Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by react...
Saved in:
Published in | Journal of cellular physiology Vol. 231; no. 12; pp. 2570 - 2581 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.12.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the “vicious cycle” between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria‐targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria‐targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria‐targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria‐targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570–2581, 2016. © 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. |
Author | D'Haese, Jan G. Werner, Jens Hartwig, Werner Bazhin, Alexandr V. Karakhanova, Svetlana Yang, Yuhui Philippov, Pavel P. |
Author_xml | – sequence: 1 givenname: Yuhui surname: Yang fullname: Yang, Yuhui organization: Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Svetlana surname: Karakhanova fullname: Karakhanova, Svetlana organization: Department of General Surgery, University of Heidelberg, Heidelberg, Germany – sequence: 3 givenname: Werner surname: Hartwig fullname: Hartwig, Werner organization: Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany – sequence: 4 givenname: Jan G. surname: D'Haese fullname: D'Haese, Jan G. organization: Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany – sequence: 5 givenname: Pavel P. surname: Philippov fullname: Philippov, Pavel P. organization: Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia – sequence: 6 givenname: Jens surname: Werner fullname: Werner, Jens organization: Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany – sequence: 7 givenname: Alexandr V. surname: Bazhin fullname: Bazhin, Alexandr V. email: Correspondence to: Alexandr Bazhin, Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany. , alexandr.bazhin@med.uni-muenchen.de organization: Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26895995$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uEzEURi3UiqaFBS-ALLEpi2n9P3PZVQHSVmmKShDsLMfjoQ4TO9gTIG_faZMgVIHE6kq-53zS9XeI9kIMDqEXlJxQQtjp3C5PmOQCnqABJVAWQkm2hwb9jhYgBT1AhznPCSEAnD9FB0xVIAHkAN1c-S7a2xjq5A02ocZ_PrT45voj9gEPTbAuvcGT-MO1eGrSV9dl3MSEz0Ln7cMWT29dMsv1M7TfmDa759t5hD69fzcdnhfj69HF8GxcWKkIFGLGLQXWqLJhhNa2qZhsuKuJoNKAq8HOnCVSKAM1JwwU2HLGnRGKVLZuJD9Cx5vcZYrfVy53euGzdW1rgourrGnFGRNSMPUfKOVACGWiR189QudxlUJ_yD3FQEBVkZ56uaVWs4Wr9TL5hUlrvfvYHjjdADbFnJNrtPWd6XwMXTK-1ZTo--p0X51-qK43Xj8ydqF_Y7fpP33r1v8G9eXww84oNobPnfv12zDpm1YlL6X-PBnp8xImb7-ML_WI3wFs97TK |
CitedBy_id | crossref_primary_10_1016_j_ejpb_2019_12_005 crossref_primary_10_1021_acsami_4c18066 crossref_primary_10_1007_s11897_017_0347_7 crossref_primary_10_1021_acsmaterialslett_2c00856 crossref_primary_10_1080_1061186X_2021_1909051 crossref_primary_10_3390_antiox12030735 crossref_primary_10_3390_life11040332 crossref_primary_10_1039_D0CC02285C crossref_primary_10_1038_s41598_024_52981_w crossref_primary_10_1007_s00432_021_03679_3 crossref_primary_10_1016_j_phymed_2021_153472 crossref_primary_10_3389_fphar_2023_1243613 crossref_primary_10_3390_biology12020307 crossref_primary_10_1002_pros_23767 crossref_primary_10_1016_j_heliyon_2024_e34442 crossref_primary_10_1111_1759_7714_14982 crossref_primary_10_1016_j_radmp_2020_10_001 crossref_primary_10_1016_j_jpha_2024_101036 crossref_primary_10_1039_D0RA09589C crossref_primary_10_3390_pharmaceutics16101250 crossref_primary_10_1021_acs_jmedchem_3c01508 crossref_primary_10_4155_fmc_2021_0049 crossref_primary_10_3389_fchem_2021_650587 crossref_primary_10_1051_medsci_2020274 crossref_primary_10_1016_j_arr_2025_102667 crossref_primary_10_1248_bpb_b21_01039 crossref_primary_10_1016_j_cbi_2025_111422 crossref_primary_10_1038_bjc_2017_155 crossref_primary_10_1016_j_bbrc_2018_10_022 crossref_primary_10_1007_s00018_018_2963_0 crossref_primary_10_3390_molecules28166118 crossref_primary_10_34133_research_0539 crossref_primary_10_3389_fphar_2021_717529 crossref_primary_10_12677_acm_2025_153803 crossref_primary_10_2174_0929867328666211005124015 crossref_primary_10_1021_acsami_4c20358 crossref_primary_10_18632_oncotarget_13367 crossref_primary_10_1016_j_pbiomolbio_2024_02_005 crossref_primary_10_1155_2022_1422185 crossref_primary_10_1016_j_addr_2020_07_026 crossref_primary_10_1016_j_jphotobiol_2023_112654 crossref_primary_10_3892_ijmm_2023_5248 crossref_primary_10_1016_j_biopha_2020_110961 crossref_primary_10_31083_j_fbl2701018 crossref_primary_10_3389_fcell_2021_716406 crossref_primary_10_3390_ma11040569 crossref_primary_10_1016_j_msec_2020_111703 crossref_primary_10_1038_s41419_021_04039_2 crossref_primary_10_2174_1871520619666181231112453 crossref_primary_10_3389_fcimb_2022_903570 crossref_primary_10_1155_2022_5652586 crossref_primary_10_1016_j_theriogenology_2021_07_011 crossref_primary_10_1016_j_ica_2020_119863 crossref_primary_10_1080_13510002_2023_2251234 crossref_primary_10_3389_fphy_2023_1201708 crossref_primary_10_1016_j_tranon_2018_04_008 crossref_primary_10_1038_s41419_024_06984_0 crossref_primary_10_1016_j_fbio_2023_103493 crossref_primary_10_2147_OTT_S242929 crossref_primary_10_1038_s41598_024_84022_x crossref_primary_10_1186_s12967_023_04613_6 crossref_primary_10_1021_acsami_4c11112 crossref_primary_10_3390_cancers11101415 crossref_primary_10_1016_j_tranon_2025_102351 crossref_primary_10_1016_j_addr_2020_05_006 crossref_primary_10_1177_15330338241299467 crossref_primary_10_1002_adhm_202303837 crossref_primary_10_1016_j_phrs_2023_106980 crossref_primary_10_1371_journal_ppat_1011981 crossref_primary_10_1016_j_ejps_2017_10_039 crossref_primary_10_1016_j_fct_2020_111493 crossref_primary_10_32604_biocell_2023_029094 crossref_primary_10_1016_j_arr_2022_101756 crossref_primary_10_3390_jcm8122161 crossref_primary_10_1002_ptr_8296 crossref_primary_10_1016_j_prp_2018_08_012 crossref_primary_10_1186_s12964_024_01487_z crossref_primary_10_3390_v11100962 crossref_primary_10_1111_cas_15125 crossref_primary_10_1155_2021_6525449 crossref_primary_10_1016_j_tranon_2025_102340 crossref_primary_10_3390_cancers11020171 crossref_primary_10_3892_or_2022_8430 crossref_primary_10_1016_j_cyto_2021_155625 crossref_primary_10_3389_fonc_2022_910963 crossref_primary_10_3389_fonc_2022_1048746 crossref_primary_10_1016_j_ajpath_2023_06_016 crossref_primary_10_1007_s11030_024_10954_1 crossref_primary_10_1007_s12272_022_01377_3 crossref_primary_10_1016_j_lfs_2023_121378 crossref_primary_10_1016_j_cbi_2021_109648 crossref_primary_10_3390_toxins13090595 crossref_primary_10_1016_j_jep_2023_117396 crossref_primary_10_1002_adhm_202403473 crossref_primary_10_1016_j_canlet_2021_06_015 crossref_primary_10_1007_s11694_021_00855_4 crossref_primary_10_1002_iub_1675 crossref_primary_10_1016_j_ijbiomac_2025_142080 crossref_primary_10_1002_jmv_24886 crossref_primary_10_1016_j_cclet_2022_01_011 crossref_primary_10_1016_j_tiv_2020_104814 crossref_primary_10_1016_j_biopha_2017_01_072 crossref_primary_10_1016_j_lfs_2021_119954 crossref_primary_10_1016_j_abb_2023_109519 crossref_primary_10_1016_j_taap_2021_115857 crossref_primary_10_1155_2021_8388258 crossref_primary_10_1530_ERC_17_0458 crossref_primary_10_1166_jbn_2021_3167 crossref_primary_10_1021_acs_analchem_1c04637 crossref_primary_10_1093_toxsci_kfaa129 crossref_primary_10_1016_j_biopha_2024_116689 crossref_primary_10_3389_fimmu_2024_1428920 crossref_primary_10_1038_s41598_023_35572_z crossref_primary_10_3390_cancers15041155 crossref_primary_10_1515_revneuro_2024_0054 crossref_primary_10_1016_j_jconrel_2023_01_068 crossref_primary_10_1016_j_jenvman_2025_124775 crossref_primary_10_3389_fphar_2021_764015 crossref_primary_10_1186_s12935_024_03617_6 crossref_primary_10_1021_acsami_9b16327 crossref_primary_10_2174_1574362413666180320112810 crossref_primary_10_1080_10428194_2024_2422843 crossref_primary_10_1016_j_jep_2022_115100 crossref_primary_10_1016_j_semcdb_2017_11_007 crossref_primary_10_1016_j_snb_2024_135792 crossref_primary_10_3390_biom14111359 crossref_primary_10_1021_acsami_8b21968 crossref_primary_10_1021_acsomega_2c00203 crossref_primary_10_2174_1389557519666190617153213 crossref_primary_10_1016_j_bmcl_2020_127047 crossref_primary_10_2174_1871527322666230403105438 crossref_primary_10_1002_adma_202310964 crossref_primary_10_1248_bpb_b21_00466 crossref_primary_10_1080_07357907_2024_2352467 crossref_primary_10_1002_slct_202401992 crossref_primary_10_3390_molecules27196435 crossref_primary_10_3390_md20050284 crossref_primary_10_1002_ptr_7398 crossref_primary_10_1186_s12935_023_03119_x crossref_primary_10_1017_S1431927621013581 crossref_primary_10_1021_acs_est_3c03552 crossref_primary_10_1016_j_freeradbiomed_2022_11_044 crossref_primary_10_1016_j_mito_2022_04_004 crossref_primary_10_1016_j_phrs_2022_106218 crossref_primary_10_1371_journal_pone_0186821 crossref_primary_10_1016_j_biopha_2024_117520 crossref_primary_10_3390_molecules27010148 crossref_primary_10_3390_ijms24033028 crossref_primary_10_1111_jfbc_13683 crossref_primary_10_1021_acs_inorgchem_8b01707 crossref_primary_10_3390_antiox10020313 crossref_primary_10_1186_s40360_021_00542_6 crossref_primary_10_3892_ijo_2016_3684 crossref_primary_10_1016_j_bmcl_2025_130094 crossref_primary_10_1038_s41598_024_58656_w crossref_primary_10_1039_D4BM01450B crossref_primary_10_3389_fmed_2022_1055252 crossref_primary_10_4103_2221_1691_284948 crossref_primary_10_1039_D2CS00562J crossref_primary_10_1002_tox_23482 crossref_primary_10_1155_2017_7454031 crossref_primary_10_2147_DDDT_S398887 crossref_primary_10_3389_fonc_2022_1101289 crossref_primary_10_1002_cmdc_202000494 crossref_primary_10_1021_acsabm_9b01052 crossref_primary_10_1016_j_biopha_2023_116074 crossref_primary_10_1016_j_freeradbiomed_2018_11_020 crossref_primary_10_1016_j_mito_2021_01_005 crossref_primary_10_1016_j_canlet_2021_04_003 crossref_primary_10_1016_j_jbo_2023_100506 crossref_primary_10_1002_adbi_202400549 crossref_primary_10_1186_s13048_020_00763_z crossref_primary_10_1021_acs_chemmater_4c01481 crossref_primary_10_1016_j_biopha_2022_112966 crossref_primary_10_1093_toxres_tfae056 crossref_primary_10_1016_j_jconrel_2023_09_038 crossref_primary_10_3390_biomedicines9030258 crossref_primary_10_2147_DDDT_S499284 crossref_primary_10_1002_cbin_11278 crossref_primary_10_1039_C7SC03216A crossref_primary_10_3389_fgene_2022_926984 crossref_primary_10_4155_fmc_2017_0011 crossref_primary_10_1155_2019_1283075 crossref_primary_10_3892_ijmm_2021_5047 crossref_primary_10_1186_s13062_024_00461_6 crossref_primary_10_1016_j_ijpharm_2018_11_057 crossref_primary_10_3389_fimmu_2022_844736 crossref_primary_10_3748_wjg_v27_i28_4582 crossref_primary_10_1039_D4NR00665H crossref_primary_10_1186_s12967_022_03657_4 crossref_primary_10_1093_toxsci_kfaa103 crossref_primary_10_3892_ol_2018_9217 crossref_primary_10_1007_s11356_023_30150_2 crossref_primary_10_3390_ijms23116075 crossref_primary_10_1111_cas_13251 crossref_primary_10_1186_s11658_023_00487_0 crossref_primary_10_3389_fphar_2023_1199152 crossref_primary_10_1016_j_ccr_2024_216050 crossref_primary_10_1021_acs_jmedchem_3c01655 crossref_primary_10_1016_j_poly_2021_115225 crossref_primary_10_1002_psc_3144 crossref_primary_10_1016_j_aquatox_2017_01_005 crossref_primary_10_1016_j_jnrt_2024_100112 crossref_primary_10_1021_acs_chemrestox_4c00328 crossref_primary_10_1080_02656736_2023_2270654 crossref_primary_10_3390_biom11101418 crossref_primary_10_1155_2022_4195699 crossref_primary_10_3390_cells10020332 crossref_primary_10_1186_s12876_022_02260_7 crossref_primary_10_3389_fcell_2025_1528972 crossref_primary_10_4196_kjpp_2020_24_3_223 crossref_primary_10_1002_fsn3_2636 crossref_primary_10_1016_j_pharmthera_2019_04_011 crossref_primary_10_1039_C8TB02621A crossref_primary_10_1007_s00232_024_00308_1 crossref_primary_10_1016_j_actbio_2025_03_031 crossref_primary_10_29219_fnr_v65_5492 crossref_primary_10_3389_fonc_2024_1511958 crossref_primary_10_1002_btm2_10515 crossref_primary_10_3389_fphar_2021_691998 crossref_primary_10_1016_j_bmcl_2017_12_059 crossref_primary_10_1039_D4RA00959B crossref_primary_10_1016_j_cej_2024_155592 crossref_primary_10_1016_j_ccr_2020_213640 crossref_primary_10_1016_j_ijbiomac_2021_02_061 crossref_primary_10_3892_or_2023_8630 crossref_primary_10_3390_cells11233790 crossref_primary_10_1016_j_tice_2022_101997 crossref_primary_10_1080_10715762_2022_2133704 crossref_primary_10_1016_j_jgr_2021_05_005 crossref_primary_10_1016_j_bcp_2023_115856 crossref_primary_10_1007_s10068_021_00899_8 crossref_primary_10_1016_j_lfs_2023_122098 crossref_primary_10_3389_fimmu_2024_1424954 crossref_primary_10_1158_1078_0432_CCR_20_4789 crossref_primary_10_3390_toxins14090590 crossref_primary_10_1007_s12032_023_02022_9 crossref_primary_10_1038_s41388_021_01968_2 crossref_primary_10_1038_s41401_023_01157_9 crossref_primary_10_1080_14756366_2023_2292006 crossref_primary_10_1155_2016_5293284 crossref_primary_10_3390_molecules27238311 crossref_primary_10_1016_j_cej_2022_136169 crossref_primary_10_1039_D5OB00216H crossref_primary_10_1002_ijc_31395 crossref_primary_10_3389_fonc_2022_900444 crossref_primary_10_4062_biomolther_2023_070 crossref_primary_10_3389_fonc_2024_1506588 crossref_primary_10_3389_fphar_2023_1191517 crossref_primary_10_1038_s41419_020_03336_6 crossref_primary_10_1038_s41420_022_01148_5 crossref_primary_10_1016_j_cej_2024_153395 crossref_primary_10_1002_mc_23639 crossref_primary_10_1016_j_brainres_2023_148724 crossref_primary_10_3390_plants12091760 crossref_primary_10_3390_ijms25021175 crossref_primary_10_3892_ol_2023_13913 crossref_primary_10_1021_acs_jafc_3c02090 crossref_primary_10_1039_D3NJ05045A crossref_primary_10_3390_ijms221910458 crossref_primary_10_1155_2022_5366185 crossref_primary_10_3390_cancers16173060 crossref_primary_10_1111_nyas_13401 crossref_primary_10_1038_s41419_024_07023_8 crossref_primary_10_1093_narcan_zcac034 crossref_primary_10_1002_bab_2621 crossref_primary_10_1158_2159_8290_CD_24_0187 crossref_primary_10_1016_j_intimp_2024_112052 crossref_primary_10_1038_s41598_018_34055_w crossref_primary_10_1016_j_jconrel_2021_10_030 crossref_primary_10_1021_acs_jafc_1c07690 crossref_primary_10_1007_s00018_017_2616_8 crossref_primary_10_1186_s13046_021_01933_7 crossref_primary_10_3389_fphar_2022_1109822 crossref_primary_10_1016_j_jinorgbio_2024_112655 crossref_primary_10_1016_j_molimm_2024_05_008 crossref_primary_10_3390_ph14020133 crossref_primary_10_1038_s41419_023_05711_5 crossref_primary_10_1016_j_jhazmat_2021_126158 crossref_primary_10_1002_cplu_202300167 crossref_primary_10_1016_j_ecoenv_2022_113716 crossref_primary_10_1016_j_heliyon_2024_e32626 crossref_primary_10_3390_biom9110735 crossref_primary_10_3987_COM_21_14586 crossref_primary_10_3389_fimmu_2023_1224443 crossref_primary_10_3389_fphar_2021_542891 crossref_primary_10_2147_CMAR_S237181 crossref_primary_10_1002_jcp_26892 crossref_primary_10_1007_s12011_024_04497_7 crossref_primary_10_1016_j_jconrel_2023_06_004 crossref_primary_10_1016_j_phymed_2022_154075 crossref_primary_10_4162_nrp_2018_12_2_129 crossref_primary_10_3390_ijms25158293 crossref_primary_10_1371_journal_pone_0168283 crossref_primary_10_1002_adma_202209529 crossref_primary_10_2174_0929867329666220401110418 crossref_primary_10_1016_j_bioorg_2021_105239 crossref_primary_10_1016_j_ijpharm_2017_01_064 crossref_primary_10_1021_acs_jmedchem_4c01908 crossref_primary_10_1039_C8SC04871A crossref_primary_10_1016_j_biopha_2024_116740 crossref_primary_10_7759_cureus_39812 crossref_primary_10_18632_oncotarget_23407 crossref_primary_10_18632_oncotarget_9746 crossref_primary_10_18632_oncotarget_13838 crossref_primary_10_1155_2020_8837893 crossref_primary_10_3390_biomedicines10040800 crossref_primary_10_1016_j_bcp_2019_05_013 crossref_primary_10_1016_j_envpol_2022_119120 crossref_primary_10_1038_s42003_022_03788_w crossref_primary_10_1016_j_cellsig_2020_109821 crossref_primary_10_1111_1440_1681_70022 crossref_primary_10_1016_j_phrs_2024_107553 crossref_primary_10_1002_jbt_23369 crossref_primary_10_1002_1878_0261_12199 crossref_primary_10_1007_s10876_023_02497_6 crossref_primary_10_1155_2022_7702681 crossref_primary_10_1051_bioconf_20248601014 crossref_primary_10_1016_j_ecoenv_2021_112442 crossref_primary_10_1038_s41420_024_02039_7 crossref_primary_10_2147_IJN_S495387 crossref_primary_10_1016_j_jinorgbio_2023_112397 crossref_primary_10_1186_s12951_020_00644_z crossref_primary_10_18632_oncotarget_21005 crossref_primary_10_1021_acs_bioconjchem_2c00559 crossref_primary_10_1002_mco2_70055 crossref_primary_10_1016_j_intimp_2025_114266 crossref_primary_10_1186_s13765_020_0491_8 crossref_primary_10_3389_fcvm_2021_771349 crossref_primary_10_1016_j_lfs_2020_117846 crossref_primary_10_1111_bjd_17513 crossref_primary_10_1016_j_ejmech_2020_112737 crossref_primary_10_1038_s41419_018_0395_2 crossref_primary_10_1111_febs_16417 crossref_primary_10_1007_s00424_022_02748_x crossref_primary_10_1016_j_bioorg_2024_107325 crossref_primary_10_1039_D2NJ01922A crossref_primary_10_1038_s41598_023_50108_1 crossref_primary_10_1002_jmr_3044 crossref_primary_10_1021_acs_jmedchem_3c00942 crossref_primary_10_17816_KMJ112512 crossref_primary_10_3389_fcvm_2021_774619 crossref_primary_10_3390_toxics9100229 crossref_primary_10_3390_biom13010102 crossref_primary_10_1038_s41598_022_14724_7 crossref_primary_10_1016_j_dyepig_2024_112350 crossref_primary_10_1039_C8TB00546J crossref_primary_10_1016_j_toxlet_2023_12_012 crossref_primary_10_1016_j_bbrc_2020_02_052 crossref_primary_10_1021_acs_jafc_9b04814 crossref_primary_10_1038_s41467_024_47008_x crossref_primary_10_1016_j_bbadis_2024_167623 crossref_primary_10_1515_oncologie_2024_0596 crossref_primary_10_1007_s13277_016_5403_5 crossref_primary_10_1016_j_mito_2023_02_009 crossref_primary_10_1016_j_jinorgbio_2023_112295 crossref_primary_10_1096_fj_202400938R crossref_primary_10_1021_acsnano_4c03451 crossref_primary_10_3892_ijmm_2024_5480 crossref_primary_10_2147_JIR_S463692 crossref_primary_10_1016_j_pestbp_2023_105343 crossref_primary_10_3390_jor4020012 crossref_primary_10_3389_fcimb_2022_835181 crossref_primary_10_1016_j_abb_2020_108539 crossref_primary_10_3892_ol_2021_13134 crossref_primary_10_7717_peerj_6708 crossref_primary_10_1142_S0192415X22500094 crossref_primary_10_2174_2210298101666210928122952 crossref_primary_10_29252_mlj_14_3_13 crossref_primary_10_1039_D3SC01315D crossref_primary_10_1177_2047487319831495 crossref_primary_10_1002_ppsc_202100003 crossref_primary_10_1038_s41589_020_0602_1 crossref_primary_10_1007_s40097_021_00457_y crossref_primary_10_1016_j_bmcl_2021_127912 crossref_primary_10_3390_ijms22179368 crossref_primary_10_1016_j_ecoenv_2024_117063 crossref_primary_10_1039_C7OB00458C crossref_primary_10_1016_j_mce_2023_111991 crossref_primary_10_7554_eLife_72557 crossref_primary_10_1186_s12967_024_05833_0 crossref_primary_10_1002_cbdv_201900443 crossref_primary_10_1016_j_tranon_2025_102355 crossref_primary_10_1021_acs_inorgchem_3c01635 crossref_primary_10_15430_JCP_2020_25_2_100 crossref_primary_10_1177_09731296231183277 crossref_primary_10_1016_j_biopsych_2017_08_007 crossref_primary_10_3390_app13106321 crossref_primary_10_3389_fbioe_2021_784602 crossref_primary_10_1186_s12911_022_02020_3 crossref_primary_10_1016_j_mtbio_2025_101581 crossref_primary_10_3390_life11080761 crossref_primary_10_3390_cells11213508 crossref_primary_10_3390_biology11091325 crossref_primary_10_1016_j_bioorg_2024_107122 crossref_primary_10_1128_spectrum_03652_23 crossref_primary_10_3390_pharmaceutics13020144 crossref_primary_10_1016_j_jtemb_2022_127006 crossref_primary_10_1007_s10495_020_01655_9 crossref_primary_10_1080_15287394_2023_2240835 crossref_primary_10_3389_fimmu_2022_1061448 crossref_primary_10_1021_acsami_7b14577 crossref_primary_10_1038_s41419_022_04738_4 crossref_primary_10_1038_s41419_022_05098_9 crossref_primary_10_2174_0929867326666190823163009 crossref_primary_10_1002_jcp_26356 crossref_primary_10_1016_j_carbpol_2022_119464 crossref_primary_10_34133_research_0310 crossref_primary_10_1007_s13167_019_00170_5 crossref_primary_10_1155_2021_8840590 crossref_primary_10_1002_cnma_202100125 crossref_primary_10_3390_ijms24076453 crossref_primary_10_1021_acs_jmedchem_7b00679 crossref_primary_10_1155_2021_4763944 crossref_primary_10_3390_pharmaceutics11010043 crossref_primary_10_1089_ars_2016_6898 crossref_primary_10_3390_antiox10040603 crossref_primary_10_1016_j_tox_2024_153920 crossref_primary_10_3390_ijms252212049 crossref_primary_10_1002_EXP_20240002 crossref_primary_10_1039_D0QI01028F crossref_primary_10_3390_jmp5010007 crossref_primary_10_2139_ssrn_4170601 crossref_primary_10_1016_j_ejmech_2019_111851 crossref_primary_10_3390_oxygen4020008 crossref_primary_10_2174_1570159X16666180302120925 crossref_primary_10_2478_jtim_2020_0012 crossref_primary_10_1155_2021_5188306 crossref_primary_10_1039_D0FO00260G crossref_primary_10_1111_cns_14348 crossref_primary_10_3390_ijms20184407 crossref_primary_10_1016_j_chemosphere_2019_125773 crossref_primary_10_3390_ijms241511953 crossref_primary_10_3390_ijms20081967 crossref_primary_10_3390_molecules25194504 crossref_primary_10_1039_D2BM01267G crossref_primary_10_1007_s12672_024_01147_1 crossref_primary_10_3390_cancers13236062 crossref_primary_10_1093_jn_nxaa201 crossref_primary_10_1080_17568919_2025_2459589 crossref_primary_10_3390_ijms19051270 crossref_primary_10_31083_j_fbl2706171 crossref_primary_10_1016_j_freeradbiomed_2021_06_031 crossref_primary_10_1016_j_semcancer_2020_06_017 crossref_primary_10_3748_wjg_v30_i5_429 crossref_primary_10_1186_s12967_023_04270_9 crossref_primary_10_34108_eujhs_1313433 crossref_primary_10_1038_s41467_018_04070_6 crossref_primary_10_1016_j_ejmech_2019_01_004 crossref_primary_10_3390_ijms24065564 crossref_primary_10_2131_jts_46_345 crossref_primary_10_3390_antiox12081597 crossref_primary_10_1186_s13020_024_00982_2 crossref_primary_10_1002_cbf_3584 crossref_primary_10_1186_s13287_019_1265_2 crossref_primary_10_1088_1361_6528_ac378c |
Cites_doi | 10.1074/jbc.M301546200 10.1016/S0960-9822(02)01433-1 10.1158/1078-0432.CCR-13-0304 10.1146/annurev.genet.39.110304.095751 10.1007/s00384-009-0663-9 10.1016/j.taap.2009.11.028 10.1085/jgp.8.6.519 10.1096/fj.05-3718com 10.1038/sj.onc.1207521 10.1186/bcr2154 10.1038/embor.2010.115 10.1016/j.chembiol.2008.03.015 10.1126/science.68.1767.437 10.1016/j.biocel.2010.05.003 10.1515/BC.1999.107 10.1016/j.molcel.2005.06.008 10.1128/MCB.00483-09 10.1038/nrc3365 10.2174/0929867311320999165 10.1038/nrd2803 10.1016/j.semcancer.2008.11.007 10.1016/j.freeradbiomed.2011.10.435 10.1073/pnas.1117773108 10.3109/08830185.2012.755176 10.1016/0304-4173(74)90011-1 10.1186/1471-2407-14-76 10.1042/bj3480425 10.1371/journal.pone.0099196 10.1073/pnas.1003428107 10.1016/j.ccr.2006.04.023 10.1042/BJ20081386 10.1023/A:1023756707900 10.1101/gad.1376506 10.1126/scisignal.2000431 10.1016/j.bbamcr.2014.03.009 10.1126/science.1156906 10.1016/j.mrfmmm.2005.06.015 10.4161/cc.9.10.11601 10.1016/j.yjmcc.2014.10.019 10.1038/nature10602 10.1038/sj.onc.1209607 10.1016/j.lfs.2011.05.010 10.1093/hmg/ddp069 10.1038/cdd.2014.211 10.1038/nchembio.1712 10.1038/3108 10.1016/j.ccr.2007.08.004 10.1007/s10863-009-9267-x 10.1038/nature06667 10.1126/science.287.5460.2017 10.1038/88859 10.1074/jbc.M501527200 10.1016/S0891-5849(97)00331-6 10.1158/0008-5472.CAN-03-1101 10.1002/mds.23148 10.1016/j.cell.2013.03.004 10.3109/10715761003667554 10.1158/0008-5472.CAN-04-2012 10.1038/sj.onc.1204953 10.1016/j.bbabio.2010.10.012 10.1038/nri2975 10.1038/nrm1150 10.1158/0008-5472.CAN-15-0859 10.4161/cc.9.17.12731 10.1158/1078-0432.CCR-04-0734 10.1126/science.283.5407.1482 10.4161/cc.8.23.10238 10.1016/j.ccr.2012.09.021 10.1016/j.febslet.2009.12.002 10.1186/2049-3002-1-7 10.1134/S0006297908120018 10.1016/S0140-6736(00)02591-5 10.1016/j.canlet.2008.03.020 10.1016/j.ccr.2012.02.014 10.1046/j.1474-9728.2003.00062.x 10.1186/1741-7007-12-34 10.1021/bi061854k 10.1038/nature10642 10.1007/s10541-005-0104-5 10.1007/s00232-008-9108-6 10.1016/j.ccr.2012.07.015 10.1038/sj.onc.1209602 10.1016/j.molcel.2013.05.003 10.1146/annurev.pharmtox.44.101802.121851 10.1038/srep09073 10.1146/annurev.pharmtox.47.120505.105110 10.1371/journal.pone.0023401 10.1128/MCB.01338-07 10.1016/j.drudis.2010.12.006 10.1016/j.molcel.2011.04.025 10.1038/sj.onc.1209604 10.1038/nrd3137 10.1152/ajpregu.90902.2008 10.1158/0008-5472.CAN-06-3717 10.1016/j.ccr.2006.08.009 10.4161/cc.9.16.12553 10.1113/eph8802510 10.1186/s12885-015-1349-z 10.1016/j.bbagen.2013.02.016 10.1016/j.freeradbiomed.2014.08.027 10.1007/s00018-005-5178-0 10.1158/1940-6207.CAPR-10-0326 10.1530/ERC-13-0398 10.3390/ijms160817394 10.1038/cr.2011.145 10.1016/j.bpj.2008.10.042 10.1196/annals.1297.043 10.1016/j.tibs.2010.04.002 10.1038/nrc3803 10.1016/S1383-5742(01)00053-9 10.1016/j.biocel.2011.01.023 10.1134/S000629791002001X 10.1186/1479-5876-11-94 10.1016/j.bbamem.2007.11.002 10.1016/j.cmet.2014.12.003 10.1007/s00280-006-0291-9 10.2353/ajpath.2009.080924 10.1111/j.1478-3231.2010.02250.x 10.1038/jhg.2009.71 10.1073/pnas.0510511103 10.1016/j.cell.2008.12.004 10.1155/2013/612369 10.1016/S1535-6108(03)00109-0 10.1016/j.tcb.2008.01.006 10.1134/S0006297908120031 10.1038/35030140 10.1016/S0169-409X(99)00069-1 10.1016/j.cmet.2011.03.024 10.1042/bj20021594 10.1046/j.1474-9728.2002.00004.x 10.1016/S0140-6736(99)05226-5 10.1172/JCI119339 10.1073/pnas.94.2.514 10.1161/HYPERTENSIONAHA.109.130351 10.1016/0165-1110(87)90028-5 10.1038/nature03579 10.1134/S0006297907120139 10.1038/sj.cdd.4402020 10.1038/nrm3877 10.1073/pnas.0408894102 10.1038/2221076a0 10.1155/2014/292017 10.1016/j.bbcan.2013.10.002 10.2353/ajpath.2009.080873 10.1074/jbc.M009093200 10.1016/j.mito.2004.07.027 10.1038/sj.onc.1203299 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 7QO |
DOI | 10.1002/jcp.25349 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Genetics Abstracts Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 2581 |
ExternalDocumentID | 4154751591 26895995 10_1002_jcp_25349 JCP25349 ark_67375_WNG_H79NDXLJ_G |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft – fundername: Fundamental Research Funds for the Central Universities of China – fundername: National Natural Science Foundation of China – fundername: Else Kröner‐Fresenius Foundation – fundername: Russian Foundation for Basic Research funderid: BA 3826/5‐1; 2012.A131; 2014QN045; 81402553; 15‐04‐05171 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 7QO |
ID | FETCH-LOGICAL-c5609-4b3c192f67f201dcf825f3ed0415a9ed9cbec0546a9d302969c7b3ea4608cdf53 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 02:57:46 EDT 2025 Fri Jul 11 07:47:37 EDT 2025 Sat Jul 26 00:53:35 EDT 2025 Mon Jul 21 05:21:18 EDT 2025 Thu Apr 24 23:09:57 EDT 2025 Tue Jul 01 01:31:44 EDT 2025 Wed Jan 22 16:41:56 EST 2025 Wed Oct 30 09:52:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5609-4b3c192f67f201dcf825f3ed0415a9ed9cbec0546a9d302969c7b3ea4608cdf53 |
Notes | Fundamental Research Funds for the Central Universities of China Deutsche Forschungsgemeinschaft National Natural Science Foundation of China istex:8DCD0142887B1143AAF02F308ACE5EF4EEE7FD56 Else Kröner-Fresenius Foundation ark:/67375/WNG-H79NDXLJ-G Russian Foundation for Basic Research - No. BA 3826/5-1; No. 2012.A131; No. 2014QN045; No. 81402553; No. 15-04-05171 ArticleID:JCP25349 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 26895995 |
PQID | 1812949880 |
PQPubID | 1006363 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1832245426 proquest_miscellaneous_1813900124 proquest_journals_1812949880 pubmed_primary_26895995 crossref_citationtrail_10_1002_jcp_25349 crossref_primary_10_1002_jcp_25349 wiley_primary_10_1002_jcp_25349_JCP25349 istex_primary_ark_67375_WNG_H79NDXLJ_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2016 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J. Cell. Physiol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Williams GS, Boyman L, Lederer WJ. 2015. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35-45. Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291-293. Acin-Perez R, Gatti DL, Bai Y, Manfredi G. 2011. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation. Cell metabolism 13:712-719. Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, Abdellaoui N, de Fraipont F, Moisan A, Prouteau CA, Boukhaddaoui H, Jorgensen C, Vignais ML. 2015. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Reports 5:9073. Supinski GS, Murphy MP, Callahan LA. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 297:R1095-R1102. Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P. 2011. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43:950-968. Klaunig JE, Wang Z, Pu X, Zhou S. 2011. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 254:86-99. Brandon M, Baldi P, Wallace DC. 2006. Mitochondrial mutations in cancer. Oncogene 25:4647-4662. Fantin VR, St-Pierre J, Leder P. 2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425-434. Ohta S. 2006. Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene 25:4768-4776. Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2010a. Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506-3514. Shay JW, Werbin H. 1987. Are mitochondrial DNA mutations involved in the carcinogenic process? Mutat Res 186:149-160. Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S. 2005. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65:1655-1663. Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B. 2009. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophys J 96:1388-1398. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J. 2008. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661-664. Sobenin IA, Mitrofanov KY, Zhelankin AV, Sazonova MA, Postnov AY, Revin VV, Bobryshev YV, Orekhov AN. 2014. Quantitative assessment of heteroplasmy of mitochondrial genome: Perspectives in diagnostics and methodological pitfalls. BioMed Res Int 2014:292017. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. 2005. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677-681. Fulda S, Galluzzi L, Kroemer G. 2010. Targeting mitochondria for cancer therapy. Nature Rev Drug Discov 9:447-464. Galluzzi L, Kroemer G. 2008. Necroptosis: A specialized pathway of programmed necrosis. Cell 135:1161-1163. Mishra P, Chan DC. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Rev Mol Cell Biol 15:634-646. Liu L, Trimarchi JR, Smith PJ, Keefe DL. 2002. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40-46. Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D, Marchetti P, Brenner C, Kroemer G. 2001. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite, and CD437. Oncogene 20:7579-7587. Modica-Napolitano JS, Singh KK. 2004. Mitochondrial dysfunction in cancer. Mitochondrion 4:755-762. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788-8793. Hofhaus G, Gattermann N. 1999. Mitochondria harbouring mutant mtDNA-A cuckoo in the nest? Biol Chem 380:871-877. Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M. 2009. Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet 54:516-524. Izyumov DS, Domnina LV, Nepryakhina OK, Avetisyan AV, Golyshev SA, Ivanova OY, Korotetskaya MV, Lyamzaev KG, Pletjushkina OY, Popova EN, Chernyak BV. 2010. Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants-the "Skulachev-ion" derivatives. Biochemistry (Mosc) 75:123-129. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D. 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017-2019. Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, Fanelli MA, Cuello-Carrion FD, Gago FE, Anderson RL. 2009. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174:2035-2043. Chatterjee A, Mambo E, Sidransky D. 2006. Mitochondrial DNA mutations in human cancer. Oncogene 25:4663-4674. Pagliarini DJ, Wiley SE, Kimple ME, Dixon JR, Kelly P, Worby CA, Casey PJ, Dixon JE. 2005. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell 19:197-207. Spees JL, Olson SD, Whitney MJ, Prockop DJ. 2006. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283-1288. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181-186. Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P. 2006. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241-252. Klaunig JE, Kamendulis LM. 2004. The role of oxidative stress in carcinogenesis. Ann Rev Pharmacol Toxicol 44:239-267. Zamzami N, Kroemer G. 2003. Apoptosis: Mitochondrial membrane permeabilization-the (w) hole story? Curr Biol 13:R71-R73. Campello S, Scorrano L. 2010. Mitochondrial shape changes: Orchestrating cell pathophysiology. EMBO Reports 11:678-684. Wang X, Gerdes HH. 2015. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22:1181-1191. Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J 417:1-13. Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. 2003. Mitochondrial threshold effects. Biochem J 370:751-762. Chen X, Qian Y, Wu S. 2015. The Warburg effect: Evolving interpretations of an established concept. Free Radical Biol Med 79:253-263. Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G. 2013. Mitochondria and cancer: Past, present, and future. BioMed Res Int 2013:612369. Anso E, Mullen AR, Felsher DW, Mates JM, Deberardinis RJ, Chandel NS. 2013. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab 1:7. Suzuki S, Naito A, Asano T, Evans TT, Reddy SA, Higuchi M. 2008. Constitutive activation of AKT pathway inhibits TNF-induced apoptosis in mitochondrial DNA-deficient human myelogenous leukemia ML-1a. Cancer Lett 268:31-37. Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP. 2009. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174:2023-2034. Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P. 2012. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22:399-412. Smolkova K, Bellance N, Scandurra F, Genot E, Gnaiger E, Plecita-Hlavata L, Jezek P, Rossignol R. 2010. Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42:55-67. van Vliet AR, Verfaillie T, Agostinis P. 2014. New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253-2262. Antanaviciute I, Rysevaite K, Liutkevicius V, Marandykina A, Rimkute L, Sveikatiene R, Uloza V, Skeberdis VA. 2014. Long-distance communication between laryngeal carcinoma cells. PLoS ONE 9:e99196. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. 2009. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP. 2001. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem 276:4588-4596. Oudard S, Carpentier A, Banu E, Fauchon F, Celerier D, Poupon MF, Dutrillaux B, Andrieu JM, Delattre JY. 2003. Phase II study of lonidamine and diazepam in the treatment of recurrent gli 2015; 79 2010; 11 2012; 481 1987; 186 2015; 78 2013; 1 2010; 107 2015; 75 2004; 23 2004; 4 2005; 62 2010; 584 1999; 283 2005; 65 2007; 72 1974; 346 2003; 278 2012; 12 2014; 21 2000; 407 2009; 96 2000; 19 2006; 20 2010; 25 2013; 2013 2005; 102 2013; 51 2006; 25 2008; 28 2014; 15 2014; 14 2005; 70 1927; 8 2009; 19 2012; 22 2007; 67 2014; 12 2010; 30 2012; 21 2010; 9 2009; 18 2004; 1019 2004; 44 2013a; 32 2010; 35 2000; 355 2000; 356 2011; 1807 2002; 1 2009; 297 2006; 593 2014; 2014 2001; 28 2009; 174 2011; 4 2011; 6 2007; 12 2007; 14 2011; 254 2001; 20 2014; 1843 2001; 276 2010; 44 2010; 42 2005; 19 2010a; 9 2000; 348 2011; 89 2008; 135 2008a; 73 2006; 103 2004; 64 2000; 41 2003; 13 2011; 11 2011; 13 2008; 268 2008; 73 2011; 16 2012; 52 2013; 19 1997; 94 2009; 54 1997; 99 2013; 11 1999; 380 2003; 2 2003; 3 2003; 4 2000; 287 2013; 153 2014; 9 2005; 39 2003; 88 2015; 15 2009; 24 2010; 75 2013; 1836 2015; 5 2015; 16 2013; 1830 2006; 10 2008; 18 2006; 9 2005; 435 2015; 11 2008; 15 2003; 370 2008; 10 2008; 1778 2008; 320 2010b; 9 2009; 417 1998; 20 1969; 222 2001; 488 2007; 59 2009; 29 1998; 24 2004; 10 2005; 280 2011; 108 1928; 68 2013b; 20 2015; 22 2015; 21 2011; 42 2011; 43 2009; 8 2008; 452 2009; 2 2008b; 222 2003; 63 2007; 46 2007; 47 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_141_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_142_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_131_1 |
