: Tratado de fitogeografia do Brasil year: 1997 ident: e_1_2_7_47_1 – ident: e_1_2_7_52_1 doi: 10.1007/s00442-005-0147-8 – ident: e_1_2_7_9_1 doi: 10.1038/30460 – ident: e_1_2_7_48_1 doi: 10.1029/2000JD900469 – ident: e_1_2_7_34_1 doi: 10.1111/j.1365-2486.2008.01603.x – ident: e_1_2_7_21_1 doi: 10.1038/297028a0 – ident: e_1_2_7_24_1 doi: 10.1071/BT9840583 – start-page: 445 volume-title: Climate Change 1995 year: 1996 ident: e_1_2_7_39_1 – ident: e_1_2_7_22_1 doi: 10.1007/s00468-004-0401-4 – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2486.2007.01467.x – ident: e_1_2_7_61_1 doi: 10.1007/BF00317759 – ident: e_1_2_7_12_1 doi: 10.1111/j.1654-1103.2006.tb02503.x – ident: e_1_2_7_37_1 doi: 10.1016/j.quascirev.2003.06.017 – ident: e_1_2_7_59_1 doi: 10.1046/j.1365-2486.1998.00204.x – start-page: 107 volume-title: Trees Structure and Function year: 2009 ident: e_1_2_7_43_1 – ident: e_1_2_7_51_1 doi: 10.1111/j.1529-8817.2003.00754.x |
SSID | ssj0003206 |
Score | 2.2526348 |
Snippet | Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics... Araucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the dynamics... AbstractAraucaria angustifolia (Bertol.) Kuntze is an indigenous conifer tree restricted to the southern region of South America that plays a key role in the... |
SourceID | proquest pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2387 |
SubjectTerms | age Animal and plant ecology Animal, plant and microbial ecology Araucaria Araucaria angustifolia basal area increment Biological and medical sciences Brazil carbon Carbon dioxide carbon isotope Carbon isotopes Climate change Coniferous trees conifers Ecology Ecosystems ecotones forest expansion forest growth forest trees Forestry Forests Fundamental and applied biological sciences. Psychology General aspects General forest ecology Generalities. Production, biomass. Quality of wood and forest products. General forest ecology Grasslands growth rings High temperature isotopes southern brazil stand basal area temperature tree-rings Vegetation Water use Water use efficiency |
Title | Past century changes in Araucaria angustifolia (Bertol.) Kuntze water use efficiency and growth in forest and grassland ecosystems of southern Brazil: implications for forest expansion |
URI | https://api.istex.fr/ark:/67375/WNG-2KZQGQPK-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2009.01859.x https://www.proquest.com/docview/205264343 https://www.proquest.com/docview/20833465 https://www.proquest.com/docview/46364021 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgEhIv_ChMC4PhBzTBQ6omdpyEN1ptnag2bUDFxItlO_ZWtUpQkmqlfxl_Hmcn7VoE0oR4a2qfW9uX83f25zuE3sSKwkxL4ROppU-JzHzJIumzKDVxECqROsr_6Rk7GdOPl9Fly3-yd2Ga-BDrDTf7Zjh7bV9wIavtl9wxtGjC2rCTsPSkXYsnbYHFR59uI0mR0KXZDEhEwfIEZJvU88eGtlaq-0YUgF_t0C8sf1JUMISmyX2xBU43Ia5bo44fo-mqdw01Zdqd17Krlr8Ffvw_3X-CHrVQFn9odO8puqfzDnrQJLf80UG7R7d36KBaa0SqDvJOAagXpauGD_FgNgHU7J6eoZ_noqqxalZC3NxKrvAkh18RcwV-vcB2gxXskilm8PC2r0uQ7b7Do3leLzW-Aexc4nmlsXbBMezNUhDJ8FVZ3NTXtimA6TCG7ZfgO1huJwYvvAlqXeHC4KpwxP8c90uxnMze48kG8d42sGpEL8Ca2g3H52h8fPRlcOK3ySV8BSAv9aUkiikdkTBQYRroHlFZ2lNBIlkMipqZ2LCEmiRUOgE1ZyaSlBAqk9Qd3vbILtrJi1zvISzA5YJiw6QmlAgmWZhliY5MTAHOGeKheKVIXLWR120CkBnf8MBgMrmdTJsXNOVuMvnCQ8Fa8nsTfeQOMnugq1xcwSLBx59DezQdgFtIeqmHDp0Cr9sS5dQS--KIfz0b8nD07WJ4cT7i1EMHWxq-Fgjt9VJwCTy0v1J53hq9Cv5FBPAahsBDr9elYK3sEZTIdTG3VRIYRBb9vYYNYEcBeHqIOfW_c7_5cNC3n178q-A-euiOCh1T8yXaqcu5fgWIs5YHzpb8Ap0Pcyk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCMELfwrTwmDzA5rgIVUTJ07CG622FrpWG2xi4sWyHXtUqxKUNFrpJ-PjcXbSrkUgTYi3pvE5yfl89zv7fIfQ60gGMNKCu0Qo4QZEpK6goXBpmOjI8yVPbMj_aEwH58HHi_CiKQdkzsLU-SFWC25mZlh9bSa4WZDenOU2RCuIaZN3EmxP0gZAec8U-Lb-1aebXFLEt4U2PRIGoHs8shnW88eeNmzVXc1zQLCG-XMTQclLYKKuq19swNN1kGut1NFjNF1-Xx2cctWuZqItF7-lfvxPDHiCHjVoFr-vxe8puqOyFrpf17f80ULbhzfH6KBZo0fKFnJGgNXzwjbDB7g3nQBwtlfP0M8TXs6wrI0hrg8ml3iSwVN4JcG159issYJq0vkULt50VQG07bd4WGWzhcLXAJ8LXJUKK5sfwxwuBZIUXxb59eyb6QqQOjCx-RPcBxPeicERr_NalzjXuMxt7H-GuwVfTKbv8GQt9t50sOxEzUGhmjXH5-j86PCsN3Cb-hKuBJyXuEIQSaUKie9JP_FUh8g06UgvFjQCWU11pGkc6NiXKgZJpzoUASGBiBO7f9sh22gryzO1gzAHrwtuayoUCQingvppGqtQRwEgOk0cFC0lickm-bqpATJla04YDCYzg2lKgybMDiabO8hbUX6vE5DcgmYHhJXxS7AT7Pyzb3anPfAMSSdx0IGV4FVfvLgysX1RyL6M-8wffj3tn54MWeCgvQ0RXxH45oQpeAUO2l3KPGv0XglvEQLCBhY4aH91FxSW2YXimcor0yQGJtLw7y1MDrsAsKeDqJX_W3836_e65teLfyXcRw8GZ6NjdvxhPNxFD-3OoQ3cfIm2ZkWlXgEAnYk9q1h-Aac9d0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCMQLPwrTwmDzA5rgIVUTO07CG-3WDcqqDZiY9mLZjj2qVsmUtFrZX8afx9lJuxWBNCHemsbn1vb5_J39-Q6h17GiMNJS-ERq6VMiM1-ySPosSk0chEqkjvJ_OGQHJ_TjaXTa8J_sXZg6PsRyw83ODGev7QS_yMzqJHcMLZqwJuwkLD1pG_DkPco6idXw3c_XoaRI6PJsBiSiYHoCssrq-WNNK0vVXSMKALC27-eWQCkq6ENTJ79YQac3Ma5bpPqP0XjRvJqbMm7PprKtrn6L_Ph_2v8EPWqwLH5fK99TdEfnLXS_zm75o4XW964v0UGxxopULeQdAlIvSlcM7-DeZASw2T09Qz-PRDXFql4KcX0tucKjHH5FzBQ49gLbHVYwTKaYwMObri5Btv0WD2b59ErjSwDPJZ5VGmsXHcNeLQWRDJ-XxeX0u60KcDr0YfMlOA-W3InBDa-jWle4MLgqHPM_x91SXI0m7_DoBvPeVrCoRM_BnNodx-fopL_3tXfgN9klfAUoL_WlJIopHZEwUGEa6A5RWdpRQSJZDJqamdiwhJokVDoBPWcmkpQQKpPUnd52yDpay4tcbyAswOeC14ZJTSgRTLIwyxIdmZgCnjPEQ_FCkbhqQq_bDCATfsMFg8HkdjBtYtCUu8Hkcw8FS8mLOvzILWQ2QFe5OIdVgp98Ce3ZdAB-IemkHtpxCrysS5Rjy-yLI_5tuM_Dwdnx_vHRgFMPba1o-FIgtPdLwSfw0OZC5Xlj9Sr4FxHga-gCD20v34K5smdQItfFzBZJoBNZ9PcSNoIdBeTpIebU_9bt5vu9rv304l8Ft9GDo90-__RhONhED92xoWNtvkRr03KmXwH6nMotZ1Z-AfiPdfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Past+century+changes+in+Araucaria+angustifolia+%28Bertol.%29+Kuntze+water+use+efficiency+and+growth+in+forest+and+grassland+ecosystems+of+southern+Brazil%3A+implications+for+forest+expansion&rft.jtitle=Global+change+biology&rft.au=SILVA%2C+LUCAS+C.+R.&rft.au=ANAND%2C+MADHUR&rft.au=OLIVEIRA%2C+JULIANO+M.&rft.au=PILLAR%2C+VAL%C3%89RIO+D.&rft.date=2009-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=15&rft.issue=10&rft.spage=2387&rft.epage=2396&rft_id=info:doi/10.1111%2Fj.1365-2486.2009.01859.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2486_2009_01859_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |