Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy

Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by react...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 231; no. 12; pp. 2570 - 2581
Main Authors Yang, Yuhui, Karakhanova, Svetlana, Hartwig, Werner, D'Haese, Jan G., Philippov, Pavel P., Werner, Jens, Bazhin, Alexandr V.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the “vicious cycle” between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria‐targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria‐targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria‐targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria‐targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570–2581, 2016. © 2016 Wiley Periodicals, Inc.
AbstractList Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016.
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.
Author D'Haese, Jan G.
Werner, Jens
Hartwig, Werner
Bazhin, Alexandr V.
Karakhanova, Svetlana
Yang, Yuhui
Philippov, Pavel P.
Author_xml – sequence: 1
  givenname: Yuhui
  surname: Yang
  fullname: Yang, Yuhui
  organization: Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Svetlana
  surname: Karakhanova
  fullname: Karakhanova, Svetlana
  organization: Department of General Surgery, University of Heidelberg, Heidelberg, Germany
– sequence: 3
  givenname: Werner
  surname: Hartwig
  fullname: Hartwig, Werner
  organization: Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
– sequence: 4
  givenname: Jan G.
  surname: D'Haese
  fullname: D'Haese, Jan G.
  organization: Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
– sequence: 5
  givenname: Pavel P.
  surname: Philippov
  fullname: Philippov, Pavel P.
  organization: Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
– sequence: 6
  givenname: Jens
  surname: Werner
  fullname: Werner, Jens
  organization: Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
– sequence: 7
  givenname: Alexandr V.
  surname: Bazhin
  fullname: Bazhin, Alexandr V.
  email: Correspondence to: Alexandr Bazhin, Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany. , alexandr.bazhin@med.uni-muenchen.de
  organization: Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26895995$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEURi3UiqaFBS-ALLEpi2n9P3PZVQHSVmmKShDsLMfjoQ4TO9gTIG_faZMgVIHE6kq-53zS9XeI9kIMDqEXlJxQQtjp3C5PmOQCnqABJVAWQkm2hwb9jhYgBT1AhznPCSEAnD9FB0xVIAHkAN1c-S7a2xjq5A02ocZ_PrT45voj9gEPTbAuvcGT-MO1eGrSV9dl3MSEz0Ln7cMWT29dMsv1M7TfmDa759t5hD69fzcdnhfj69HF8GxcWKkIFGLGLQXWqLJhhNa2qZhsuKuJoNKAq8HOnCVSKAM1JwwU2HLGnRGKVLZuJD9Cx5vcZYrfVy53euGzdW1rgourrGnFGRNSMPUfKOVACGWiR189QudxlUJ_yD3FQEBVkZ56uaVWs4Wr9TL5hUlrvfvYHjjdADbFnJNrtPWd6XwMXTK-1ZTo--p0X51-qK43Xj8ydqF_Y7fpP33r1v8G9eXww84oNobPnfv12zDpm1YlL6X-PBnp8xImb7-ML_WI3wFs97TK
CitedBy_id crossref_primary_10_1016_j_ejpb_2019_12_005
crossref_primary_10_1021_acsami_4c18066
crossref_primary_10_1007_s11897_017_0347_7
crossref_primary_10_1021_acsmaterialslett_2c00856
crossref_primary_10_1080_1061186X_2021_1909051
crossref_primary_10_3390_antiox12030735
crossref_primary_10_3390_life11040332
crossref_primary_10_1039_D0CC02285C
crossref_primary_10_1038_s41598_024_52981_w
crossref_primary_10_1007_s00432_021_03679_3
crossref_primary_10_1016_j_phymed_2021_153472
crossref_primary_10_3389_fphar_2023_1243613
crossref_primary_10_3390_biology12020307
crossref_primary_10_1002_pros_23767
crossref_primary_10_1016_j_heliyon_2024_e34442
crossref_primary_10_1111_1759_7714_14982
crossref_primary_10_1016_j_radmp_2020_10_001
crossref_primary_10_1016_j_jpha_2024_101036
crossref_primary_10_1039_D0RA09589C
crossref_primary_10_3390_pharmaceutics16101250
crossref_primary_10_1021_acs_jmedchem_3c01508
crossref_primary_10_4155_fmc_2021_0049
crossref_primary_10_3389_fchem_2021_650587
crossref_primary_10_1051_medsci_2020274
crossref_primary_10_1016_j_arr_2025_102667
crossref_primary_10_1248_bpb_b21_01039
crossref_primary_10_1016_j_cbi_2025_111422
crossref_primary_10_1038_bjc_2017_155
crossref_primary_10_1016_j_bbrc_2018_10_022
crossref_primary_10_1007_s00018_018_2963_0
crossref_primary_10_3390_molecules28166118
crossref_primary_10_34133_research_0539
crossref_primary_10_3389_fphar_2021_717529
crossref_primary_10_12677_acm_2025_153803
crossref_primary_10_2174_0929867328666211005124015
crossref_primary_10_1021_acsami_4c20358
crossref_primary_10_18632_oncotarget_13367
crossref_primary_10_1016_j_pbiomolbio_2024_02_005
crossref_primary_10_1155_2022_1422185
crossref_primary_10_1016_j_addr_2020_07_026
crossref_primary_10_1016_j_jphotobiol_2023_112654
crossref_primary_10_3892_ijmm_2023_5248
crossref_primary_10_1016_j_biopha_2020_110961
crossref_primary_10_31083_j_fbl2701018
crossref_primary_10_3389_fcell_2021_716406
crossref_primary_10_3390_ma11040569
crossref_primary_10_1016_j_msec_2020_111703
crossref_primary_10_1038_s41419_021_04039_2
crossref_primary_10_2174_1871520619666181231112453
crossref_primary_10_3389_fcimb_2022_903570
crossref_primary_10_1155_2022_5652586
crossref_primary_10_1016_j_theriogenology_2021_07_011
crossref_primary_10_1016_j_ica_2020_119863
crossref_primary_10_1080_13510002_2023_2251234
crossref_primary_10_3389_fphy_2023_1201708
crossref_primary_10_1016_j_tranon_2018_04_008
crossref_primary_10_1038_s41419_024_06984_0
crossref_primary_10_1016_j_fbio_2023_103493
crossref_primary_10_2147_OTT_S242929
crossref_primary_10_1038_s41598_024_84022_x
crossref_primary_10_1186_s12967_023_04613_6
crossref_primary_10_1021_acsami_4c11112
crossref_primary_10_3390_cancers11101415
crossref_primary_10_1016_j_tranon_2025_102351
crossref_primary_10_1016_j_addr_2020_05_006
crossref_primary_10_1177_15330338241299467
crossref_primary_10_1002_adhm_202303837
crossref_primary_10_1016_j_phrs_2023_106980
crossref_primary_10_1371_journal_ppat_1011981
crossref_primary_10_1016_j_ejps_2017_10_039
crossref_primary_10_1016_j_fct_2020_111493
crossref_primary_10_32604_biocell_2023_029094
crossref_primary_10_1016_j_arr_2022_101756
crossref_primary_10_3390_jcm8122161
crossref_primary_10_1002_ptr_8296
crossref_primary_10_1016_j_prp_2018_08_012
crossref_primary_10_1186_s12964_024_01487_z
crossref_primary_10_3390_v11100962
crossref_primary_10_1111_cas_15125
crossref_primary_10_1155_2021_6525449
crossref_primary_10_1016_j_tranon_2025_102340
crossref_primary_10_3390_cancers11020171
crossref_primary_10_3892_or_2022_8430
crossref_primary_10_1016_j_cyto_2021_155625
crossref_primary_10_3389_fonc_2022_910963
crossref_primary_10_3389_fonc_2022_1048746
crossref_primary_10_1016_j_ajpath_2023_06_016
crossref_primary_10_1007_s11030_024_10954_1
crossref_primary_10_1007_s12272_022_01377_3
crossref_primary_10_1016_j_lfs_2023_121378
crossref_primary_10_1016_j_cbi_2021_109648
crossref_primary_10_3390_toxins13090595
crossref_primary_10_1016_j_jep_2023_117396
crossref_primary_10_1002_adhm_202403473
crossref_primary_10_1016_j_canlet_2021_06_015
crossref_primary_10_1007_s11694_021_00855_4
crossref_primary_10_1002_iub_1675
crossref_primary_10_1016_j_ijbiomac_2025_142080
crossref_primary_10_1002_jmv_24886
crossref_primary_10_1016_j_cclet_2022_01_011
crossref_primary_10_1016_j_tiv_2020_104814
crossref_primary_10_1016_j_biopha_2017_01_072
crossref_primary_10_1016_j_lfs_2021_119954
crossref_primary_10_1016_j_abb_2023_109519
crossref_primary_10_1016_j_taap_2021_115857
crossref_primary_10_1155_2021_8388258
crossref_primary_10_1530_ERC_17_0458
crossref_primary_10_1166_jbn_2021_3167
crossref_primary_10_1021_acs_analchem_1c04637
crossref_primary_10_1093_toxsci_kfaa129
crossref_primary_10_1016_j_biopha_2024_116689
crossref_primary_10_3389_fimmu_2024_1428920
crossref_primary_10_1038_s41598_023_35572_z
crossref_primary_10_3390_cancers15041155
crossref_primary_10_1515_revneuro_2024_0054
crossref_primary_10_1016_j_jconrel_2023_01_068
crossref_primary_10_1016_j_jenvman_2025_124775
crossref_primary_10_3389_fphar_2021_764015
crossref_primary_10_1186_s12935_024_03617_6
crossref_primary_10_1021_acsami_9b16327
crossref_primary_10_2174_1574362413666180320112810
crossref_primary_10_1080_10428194_2024_2422843
crossref_primary_10_1016_j_jep_2022_115100
crossref_primary_10_1016_j_semcdb_2017_11_007
crossref_primary_10_1016_j_snb_2024_135792
crossref_primary_10_3390_biom14111359
crossref_primary_10_1021_acsami_8b21968
crossref_primary_10_1021_acsomega_2c00203
crossref_primary_10_2174_1389557519666190617153213
crossref_primary_10_1016_j_bmcl_2020_127047
crossref_primary_10_2174_1871527322666230403105438
crossref_primary_10_1002_adma_202310964
crossref_primary_10_1248_bpb_b21_00466
crossref_primary_10_1080_07357907_2024_2352467
crossref_primary_10_1002_slct_202401992
crossref_primary_10_3390_molecules27196435
crossref_primary_10_3390_md20050284
crossref_primary_10_1002_ptr_7398
crossref_primary_10_1186_s12935_023_03119_x
crossref_primary_10_1017_S1431927621013581
crossref_primary_10_1021_acs_est_3c03552
crossref_primary_10_1016_j_freeradbiomed_2022_11_044
crossref_primary_10_1016_j_mito_2022_04_004
crossref_primary_10_1016_j_phrs_2022_106218
crossref_primary_10_1371_journal_pone_0186821
crossref_primary_10_1016_j_biopha_2024_117520
crossref_primary_10_3390_molecules27010148
crossref_primary_10_3390_ijms24033028
crossref_primary_10_1111_jfbc_13683
crossref_primary_10_1021_acs_inorgchem_8b01707
crossref_primary_10_3390_antiox10020313
crossref_primary_10_1186_s40360_021_00542_6
crossref_primary_10_3892_ijo_2016_3684
crossref_primary_10_1016_j_bmcl_2025_130094
crossref_primary_10_1038_s41598_024_58656_w
crossref_primary_10_1039_D4BM01450B