References_xml | – reference: Yakes FM, Van Houten B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514-519. – reference: Zastawny TH, Dabrowska M, Jaskolski T, Klimarczyk M, Kulinski L, Koszela A, Szczesniewicz M, Sliwinska M, Witkowski P, Olinski R. 1998. Comparison of oxidative base damage in mitochondrial and nuclear DNA. Free Radical Biol Med 24:722-725. – reference: Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2010b. The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9:1960-1971. – reference: Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B. 2009. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophys J 96:1388-1398. – reference: Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G. 2012. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380-384. – reference: Sabharwal SS, Schumacker PT. 2014. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 14:709-721. – reference: Chae YC, Caino MC, Lisanti S, Ghosh JC, Dohi T, Danial NN, Villanueva J, Ferrero S, Vaira V, Santambrogio L, Bosari S, Languino LR, Herlyn M, Altieri DC. 2012. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 22:331-344. – reference: Warburg O, Wind F, Negelein E. 1927. The metabolism of tumors in the body. J Gen Physiol 8:519-530. – reference: Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, Abdellaoui N, de Fraipont F, Moisan A, Prouteau CA, Boukhaddaoui H, Jorgensen C, Vignais ML. 2015. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Reports 5:9073. – reference: Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D. 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017-2019. – reference: Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC. 2005. MtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102:719-724. – reference: Higuchi M, Aggarwal BB, Yeh ET. 1997. Activation of CPP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function. J Clin Invest 99:1751-1758. – reference: Vicha A, Taieb D, Pacak K. 2014. Current views on cell metabolism in SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer 21:R261-R277. – reference: Yang Y, Bazhin AV, Werner J, Karakhanova S. 2013a. Reactive oxygen species in the immune system. Int Rev Immunol 32:249-270. – reference: Galluzzi L, Kroemer G. 2008. Necroptosis: A specialized pathway of programmed necrosis. Cell 135:1161-1163. – reference: Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP. 2001. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem 276:4588-4596. – reference: Weinberg SE, Chandel NS. 2015. Targeting mitochondria metabolism for cancer therapy. Nature Chem Biol 11:9-15. – reference: Ohta S. 2006. Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene 25:4768-4776. – reference: Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OY, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Roginsky VA, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev IV, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Vassiliev JM, Vyssokikh MY, Yaguzhinsky LS, Zamyatnin AA, Jr, Skulachev VP. 2008a. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies. Biochemistry (Mosc) 73:1273-1287. – reference: Sobenin IA, Mitrofanov KY, Zhelankin AV, Sazonova MA, Postnov AY, Revin VV, Bobryshev YV, Orekhov AN. 2014. Quantitative assessment of heteroplasmy of mitochondrial genome: Perspectives in diagnostics and methodological pitfalls. BioMed Res Int 2014:292017. – reference: Wang X, Gerdes HH. 2015. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22:1181-1191. – reference: Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, Nakada K, Hayashi J. 2011. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS ONE 6:e23401. – reference: Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076-1078. – reference: Wallace DC. 1999. Mitochondrial diseases in man and mouse. Science 283:1482-1488. – reference: Wallace DC. 2012. Mitochondria and cancer. Nat Rev Cancer 12:685-698. – reference: Acin-Perez R, Gatti DL, Bai Y, Manfredi G. 2011. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation. Cell metabolism 13:712-719. – reference: Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O'Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM. 2010. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov Disord 25:1670-1674. – reference: Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P. 2006. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241-252. – reference: Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. 2004. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985-993. – reference: Chen X, Qian Y, Wu S. 2015. The Warburg effect: Evolving interpretations of an established concept. Free Radical Biol Med 79:253-263. – reference: Fetisova EK, Avetisyan AV, Izyumov DS, Korotetskaya MV, Chernyak BV, Skulachev VP. 2010. Mitochondria-targeted antioxidant SkQR1 selectively protects MDR (Pgp 170)-negative cells against oxidative stress. FEBS Lett 584:562-566. – reference: Leonard JV, Schapira AH. 2000. Mitochondrial respiratory chain disorders II: Neurodegenerative disorders and nuclear gene defects. Lancet 355:389-394. – reference: Mukhopadhyay A, Ni L, Yang CS, Weiner H. 2005. Bacterial signal peptide recognizes HeLa cell mitochondrial import receptors and functions as a mitochondrial leader sequence. Cell Mol Life Sci 62:1890-1899. – reference: Leonard JV, Morris AA. 2000. Inborn errors of metabolism around time of birth. Lancet 356:583-587. – reference: Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D, Marchetti P, Brenner C, Kroemer G. 2001. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite, and CD437. Oncogene 20:7579-7587. – reference: Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, Yamashita K, Kobayashi H, Kikuchi H, Harashima H. 2008. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 1778:423-432. – reference: Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF. 2009. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54:322-328. – reference: Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J 417:1-13. – reference: Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. 2005. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677-681. – reference: Oudard S, Carpentier A, Banu E, Fauchon F, Celerier D, Poupon MF, Dutrillaux B, Andrieu JM, Delattre JY. 2003. Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neurooncol 63:81-86. – reference: Zong WX, Thompson CB. 2006. Necrotic death as a cell fate. Genes Dev 20:1-15. – reference: Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M. 2009. Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet 54:516-524. – reference: Gogvadze V, Orrenius S, Zhivotovsky B. 2009. Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol 19:57-66. – reference: Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291-293. – reference: Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E, Sudarshan S, Licht JD, Deberardinis RJ, Chandel NS. 2013. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol Cell 51:236-248. – reference: Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, Lisanti MP. 2011. Stromal-epithelial metabolic coupling in cancer: Integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 43:1045-1051. – reference: Agapova LS, Chernyak BV, Domnina LV, Dugina VB, Efimenko AY, Fetisova EK, Ivanova OY, Kalinina NI, Khromova NV, Kopnin BP, Kopnin PB, Korotetskaya MV, Lichinitser MR, Lukashev AL, Pletjushkina OY, Popova EN, Skulachev MV, Shagieva GS, Stepanova EV, Titova EV, Tkachuk VA, Vasiliev JM, Skulachev VP. 2008. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. Biochemistry (Mosc) 73:1300-1316. – reference: Yang Y, Karakhanova S, Werner J, Bazhin AV. 2013b. Reactive oxygen species in cancer biology and anticancer therapy. Curr Med Chem 20:3677-3692. – reference: van Vliet AR, Verfaillie T, Agostinis P. 2014. New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253-2262. – reference: Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV. 2007. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12:230-238. – reference: Goto M, Miwa H, Suganuma K, Tsunekawa-Imai N, Shikami M, Mizutani M, Mizuno S, Hanamura I, Nitta M. 2014. Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14:76. – reference: Orrenius S, Zhivotovsky B, Nicotera P. 2003. Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552-565. – reference: Owens KM, Aykin-Burns N, Dayal D, Coleman MC, Domann FE, Spitz DR. 2012. Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2(-*) and H2O2. Free Radical Biol Med 52:160-166. – reference: Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP. 2010. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256-3276. – reference: Singh KK. 2004. Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann NY Acad Sci 1019:260-264. – reference: Zamzami N, Kroemer G. 2003. Apoptosis: Mitochondrial membrane permeabilization-the (w) hole story? Curr Biol 13:R71-R73. – reference: Kaelin WG, Jr., McKnight SL. 2013. Influence of metabolism on epigenetics and disease. Cell 153:56-69. – reference: Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P, Zheng X, Sadee W, Sun D. 2007. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59:495-505. – reference: Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. 2003. Mitochondrial threshold effects. Biochem J 370:751-762. – reference: Costantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N, Susin SA, Brenner C, Kroemer G. 2000. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19:307-314. – reference: Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A, Eaton JW, Telang S, Chesney J. 2008. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 10:R84. – reference: Penta JS, Johnson FM, Wachsman JT, Copeland WC. 2001. Mitochondrial DNA in human malignancy. Mutation Res 488:119-133. – reference: Wallace DC. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Ann Rev Genet 39:359-407. – reference: Klaunig JE, Kamendulis LM. 2004. The role of oxidative stress in carcinogenesis. Ann Rev Pharmacol Toxicol 44:239-267. – reference: Antonenko YN, Roginsky VA, Pashkovskaya AA, Rokitskaya TI, Kotova EA, Zaspa AA, Chernyak BV, Skulachev VP. 2008b. Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments. J Membr Biol 222:141-149. – reference: K CS, Carcamo JM, Golde DW. 2006. Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over-expression of c-MYC. Mutation Res 593:64-79. – reference: Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S. 2005. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65:1655-1663. – reference: Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA. 2005. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. Faseb J 19:1088-1095. – reference: Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, Pesdar EA, Sobol M, Filimonenko A, Stuart S, Vondrusova M, Kluckova K, Sachaphibulkij K, Rohlena J, Hozak P, Truksa J, Eccles D, Haupt LM, Griffiths LR, Neuzil J, Berridge MV. 2015. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21:81-94. – reference: Green DE. 1974. The electromechanochemical model for energy coupling in mitochondria. Biochim Biophys Acta 346:27-78. – reference: Pagliarini DJ, Wiley SE, Kimple ME, Dixon JR, Kelly P, Worby CA, Casey PJ, Dixon JE. 2005. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell 19:197-207. – reference: Mishra P, Chan DC. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Rev Mol Cell Biol 15:634-646. – reference: Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, Jacob A, Mirshahi M, Galas L, Rafii S, Le Foll F, Rafii A. 2013. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med 11:94. – reference: Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, Yang Y, Galindo C, Mollapour M, Scroggins B, Goode N, Lee MJ, Gourlay CW, Trepel J, Linehan WM, Neckers L. 2009. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 29:4080-4090. – reference: Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ. 2012. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385-388. – reference: Yadav N, Chandra D. 2013. Mitochondrial DNA mutations and breast tumorigenesis. Biochim Biophys Acta 1836:336-344. – reference: Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak ML, Westra WH, Califano JA. 2004. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res 10:8512-8515. – reference: Murphy MP, Smith RA. 2000. Drug delivery to mitochondria: The key to mitochondrial medicine. Adv Drug Deliv Rev 41:235-250. – reference: Chang SC, Lin PC, Yang SH, Wang HS, Liang WY, Lin JK. 2009. Mitochondrial D-loop mutation is a common event in colorectal cancers with p53 mutations. Int J Colorectal Dis 24:623-628. – reference: Zhang E, Zhang C, Su Y, Cheng T, Shi C. 2011. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16:140-146. – reference: Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P. 2012. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22:399-412. – reference: Samper E, Nicholls DG, Melov S. 2003. Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell 2:277-285. – reference: Hofhaus G, Berneburg M, Wulfert M, Gattermann N. 2003. Live now-pay by ageing: High performance mitochondrial activity in youth and its age-related side effects. Exp Physiol 88:167-174. – reference: Zhdanov AV, Dmitriev RI, Golubeva AV, Gavrilova SA, Papkovsky DB. 2013. Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF-2 signaling in PC12 cells. Biochim Biophys Acta 1830:3553-3569. – reference: Anso E, Mullen AR, Felsher DW, Mates JM, Deberardinis RJ, Chandel NS. 2013. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab 1:7. – reference: Simons AL, Ahmad IM, Mattson DM, Dornfeld KJ, Spitz DR. 2007. 2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res 67:3364-3370. – reference: Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G. 2013. Mitochondria and cancer: Past, present, and future. BioMed Res Int 2013:612369. – reference: Hamanaka RB, Chandel NS. 2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505-513. – reference: Murphy MP, Smith RA. 2007. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annual Rev Pharmacol Toxicol 47:629-656. – reference: Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, Guan KL, Lei QY. 2011. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42:719-730. – reference: Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, Fanelli MA, Cuello-Carrion FD, Gago FE, Anderson RL. 2009. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174:2035-2043. – reference: Gozuacik D, Kimchi A. 2004. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891-2906. – reference: Berridge MV, Dong L, Neuzil J. 2015. Mitochondrial DNA in tumor initiation, progression, and metastasis: Role of horizontal mtDNA transfer. Cancer Res 75:3203-3208. – reference: Supinski GS, Murphy MP, Callahan LA. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 297:R1095-R1102. – reference: Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J. 2008. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661-664. – reference: Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P. 2003. Inhibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832-37839. – reference: Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT. 2008. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28:718-731. – reference: Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. 2009. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73. – reference: Brandon M, Baldi P, Wallace DC. 2006. Mitochondrial mutations in cancer. Oncogene 25:4647-4662. – reference: Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788-8793. – reference: Hofhaus G, Gattermann N. 1999. Mitochondria harbouring mutant mtDNA-A cuckoo in the nest? Biol Chem 380:871-877. – reference: Jose C, Bellance N, Rossignol R. 2011. Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma? Biochim Biophys Acta 1807:552-561. – reference: Liu L, Trimarchi JR, Smith PJ, Keefe DL. 2002. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40-46. – reference: Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP. 2009. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174:2023-2034. – reference: Shay JW, Werbin H. 1987. Are mitochondrial DNA mutations involved in the carcinogenic process? Mutat Res 186:149-160. – reference: Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2009. The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984-4001. – reference: Ward PS, Thompson CB. 2012. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell 21:297-308. – reference: Smolkova K, Bellance N, Scandurra F, Genot E, Gnaiger E, Plecita-Hlavata L, Jezek P, Rossignol R. 2010. Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42:55-67. – reference: Yu M. 2011. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci 89:65-71. – reference: Trachootham D, Alexandre J, Huang P. 2009. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov 8:579-591. – reference: West AP, Shadel GS, Ghosh S. 2011. Mitochondria in innate immune responses. Nat Rev Immunol 11:389-402. – reference: James AM, Cocheme HM, Smith RA, Murphy MP. 2005. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295-21312. – reference: Fantin VR, St-Pierre J, Leder P. 2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425-434. – reference: Modica-Napolitano JS, Singh KK. 2004. Mitochondrial dysfunction in cancer. Mitochondrion 4:755-762. – reference: Chatterjee A, Mambo E, Sidransky D. 2006. Mitochondrial DNA mutations in human cancer. Oncogene 25:4663-4674. – reference: Lee HC, Yin PH, Lu CY, Chi CW, Wei YH. 2000. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348:425-432. – reference: Basova LV, Kurnikov IV, Wang L, Ritov VB, Belikova NA, Vlasova II, Pacheco AA, Winnica DE, Peterson J, Bayir H, Waldeck DH, Kagan VE. 2007. Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry 46:3423-3434. – reference: Gogvadze V, Orrenius S, Zhivotovsky B. 2008. Mitochondria in cancer cells: What is so special about them? Trends Cell Biol 18:165-173. – reference: Don AS, Kisker O, Dilda P, Donoghue N, Zhao X, Decollogne S, Creighton B, Flynn E, Folkman J, Hogg PJ. 2003. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 3:497-509. – reference: Chandel NS. 2014. Mitochondria as signaling organelles. BMC Biol 12:34. – reference: Spees JL, Olson SD, Whitney MJ, Prockop DJ. 2006. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283-1288. – reference: Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y. 2009. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18:1578-1589. – reference: Campello S, Scorrano L. 2010. Mitochondrial shape changes: Orchestrating cell pathophysiology. EMBO Reports 11:678-684. – reference: Warburg O. 1928. The chemical constitution of respiration ferment. Science 68:437-443. – reference: Choi SY, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA. 2007. Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14:597-606. – reference: Liou GY, Storz P. 2010. Reactive oxygen species in cancer. Free Radical Res 44:479-496. – reference: Yuan Y, Wang W, Li H, Yu Y Tao J, Huang S, Zeng Z. 2015. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer 15:346. – reference: Chatterjee A, Dasgupta S, Sidransky D. 2011. Mitochondrial subversion in cancer. Cancer Prev Res 4:638-654. – reference: Fulda S, Galluzzi L, Kroemer G. 2010. Targeting mitochondria for cancer therapy. Nature Rev Drug Discov 9:447-464. – reference: Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, Frampton CM, Taylor KM, Smith RA, Murphy MP. 2010. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int 30:1019-1026. – reference: Williams GS, Boyman L, Lederer WJ. 2015. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35-45. – reference: Antanaviciute I, Rysevaite K, Liutkevicius V, Marandykina A, Rimkute L, Sveikatiene R, Uloza V, Skeberdis VA. 2014. Long-distance communication between laryngeal carcinoma cells. PLoS ONE 9:e99196. – reference: Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181-186. – reference: Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO. 2008. Mitochondria-penetrating peptides. Chem Biol 15:375-382. – reference: Modica-Napolitano JS, Weissig V. 2015. Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int J Mol Sci 16:17394-17421. – reference: Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P, Thilly WG. 2001. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nature Genet 28:147-150. – reference: Suzuki S, Naito A, Asano T, Evans TT, Reddy SA, Higuchi M. 2008. Constitutive activation of AKT pathway inhibits TNF-induced apoptosis in mitochondrial DNA-deficient human myelogenous leukemia ML-1a. Cancer Lett 268:31-37. – reference: Skulachev VP. 2007. A biochemical approach to the problem of aging: "Megaproject" on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc) 72:1385-1396. – reference: Linehan WM, Rouault TA. 2013. Molecular pathways: Fumarate hydratase-deficient kidney cancer-targeting the Warburg effect in cancer. Clin Cancer Res 19:3345-3352. – reference: Klaunig JE, Wang Z, Pu X, Zhou S. 2011. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 254:86-99. – reference: Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2010a. Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506-3514. – reference: Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P. 2011. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43:950-968. – reference: Ross MF, Kelso GF, Blaikie FH, James AM, Cocheme HM, Filipovska A, Da Ros T, Hurd TR, Smith RA, Murphy MP. 2005. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 70:222-230. – reference: Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB. 2011. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108:19611-19616. – reference: Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. 2000. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390-395. – reference: Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X, Mayes PA, Wise DR, Thompson CB, Maris JM, Hogarty MD, Simon MC. 2012. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22:631-644. – reference: Izyumov DS, Domnina LV, Nepryakhina OK, Avetisyan AV, Golyshev SA, Ivanova OY, Korotetskaya MV, Lyamzaev KG, Pletjushkina OY, Popova EN, Chernyak BV. 2010. Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants-the "Skulachev-ion" derivatives. Biochemistry (Mosc) 75:123-129. – volume: 75 start-page: 123 year: 2010 end-page: 129 article-title: Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria‐targeted antioxidants‐the “Skulachev‐ion” derivatives publication-title: Biochemistry (Mosc) – volume: 276 start-page: 4588 year: 2001 end-page: 4596 article-title: Selective targeting of a redox‐active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties publication-title: J Biol Chem – volume: 1836 start-page: 336 year: 2013 end-page: 344 article-title: Mitochondrial DNA mutations and breast tumorigenesis publication-title: Biochim Biophys Acta – volume: 12 start-page: 34 year: 2014 article-title: Mitochondria as signaling organelles publication-title: BMC Biol – volume: 6 start-page: e23401 year: 2011 article-title: Mitochondrial DNA mutations regulate metastasis of human breast cancer cells publication-title: PLoS ONE – volume: 20 start-page: 291 year: 1998 end-page: 293 article-title: Somatic mutations of the mitochondrial genome in human colorectal tumours publication-title: Nat Genet – volume: 435 start-page: 677 year: 2005 end-page: 681 article-title: An inhibitor of Bcl‐2 family proteins induces regression of solid tumours publication-title: Nature – volume: 584 start-page: 562 year: 2010 end-page: 566 article-title: Mitochondria‐targeted antioxidant SkQR1 selectively protects MDR (Pgp 170)‐negative cells against oxidative stress publication-title: FEBS Lett – volume: 42 start-page: 55 year: 2010 end-page: 67 article-title: Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia publication-title: J Bioenerg Biomembr – volume: 43 start-page: 950 year: 2011 end-page: 968 article-title: Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells publication-title: Int J Biochem Cell Biol – volume: 9 start-page: e99196 year: 2014 article-title: Long‐distance communication between laryngeal carcinoma cells publication-title: PLoS ONE – volume: 10 start-page: 8512 year: 2004 end-page: 8515 article-title: Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions publication-title: Clin Cancer Res – volume: 174 start-page: 2023 year: 2009 end-page: 2034 article-title: An absence of stromal caveolin‐1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers publication-title: Am J Pathol – volume: 99 start-page: 1751 year: 1997 end-page: 1758 article-title: Activation of CPP32‐like protease in tumor necrosis factor‐induced apoptosis is dependent on mitochondrial function publication-title: J Clin Invest – volume: 13 start-page: 712 year: 2011 end-page: 719 article-title: Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation publication-title: Cell metabolism – volume: 1807 start-page: 552 year: 2011 end-page: 561 article-title: Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma publication-title: Biochim Biophys Acta – volume: 108 start-page: 19611 year: 2011 end-page: 19616 article-title: Hypoxia promotes isocitrate dehydrogenase‐dependent carboxylation of alpha‐ketoglutarate to citrate to support cell growth and viability publication-title: Proc Natl Acad Sci USA – volume: 1 start-page: 7 year: 2013 article-title: Metabolic changes in cancer cells upon suppression of MYC publication-title: Cancer Metab – volume: 11 start-page: 9 year: 2015 end-page: 15 article-title: Targeting mitochondria metabolism for cancer therapy publication-title: Nature Chem Biol – volume: 79 start-page: 253 year: 2015 end-page: 263 article-title: The Warburg effect: Evolving interpretations of an established concept publication-title: Free Radical Biol Med – volume: 21 start-page: R261 year: 2014 end-page: R277 article-title: Current views on cell metabolism in SDHx‐related pheochromocytoma and paraganglioma publication-title: Endocr Relat Cancer – volume: 356 start-page: 583 year: 2000 end-page: 587 article-title: Inborn errors of metabolism around time of birth publication-title: Lancet – volume: 593 start-page: 64 year: 2006 end-page: 79 article-title: Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over‐expression of c‐MYC publication-title: Mutation Res – volume: 73 start-page: 1300 year: 2008 end-page: 1316 article-title: Mitochondria‐targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53‐deficient cells publication-title: Biochemistry (Mosc) – volume: 42 start-page: 719 year: 2011 end-page: 730 article-title: Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone‐mediated autophagy and promotes tumor growth publication-title: Mol Cell – volume: 14 start-page: 709 year: 2014 end-page: 721 article-title: Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel publication-title: Nat Rev Cancer – volume: 54 start-page: 516 year: 2009 end-page: 524 article-title: Mutations in mitochondrial DNA polymerase‐gamma promote breast tumorigenesis publication-title: J Hum Genet – volume: 15 start-page: 375 year: 2008 end-page: 382 article-title: Mitochondria‐penetrating peptides publication-title: Chem Biol – volume: 10 start-page: R84 year: 2008 article-title: Targeting aspartate aminotransferase in breast cancer publication-title: Breast Cancer Res – volume: 481 start-page: 385 year: 2012 end-page: 388 article-title: Reductive carboxylation supports growth in tumour cells with defective mitochondria publication-title: Nature – volume: 11 start-page: 94 year: 2013 article-title: Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance publication-title: J Transl Med – volume: 24 start-page: 722 year: 1998 end-page: 725 article-title: Comparison of oxidative base damage in mitochondrial and nuclear DNA publication-title: Free Radical Biol Med – volume: 370 start-page: 751 year: 2003 end-page: 762 article-title: Mitochondrial threshold effects publication-title: Biochem J – volume: 153 start-page: 56 year: 2013 end-page: 69 article-title: Influence of metabolism on epigenetics and disease publication-title: Cell – volume: 488 start-page: 119 year: 2001 end-page: 133 article-title: Mitochondrial DNA in human malignancy publication-title: Mutation Res – volume: 20 start-page: 1 year: 2006 end-page: 15 article-title: Necrotic death as a cell fate publication-title: Genes Dev – volume: 22 start-page: 399 year: 2012 end-page: 412 article-title: K‐ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis publication-title: Cell Res – volume: 39 start-page: 359 year: 2005 end-page: 407 article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine publication-title: Ann Rev Genet – volume: 103 start-page: 1283 year: 2006 end-page: 1288 article-title: Mitochondrial transfer between cells can rescue aerobic respiration publication-title: Proc Natl Acad Sci USA – volume: 297 start-page: R1095 year: 2009 end-page: R1102 article-title: MitoQ administration prevents endotoxin‐induced cardiac dysfunction publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 4 start-page: 755 year: 2004 end-page: 762 article-title: Mitochondrial dysfunction in cancer publication-title: Mitochondrion – volume: 73 start-page: 1273 year: 2008a end-page: 1287 article-title: Mitochondria‐targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies publication-title: Biochemistry (Mosc) – volume: 46 start-page: 3423 year: 2007 end-page: 3434 article-title: Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity publication-title: Biochemistry – volume: 222 start-page: 1076 year: 1969 end-page: 1078 article-title: Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria publication-title: Nature – volume: 52 start-page: 160 year: 2012 end-page: 166 article-title: Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2(‐*) and H2O2 publication-title: Free Radical Biol Med – volume: 10 start-page: 241 year: 2006 end-page: 252 article-title: Selective killing of oncogenically transformed cells through a ROS‐mediated mechanism by beta‐phenylethyl isothiocyanate publication-title: Cancer Cell – volume: 283 start-page: 1482 year: 1999 end-page: 1488 article-title: Mitochondrial diseases in man and mouse publication-title: Science – volume: 22 start-page: 631 year: 2012 end-page: 644 article-title: ATF4 regulates MYC‐mediated neuroblastoma cell death upon glutamine deprivation publication-title: Cancer Cell – volume: 62 start-page: 1890 year: 2005 end-page: 1899 article-title: Bacterial signal peptide recognizes HeLa cell mitochondrial import receptors and functions as a mitochondrial leader sequence publication-title: Cell Mol Life Sci – volume: 20 start-page: 7579 year: 2001 end-page: 7587 article-title: Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite, and CD437 publication-title: Oncogene – volume: 268 start-page: 31 year: 2008 end-page: 37 article-title: Constitutive activation of AKT pathway inhibits TNF‐induced apoptosis in mitochondrial DNA‐deficient human myelogenous leukemia ML‐1a publication-title: Cancer Lett – volume: 19 start-page: 197 year: 2005 end-page: 207 article-title: Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells publication-title: Mol Cell – volume: 2 start-page: 277 year: 2003 end-page: 285 article-title: Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts publication-title: Aging Cell – volume: 24 start-page: 623 year: 2009 end-page: 628 article-title: Mitochondrial D‐loop mutation is a common event in colorectal cancers with p53 mutations publication-title: Int J Colorectal Dis – volume: 8 start-page: 579 year: 2009 end-page: 591 article-title: Targeting cancer cells by ROS‐mediated mechanisms: A radical therapeutic approach publication-title: Nat Rev Drug Discov – volume: 19 start-page: 1088 year: 2005 end-page: 1095 article-title: Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injury publication-title: Faseb J – volume: 67 start-page: 3364 year: 2007 end-page: 3370 article-title: 2‐Deoxy‐D‐glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells publication-title: Cancer Res – volume: 1778 start-page: 423 year: 2008 end-page: 432 article-title: MITO‐Porter: A liposome‐based carrier system for delivery of macromolecules into mitochondria via membrane fusion publication-title: Biochim Biophys Acta – volume: 348 start-page: 425 year: 2000 end-page: 432 article-title: Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells publication-title: Biochem J – volume: 20 start-page: 3677 year: 2013b end-page: 3692 article-title: Reactive oxygen species in cancer biology and anticancer therapy publication-title: Curr Med Chem – volume: 25 start-page: 4663 year: 2006 end-page: 4674 article-title: Mitochondrial DNA mutations in human cancer publication-title: Oncogene – volume: 25 start-page: 1670 year: 2010 end-page: 1674 article-title: A double‐blind, placebo‐controlled study to assess the mitochondria‐targeted antioxidant MitoQ as a disease‐modifying therapy in Parkinson's disease publication-title: Mov Disord – volume: 96 start-page: 1388 year: 2009 end-page: 1398 article-title: Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito‐Q publication-title: Biophys J – volume: 355 start-page: 389 year: 2000 end-page: 394 article-title: Mitochondrial respiratory chain disorders II: Neurodegenerative disorders and nuclear gene defects publication-title: Lancet – volume: 1843 start-page: 2253 year: 2014 end-page: 2262 article-title: New functions of mitochondria associated membranes in cellular signaling publication-title: Biochim Biophys Acta – volume: 78 start-page: 35 year: 2015 end-page: 45 article-title: Mitochondrial calcium and the regulation of metabolism in the heart publication-title: J Mol Cell Cardiol – volume: 94 start-page: 514 year: 1997 end-page: 519 article-title: Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress publication-title: Proc Natl Acad Sci USA – volume: 65 start-page: 1655 year: 2005 end-page: 1663 article-title: Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis publication-title: Cancer Res – volume: 19 start-page: 307 year: 2000 end-page: 314 article-title: Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl‐2‐independent permeability transition pore opening and apoptosis publication-title: Oncogene – volume: 21 start-page: 81 year: 2015 end-page: 94 article-title: Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA publication-title: Cell Metab – volume: 3 start-page: 497 year: 2003 end-page: 509 article-title: A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells publication-title: Cancer Cell – volume: 25 start-page: 4768 year: 2006 end-page: 4776 article-title: Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs publication-title: Oncogene – volume: 15 start-page: 634 year: 2014 end-page: 646 article-title: Mitochondrial dynamics and inheritance during cell division, development and disease publication-title: Nature Rev Mol Cell Biol – volume: 102 start-page: 719 year: 2005 end-page: 724 article-title: MtDNA mutations increase tumorigenicity in prostate cancer publication-title: Proc Natl Acad Sci USA – volume: 186 start-page: 149 year: 1987 end-page: 160 article-title: Are mitochondrial DNA mutations involved in the carcinogenic process publication-title: Mutat Res – volume: 29 start-page: 4080 year: 2009 end-page: 4090 article-title: Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia‐inducible transcription factor 1alpha stabilization