crossref_primary_10_3389_fmed_2022_1055252
crossref_primary_10_4103_2221_1691_284948
crossref_primary_10_1039_D2CS00562J
crossref_primary_10_1002_tox_23482
crossref_primary_10_1155_2017_7454031
crossref_primary_10_2147_DDDT_S398887
crossref_primary_10_3389_fonc_2022_1101289
crossref_primary_10_1002_cmdc_202000494
crossref_primary_10_1021_acsabm_9b01052
crossref_primary_10_1016_j_biopha_2023_116074
crossref_primary_10_1016_j_freeradbiomed_2018_11_020
crossref_primary_10_1016_j_mito_2021_01_005
crossref_primary_10_1016_j_canlet_2021_04_003
crossref_primary_10_1016_j_jbo_2023_100506
crossref_primary_10_1002_adbi_202400549
crossref_primary_10_1186_s13048_020_00763_z
crossref_primary_10_1021_acs_chemmater_4c01481
crossref_primary_10_1016_j_biopha_2022_112966
crossref_primary_10_1093_toxres_tfae056
crossref_primary_10_1016_j_jconrel_2023_09_038
crossref_primary_10_3390_biomedicines9030258
crossref_primary_10_2147_DDDT_S499284
crossref_primary_10_1002_cbin_11278
crossref_primary_10_1039_C7SC03216A
crossref_primary_10_3389_fgene_2022_926984
crossref_primary_10_4155_fmc_2017_0011
crossref_primary_10_1155_2019_1283075
crossref_primary_10_3892_ijmm_2021_5047
crossref_primary_10_1186_s13062_024_00461_6
crossref_primary_10_1016_j_ijpharm_2018_11_057
crossref_primary_10_3389_fimmu_2022_844736
crossref_primary_10_3748_wjg_v27_i28_4582
crossref_primary_10_1039_D4NR00665H
crossref_primary_10_1186_s12967_022_03657_4
crossref_primary_10_1093_toxsci_kfaa103
crossref_primary_10_3892_ol_2018_9217
crossref_primary_10_1007_s11356_023_30150_2
crossref_primary_10_3390_ijms23116075
crossref_primary_10_1111_cas_13251
crossref_primary_10_1186_s11658_023_00487_0
crossref_primary_10_3389_fphar_2023_1199152
crossref_primary_10_1016_j_ccr_2024_216050
crossref_primary_10_1021_acs_jmedchem_3c01655
crossref_primary_10_1016_j_poly_2021_115225
crossref_primary_10_1002_psc_3144
crossref_primary_10_1016_j_aquatox_2017_01_005
crossref_primary_10_1016_j_jnrt_2024_100112
crossref_primary_10_1021_acs_chemrestox_4c00328
crossref_primary_10_1080_02656736_2023_2270654
crossref_primary_10_3390_biom11101418
crossref_primary_10_1155_2022_4195699
crossref_primary_10_3390_cells10020332
crossref_primary_10_1186_s12876_022_02260_7
crossref_primary_10_3389_fcell_2025_1528972
crossref_primary_10_4196_kjpp_2020_24_3_223
crossref_primary_10_1002_fsn3_2636
crossref_primary_10_1016_j_pharmthera_2019_04_011
crossref_primary_10_1039_C8TB02621A
crossref_primary_10_1007_s00232_024_00308_1
crossref_primary_10_1016_j_actbio_2025_03_031
crossref_primary_10_29219_fnr_v65_5492
crossref_primary_10_3389_fonc_2024_1511958
crossref_primary_10_1002_btm2_10515
crossref_primary_10_3389_fphar_2021_691998
crossref_primary_10_1016_j_bmcl_2017_12_059
crossref_primary_10_1039_D4RA00959B
crossref_primary_10_1016_j_cej_2024_155592
crossref_primary_10_1016_j_ccr_2020_213640
crossref_primary_10_1016_j_ijbiomac_2021_02_061
crossref_primary_10_3892_or_2023_8630
crossref_primary_10_3390_cells11233790
crossref_primary_10_1016_j_tice_2022_101997
crossref_primary_10_1080_10715762_2022_2133704
crossref_primary_10_1016_j_jgr_2021_05_005
crossref_primary_10_1016_j_bcp_2023_115856
crossref_primary_10_1007_s10068_021_00899_8
crossref_primary_10_1016_j_lfs_2023_122098
crossref_primary_10_3389_fimmu_2024_1424954
crossref_primary_10_1158_1078_0432_CCR_20_4789
crossref_primary_10_3390_toxins14090590
crossref_primary_10_1007_s12032_023_02022_9
crossref_primary_10_1038_s41388_021_01968_2
crossref_primary_10_1038_s41401_023_01157_9
crossref_primary_10_1080_14756366_2023_2292006
crossref_primary_10_1155_2016_5293284
crossref_primary_10_3390_molecules27238311
crossref_primary_10_1016_j_cej_2022_136169
crossref_primary_10_1039_D5OB00216H
crossref_primary_10_1002_ijc_31395
crossref_primary_10_3389_fonc_2022_900444
crossref_primary_10_4062_biomolther_2023_070
crossref_primary_10_3389_fonc_2024_1506588
crossref_primary_10_3389_fphar_2023_1191517
crossref_primary_10_1038_s41419_020_03336_6
crossref_primary_10_1038_s41420_022_01148_5
crossref_primary_10_1016_j_cej_2024_153395
crossref_primary_10_1002_mc_23639
crossref_primary_10_1016_j_brainres_2023_148724
crossref_primary_10_3390_plants12091760
crossref_primary_10_3390_ijms25021175
crossref_primary_10_3892_ol_2023_13913
crossref_primary_10_1021_acs_jafc_3c02090
crossref_primary_10_1039_D3NJ05045A
crossref_primary_10_3390_ijms221910458
crossref_primary_10_1155_2022_5366185
crossref_primary_10_3390_cancers16173060
crossref_primary_10_1111_nyas_13401
crossref_primary_10_1038_s41419_024_07023_8
crossref_primary_10_1093_narcan_zcac034
crossref_primary_10_1002_bab_2621
crossref_primary_10_1158_2159_8290_CD_24_0187
crossref_primary_10_1016_j_intimp_2024_112052
crossref_primary_10_1038_s41598_018_34055_w
crossref_primary_10_1016_j_jconrel_2021_10_030
crossref_primary_10_1021_acs_jafc_1c07690
crossref_primary_10_1007_s00018_017_2616_8
crossref_primary_10_1186_s13046_021_01933_7
crossref_primary_10_3389_fphar_2022_1109822
crossref_primary_10_1016_j_jinorgbio_2024_112655
crossref_primary_10_1016_j_molimm_2024_05_008
crossref_primary_10_3390_ph14020133
crossref_primary_10_1038_s41419_023_05711_5
crossref_primary_10_1016_j_jhazmat_2021_126158
crossref_primary_10_1002_cplu_202300167
crossref_primary_10_1016_j_ecoenv_2022_113716
crossref_primary_10_1016_j_heliyon_2024_e32626
crossref_primary_10_3390_biom9110735
crossref_primary_10_3987_COM_21_14586
crossref_primary_10_3389_fimmu_2023_1224443
crossref_primary_10_3389_fphar_2021_542891
crossref_primary_10_2147_CMAR_S237181
crossref_primary_10_1002_jcp_26892
crossref_primary_10_1007_s12011_024_04497_7
crossref_primary_10_1016_j_jconrel_2023_06_004
crossref_primary_10_1016_j_phymed_2022_154075
crossref_primary_10_4162_nrp_2018_12_2_129
crossref_primary_10_3390_ijms25158293
crossref_primary_10_1371_journal_pone_0168283
crossref_primary_10_1002_adma_202209529
crossref_primary_10_2174_0929867329666220401110418
crossref_primary_10_1016_j_bioorg_2021_105239
crossref_primary_10_1016_j_ijpharm_2017_01_064
crossref_primary_10_1021_acs_jmedchem_4c01908
crossref_primary_10_1039_C8SC04871A
crossref_primary_10_1016_j_biopha_2024_116740
crossref_primary_10_7759_cureus_39812
crossref_primary_10_18632_oncotarget_23407
crossref_primary_10_18632_oncotarget_9746
crossref_primary_10_18632_oncotarget_13838
crossref_primary_10_1155_2020_8837893
crossref_primary_10_3390_biomedicines10040800
crossref_primary_10_1016_j_bcp_2019_05_013
crossref_primary_10_1016_j_envpol_2022_119120
crossref_primary_10_1038_s42003_022_03788_w
crossref_primary_10_1016_j_cellsig_2020_109821
crossref_primary_10_1111_1440_1681_70022
crossref_primary_10_1016_j_phrs_2024_107553
crossref_primary_10_1002_jbt_23369
crossref_primary_10_1002_1878_0261_12199
crossref_primary_10_1007_s10876_023_02497_6
crossref_primary_10_1155_2022_7702681
crossref_primary_10_1051_bioconf_20248601014
crossref_primary_10_1016_j_ecoenv_2021_112442
crossref_primary_10_1038_s41420_024_02039_7
crossref_primary_10_2147_IJN_S495387
crossref_primary_10_1016_j_jinorgbio_2023_112397
crossref_primary_10_1186_s12951_020_00644_z
crossref_primary_10_18632_oncotarget_21005
crossref_primary_10_1021_acs_bioconjchem_2c00559
crossref_primary_10_1002_mco2_70055
crossref_primary_10_1016_j_intimp_2025_114266
crossref_primary_10_1186_s13765_020_0491_8
crossref_primary_10_3389_fcvm_2021_771349
crossref_primary_10_1016_j_lfs_2020_117846
crossref_primary_10_1111_bjd_17513
crossref_primary_10_1016_j_ejmech_2020_112737
crossref_primary_10_1038_s41419_018_0395_2
crossref_primary_10_1111_febs_16417
crossref_primary_10_1007_s00424_022_02748_x
crossref_primary_10_1016_j_bioorg_2024_107325
crossref_primary_10_1039_D2NJ01922A
crossref_primary_10_1038_s41598_023_50108_1
crossref_primary_10_1002_jmr_3044
crossref_primary_10_1021_acs_jmedchem_3c00942
crossref_primary_10_17816_KMJ112512
crossref_primary_10_3389_fcvm_2021_774619
crossref_primary_10_3390_toxics9100229
crossref_primary_10_3390_biom13010102
crossref_primary_10_1038_s41598_022_14724_7
crossref_primary_10_1016_j_dyepig_2024_112350
crossref_primary_10_1039_C8TB00546J
crossref_primary_10_1016_j_toxlet_2023_12_012
crossref_primary_10_1016_j_bbrc_2020_02_052
crossref_primary_10_1021_acs_jafc_9b04814
crossref_primary_10_1038_s41467_024_47008_x
crossref_primary_10_1016_j_bbadis_2024_167623
crossref_primary_10_1515_oncologie_2024_0596
crossref_primary_10_1007_s13277_016_5403_5
crossref_primary_10_1016_j_mito_2023_02_009
crossref_primary_10_1016_j_jinorgbio_2023_112295
crossref_primary_10_1096_fj_202400938R
crossref_primary_10_1021_acsnano_4c03451
crossref_primary_10_3892_ijmm_2024_5480
crossref_primary_10_2147_JIR_S463692
crossref_primary_10_1016_j_pestbp_2023_105343
crossref_primary_10_3390_jor4020012
crossref_primary_10_3389_fcimb_2022_835181
crossref_primary_10_1016_j_abb_2020_108539
crossref_primary_10_3892_ol_2021_13134
crossref_primary_10_7717_peerj_6708
crossref_primary_10_1142_S0192415X22500094
crossref_primary_10_2174_2210298101666210928122952
crossref_primary_10_29252_mlj_14_3_13
crossref_primary_10_1039_D3SC01315D
crossref_primary_10_1177_2047487319831495
crossref_primary_10_1002_ppsc_202100003
crossref_primary_10_1038_s41589_020_0602_1
crossref_primary_10_1007_s40097_021_00457_y
crossref_primary_10_1016_j_bmcl_2021_127912
crossref_primary_10_3390_ijms22179368
crossref_primary_10_1016_j_ecoenv_2024_117063
crossref_primary_10_1039_C7OB00458C
crossref_primary_10_1016_j_mce_2023_111991
crossref_primary_10_7554_eLife_72557
crossref_primary_10_1186_s12967_024_05833_0
crossref_primary_10_1002_cbdv_201900443
crossref_primary_10_1016_j_tranon_2025_102355
crossref_primary_10_1021_acs_inorgchem_3c01635
crossref_primary_10_15430_JCP_2020_25_2_100
crossref_primary_10_1177_09731296231183277
crossref_primary_10_1016_j_biopsych_2017_08_007
crossref_primary_10_3390_app13106321
crossref_primary_10_3389_fbioe_2021_784602
crossref_primary_10_1186_s12911_022_02020_3
crossref_primary_10_1016_j_mtbio_2025_101581
crossref_primary_10_3390_life11080761
crossref_primary_10_3390_cells11213508
crossref_primary_10_3390_biology11091325
crossref_primary_10_1016_j_bioorg_2024_107122
crossref_primary_10_1128_spectrum_03652_23
crossref_primary_10_3390_pharmaceutics13020144
crossref_primary_10_1016_j_jtemb_2022_127006
crossref_primary_10_1007_s10495_020_01655_9
crossref_primary_10_1080_15287394_2023_2240835
crossref_primary_10_3389_fimmu_2022_1061448
crossref_primary_10_1021_acsami_7b14577
crossref_primary_10_1038_s41419_022_04738_4
crossref_primary_10_1038_s41419_022_05098_9
crossref_primary_10_2174_0929867326666190823163009
crossref_primary_10_1002_jcp_26356
crossref_primary_10_1016_j_carbpol_2022_119464
crossref_primary_10_34133_research_0310
crossref_primary_10_1007_s13167_019_00170_5
crossref_primary_10_1155_2021_8840590
crossref_primary_10_1002_cnma_202100125
crossref_primary_10_3390_ijms24076453
crossref_primary_10_1021_acs_jmedchem_7b00679
crossref_primary_10_1155_2021_4763944
crossref_primary_10_3390_pharmaceutics11010043
crossref_primary_10_1089_ars_2016_6898
crossref_primary_10_3390_antiox10040603
crossref_primary_10_1016_j_tox_2024_153920
crossref_primary_10_3390_ijms252212049
crossref_primary_10_1002_EXP_20240002
crossref_primary_10_1039_D0QI01028F
crossref_primary_10_3390_jmp5010007
crossref_primary_10_2139_ssrn_4170601
crossref_primary_10_1016_j_ejmech_2019_111851
crossref_primary_10_3390_oxygen4020008
crossref_primary_10_2174_1570159X16666180302120925
crossref_primary_10_2478_jtim_2020_0012
crossref_primary_10_1155_2021_5188306
crossref_primary_10_1039_D0FO00260G
crossref_primary_10_1111_cns_14348
crossref_primary_10_3390_ijms20184407
crossref_primary_10_1016_j_chemosphere_2019_125773
crossref_primary_10_3390_ijms241511953
crossref_primary_10_3390_ijms20081967
crossref_primary_10_3390_molecules25194504
crossref_primary_10_1039_D2BM01267G
crossref_primary_10_1007_s12672_024_01147_1
crossref_primary_10_3390_cancers13236062
crossref_primary_10_1093_jn_nxaa201
crossref_primary_10_1080_17568919_2025_2459589
crossref_primary_10_3390_ijms19051270
crossref_primary_10_31083_j_fbl2706171
crossref_primary_10_1016_j_freeradbiomed_2021_06_031
crossref_primary_10_1016_j_semcancer_2020_06_017
crossref_primary_10_3748_wjg_v30_i5_429
crossref_primary_10_1186_s12967_023_04270_9
crossref_primary_10_34108_eujhs_1313433
crossref_primary_10_1038_s41467_018_04070_6
crossref_primary_10_1016_j_ejmech_2019_01_004
crossref_primary_10_3390_ijms24065564
crossref_primary_10_2131_jts_46_345
crossref_primary_10_3390_antiox12081597
crossref_primary_10_1186_s13020_024_00982_2
crossref_primary_10_1002_cbf_3584
crossref_primary_10_1186_s13287_019_1265_2
crossref_primary_10_1088_1361_6528_ac378c
Cites_doi 10.1074/jbc.M301546200
10.1016/S0960-9822(02)01433-1
10.1158/1078-0432.CCR-13-0304
10.1146/annurev.genet.39.110304.095751
10.1007/s00384-009-0663-9
10.1016/j.taap.2009.11.028
10.1085/jgp.8.6.519
10.1096/fj.05-3718com
10.1038/sj.onc.1207521
10.1186/bcr2154
10.1038/embor.2010.115
10.1016/j.chembiol.2008.03.015
10.1126/science.68.1767.437
10.1016/j.biocel.2010.05.003
10.1515/BC.1999.107
10.1016/j.molcel.2005.06.008
10.1128/MCB.00483-09
10.1038/nrc3365
10.2174/0929867311320999165
10.1038/nrd2803
10.1016/j.semcancer.2008.11.007
10.1016/j.freeradbiomed.2011.10.435
10.1073/pnas.1117773108
10.3109/08830185.2012.755176
10.1016/0304-4173(74)90011-1
10.1186/1471-2407-14-76
10.1042/bj3480425
10.1371/journal.pone.0099196
10.1073/pnas.1003428107
10.1016/j.ccr.2006.04.023
10.1042/BJ20081386
10.1023/A:1023756707900
10.1101/gad.1376506
10.1126/scisignal.2000431
10.1016/j.bbamcr.2014.03.009
10.1126/science.1156906
10.1016/j.mrfmmm.2005.06.015
10.4161/cc.9.10.11601
10.1016/j.yjmcc.2014.10.019
10.1038/nature10602
10.1038/sj.onc.1209607
10.1016/j.lfs.2011.05.010
10.1093/hmg/ddp069
10.1038/cdd.2014.211
10.1038/nchembio.1712
10.1038/3108
10.1016/j.ccr.2007.08.004
10.1007/s10863-009-9267-x
10.1038/nature06667
10.1126/science.287.5460.2017
10.1038/88859
10.1074/jbc.M501527200
10.1016/S0891-5849(97)00331-6
10.1158/0008-5472.CAN-03-1101
10.1002/mds.23148
10.1016/j.cell.2013.03.004
10.3109/10715761003667554
10.1158/0008-5472.CAN-04-2012
10.1038/sj.onc.1204953
10.1016/j.bbabio.2010.10.012
10.1038/nri2975
10.1038/nrm1150
10.1158/0008-5472.CAN-15-0859
10.4161/cc.9.17.12731
10.1158/1078-0432.CCR-04-0734
10.1126/science.283.5407.1482
10.4161/cc.8.23.10238
10.1016/j.ccr.2012.09.021
10.1016/j.febslet.2009.12.002
10.1186/2049-3002-1-7
10.1134/S0006297908120018
10.1016/S0140-6736(00)02591-5
10.1016/j.canlet.2008.03.020
10.1016/j.ccr.2012.02.014
10.1046/j.1474-9728.2003.00062.x
10.1186/1741-7007-12-34
10.1021/bi061854k
10.1038/nature10642
10.1007/s10541-005-0104-5
10.1007/s00232-008-9108-6
10.1016/j.ccr.2012.07.015
10.1038/sj.onc.1209602
10.1016/j.molcel.2013.05.003
10.1146/annurev.pharmtox.44.101802.121851
10.1038/srep09073
10.1146/annurev.pharmtox.47.120505.105110
10.1371/journal.pone.0023401
10.1128/MCB.01338-07
10.1016/j.drudis.2010.12.006
10.1016/j.molcel.2011.04.025
10.1038/sj.onc.1209604
10.1038/nrd3137
10.1152/ajpregu.90902.2008
10.1158/0008-5472.CAN-06-3717
10.1016/j.ccr.2006.08.009
10.4161/cc.9.16.12553
10.1113/eph8802510
10.1186/s12885-015-1349-z
10.1016/j.bbagen.2013.02.016
10.1016/j.freeradbiomed.2014.08.027
10.1007/s00018-005-5178-0
10.1158/1940-6207.CAPR-10-0326
10.1530/ERC-13-0398
10.3390/ijms160817394
10.1038/cr.2011.145
10.1016/j.bpj.2008.10.042
10.1196/annals.1297.043
10.1016/j.tibs.2010.04.002
10.1038/nrc3803
10.1016/S1383-5742(01)00053-9
10.1016/j.biocel.2011.01.023
10.1134/S000629791002001X
10.1186/1479-5876-11-94
10.1016/j.bbamem.2007.11.002
10.1016/j.cmet.2014.12.003
10.1007/s00280-006-0291-9
10.2353/ajpath.2009.080924
10.1111/j.1478-3231.2010.02250.x
10.1038/jhg.2009.71
10.1073/pnas.0510511103
10.1016/j.cell.2008.12.004
10.1155/2013/612369
10.1016/S1535-6108(03)00109-0
10.1016/j.tcb.2008.01.006
10.1134/S0006297908120031
10.1038/35030140
10.1016/S0169-409X(99)00069-1
10.1016/j.cmet.2011.03.024
10.1042/bj20021594
10.1046/j.1474-9728.2002.00004.x
10.1016/S0140-6736(99)05226-5
10.1172/JCI119339
10.1073/pnas.94.2.514
10.1161/HYPERTENSIONAHA.109.130351
10.1016/0165-1110(87)90028-5
10.1038/nature03579
10.1134/S0006297907120139
10.1038/sj.cdd.4402020
10.1038/nrm3877
10.1073/pnas.0408894102
10.1038/2221076a0
10.1155/2014/292017
10.1016/j.bbcan.2013.10.002
10.2353/ajpath.2009.080873
10.1074/jbc.M009093200
10.1016/j.mito.2004.07.027
10.1038/sj.onc.1203299
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
7QO
DOI 10.1002/jcp.25349
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Genetics Abstracts
Engineering Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 2581
ExternalDocumentID 4154751591
26895995
10_1002_jcp_25349
JCP25349
ark_67375_WNG_H79NDXLJ_G
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
– fundername: Fundamental Research Funds for the Central Universities of China
– fundername: National Natural Science Foundation of China
– fundername: Else Kröner‐Fresenius Foundation
– fundername: Russian Foundation for Basic Research
  funderid: BA 3826/5‐1; 2012.A131; 2014QN045; 81402553; 15‐04‐05171
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
7QO
ID FETCH-LOGICAL-c5609-4b3c192f67f201dcf825f3ed0415a9ed9cbec0546a9d302969c7b3ea4608cdf53
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 02:57:46 EDT 2025
Fri Jul 11 07:47:37 EDT 2025
Sat Jul 26 00:53:35 EDT 2025
Mon Jul 21 05:21:18 EDT 2025
Thu Apr 24 23:09:57 EDT 2025
Tue Jul 01 01:31:44 EDT 2025
Wed Jan 22 16:41:56 EST 2025
Wed Oct 30 09:52:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5609-4b3c192f67f201dcf825f3ed0415a9ed9cbec0546a9d302969c7b3ea4608cdf53
Notes Fundamental Research Funds for the Central Universities of China
Deutsche Forschungsgemeinschaft
National Natural Science Foundation of China
istex:8DCD0142887B1143AAF02F308ACE5EF4EEE7FD56
Else Kröner-Fresenius Foundation
ark:/67375/WNG-H79NDXLJ-G
Russian Foundation for Basic Research - No. BA 3826/5-1; No. 2012.A131; No. 2014QN045; No. 81402553; No. 15-04-05171
ArticleID:JCP25349
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 26895995
PQID 1812949880
PQPubID 1006363
PageCount 12
ParticipantIDs proquest_miscellaneous_1832245426
proquest_miscellaneous_1813900124
proquest_journals_1812949880
pubmed_primary_26895995
crossref_citationtrail_10_1002_jcp_25349
crossref_primary_10_1002_jcp_25349
wiley_primary_10_1002_jcp_25349_JCP25349
istex_primary_ark_67375_WNG_H79NDXLJ_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J. Cell. Physiol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Williams GS, Boyman L, Lederer WJ. 2015. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35-45.
Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291-293.
Acin-Perez R, Gatti DL, Bai Y, Manfredi G. 2011. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation. Cell metabolism 13:712-719.
Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, Abdellaoui N, de Fraipont F, Moisan A, Prouteau CA, Boukhaddaoui H, Jorgensen C, Vignais ML. 2015. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Reports 5:9073.
Supinski GS, Murphy MP, Callahan LA. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 297:R1095-R1102.
Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P. 2011. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43:950-968.
Klaunig JE, Wang Z, Pu X, Zhou S. 2011. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 254:86-99.
Brandon M, Baldi P, Wallace DC. 2006. Mitochondrial mutations in cancer. Oncogene 25:4647-4662.
Fantin VR, St-Pierre J, Leder P. 2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425-434.
Ohta S. 2006. Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene 25:4768-4776.
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2010a. Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506-3514.
Shay JW, Werbin H. 1987. Are mitochondrial DNA mutations involved in the carcinogenic process? Mutat Res 186:149-160.
Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S. 2005. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65:1655-1663.
Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B. 2009. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophys J 96:1388-1398.
Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J. 2008. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661-664.
Sobenin IA, Mitrofanov KY, Zhelankin AV, Sazonova MA, Postnov AY, Revin VV, Bobryshev YV, Orekhov AN. 2014. Quantitative assessment of heteroplasmy of mitochondrial genome: Perspectives in diagnostics and methodological pitfalls. BioMed Res Int 2014:292017.
Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. 2005. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677-681.
Fulda S, Galluzzi L, Kroemer G. 2010. Targeting mitochondria for cancer therapy. Nature Rev Drug Discov 9:447-464.
Galluzzi L, Kroemer G. 2008. Necroptosis: A specialized pathway of programmed necrosis. Cell 135:1161-1163.
Mishra P, Chan DC. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Rev Mol Cell Biol 15:634-646.
Liu L, Trimarchi JR, Smith PJ, Keefe DL. 2002. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40-46.
Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D, Marchetti P, Brenner C, Kroemer G. 2001. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite, and CD437. Oncogene 20:7579-7587.
Modica-Napolitano JS, Singh KK. 2004. Mitochondrial dysfunction in cancer. Mitochondrion 4:755-762.
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788-8793.
Hofhaus G, Gattermann N. 1999. Mitochondria harbouring mutant mtDNA-A cuckoo in the nest? Biol Chem 380:871-877.
Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M. 2009. Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet 54:516-524.
Izyumov DS, Domnina LV, Nepryakhina OK, Avetisyan AV, Golyshev SA, Ivanova OY, Korotetskaya MV, Lyamzaev KG, Pletjushkina OY, Popova EN, Chernyak BV. 2010. Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants-the "Skulachev-ion" derivatives. Biochemistry (Mosc) 75:123-129.
Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D. 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017-2019.
Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, Fanelli MA, Cuello-Carrion FD, Gago FE, Anderson RL. 2009. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174:2035-2043.
Chatterjee A, Mambo E, Sidransky D. 2006. Mitochondrial DNA mutations in human cancer. Oncogene 25:4663-4674.
Pagliarini DJ, Wiley SE, Kimple ME, Dixon JR, Kelly P, Worby CA, Casey PJ, Dixon JE. 2005. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell 19:197-207.
Spees JL, Olson SD, Whitney MJ, Prockop DJ. 2006. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283-1288.
Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181-186.
Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P. 2006. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241-252.
Klaunig JE, Kamendulis LM. 2004. The role of oxidative stress in carcinogenesis. Ann Rev Pharmacol Toxicol 44:239-267.
Zamzami N, Kroemer G. 2003. Apoptosis: Mitochondrial membrane permeabilization-the (w) hole story? Curr Biol 13:R71-R73.
Campello S, Scorrano L. 2010. Mitochondrial shape changes: Orchestrating cell pathophysiology. EMBO Reports 11:678-684.
Wang X, Gerdes HH. 2015. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22:1181-1191.
Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J 417:1-13.
Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. 2003. Mitochondrial threshold effects. Biochem J 370:751-762.
Chen X, Qian Y, Wu S. 2015. The Warburg effect: Evolving interpretations of an established concept. Free Radical Biol Med 79:253-263.
Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G. 2013. Mitochondria and cancer: Past, present, and future. BioMed Res Int 2013:612369.
Anso E, Mullen AR, Felsher DW, Mates JM, Deberardinis RJ, Chandel NS. 2013. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab 1:7.
Suzuki S, Naito A, Asano T, Evans TT, Reddy SA, Higuchi M. 2008. Constitutive activation of AKT pathway inhibits TNF-induced apoptosis in mitochondrial DNA-deficient human myelogenous leukemia ML-1a. Cancer Lett 268:31-37.
Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP. 2009. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174:2023-2034.
Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P. 2012. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22:399-412.
Smolkova K, Bellance N, Scandurra F, Genot E, Gnaiger E, Plecita-Hlavata L, Jezek P, Rossignol R. 2010. Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42:55-67.
van Vliet AR, Verfaillie T, Agostinis P. 2014. New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253-2262.
Antanaviciute I, Rysevaite K, Liutkevicius V, Marandykina A, Rimkute L, Sveikatiene R, Uloza V, Skeberdis VA. 2014. Long-distance communication between laryngeal carcinoma cells. PLoS ONE 9:e99196.
Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. 2009. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73.
Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP. 2001. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem 276:4588-4596.
Oudard S, Carpentier A, Banu E, Fauchon F, Celerier D, Poupon MF, Dutrillaux B, Andrieu JM, Delattre JY. 2003. Phase II study of lonidamine and diazepam in the treatment of recurrent gli
2015; 79
2010; 11
2012; 481
1987; 186
2015; 78
2013; 1
2010; 107
2015; 75
2004; 23
2004; 4
2005; 62
2010; 584
1999; 283
2005; 65
2007; 72
1974; 346
2003; 278
2012; 12
2014; 21
2000; 407
2009; 96
2000; 19
2006; 20
2010; 25
2013; 2013
2005; 102
2013; 51
2006; 25
2008; 28
2014; 15
2014; 14
2005; 70
1927; 8
2009; 19
2012; 22
2007; 67
2014; 12
2010; 30
2012; 21
2010; 9
2009; 18
2004; 1019
2004; 44
2013a; 32
2010; 35
2000; 355
2000; 356
2011; 1807
2002; 1
2009; 297
2006; 593
2014; 2014
2001; 28
2009; 174
2011; 4
2011; 6
2007; 12
2007; 14
2011; 254
2001; 20
2014; 1843
2001; 276
2010; 44
2010; 42
2005; 19
2010a; 9
2000; 348
2011; 89
2008; 135
2008a; 73
2006; 103
2004; 64
2000; 41
2003; 13
2011; 11
2011; 13
2008; 268
2008; 73
2011; 16
2012; 52
2013; 19
1997; 94
2009; 54
1997; 99
2013; 11
1999; 380
2003; 2
2003; 3
2003; 4
2000; 287
2013; 153
2014; 9
2005; 39
2003; 88
2015; 15
2009; 24
2010; 75
2013; 1836
2015; 5
2015; 16
2013; 1830
2006; 10
2008; 18
2006; 9
2005; 435
2015; 11
2008; 15
2003; 370
2008; 10
2008; 1778
2008; 320
2010b; 9
2009; 417
1998; 20
1969; 222
2001; 488
2007; 59
2009; 29
1998; 24
2004; 10
2005; 280
2011; 108
1928; 68
2013b; 20
2015; 22
2015; 21
2011; 42
2011; 43
2009; 8
2008; 452
2009; 2
2008b; 222
2003; 63
2007; 46
2007; 47
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_148_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_141_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_131_1
References_xml – reference: Yakes FM, Van Houten B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514-519.
– reference: Zastawny TH, Dabrowska M, Jaskolski T, Klimarczyk M, Kulinski L, Koszela A, Szczesniewicz M, Sliwinska M, Witkowski P, Olinski R. 1998. Comparison of oxidative base damage in mitochondrial and nuclear DNA. Free Radical Biol Med 24:722-725.
– reference: Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2010b. The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9:1960-1971.
– reference: Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B. 2009. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q. Biophys J 96:1388-1398.
– reference: Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G. 2012. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380-384.
– reference: Sabharwal SS, Schumacker PT. 2014. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 14:709-721.
– reference: Chae YC, Caino MC, Lisanti S, Ghosh JC, Dohi T, Danial NN, Villanueva J, Ferrero S, Vaira V, Santambrogio L, Bosari S, Languino LR, Herlyn M, Altieri DC. 2012. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 22:331-344.
– reference: Warburg O, Wind F, Negelein E. 1927. The metabolism of tumors in the body. J Gen Physiol 8:519-530.
– reference: Caicedo A, Fritz V, Brondello JM, Ayala M, Dennemont I, Abdellaoui N, de Fraipont F, Moisan A, Prouteau CA, Boukhaddaoui H, Jorgensen C, Vignais ML. 2015. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Reports 5:9073.
– reference: Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D. 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017-2019.
– reference: Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC. 2005. MtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102:719-724.
– reference: Higuchi M, Aggarwal BB, Yeh ET. 1997. Activation of CPP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function. J Clin Invest 99:1751-1758.
– reference: Vicha A, Taieb D, Pacak K. 2014. Current views on cell metabolism in SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer 21:R261-R277.
– reference: Yang Y, Bazhin AV, Werner J, Karakhanova S. 2013a. Reactive oxygen species in the immune system. Int Rev Immunol 32:249-270.
– reference: Galluzzi L, Kroemer G. 2008. Necroptosis: A specialized pathway of programmed necrosis. Cell 135:1161-1163.
– reference: Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP. 2001. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem 276:4588-4596.
– reference: Weinberg SE, Chandel NS. 2015. Targeting mitochondria metabolism for cancer therapy. Nature Chem Biol 11:9-15.
– reference: Ohta S. 2006. Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene 25:4768-4776.
– reference: Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OY, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Roginsky VA, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev IV, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Vassiliev JM, Vyssokikh MY, Yaguzhinsky LS, Zamyatnin AA, Jr, Skulachev VP. 2008a. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies. Biochemistry (Mosc) 73:1273-1287.
– reference: Sobenin IA, Mitrofanov KY, Zhelankin AV, Sazonova MA, Postnov AY, Revin VV, Bobryshev YV, Orekhov AN. 2014. Quantitative assessment of heteroplasmy of mitochondrial genome: Perspectives in diagnostics and methodological pitfalls. BioMed Res Int 2014:292017.
– reference: Wang X, Gerdes HH. 2015. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22:1181-1191.
– reference: Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, Nakada K, Hayashi J. 2011. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS ONE 6:e23401.
– reference: Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP. 1969. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076-1078.
– reference: Wallace DC. 1999. Mitochondrial diseases in man and mouse. Science 283:1482-1488.
– reference: Wallace DC. 2012. Mitochondria and cancer. Nat Rev Cancer 12:685-698.
– reference: Acin-Perez R, Gatti DL, Bai Y, Manfredi G. 2011. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation. Cell metabolism 13:712-719.
– reference: Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O'Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM. 2010. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov Disord 25:1670-1674.
– reference: Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P. 2006. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10:241-252.
– reference: Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. 2004. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985-993.
– reference: Chen X, Qian Y, Wu S. 2015. The Warburg effect: Evolving interpretations of an established concept. Free Radical Biol Med 79:253-263.
– reference: Fetisova EK, Avetisyan AV, Izyumov DS, Korotetskaya MV, Chernyak BV, Skulachev VP. 2010. Mitochondria-targeted antioxidant SkQR1 selectively protects MDR (Pgp 170)-negative cells against oxidative stress. FEBS Lett 584:562-566.
– reference: Leonard JV, Schapira AH. 2000. Mitochondrial respiratory chain disorders II: Neurodegenerative disorders and nuclear gene defects. Lancet 355:389-394.
– reference: Mukhopadhyay A, Ni L, Yang CS, Weiner H. 2005. Bacterial signal peptide recognizes HeLa cell mitochondrial import receptors and functions as a mitochondrial leader sequence. Cell Mol Life Sci 62:1890-1899.
– reference: Leonard JV, Morris AA. 2000. Inborn errors of metabolism around time of birth. Lancet 356:583-587.
– reference: Belzacq AS, El Hamel C, Vieira HL, Cohen I, Haouzi D, Metivier D, Marchetti P, Brenner C, Kroemer G. 2001. Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite, and CD437. Oncogene 20:7579-7587.
– reference: Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, Yamashita K, Kobayashi H, Kikuchi H, Harashima H. 2008. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 1778:423-432.
– reference: Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF. 2009. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54:322-328.
– reference: Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J 417:1-13.
– reference: Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. 2005. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677-681.
– reference: Oudard S, Carpentier A, Banu E, Fauchon F, Celerier D, Poupon MF, Dutrillaux B, Andrieu JM, Delattre JY. 2003. Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neurooncol 63:81-86.
– reference: Zong WX, Thompson CB. 2006. Necrotic death as a cell fate. Genes Dev 20:1-15.
– reference: Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M. 2009. Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet 54:516-524.
– reference: Gogvadze V, Orrenius S, Zhivotovsky B. 2009. Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol 19:57-66.
– reference: Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291-293.
– reference: Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E, Sudarshan S, Licht JD, Deberardinis RJ, Chandel NS. 2013. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol Cell 51:236-248.
– reference: Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, Lisanti MP. 2011. Stromal-epithelial metabolic coupling in cancer: Integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 43:1045-1051.
– reference: Agapova LS, Chernyak BV, Domnina LV, Dugina VB, Efimenko AY, Fetisova EK, Ivanova OY, Kalinina NI, Khromova NV, Kopnin BP, Kopnin PB, Korotetskaya MV, Lichinitser MR, Lukashev AL, Pletjushkina OY, Popova EN, Skulachev MV, Shagieva GS, Stepanova EV, Titova EV, Tkachuk VA, Vasiliev JM, Skulachev VP. 2008. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. Biochemistry (Mosc) 73:1300-1316.
– reference: Yang Y, Karakhanova S, Werner J, Bazhin AV. 2013b. Reactive oxygen species in cancer biology and anticancer therapy. Curr Med Chem 20:3677-3692.
– reference: van Vliet AR, Verfaillie T, Agostinis P. 2014. New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253-2262.
– reference: Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV. 2007. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12:230-238.
– reference: Goto M, Miwa H, Suganuma K, Tsunekawa-Imai N, Shikami M, Mizutani M, Mizuno S, Hanamura I, Nitta M. 2014. Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14:76.
– reference: Orrenius S, Zhivotovsky B, Nicotera P. 2003. Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552-565.
– reference: Owens KM, Aykin-Burns N, Dayal D, Coleman MC, Domann FE, Spitz DR. 2012. Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2(-*) and H2O2. Free Radical Biol Med 52:160-166.
– reference: Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP. 2010. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256-3276.
– reference: Singh KK. 2004. Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann NY Acad Sci 1019:260-264.
– reference: Zamzami N, Kroemer G. 2003. Apoptosis: Mitochondrial membrane permeabilization-the (w) hole story? Curr Biol 13:R71-R73.
– reference: Kaelin WG, Jr., McKnight SL. 2013. Influence of metabolism on epigenetics and disease. Cell 153:56-69.
– reference: Cao X, Fang L, Gibbs S, Huang Y, Dai Z, Wen P, Zheng X, Sadee W, Sun D. 2007. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 59:495-505.
– reference: Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. 2003. Mitochondrial threshold effects. Biochem J 370:751-762.
– reference: Costantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N, Susin SA, Brenner C, Kroemer G. 2000. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19:307-314.
– reference: Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A, Eaton JW, Telang S, Chesney J. 2008. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 10:R84.
– reference: Penta JS, Johnson FM, Wachsman JT, Copeland WC. 2001. Mitochondrial DNA in human malignancy. Mutation Res 488:119-133.
– reference: Wallace DC. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Ann Rev Genet 39:359-407.
– reference: Klaunig JE, Kamendulis LM. 2004. The role of oxidative stress in carcinogenesis. Ann Rev Pharmacol Toxicol 44:239-267.
– reference: Antonenko YN, Roginsky VA, Pashkovskaya AA, Rokitskaya TI, Kotova EA, Zaspa AA, Chernyak BV, Skulachev VP. 2008b. Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments. J Membr Biol 222:141-149.
– reference: K CS, Carcamo JM, Golde DW. 2006. Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over-expression of c-MYC. Mutation Res 593:64-79.
– reference: Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S. 2005. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65:1655-1663.
– reference: Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA. 2005. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. Faseb J 19:1088-1095.
– reference: Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, Pesdar EA, Sobol M, Filimonenko A, Stuart S, Vondrusova M, Kluckova K, Sachaphibulkij K, Rohlena J, Hozak P, Truksa J, Eccles D, Haupt LM, Griffiths LR, Neuzil J, Berridge MV. 2015. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21:81-94.
– reference: Green DE. 1974. The electromechanochemical model for energy coupling in mitochondria. Biochim Biophys Acta 346:27-78.
– reference: Pagliarini DJ, Wiley SE, Kimple ME, Dixon JR, Kelly P, Worby CA, Casey PJ, Dixon JE. 2005. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell 19:197-207.
– reference: Mishra P, Chan DC. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nature Rev Mol Cell Biol 15:634-646.
– reference: Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, Jacob A, Mirshahi M, Galas L, Rafii S, Le Foll F, Rafii A. 2013. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med 11:94.
– reference: Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, Yang Y, Galindo C, Mollapour M, Scroggins B, Goode N, Lee MJ, Gourlay CW, Trepel J, Linehan WM, Neckers L. 2009. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 29:4080-4090.
– reference: Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ. 2012. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385-388.
– reference: Yadav N, Chandra D. 2013. Mitochondrial DNA mutations and breast tumorigenesis. Biochim Biophys Acta 1836:336-344.
– reference: Kim MM, Clinger JD, Masayesva BG, Ha PK, Zahurak ML, Westra WH, Califano JA. 2004. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin Cancer Res 10:8512-8515.
– reference: Murphy MP, Smith RA. 2000. Drug delivery to mitochondria: The key to mitochondrial medicine. Adv Drug Deliv Rev 41:235-250.
– reference: Chang SC, Lin PC, Yang SH, Wang HS, Liang WY, Lin JK. 2009. Mitochondrial D-loop mutation is a common event in colorectal cancers with p53 mutations. Int J Colorectal Dis 24:623-628.
– reference: Zhang E, Zhang C, Su Y, Cheng T, Shi C. 2011. Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16:140-146.
– reference: Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P. 2012. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22:399-412.
– reference: Samper E, Nicholls DG, Melov S. 2003. Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts. Aging Cell 2:277-285.
– reference: Hofhaus G, Berneburg M, Wulfert M, Gattermann N. 2003. Live now-pay by ageing: High performance mitochondrial activity in youth and its age-related side effects. Exp Physiol 88:167-174.
– reference: Zhdanov AV, Dmitriev RI, Golubeva AV, Gavrilova SA, Papkovsky DB. 2013. Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF-2 signaling in PC12 cells. Biochim Biophys Acta 1830:3553-3569.
– reference: Anso E, Mullen AR, Felsher DW, Mates JM, Deberardinis RJ, Chandel NS. 2013. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab 1:7.
– reference: Simons AL, Ahmad IM, Mattson DM, Dornfeld KJ, Spitz DR. 2007. 2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res 67:3364-3370.
– reference: Verschoor ML, Ungard R, Harbottle A, Jakupciak JP, Parr RL, Singh G. 2013. Mitochondria and cancer: Past, present, and future. BioMed Res Int 2013:612369.
– reference: Hamanaka RB, Chandel NS. 2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505-513.
– reference: Murphy MP, Smith RA. 2007. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annual Rev Pharmacol Toxicol 47:629-656.
– reference: Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, Guan KL, Lei QY. 2011. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42:719-730.
– reference: Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, Fanelli MA, Cuello-Carrion FD, Gago FE, Anderson RL. 2009. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174:2035-2043.
– reference: Gozuacik D, Kimchi A. 2004. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891-2906.
– reference: Berridge MV, Dong L, Neuzil J. 2015. Mitochondrial DNA in tumor initiation, progression, and metastasis: Role of horizontal mtDNA transfer. Cancer Res 75:3203-3208.
– reference: Supinski GS, Murphy MP, Callahan LA. 2009. MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 297:R1095-R1102.
– reference: Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J. 2008. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661-664.
– reference: Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P. 2003. Inhibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832-37839.
– reference: Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT. 2008. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28:718-731.
– reference: Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. 2009. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73.
– reference: Brandon M, Baldi P, Wallace DC. 2006. Mitochondrial mutations in cancer. Oncogene 25:4647-4662.
– reference: Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788-8793.
– reference: Hofhaus G, Gattermann N. 1999. Mitochondria harbouring mutant mtDNA-A cuckoo in the nest? Biol Chem 380:871-877.
– reference: Jose C, Bellance N, Rossignol R. 2011. Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma? Biochim Biophys Acta 1807:552-561.
– reference: Liu L, Trimarchi JR, Smith PJ, Keefe DL. 2002. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:40-46.
– reference: Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP. 2009. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174:2023-2034.
– reference: Shay JW, Werbin H. 1987. Are mitochondrial DNA mutations involved in the carcinogenic process? Mutat Res 186:149-160.
– reference: Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2009. The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984-4001.
– reference: Ward PS, Thompson CB. 2012. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell 21:297-308.
– reference: Smolkova K, Bellance N, Scandurra F, Genot E, Gnaiger E, Plecita-Hlavata L, Jezek P, Rossignol R. 2010. Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42:55-67.
– reference: Yu M. 2011. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci 89:65-71.
– reference: Trachootham D, Alexandre J, Huang P. 2009. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat Rev Drug Discov 8:579-591.
– reference: West AP, Shadel GS, Ghosh S. 2011. Mitochondria in innate immune responses. Nat Rev Immunol 11:389-402.
– reference: James AM, Cocheme HM, Smith RA, Murphy MP. 2005. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295-21312.
– reference: Fantin VR, St-Pierre J, Leder P. 2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425-434.
– reference: Modica-Napolitano JS, Singh KK. 2004. Mitochondrial dysfunction in cancer. Mitochondrion 4:755-762.
– reference: Chatterjee A, Mambo E, Sidransky D. 2006. Mitochondrial DNA mutations in human cancer. Oncogene 25:4663-4674.
– reference: Lee HC, Yin PH, Lu CY, Chi CW, Wei YH. 2000. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348:425-432.
– reference: Basova LV, Kurnikov IV, Wang L, Ritov VB, Belikova NA, Vlasova II, Pacheco AA, Winnica DE, Peterson J, Bayir H, Waldeck DH, Kagan VE. 2007. Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity. Biochemistry 46:3423-3434.
– reference: Gogvadze V, Orrenius S, Zhivotovsky B. 2008. Mitochondria in cancer cells: What is so special about them? Trends Cell Biol 18:165-173.
– reference: Don AS, Kisker O, Dilda P, Donoghue N, Zhao X, Decollogne S, Creighton B, Flynn E, Folkman J, Hogg PJ. 2003. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 3:497-509.
– reference: Chandel NS. 2014. Mitochondria as signaling organelles. BMC Biol 12:34.
– reference: Spees JL, Olson SD, Whitney MJ, Prockop DJ. 2006. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283-1288.
– reference: Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J, Lechleiter J, Naylor SL, Deng JJ, Lu J, Bai Y. 2009. A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18:1578-1589.
– reference: Campello S, Scorrano L. 2010. Mitochondrial shape changes: Orchestrating cell pathophysiology. EMBO Reports 11:678-684.
– reference: Warburg O. 1928. The chemical constitution of respiration ferment. Science 68:437-443.
– reference: Choi SY, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA. 2007. Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14:597-606.
– reference: Liou GY, Storz P. 2010. Reactive oxygen species in cancer. Free Radical Res 44:479-496.
– reference: Yuan Y, Wang W, Li H, Yu Y Tao J, Huang S, Zeng Z. 2015. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer 15:346.
– reference: Chatterjee A, Dasgupta S, Sidransky D. 2011. Mitochondrial subversion in cancer. Cancer Prev Res 4:638-654.
– reference: Fulda S, Galluzzi L, Kroemer G. 2010. Targeting mitochondria for cancer therapy. Nature Rev Drug Discov 9:447-464.
– reference: Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, Frampton CM, Taylor KM, Smith RA, Murphy MP. 2010. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int 30:1019-1026.
– reference: Williams GS, Boyman L, Lederer WJ. 2015. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35-45.
– reference: Antanaviciute I, Rysevaite K, Liutkevicius V, Marandykina A, Rimkute L, Sveikatiene R, Uloza V, Skeberdis VA. 2014. Long-distance communication between laryngeal carcinoma cells. PLoS ONE 9:e99196.
– reference: Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181-186.
– reference: Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO. 2008. Mitochondria-penetrating peptides. Chem Biol 15:375-382.
– reference: Modica-Napolitano JS, Weissig V. 2015. Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int J Mol Sci 16:17394-17421.
– reference: Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P, Thilly WG. 2001. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nature Genet 28:147-150.
– reference: Suzuki S, Naito A, Asano T, Evans TT, Reddy SA, Higuchi M. 2008. Constitutive activation of AKT pathway inhibits TNF-induced apoptosis in mitochondrial DNA-deficient human myelogenous leukemia ML-1a. Cancer Lett 268:31-37.
– reference: Skulachev VP. 2007. A biochemical approach to the problem of aging: "Megaproject" on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc) 72:1385-1396.
– reference: Linehan WM, Rouault TA. 2013. Molecular pathways: Fumarate hydratase-deficient kidney cancer-targeting the Warburg effect in cancer. Clin Cancer Res 19:3345-3352.
– reference: Klaunig JE, Wang Z, Pu X, Zhou S. 2011. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 254:86-99.
– reference: Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. 2010a. Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506-3514.
– reference: Smolkova K, Plecita-Hlavata L, Bellance N, Benard G, Rossignol R, Jezek P. 2011. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43:950-968.
– reference: Ross MF, Kelso GF, Blaikie FH, James AM, Cocheme HM, Filipovska A, Da Ros T, Hurd TR, Smith RA, Murphy MP. 2005. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 70:222-230.
– reference: Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB. 2011. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108:19611-19616.
– reference: Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. 2000. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390-395.
– reference: Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X, Mayes PA, Wise DR, Thompson CB, Maris JM, Hogarty MD, Simon MC. 2012. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22:631-644.
– reference: Izyumov DS, Domnina LV, Nepryakhina OK, Avetisyan AV, Golyshev SA, Ivanova OY, Korotetskaya MV, Lyamzaev KG, Pletjushkina OY, Popova EN, Chernyak BV. 2010. Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants-the "Skulachev-ion" derivatives. Biochemistry (Mosc) 75:123-129.
– volume: 75
  start-page: 123
  year: 2010
  end-page: 129
  article-title: Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria‐targeted antioxidants‐the “Skulachev‐ion” derivatives
  publication-title: Biochemistry (Mosc)
– volume: 276
  start-page: 4588
  year: 2001
  end-page: 4596
  article-title: Selective targeting of a redox‐active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties
  publication-title: J Biol Chem
– volume: 1836
  start-page: 336
  year: 2013
  end-page: 344
  article-title: Mitochondrial DNA mutations and breast tumorigenesis
  publication-title: Biochim Biophys Acta
– volume: 12
  start-page: 34
  year: 2014
  article-title: Mitochondria as signaling organelles
  publication-title: BMC Biol
– volume: 6
  start-page: e23401
  year: 2011
  article-title: Mitochondrial DNA mutations regulate metastasis of human breast cancer cells
  publication-title: PLoS ONE
– volume: 20
  start-page: 291
  year: 1998
  end-page: 293
  article-title: Somatic mutations of the mitochondrial genome in human colorectal tumours
  publication-title: Nat Genet
– volume: 435
  start-page: 677
  year: 2005
  end-page: 681
  article-title: An inhibitor of Bcl‐2 family proteins induces regression of solid tumours
  publication-title: Nature
– volume: 584
  start-page: 562
  year: 2010
  end-page: 566
  article-title: Mitochondria‐targeted antioxidant SkQR1 selectively protects MDR (Pgp 170)‐negative cells against oxidative stress
  publication-title: FEBS Lett
– volume: 42
  start-page: 55
  year: 2010
  end-page: 67
  article-title: Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia
  publication-title: J Bioenerg Biomembr
– volume: 43
  start-page: 950
  year: 2011
  end-page: 968
  article-title: Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells
  publication-title: Int J Biochem Cell Biol
– volume: 9
  start-page: e99196
  year: 2014
  article-title: Long‐distance communication between laryngeal carcinoma cells
  publication-title: PLoS ONE
– volume: 10
  start-page: 8512
  year: 2004
  end-page: 8515
  article-title: Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions
  publication-title: Clin Cancer Res
– volume: 174
  start-page: 2023
  year: 2009
  end-page: 2034
  article-title: An absence of stromal caveolin‐1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers
  publication-title: Am J Pathol
– volume: 99
  start-page: 1751
  year: 1997
  end-page: 1758
  article-title: Activation of CPP32‐like protease in tumor necrosis factor‐induced apoptosis is dependent on mitochondrial function
  publication-title: J Clin Invest
– volume: 13
  start-page: 712
  year: 2011
  end-page: 719
  article-title: Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation
  publication-title: Cell metabolism
– volume: 1807
  start-page: 552
  year: 2011
  end-page: 561
  article-title: Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma
  publication-title: Biochim Biophys Acta
– volume: 108
  start-page: 19611
  year: 2011
  end-page: 19616
  article-title: Hypoxia promotes isocitrate dehydrogenase‐dependent carboxylation of alpha‐ketoglutarate to citrate to support cell growth and viability
  publication-title: Proc Natl Acad Sci USA
– volume: 1
  start-page: 7
  year: 2013
  article-title: Metabolic changes in cancer cells upon suppression of MYC
  publication-title: Cancer Metab
– volume: 11
  start-page: 9
  year: 2015
  end-page: 15
  article-title: Targeting mitochondria metabolism for cancer therapy
  publication-title: Nature Chem Biol
– volume: 79
  start-page: 253
  year: 2015
  end-page: 263
  article-title: The Warburg effect: Evolving interpretations of an established concept
  publication-title: Free Radical Biol Med
– volume: 21
  start-page: R261
  year: 2014
  end-page: R277
  article-title: Current views on cell metabolism in SDHx‐related pheochromocytoma and paraganglioma
  publication-title: Endocr Relat Cancer
– volume: 356
  start-page: 583
  year: 2000
  end-page: 587
  article-title: Inborn errors of metabolism around time of birth
  publication-title: Lancet
– volume: 593
  start-page: 64
  year: 2006
  end-page: 79
  article-title: Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over‐expression of c‐MYC
  publication-title: Mutation Res
– volume: 73
  start-page: 1300
  year: 2008
  end-page: 1316
  article-title: Mitochondria‐targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53‐deficient cells
  publication-title: Biochemistry (Mosc)
– volume: 42
  start-page: 719
  year: 2011
  end-page: 730
  article-title: Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone‐mediated autophagy and promotes tumor growth
  publication-title: Mol Cell
– volume: 14
  start-page: 709
  year: 2014
  end-page: 721
  article-title: Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel
  publication-title: Nat Rev Cancer
– volume: 54
  start-page: 516
  year: 2009
  end-page: 524
  article-title: Mutations in mitochondrial DNA polymerase‐gamma promote breast tumorigenesis
  publication-title: J Hum Genet
– volume: 15
  start-page: 375
  year: 2008
  end-page: 382
  article-title: Mitochondria‐penetrating peptides
  publication-title: Chem Biol
– volume: 10
  start-page: R84
  year: 2008
  article-title: Targeting aspartate aminotransferase in breast cancer
  publication-title: Breast Cancer Res
– volume: 481
  start-page: 385
  year: 2012
  end-page: 388
  article-title: Reductive carboxylation supports growth in tumour cells with defective mitochondria
  publication-title: Nature
– volume: 11
  start-page: 94
  year: 2013
  article-title: Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance
  publication-title: J Transl Med
– volume: 24
  start-page: 722
  year: 1998
  end-page: 725
  article-title: Comparison of oxidative base damage in mitochondrial and nuclear DNA
  publication-title: Free Radical Biol Med
– volume: 370
  start-page: 751
  year: 2003
  end-page: 762
  article-title: Mitochondrial threshold effects
  publication-title: Biochem J
– volume: 153
  start-page: 56
  year: 2013
  end-page: 69
  article-title: Influence of metabolism on epigenetics and disease
  publication-title: Cell
– volume: 488
  start-page: 119
  year: 2001
  end-page: 133
  article-title: Mitochondrial DNA in human malignancy
  publication-title: Mutation Res
– volume: 20
  start-page: 1
  year: 2006
  end-page: 15
  article-title: Necrotic death as a cell fate
  publication-title: Genes Dev
– volume: 22
  start-page: 399
  year: 2012
  end-page: 412
  article-title: K‐ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis
  publication-title: Cell Res
– volume: 39
  start-page: 359
  year: 2005
  end-page: 407
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine
  publication-title: Ann Rev Genet
– volume: 103
  start-page: 1283
  year: 2006
  end-page: 1288
  article-title: Mitochondrial transfer between cells can rescue aerobic respiration
  publication-title: Proc Natl Acad Sci USA
– volume: 297
  start-page: R1095
  year: 2009
  end-page: R1102
  article-title: MitoQ administration prevents endotoxin‐induced cardiac dysfunction
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 4
  start-page: 755
  year: 2004
  end-page: 762
  article-title: Mitochondrial dysfunction in cancer
  publication-title: Mitochondrion
– volume: 73
  start-page: 1273
  year: 2008a
  end-page: 1287
  article-title: Mitochondria‐targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies
  publication-title: Biochemistry (Mosc)
– volume: 46
  start-page: 3423
  year: 2007
  end-page: 3434
  article-title: Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity
  publication-title: Biochemistry
– volume: 222
  start-page: 1076
  year: 1969
  end-page: 1078
  article-title: Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria
  publication-title: Nature
– volume: 52
  start-page: 160
  year: 2012
  end-page: 166
  article-title: Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2(‐*) and H2O2
  publication-title: Free Radical Biol Med
– volume: 10
  start-page: 241
  year: 2006
  end-page: 252
  article-title: Selective killing of oncogenically transformed cells through a ROS‐mediated mechanism by beta‐phenylethyl isothiocyanate
  publication-title: Cancer Cell
– volume: 283
  start-page: 1482
  year: 1999
  end-page: 1488
  article-title: Mitochondrial diseases in man and mouse
  publication-title: Science
– volume: 22
  start-page: 631
  year: 2012
  end-page: 644
  article-title: ATF4 regulates MYC‐mediated neuroblastoma cell death upon glutamine deprivation
  publication-title: Cancer Cell
– volume: 62
  start-page: 1890
  year: 2005
  end-page: 1899
  article-title: Bacterial signal peptide recognizes HeLa cell mitochondrial import receptors and functions as a mitochondrial leader sequence
  publication-title: Cell Mol Life Sci
– volume: 20
  start-page: 7579
  year: 2001
  end-page: 7587
  article-title: Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite, and CD437
  publication-title: Oncogene
– volume: 268
  start-page: 31
  year: 2008
  end-page: 37
  article-title: Constitutive activation of AKT pathway inhibits TNF‐induced apoptosis in mitochondrial DNA‐deficient human myelogenous leukemia ML‐1a
  publication-title: Cancer Lett
– volume: 19
  start-page: 197
  year: 2005
  end-page: 207
  article-title: Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells
  publication-title: Mol Cell
– volume: 2
  start-page: 277
  year: 2003
  end-page: 285
  article-title: Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts
  publication-title: Aging Cell
– volume: 24
  start-page: 623
  year: 2009
  end-page: 628
  article-title: Mitochondrial D‐loop mutation is a common event in colorectal cancers with p53 mutations
  publication-title: Int J Colorectal Dis
– volume: 8
  start-page: 579
  year: 2009
  end-page: 591
  article-title: Targeting cancer cells by ROS‐mediated mechanisms: A radical therapeutic approach
  publication-title: Nat Rev Drug Discov
– volume: 19
  start-page: 1088
  year: 2005
  end-page: 1095
  article-title: Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injury
  publication-title: Faseb J
– volume: 67
  start-page: 3364
  year: 2007
  end-page: 3370
  article-title: 2‐Deoxy‐D‐glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells
  publication-title: Cancer Res
– volume: 1778
  start-page: 423
  year: 2008
  end-page: 432
  article-title: MITO‐Porter: A liposome‐based carrier system for delivery of macromolecules into mitochondria via membrane fusion
  publication-title: Biochim Biophys Acta
– volume: 348
  start-page: 425
  year: 2000
  end-page: 432
  article-title: Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells
  publication-title: Biochem J
– volume: 20
  start-page: 3677
  year: 2013b
  end-page: 3692
  article-title: Reactive oxygen species in cancer biology and anticancer therapy
  publication-title: Curr Med Chem
– volume: 25
  start-page: 4663
  year: 2006
  end-page: 4674
  article-title: Mitochondrial DNA mutations in human cancer
  publication-title: Oncogene
– volume: 25
  start-page: 1670
  year: 2010
  end-page: 1674
  article-title: A double‐blind, placebo‐controlled study to assess the mitochondria‐targeted antioxidant MitoQ as a disease‐modifying therapy in Parkinson's disease
  publication-title: Mov Disord
– volume: 96
  start-page: 1388
  year: 2009
  end-page: 1398
  article-title: Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito‐Q
  publication-title: Biophys J
– volume: 355
  start-page: 389
  year: 2000
  end-page: 394
  article-title: Mitochondrial respiratory chain disorders II: Neurodegenerative disorders and nuclear gene defects
  publication-title: Lancet
– volume: 1843
  start-page: 2253
  year: 2014
  end-page: 2262
  article-title: New functions of mitochondria associated membranes in cellular signaling
  publication-title: Biochim Biophys Acta
– volume: 78
  start-page: 35
  year: 2015
  end-page: 45
  article-title: Mitochondrial calcium and the regulation of metabolism in the heart
  publication-title: J Mol Cell Cardiol
– volume: 94
  start-page: 514
  year: 1997
  end-page: 519
  article-title: Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress
  publication-title: Proc Natl Acad Sci USA
– volume: 65
  start-page: 1655
  year: 2005
  end-page: 1663
  article-title: Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis
  publication-title: Cancer Res
– volume: 19
  start-page: 307
  year: 2000
  end-page: 314
  article-title: Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl‐2‐independent permeability transition pore opening and apoptosis
  publication-title: Oncogene
– volume: 21
  start-page: 81
  year: 2015
  end-page: 94
  article-title: Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA
  publication-title: Cell Metab
– volume: 3
  start-page: 497
  year: 2003
  end-page: 509
  article-title: A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells
  publication-title: Cancer Cell
– volume: 25
  start-page: 4768
  year: 2006
  end-page: 4776
  article-title: Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs
  publication-title: Oncogene
– volume: 15
  start-page: 634
  year: 2014
  end-page: 646
  article-title: Mitochondrial dynamics and inheritance during cell division, development and disease
  publication-title: Nature Rev Mol Cell Biol
– volume: 102
  start-page: 719
  year: 2005
  end-page: 724
  article-title: MtDNA mutations increase tumorigenicity in prostate cancer
  publication-title: Proc Natl Acad Sci USA
– volume: 186
  start-page: 149
  year: 1987
  end-page: 160
  article-title: Are mitochondrial DNA mutations involved in the carcinogenic process
  publication-title: Mutat Res
– volume: 29
  start-page: 4080
  year: 2009
  end-page: 4090
  article-title: Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia‐inducible transcription factor 1alpha stabilization by glucose‐dependent generation of reactive oxygen species
  publication-title: Mol Cell Biol
– volume: 23
  start-page: 2891
  year: 2004
  end-page: 2906
  article-title: Autophagy as a cell death and tumor suppressor mechanism
  publication-title: Oncogene
– volume: 278
  start-page: 37832
  year: 2003
  end-page: 37839
  article-title: Inhibition of mitochondrial respiration: A novel strategy to enhance drug‐induced apoptosis in human leukemia cells by a reactive oxygen species‐mediated mechanism
  publication-title: J Biol Chem
– volume: 9
  start-page: 1960
  year: 2010b
  end-page: 1971
  article-title: The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin‐1 deficient cancer associated fibroblasts
  publication-title: Cell Cycle
– volume: 88
  start-page: 167
  year: 2003
  end-page: 174
  article-title: Live now‐pay by ageing: High performance mitochondrial activity in youth and its age‐related side effects
  publication-title: Exp Physiol
– volume: 13
  start-page: R71
  year: 2003
  end-page: R73
  article-title: Apoptosis: Mitochondrial membrane permeabilization‐the (w) hole story
  publication-title: Curr Biol
– volume: 2013
  start-page: 612369
  year: 2013
  article-title: Mitochondria and cancer: Past, present, and future
  publication-title: BioMed Res Int
– volume: 75
  start-page: 3203
  year: 2015
  end-page: 3208
  article-title: Mitochondrial DNA in tumor initiation, progression, and metastasis: Role of horizontal mtDNA transfer
  publication-title: Cancer Res
– volume: 12
  start-page: 230
  year: 2007
  end-page: 238
  article-title: HIF‐dependent antitumorigenic effect of antioxidants in vivo
  publication-title: Cancer Cell
– volume: 64
  start-page: 985
  year: 2004
  end-page: 993
  article-title: Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells
  publication-title: Cancer Res
– volume: 320
  start-page: 661
  year: 2008
  end-page: 664
  article-title: ROS‐generating mitochondrial DNA mutations can regulate tumor cell metastasis
  publication-title: Science
– volume: 280
  start-page: 21295
  year: 2005
  end-page: 21312
  article-title: Interactions of mitochondria‐targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools
  publication-title: J Biol Chem
– volume: 287
  start-page: 2017
  year: 2000
  end-page: 2019
  article-title: Facile detection of mitochondrial DNA mutations in tumors and bodily fluids
  publication-title: Science
– volume: 1
  start-page: 40
  year: 2002
  end-page: 46
  article-title: Mitochondrial dysfunction leads to telomere attrition and genomic instability
  publication-title: Aging Cell
– volume: 135
  start-page: 1161
  year: 2008
  end-page: 1163
  article-title: Necroptosis: A specialized pathway of programmed necrosis
  publication-title: Cell
– volume: 8
  start-page: 519
  year: 1927
  end-page: 530
  article-title: The metabolism of tumors in the body
  publication-title: J Gen Physiol
– volume: 346
  start-page: 27
  year: 1974
  end-page: 78
  article-title: The electromechanochemical model for energy coupling in mitochondria
  publication-title: Biochim Biophys Acta
– volume: 254
  start-page: 86
  year: 2011
  end-page: 99
  article-title: Oxidative stress and oxidative damage in chemical carcinogenesis
  publication-title: Toxicol Appl Pharmacol
– volume: 25
  start-page: 4647
  year: 2006
  end-page: 4662
  article-title: Mitochondrial mutations in cancer
  publication-title: Oncogene
– volume: 51
  start-page: 236
  year: 2013
  end-page: 248
  article-title: The proto‐oncometabolite fumarate binds glutathione to amplify ROS‐dependent signaling
  publication-title: Mol Cell
– volume: 19
  start-page: 57
  year: 2009
  end-page: 66
  article-title: Mitochondria as targets for cancer chemotherapy
  publication-title: Semin Cancer Biol
– volume: 30
  start-page: 1019
  year: 2010
  end-page: 1026
  article-title: The mitochondria‐targeted anti‐oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients
  publication-title: Liver Int
– volume: 9
  start-page: 3256
  year: 2010
  end-page: 3276
  article-title: Oxidative stress in cancer associated fibroblasts drives tumor‐stroma co‐evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells
  publication-title: Cell Cycle
– volume: 2
  start-page: ra73
  year: 2009
  article-title: Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth
  publication-title: Sci Signal
– volume: 44
  start-page: 239
  year: 2004
  end-page: 267
  article-title: The role of oxidative stress in carcinogenesis
  publication-title: Ann Rev Pharmacol Toxicol
– volume: 22
  start-page: 1181
  year: 2015
  end-page: 1191
  article-title: Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells
  publication-title: Cell Death Differ
– volume: 28
  start-page: 147
  year: 2001
  end-page: 150
  article-title: High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection
  publication-title: Nature Genet
– volume: 43
  start-page: 1045
  year: 2011
  end-page: 1051
  article-title: Stromal‐epithelial metabolic coupling in cancer: Integrating autophagy and metabolism in the tumor microenvironment
  publication-title: Int J Biochem Cell Biol
– volume: 47
  start-page: 629
  year: 2007
  end-page: 656
  article-title: Targeting antioxidants to mitochondria by conjugation to lipophilic cations
  publication-title: Annual Rev Pharmacol Toxicol
– volume: 9
  start-page: 447
  year: 2010
  end-page: 464
  article-title: Targeting mitochondria for cancer therapy
  publication-title: Nature Rev Drug Discov
– volume: 222
  start-page: 141
  year: 2008b
  end-page: 149
  article-title: Protective effects of mitochondria‐targeted antioxidant SkQ in aqueous and lipid membrane environments
  publication-title: J Membr Biol
– volume: 14
  start-page: 597
  year: 2007
  end-page: 606
  article-title: Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli‐elicited apoptosis
  publication-title: Cell Death Differ
– volume: 72
  start-page: 1385
  year: 2007
  end-page: 1396
  article-title: A biochemical approach to the problem of aging: “Megaproject” on membrane‐penetrating ions. The first results and prospects
  publication-title: Biochemistry (Mosc)
– volume: 16
  start-page: 17394
  year: 2015
  end-page: 17421
  article-title: Treatment strategies that enhance the efficacy and selectivity of mitochondria‐targeted anticancer agents
  publication-title: Int J Mol Sci
– volume: 32
  start-page: 249
  year: 2013a
  end-page: 270
  article-title: Reactive oxygen species in the immune system
  publication-title: Int Rev Immunol
– volume: 59
  start-page: 495
  year: 2007
  end-page: 505
  article-title: Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia
  publication-title: Cancer Chemother Pharmacol
– volume: 21
  start-page: 297
  year: 2012
  end-page: 308
  article-title: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate
  publication-title: Cancer Cell
– volume: 12
  start-page: 685
  year: 2012
  end-page: 698
  article-title: Mitochondria and cancer
  publication-title: Nat Rev Cancer
– volume: 70
  start-page: 222
  year: 2005
  end-page: 230
  article-title: Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology
  publication-title: Biochemistry (Mosc)
– volume: 380
  start-page: 871
  year: 1999
  end-page: 877
  article-title: Mitochondria harbouring mutant mtDNA—A cuckoo in the nest
  publication-title: Biol Chem
– volume: 5
  start-page: 9073
  year: 2015
  article-title: MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function
  publication-title: Sci Reports
– volume: 18
  start-page: 1578
  year: 2009
  end-page: 1589
  article-title: A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis
  publication-title: Hum Mol Genet
– volume: 15
  start-page: 346
  year: 2015
  article-title: Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma
  publication-title: BMC Cancer
– volume: 9
  start-page: 3506
  year: 2010a
  end-page: 3514
  article-title: Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism
  publication-title: Cell Cycle
– volume: 452
  start-page: 181
  year: 2008
  end-page: 186
  article-title: Pyruvate kinase M2 is a phosphotyrosine‐binding protein
  publication-title: Nature
– volume: 44
  start-page: 479
  year: 2010
  end-page: 496
  article-title: Reactive oxygen species in cancer
  publication-title: Free Radical Res
– volume: 68
  start-page: 437
  year: 1928
  end-page: 443
  article-title: The chemical constitution of respiration ferment
  publication-title: Science
– volume: 19
  start-page: 3345
  year: 2013
  end-page: 3352
  article-title: Molecular pathways: Fumarate hydratase‐deficient kidney cancer–targeting the Warburg effect in cancer
  publication-title: Clin Cancer Res
– volume: 2014
  start-page: 292017
  year: 2014
  article-title: Quantitative assessment of heteroplasmy of mitochondrial genome: Perspectives in diagnostics and methodological pitfalls
  publication-title: BioMed Res Int
– volume: 22
  start-page: 331
  year: 2012
  end-page: 344
  article-title: Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s
  publication-title: Cancer Cell
– volume: 4
  start-page: 638
  year: 2011
  end-page: 654
  article-title: Mitochondrial subversion in cancer
  publication-title: Cancer Prev Res
– volume: 41
  start-page: 235
  year: 2000
  end-page: 250
  article-title: Drug delivery to mitochondria: The key to mitochondrial medicine
  publication-title: Adv Drug Deliv Rev
– volume: 1830
  start-page: 3553
  year: 2013
  end-page: 3569
  article-title: Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF‐2 signaling in PC12 cells
  publication-title: Biochim Biophys Acta
– volume: 16
  start-page: 140
  year: 2011
  end-page: 146
  article-title: Newly developed strategies for multifunctional mitochondria‐targeted agents in cancer therapy
  publication-title: Drug Discov Today
– volume: 107
  start-page: 8788
  year: 2010
  end-page: 8793
  article-title: Mitochondrial metabolism and ROS generation are essential for Kras‐mediated tumorigenicity
  publication-title: Proc Natl Acad Sci USA
– volume: 481
  start-page: 380
  year: 2012
  end-page: 384
  article-title: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
  publication-title: Nature
– volume: 54
  start-page: 322
  year: 2009
  end-page: 328
  article-title: Mitochondria‐targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy
  publication-title: Hypertension
– volume: 9
  start-page: 425
  year: 2006
  end-page: 434
  article-title: Attenuation of LDH‐A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
  publication-title: Cancer Cell
– volume: 18
  start-page: 165
  year: 2008
  end-page: 173
  article-title: Mitochondria in cancer cells: What is so special about them
  publication-title: Trends Cell Biol
– volume: 11
  start-page: 678
  year: 2010
  end-page: 684
  article-title: Mitochondrial shape changes: Orchestrating cell pathophysiology
  publication-title: EMBO Reports
– volume: 4
  start-page: 552
  year: 2003
  end-page: 565
  article-title: Regulation of cell death: The calcium‐apoptosis link
  publication-title: Nat Rev Mol Cell Biol
– volume: 174
  start-page: 2035
  year: 2009
  end-page: 2043
  article-title: Stromal cell expression of caveolin‐1 predicts outcome in breast cancer
  publication-title: Am J Pathol
– volume: 11
  start-page: 389
  year: 2011
  end-page: 402
  article-title: Mitochondria in innate immune responses
  publication-title: Nat Rev Immunol
– volume: 35
  start-page: 505
  year: 2010
  end-page: 513
  article-title: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
  publication-title: Trends Biochem Sci
– volume: 89
  start-page: 65
  year: 2011
  end-page: 71
  article-title: Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers
  publication-title: Life Sci
– volume: 28
  start-page: 718
  year: 2008
  end-page: 731
  article-title: Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species‐dependent hypoxia‐inducible factor activation and tumorigenesis
  publication-title: Mol Cell Biol
– volume: 417
  start-page: 1
  year: 2009
  end-page: 13
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochem J
– volume: 1019
  start-page: 260
  year: 2004
  end-page: 264
  article-title: Mitochondrial dysfunction is a common phenotype in aging and cancer
  publication-title: Ann NY Acad Sci
– volume: 8
  start-page: 3984
  year: 2009
  end-page: 4001
  article-title: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
  publication-title: Cell Cycle
– volume: 407
  start-page: 390
  year: 2000
  end-page: 395
  article-title: Superoxide dismutase as a target for the selective killing of cancer cells
  publication-title: Nature
– volume: 14
  start-page: 76
  year: 2014
  article-title: Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress
  publication-title: BMC Cancer
– volume: 63
  start-page: 81
  year: 2003
  end-page: 86
  article-title: Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme
  publication-title: J Neurooncol
– ident: e_1_2_11_91_1
  doi: 10.1074/jbc.M301546200
– ident: e_1_2_11_144_1
  doi: 10.1016/S0960-9822(02)01433-1
– ident: e_1_2_11_67_1
  doi: 10.1158/1078-0432.CCR-13-0304
– ident: e_1_2_11_125_1
  doi: 10.1146/annurev.genet.39.110304.095751
– ident: e_1_2_11_21_1
  doi: 10.1007/s00384-009-0663-9
– ident: e_1_2_11_62_1
  doi: 10.1016/j.taap.2009.11.028
– ident: e_1_2_11_129_1
  doi: 10.1085/jgp.8.6.519
– ident: e_1_2_11_3_1
  doi: 10.1096/fj.05-3718com
– ident: e_1_2_11_40_1
  doi: 10.1038/sj.onc.1207521
– ident: e_1_2_11_118_1
  doi: 10.1186/bcr2154
– ident: e_1_2_11_16_1
  doi: 10.1038/embor.2010.115
– ident: e_1_2_11_49_1
  doi: 10.1016/j.chembiol.2008.03.015
– ident: e_1_2_11_128_1
  doi: 10.1126/science.68.1767.437
– ident: e_1_2_11_109_1
  doi: 10.1016/j.biocel.2010.05.003
– ident: e_1_2_11_48_1
  doi: 10.1515/BC.1999.107
– ident: e_1_2_11_87_1
  doi: 10.1016/j.molcel.2005.06.008
– ident: e_1_2_11_113_1
  doi: 10.1128/MCB.00483-09
– ident: e_1_2_11_126_1
  doi: 10.1038/nrc3365
– ident: e_1_2_11_141_1
  doi: 10.2174/0929867311320999165
– ident: e_1_2_11_119_1
  doi: 10.1038/nrd2803
– ident: e_1_2_11_38_1
  doi: 10.1016/j.semcancer.2008.11.007
– ident: e_1_2_11_86_1
  doi: 10.1016/j.freeradbiomed.2011.10.435
– ident: e_1_2_11_135_1
  doi: 10.1073/pnas.1117773108
– ident: e_1_2_11_140_1
  doi: 10.3109/08830185.2012.755176
– ident: e_1_2_11_42_1
  doi: 10.1016/0304-4173(74)90011-1
– ident: e_1_2_11_39_1
  doi: 10.1186/1471-2407-14-76
– ident: e_1_2_11_63_1
  doi: 10.1042/bj3480425
– ident: e_1_2_11_6_1
  doi: 10.1371/journal.pone.0099196
– ident: e_1_2_11_131_1
  doi: 10.1073/pnas.1003428107
– ident: e_1_2_11_30_1
  doi: 10.1016/j.ccr.2006.04.023
– ident: e_1_2_11_79_1
  doi: 10.1042/BJ20081386
– ident: e_1_2_11_85_1
  doi: 10.1023/A:1023756707900
– ident: e_1_2_11_148_1
  doi: 10.1101/gad.1376506
– ident: e_1_2_11_46_1
  doi: 10.1126/scisignal.2000431
– ident: e_1_2_11_121_1
  doi: 10.1016/j.bbamcr.2014.03.009
– ident: e_1_2_11_53_1
  doi: 10.1126/science.1156906
– ident: e_1_2_11_57_1
  doi: 10.1016/j.mrfmmm.2005.06.015
– ident: e_1_2_11_13_1
  doi: 10.4161/cc.9.10.11601
– ident: e_1_2_11_134_1
  doi: 10.1016/j.yjmcc.2014.10.019
– ident: e_1_2_11_73_1
  doi: 10.1038/nature10602
– ident: e_1_2_11_14_1
  doi: 10.1038/sj.onc.1209607
– ident: e_1_2_11_142_1
  doi: 10.1016/j.lfs.2011.05.010
– ident: e_1_2_11_88_1
  doi: 10.1093/hmg/ddp069
– ident: e_1_2_11_127_1
  doi: 10.1038/cdd.2014.211
– ident: e_1_2_11_132_1
  doi: 10.1038/nchembio.1712
– ident: e_1_2_11_94_1
  doi: 10.1038/3108
– ident: e_1_2_11_36_1
  doi: 10.1016/j.ccr.2007.08.004
– ident: e_1_2_11_108_1
  doi: 10.1007/s10863-009-9267-x
– ident: e_1_2_11_26_1
  doi: 10.1038/nature06667
– ident: e_1_2_11_32_1
  doi: 10.1126/science.287.5460.2017
– ident: e_1_2_11_27_1
  doi: 10.1038/88859
– ident: e_1_2_11_55_1
  doi: 10.1074/jbc.M501527200
– ident: e_1_2_11_145_1
  doi: 10.1016/S0891-5849(97)00331-6
– ident: e_1_2_11_98_1
  doi: 10.1158/0008-5472.CAN-03-1101
– ident: e_1_2_11_110_1
  doi: 10.1002/mds.23148
– ident: e_1_2_11_58_1
  doi: 10.1016/j.cell.2013.03.004
– ident: e_1_2_11_68_1
  doi: 10.3109/10715761003667554
– ident: e_1_2_11_102_1
  doi: 10.1158/0008-5472.CAN-04-2012
– ident: e_1_2_11_10_1
  doi: 10.1038/sj.onc.1204953
– ident: e_1_2_11_56_1
  doi: 10.1016/j.bbabio.2010.10.012
– ident: e_1_2_11_133_1
  doi: 10.1038/nri2975
– ident: e_1_2_11_84_1
  doi: 10.1038/nrm1150
– ident: e_1_2_11_11_1
  doi: 10.1158/0008-5472.CAN-15-0859
– ident: e_1_2_11_12_1
  doi: 10.4161/cc.9.17.12731
– ident: e_1_2_11_60_1
  doi: 10.1158/1078-0432.CCR-04-0734
– ident: e_1_2_11_124_1
  doi: 10.1126/science.283.5407.1482
– ident: e_1_2_11_90_1
  doi: 10.4161/cc.8.23.10238
– ident: e_1_2_11_95_1
  doi: 10.1016/j.ccr.2012.09.021
– ident: e_1_2_11_31_1
  doi: 10.1016/j.febslet.2009.12.002
– ident: e_1_2_11_5_1
  doi: 10.1186/2049-3002-1-7
– ident: e_1_2_11_7_1
  doi: 10.1134/S0006297908120018
– ident: e_1_2_11_64_1
  doi: 10.1016/S0140-6736(00)02591-5
– ident: e_1_2_11_116_1
  doi: 10.1016/j.canlet.2008.03.020
– ident: e_1_2_11_130_1
  doi: 10.1016/j.ccr.2012.02.014
– ident: e_1_2_11_100_1
  doi: 10.1046/j.1474-9728.2003.00062.x
– ident: e_1_2_11_19_1
  doi: 10.1186/1741-7007-12-34
– ident: e_1_2_11_9_1
  doi: 10.1021/bi061854k
– ident: e_1_2_11_78_1
  doi: 10.1038/nature10642
– ident: e_1_2_11_96_1
  doi: 10.1007/s10541-005-0104-5
– ident: e_1_2_11_8_1
  doi: 10.1007/s00232-008-9108-6
– ident: e_1_2_11_18_1
  doi: 10.1016/j.ccr.2012.07.015
– ident: e_1_2_11_82_1
  doi: 10.1038/sj.onc.1209602
– ident: e_1_2_11_114_1
  doi: 10.1016/j.molcel.2013.05.003
– ident: e_1_2_11_61_1
  doi: 10.1146/annurev.pharmtox.44.101802.121851
– ident: e_1_2_11_15_1
  doi: 10.1038/srep09073
– ident: e_1_2_11_81_1
  doi: 10.1146/annurev.pharmtox.47.120505.105110
– ident: e_1_2_11_52_1
  doi: 10.1371/journal.pone.0023401
– ident: e_1_2_11_43_1
  doi: 10.1128/MCB.01338-07
– ident: e_1_2_11