by glucose‐dependent generation of reactive oxygen species publication-title: Mol Cell Biol – volume: 23 start-page: 2891 year: 2004 end-page: 2906 article-title: Autophagy as a cell death and tumor suppressor mechanism publication-title: Oncogene – volume: 278 start-page: 37832 year: 2003 end-page: 37839 article-title: Inhibition of mitochondrial respiration: A novel strategy to enhance drug‐induced apoptosis in human leukemia cells by a reactive oxygen species‐mediated mechanism publication-title: J Biol Chem – volume: 9 start-page: 1960 year: 2010b end-page: 1971 article-title: The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin‐1 deficient cancer associated fibroblasts publication-title: Cell Cycle – volume: 88 start-page: 167 year: 2003 end-page: 174 article-title: Live now‐pay by ageing: High performance mitochondrial activity in youth and its age‐related side effects publication-title: Exp Physiol – volume: 13 start-page: R71 year: 2003 end-page: R73 article-title: Apoptosis: Mitochondrial membrane permeabilization‐the (w) hole story publication-title: Curr Biol – volume: 2013 start-page: 612369 year: 2013 article-title: Mitochondria and cancer: Past, present, and future publication-title: BioMed Res Int – volume: 75 start-page: 3203 year: 2015 end-page: 3208 article-title: Mitochondrial DNA in tumor initiation, progression, and metastasis: Role of horizontal mtDNA transfer publication-title: Cancer Res – volume: 12 start-page: 230 year: 2007 end-page: 238 article-title: HIF‐dependent antitumorigenic effect of antioxidants in vivo publication-title: Cancer Cell – volume: 64 start-page: 985 year: 2004 end-page: 993 article-title: Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells publication-title: Cancer Res – volume: 320 start-page: 661 year: 2008 end-page: 664 article-title: ROS‐generating mitochondrial DNA mutations can regulate tumor cell metastasis publication-title: Science – volume: 280 start-page: 21295 year: 2005 end-page: 21312 article-title: Interactions of mitochondria‐targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools publication-title: J Biol Chem – volume: 287 start-page: 2017 year: 2000 end-page: 2019 article-title: Facile detection of mitochondrial DNA mutations in tumors and bodily fluids publication-title: Science – volume: 1 start-page: 40 year: 2002 end-page: 46 article-title: Mitochondrial dysfunction leads to telomere attrition and genomic instability publication-title: Aging Cell – volume: 135 start-page: 1161 year: 2008 end-page: 1163 article-title: Necroptosis: A specialized pathway of programmed necrosis publication-title: Cell – volume: 8 start-page: 519 year: 1927 end-page: 530 article-title: The metabolism of tumors in the body publication-title: J Gen Physiol – volume: 346 start-page: 27 year: 1974 end-page: 78 article-title: The electromechanochemical model for energy coupling in mitochondria publication-title: Biochim Biophys Acta – volume: 254 start-page: 86 year: 2011 end-page: 99 article-title: Oxidative stress and oxidative damage in chemical carcinogenesis publication-title: Toxicol Appl Pharmacol – volume: 25 start-page: 4647 year: 2006 end-page: 4662 article-title: Mitochondrial mutations in cancer publication-title: Oncogene – volume: 51 start-page: 236 year: 2013 end-page: 248 article-title: The proto‐oncometabolite fumarate binds glutathione to amplify ROS‐dependent signaling publication-title: Mol Cell – volume: 19 start-page: 57 year: 2009 end-page: 66 article-title: Mitochondria as targets for cancer chemotherapy publication-title: Semin Cancer Biol – volume: 30 start-page: 1019 year: 2010 end-page: 1026 article-title: The mitochondria‐targeted anti‐oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients publication-title: Liver Int – volume: 9 start-page: 3256 year: 2010 end-page: 3276 article-title: Oxidative stress in cancer associated fibroblasts drives tumor‐stroma co‐evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells publication-title: Cell Cycle – volume: 2 start-page: ra73 year: 2009 article-title: Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth publication-title: Sci Signal – volume: 44 start-page: 239 year: 2004 end-page: 267 article-title: The role of oxidative stress in carcinogenesis publication-title: Ann Rev Pharmacol Toxicol – volume: 22 start-page: 1181 year: 2015 end-page: 1191 article-title: Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells publication-title: Cell Death Differ – volume: 28 start-page: 147 year: 2001 end-page: 150 article-title: High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection publication-title: Nature Genet – volume: 43 start-page: 1045 year: 2011 end-page: 1051 article-title: Stromal‐epithelial metabolic coupling in cancer: Integrating autophagy and metabolism in the tumor microenvironment publication-title: Int J Biochem Cell Biol – volume: 47 start-page: 629 year: 2007 end-page: 656 article-title: Targeting antioxidants to mitochondria by conjugation to lipophilic cations publication-title: Annual Rev Pharmacol Toxicol – volume: 9 start-page: 447 year: 2010 end-page: 464 article-title: Targeting mitochondria for cancer therapy publication-title: Nature Rev Drug Discov – volume: 222 start-page: 141 year: 2008b end-page: 149 article-title: Protective effects of mitochondria‐targeted antioxidant SkQ in aqueous and lipid membrane environments publication-title: J Membr Biol – volume: 14 start-page: 597 year: 2007 end-page: 606 article-title: Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli‐elicited apoptosis publication-title: Cell Death Differ – volume: 72 start-page: 1385 year: 2007 end-page: 1396 article-title: A biochemical approach to the problem of aging: “Megaproject” on membrane‐penetrating ions. The first results and prospects publication-title: Biochemistry (Mosc) – volume: 16 start-page: 17394 year: 2015 end-page: 17421 article-title: Treatment strategies that enhance the efficacy and selectivity of mitochondria‐targeted anticancer agents publication-title: Int J Mol Sci – volume: 32 start-page: 249 year: 2013a end-page: 270 article-title: Reactive oxygen species in the immune system publication-title: Int Rev Immunol – volume: 59 start-page: 495 year: 2007 end-page: 505 article-title: Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia publication-title: Cancer Chemother Pharmacol – volume: 21 start-page: 297 year: 2012 end-page: 308 article-title: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate publication-title: Cancer Cell – volume: 12 start-page: 685 year: 2012 end-page: 698 article-title: Mitochondria and cancer publication-title: Nat Rev Cancer – volume: 70 start-page: 222 year: 2005 end-page: 230 article-title: Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology publication-title: Biochemistry (Mosc) – volume: 380 start-page: 871 year: 1999 end-page: 877 article-title: Mitochondria harbouring mutant mtDNA—A cuckoo in the nest publication-title: Biol Chem – volume: 5 start-page: 9073 year: 2015 article-title: MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function publication-title: Sci Reports – volume: 18 start-page: 1578 year: 2009 end-page: 1589 article-title: A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis publication-title: Hum Mol Genet – volume: 15 start-page: 346 year: 2015 article-title: Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma publication-title: BMC Cancer – volume: 9 start-page: 3506 year: 2010a end-page: 3514 article-title: Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism publication-title: Cell Cycle – volume: 452 start-page: 181 year: 2008 end-page: 186 article-title: Pyruvate kinase M2 is a phosphotyrosine‐binding protein publication-title: Nature – volume: 44 start-page: 479 year: 2010 end-page: 496 article-title: Reactive oxygen species in cancer publication-title: Free Radical Res – volume: 68 start-page: 437 year: 1928 end-page: 443 article-title: The chemical constitution of respiration ferment publication-title: Science – volume: 19 start-page: 3345 year: 2013 end-page: 3352 article-title: Molecular pathways: Fumarate hydratase‐deficient kidney cancer–targeting the Warburg effect in cancer publication-title: Clin Cancer Res – volume: 2014 start-page: 292017 year: 2014 article-title: Quantitative assessment of heteroplasmy of mitochondrial genome: Perspectives in diagnostics and methodological pitfalls publication-title: BioMed Res Int – volume: 22 start-page: 331 year: 2012 end-page: 344 article-title: Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s publication-title: Cancer Cell – volume: 4 start-page: 638 year: 2011 end-page: 654 article-title: Mitochondrial subversion in cancer publication-title: Cancer Prev Res – volume: 41 start-page: 235 year: 2000 end-page: 250 article-title: Drug delivery to mitochondria: The key to mitochondrial medicine publication-title: Adv Drug Deliv Rev – volume: 1830 start-page: 3553 year: 2013 end-page: 3569 article-title: Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF‐2 signaling in PC12 cells publication-title: Biochim Biophys Acta – volume: 16 start-page: 140 year: 2011 end-page: 146 article-title: Newly developed strategies for multifunctional mitochondria‐targeted agents in cancer therapy publication-title: Drug Discov Today – volume: 107 start-page: 8788 year: 2010 end-page: 8793 article-title: Mitochondrial metabolism and ROS generation are essential for Kras‐mediated tumorigenicity publication-title: Proc Natl Acad Sci USA – volume: 481 start-page: 380 year: 2012 end-page: 384 article-title: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia publication-title: Nature – volume: 54 start-page: 322 year: 2009 end-page: 328 article-title: Mitochondria‐targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy publication-title: Hypertension – volume: 9 start-page: 425 year: 2006 end-page: 434 article-title: Attenuation of LDH‐A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance publication-title: Cancer Cell – volume: 18 start-page: 165 year: 2008 end-page: 173 article-title: Mitochondria in cancer cells: What is so special about them publication-title: Trends Cell Biol – volume: 11 start-page: 678 year: 2010 end-page: 684 article-title: Mitochondrial shape changes: Orchestrating cell pathophysiology publication-title: EMBO Reports – volume: 4 start-page: 552 year: 2003 end-page: 565 article-title: Regulation of cell death: The calcium‐apoptosis link publication-title: Nat Rev Mol Cell Biol – volume: 174 start-page: 2035 year: 2009 end-page: 2043 article-title: Stromal cell expression of caveolin‐1 predicts outcome in breast cancer publication-title: Am J Pathol – volume: 11 start-page: 389 year: 2011 end-page: 402 article-title: Mitochondria in innate immune responses publication-title: Nat Rev Immunol – volume: 35 start-page: 505 year: 2010 end-page: 513 article-title: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes publication-title: Trends Biochem Sci – volume: 89 start-page: 65 year: 2011 end-page: 71 article-title: Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers publication-title: Life Sci – volume: 28 start-page: 718 year: 2008 end-page: 731 article-title: Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species‐dependent hypoxia‐inducible factor activation and tumorigenesis publication-title: Mol Cell Biol – volume: 417 start-page: 1 year: 2009 end-page: 13 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem J – volume: 1019 start-page: 260 year: 2004 end-page: 264 article-title: Mitochondrial dysfunction is a common phenotype in aging and cancer publication-title: Ann NY Acad Sci – volume: 8 start-page: 3984 year: 2009 end-page: 4001 article-title: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma publication-title: Cell Cycle – volume: 407 start-page: 390 year: 2000 end-page: 395 article-title: Superoxide dismutase as a target for the selective killing of cancer cells publication-title: Nature – volume: 14 start-page: 76 year: 2014 article-title: Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress publication-title: BMC Cancer – volume: 63 start-page: 81 year: 2003 end-page: 86 article-title: Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme publication-title: J Neurooncol – ident: e_1_2_11_91_1 doi: 10.1074/jbc.M301546200 – ident: e_1_2_11_144_1 doi: 10.1016/S0960-9822(02)01433-1 – ident: e_1_2_11_67_1 doi: 10.1158/1078-0432.CCR-13-0304 – ident: e_1_2_11_125_1 doi: 10.1146/annurev.genet.39.110304.095751 – ident: e_1_2_11_21_1 doi: 10.1007/s00384-009-0663-9 – ident: e_1_2_11_62_1 doi: 10.1016/j.taap.2009.11.028 – ident: e_1_2_11_129_1 doi: 10.1085/jgp.8.6.519 – ident: e_1_2_11_3_1 doi: 10.1096/fj.05-3718com – ident: e_1_2_11_40_1 doi: 10.1038/sj.onc.1207521 – ident: e_1_2_11_118_1 doi: 10.1186/bcr2154 – ident: e_1_2_11_16_1 doi: 10.1038/embor.2010.115 – ident: e_1_2_11_49_1 doi: 10.1016/j.chembiol.2008.03.015 – ident: e_1_2_11_128_1 doi: 10.1126/science.68.1767.437 – ident: e_1_2_11_109_1 doi: 10.1016/j.biocel.2010.05.003 – ident: e_1_2_11_48_1 doi: 10.1515/BC.1999.107 – ident: e_1_2_11_87_1 doi: 10.1016/j.molcel.2005.06.008 – ident: e_1_2_11_113_1 doi: 10.1128/MCB.00483-09 – ident: e_1_2_11_126_1 doi: 10.1038/nrc3365 – ident: e_1_2_11_141_1 doi: 10.2174/0929867311320999165 – ident: e_1_2_11_119_1 doi: 10.1038/nrd2803 – ident: e_1_2_11_38_1 doi: 10.1016/j.semcancer.2008.11.007 – ident: e_1_2_11_86_1 doi: 10.1016/j.freeradbiomed.2011.10.435 – ident: e_1_2_11_135_1 doi: 10.1073/pnas.1117773108 – ident: e_1_2_11_140_1 doi: 10.3109/08830185.2012.755176 – ident: e_1_2_11_42_1 doi: 10.1016/0304-4173(74)90011-1 – ident: e_1_2_11_39_1 doi: 10.1186/1471-2407-14-76 – ident: e_1_2_11_63_1 doi: 10.1042/bj3480425 – ident: e_1_2_11_6_1 doi: 10.1371/journal.pone.0099196 – ident: e_1_2_11_131_1 doi: 10.1073/pnas.1003428107 – ident: e_1_2_11_30_1 doi: 10.1016/j.ccr.2006.04.023 – ident: e_1_2_11_79_1 doi: 10.1042/BJ20081386 – ident: e_1_2_11_85_1 doi: 10.1023/A:1023756707900 – ident: e_1_2_11_148_1 doi: 10.1101/gad.1376506 – ident: e_1_2_11_46_1 doi: 10.1126/scisignal.2000431 – ident: e_1_2_11_121_1 doi: 10.1016/j.bbamcr.2014.03.009 – ident: e_1_2_11_53_1 doi: 10.1126/science.1156906 – ident: e_1_2_11_57_1 doi: 10.1016/j.mrfmmm.2005.06.015 – ident: e_1_2_11_13_1 doi: 10.4161/cc.9.10.11601 – ident: e_1_2_11_134_1 doi: 10.1016/j.yjmcc.2014.10.019 – ident: e_1_2_11_73_1 doi: 10.1038/nature10602 – ident: e_1_2_11_14_1 doi: 10.1038/sj.onc.1209607 – ident: e_1_2_11_142_1 doi: 10.1016/j.lfs.2011.05.010 – ident: e_1_2_11_88_1 doi: 10.1093/hmg/ddp069 – ident: e_1_2_11_127_1 doi: 10.1038/cdd.2014.211 – ident: e_1_2_11_132_1 doi: 10.1038/nchembio.1712 – ident: e_1_2_11_94_1 doi: 10.1038/3108 – ident: e_1_2_11_36_1 doi: 10.1016/j.ccr.2007.08.004 – ident: e_1_2_11_108_1 doi: 10.1007/s10863-009-9267-x – ident: e_1_2_11_26_1 doi: 10.1038/nature06667 – ident: e_1_2_11_32_1 doi: 10.1126/science.287.5460.2017 – ident: e_1_2_11_27_1 doi: 10.1038/88859 – ident: e_1_2_11_55_1 doi: 10.1074/jbc.M501527200 – ident: e_1_2_11_145_1 doi: 10.1016/S0891-5849(97)00331-6 – ident: e_1_2_11_98_1 doi: 10.1158/0008-5472.CAN-03-1101 – ident: e_1_2_11_110_1 doi: 10.1002/mds.23148 – ident: e_1_2_11_58_1 doi: 10.1016/j.cell.2013.03.004 – ident: e_1_2_11_68_1 doi: 10.3109/10715761003667554 – ident: e_1_2_11_102_1 doi: 10.1158/0008-5472.CAN-04-2012 – ident: e_1_2_11_10_1 doi: 10.1038/sj.onc.1204953 – ident: e_1_2_11_56_1 doi: 10.1016/j.bbabio.2010.10.012 – ident: e_1_2_11_133_1 doi: 10.1038/nri2975 – ident: e_1_2_11_84_1 doi: 10.1038/nrm1150 – ident: e_1_2_11_11_1 doi: 10.1158/0008-5472.CAN-15-0859 – ident: e_1_2_11_12_1 doi: 10.4161/cc.9.17.12731 – ident: e_1_2_11_60_1 doi: 10.1158/1078-0432.CCR-04-0734 – ident: e_1_2_11_124_1 doi: 10.1126/science.283.5407.1482 – ident: e_1_2_11_90_1 doi: 10.4161/cc.8.23.10238 – ident: e_1_2_11_95_1 doi: 10.1016/j.ccr.2012.09.021 – ident: e_1_2_11_31_1 doi: 10.1016/j.febslet.2009.12.002 – ident: e_1_2_11_5_1 doi: 10.1186/2049-3002-1-7 – ident: e_1_2_11_7_1 doi: 10.1134/S0006297908120018 – ident: e_1_2_11_64_1 doi: 10.1016/S0140-6736(00)02591-5 – ident: e_1_2_11_116_1 doi: 10.1016/j.canlet.2008.03.020 – ident: e_1_2_11_130_1 doi: 10.1016/j.ccr.2012.02.014 – ident: e_1_2_11_100_1 doi: 10.1046/j.1474-9728.2003.00062.x – ident: e_1_2_11_19_1 doi: 10.1186/1741-7007-12-34 – ident: e_1_2_11_9_1 doi: 10.1021/bi061854k – ident: e_1_2_11_78_1 doi: 10.1038/nature10642 – ident: e_1_2_11_96_1 doi: 10.1007/s10541-005-0104-5 – ident: e_1_2_11_8_1 doi: 10.1007/s00232-008-9108-6 – ident: e_1_2_11_18_1 doi: 10.1016/j.ccr.2012.07.015 – ident: e_1_2_11_82_1 doi: 10.1038/sj.onc.1209602 – ident: e_1_2_11_114_1 doi: 10.1016/j.molcel.2013.05.003 – ident: e_1_2_11_61_1 doi: 10.1146/annurev.pharmtox.44.101802.121851 – ident: e_1_2_11_15_1 doi: 10.1038/srep09073 – ident: e_1_2_11_81_1 doi: 10.1146/annurev.pharmtox.47.120505.105110 – ident: e_1_2_11_52_1 doi: 10.1371/journal.pone.0023401 – ident: e_1_2_11_43_1 doi: 10.1128/MCB.01338-07 – ident: e_1_2_11_146_1 doi: 10.1016/j.drudis.2010.12.006 – ident: e_1_2_11_70_1 doi: 10.1016/j.molcel.2011.04.025 – ident: e_1_2_11_23_1 doi: 10.1038/sj.onc.1209604 – ident: e_1_2_11_33_1 doi: 10.1038/nrd3137 – ident: e_1_2_11_115_1 doi: 10.1152/ajpregu.90902.2008 – ident: e_1_2_11_103_1 doi: 10.1158/0008-5472.CAN-06-3717 – ident: e_1_2_11_120_1 doi: 10.1016/j.ccr.2006.08.009 – ident: e_1_2_11_71_1 doi: 10.4161/cc.9.16.12553 – ident: e_1_2_11_47_1 doi: 10.1113/eph8802510 – ident: e_1_2_11_143_1 doi: 10.1186/s12885-015-1349-z – ident: e_1_2_11_147_1 doi: 10.1016/j.bbagen.2013.02.016 – ident: e_1_2_11_24_1 doi: 10.1016/j.freeradbiomed.2014.08.027 – ident: e_1_2_11_77_1 doi: 10.1007/s00018-005-5178-0 – ident: e_1_2_11_22_1 doi: 10.1158/1940-6207.CAPR-10-0326 – ident: e_1_2_11_123_1 doi: 10.1530/ERC-13-0398 – ident: e_1_2_11_76_1 doi: 10.3390/ijms160817394 – ident: e_1_2_11_50_1 doi: 10.1038/cr.2011.145 – ident: e_1_2_11_20_1 doi: 10.1016/j.bpj.2008.10.042 – ident: e_1_2_11_104_1 doi: 10.1196/annals.1297.043 – ident: e_1_2_11_44_1 doi: 10.1016/j.tibs.2010.04.002 – ident: e_1_2_11_99_1 doi: 10.1038/nrc3803 – ident: e_1_2_11_92_1 doi: 10.1016/S1383-5742(01)00053-9 – ident: e_1_2_11_72_1 doi: 10.1016/j.biocel.2011.01.023 – ident: e_1_2_11_54_1 doi: 10.1134/S000629791002001X – ident: e_1_2_11_89_1 doi: 10.1186/1479-5876-11-94 – ident: e_1_2_11_139_1 doi: 10.1016/j.bbamem.2007.11.002 – ident: e_1_2_11_117_1 doi: 10.1016/j.cmet.2014.12.003 – ident: e_1_2_11_17_1 doi: 10.1007/s00280-006-0291-9 – ident: e_1_2_11_107_1 doi: 10.2353/ajpath.2009.080924 – ident: e_1_2_11_35_1 doi: 10.1111/j.1478-3231.2010.02250.x – ident: e_1_2_11_105_1 doi: 10.1038/jhg.2009.71 – ident: e_1_2_11_112_1 doi: 10.1073/pnas.0510511103 – ident: e_1_2_11_34_1 doi: 10.1016/j.cell.2008.12.004 – ident: e_1_2_11_122_1 doi: 10.1155/2013/612369 – ident: e_1_2_11_29_1 doi: 10.1016/S1535-6108(03)00109-0 – ident: e_1_2_11_37_1 doi: 10.1016/j.tcb.2008.01.006 – ident: e_1_2_11_4_1 doi: 10.1134/S0006297908120031 – ident: e_1_2_11_51_1 doi: 10.1038/35030140 – ident: e_1_2_11_80_1 doi: 10.1016/S0169-409X(99)00069-1 – ident: e_1_2_11_2_1 doi: 10.1016/j.cmet.2011.03.024 – ident: e_1_2_11_97_1 doi: 10.1042/bj20021594 – ident: e_1_2_11_69_1 doi: 10.1046/j.1474-9728.2002.00004.x – ident: e_1_2_11_65_1 doi: 10.1016/S0140-6736(99)05226-5 – ident: e_1_2_11_45_1 doi: 10.1172/JCI119339 – ident: e_1_2_11_138_1 doi: 10.1073/pnas.94.2.514 – ident: e_1_2_11_41_1 doi: 10.1161/HYPERTENSIONAHA.109.130351 – ident: e_1_2_11_101_1 doi: 10.1016/0165-1110(87)90028-5 – ident: e_1_2_11_83_1 doi: 10.1038/nature03579 – ident: e_1_2_11_106_1 doi: 10.1134/S0006297907120139 – ident: e_1_2_11_25_1 doi: 10.1038/sj.cdd.4402020 – ident: e_1_2_11_74_1 doi: 10.1038/nrm3877 – ident: e_1_2_11_93_1 doi: 10.1073/pnas.0408894102 – ident: e_1_2_11_66_1 doi: 10.1038/2221076a0 – ident: e_1_2_11_111_1 doi: 10.1155/2014/292017 – ident: e_1_2_11_137_1 doi: 10.1016/j.bbcan.2013.10.002 – ident: e_1_2_11_136_1 doi: 10.2353/ajpath.2009.080873 – ident: e_1_2_11_59_1 doi: 10.1074/jbc.M009093200 – ident: e_1_2_11_75_1 doi: 10.1016/j.mito.2004.07.027 – ident: e_1_2_11_28_1 doi: 10.1038/sj.onc.1203299 |
SSID | ssj0009933 |
Score | 2.650137 |
SecondaryResourceType | review_article |
Snippet | Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2570 |
SubjectTerms | Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Antioxidants DNA, Mitochondrial - genetics Drug Delivery Systems Humans Mitochondria - drug effects Mitochondria - metabolism Neoplasms - drug therapy Neoplasms - metabolism Reactive Oxygen Species - metabolism |
Title | Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy |
URI | https://api.istex.fr/ark:/67375/WNG-H79NDXLJ-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.25349 https://www.ncbi.nlm.nih.gov/pubmed/26895995 https://www.proquest.com/docview/1812949880 https://www.proquest.com/docview/1813900124 https://www.proquest.com/docview/1832245426 |
Volume | 231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahpB44bJxCQxkEJp4SdcmzsXwVBW2qmIFlU70AcmyHUeClXTqBTF-PefYScbQQIi3KDmRYvuc48_O5-8APOdZoktFtMGuyUKOCJ80IEVoBVWPy3QvU7RQPB6nwxM-miWzLXjVnIXx-hDthhtFhsvXFOBKrw4uREO_mLNOlMScDu8RV4sA0eRCOkrUZeQdBSHhvUZVqBsdtG9emouuUbd-vwpoXsatbuI5vAWfmk_2fJPTzmatO-bHb2qO_9mm23CzBqSs7z3oDmzZagd2-xUuxr-es33mKKJu730HrvvKlee7MDnGTICZsyrQgZmqCvbrjTmbvPvAPldsQD61fMnGi292zqaOdb5iiJNZv6JNdHrKpl7Y4C6cHL6ZDoZhXZ4hNAiTRMh1bBAflmlWIoooTImLzTK2BR36V8IWwqB_ICJMlSjibiRSYTIdW8XTbm6KMonvwXa1qOwDYGgWl0LZtJfnnBda9dCzcsMza4RR2gTwohkoaWrtciqhMZdedTmS2HPS9VwAz1rTMy_YcZXRvhvt1kItT4nhliXy4_hIDjMxfj17O5JHAew17iDr4F5JAkWCC8x8ATxtH2NY0r8WVdnFxtnEgrAk_5sNZlOeIEYK4L53tfaDojQXpAWHLXcO8-e2yNHgvbt4-O-mj-AGDlnqaTl7sL1ebuxjBFdr_cRF0U-Z5x1n |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYi98LEBCwwwCE28pGsT58OIl6pjK6UNqHSiL8hyHEeClXTqWsT467lzPsbQQIi3KL5I_rg7_3w5_w7gOY-CNFeUNtjWkcsR4RMHpHCNoOpxUdqJFB0UR0nYP-aDaTBdg1f1XZiSH6IJuJFlWH9NBk4B6f0L1tAv-rTlBT4X12CDKnoTc_7B-II8SlSF5G0SQsA7Na9Q29tvPr20G23QxH6_CmpeRq526zm8BZ_qTpcZJyet1TJt6R-_8Tn-76huw80Kk7JuqUR3YM0UW7DdLfA8_vWc7TGbJWrD71twvSxeeb4N4xE6A3SeRYY6zFSRsV9fzNj43Qf2uWA9UqvFS5bMv5kZm9jE8zOGUJl1C4qjUyublNwGd-H48PWk13erCg2uRqQkXJ76GiFiHkY5AolM53jezH2T0b1_JUwmNKoIgsJQicxveyIUOkp9o3jYjnWWB_49WC_mhdkBhmJ-LpQJO3HMeZaqDipXrHlktNAq1Q68qFdK6oq-nKpozGRJvOxJnDlpZ86BZ43oacnZcZXQnl3uRkItTijJLQrkx-RI9iORHEyHA3nkwG6tD7Ky7zNJuEhwgc7PgadNM1om_W5RhZmvrIwvCE7yv8mgQ-UBwiQH7pe61nTIC2NBdHA4cqsxfx6LHPTe24cH_y76BG70J6OhHL5J3j6ETVy-sMzS2YX15WJlHiHWWqaPrUn9BGBrIYM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am0C8cNmABQYYhCZe0rWJc_F4qlq6UrYwlU7rA5LlOI40Vtyqa6dtv55j5zKGBkK8RfGJZPtc_Nk5_g7AOxoFaS5M2mBTRi5FhG84IJmrmKkeF6WtSJiN4kES9o_oYByMV-BDdRem4IeoD9yMZ9h4bRx8luU716Sh3-Ws4QU-ZXdgjYZNZuo2dIfX3FGsrCNvcxAC2qpohZreTv3pjcVozczrxW1I8yZwtStP7yF8q_pcJJycNpaLtCGvfqNz_M9BPYIHJSIl7cKEHsOK0uuw0da4G_9xSbaJzRG1h-_rcLcoXXm5AcMDDAUYOnWGFkyEzsivLyZk-OUrOdGkY4xqvkuS6bmakJFNOz8jCJRJW5tTdNNKRgWzwRM46n0cdfpuWZ_BlYiTmEtTXyJAzMMoRxiRyRx3m7mvMnPrXzCVMYkGgpAwFCzzmx4LmYxSXwnUViyzPPCfwqqearUJBMX8nAkVtuKY0iwVLTStWNJISSZFKh14XymKy5K83NTQmPCCdtnjOHPczpwDb2vRWcHYcZvQttV2LSHmpybFLQr4cbLH-xFLuuP9Ad9zYKsyB1569xk3qIhRhqHPgTd1M_ql-dkitJourYzPDJikf5PBcEoDBEkOPCtMre6QF8bMkMHhyK3B_HksfNA5tA_P_130Ndw77Pb4_qfk8wu4j9oLixSdLVhdzJfqJQKtRfrKOtRP4MggMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria+and+Mitochondrial+ROS+in+Cancer%3A+Novel+Targets+for+Anticancer+Therapy&rft.jtitle=Journal+of+cellular+physiology&rft.au=Yang%2C+Yuhui&rft.au=Karakhanova%2C+Svetlana&rft.au=Hartwig%2C+Werner&rft.au=D%27Haese%2C+Jan+G.&rft.date=2016-12-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=231&rft.issue=12&rft.spage=2570&rft.epage=2581&rft_id=info:doi/10.1002%2Fjcp.25349&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_25349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |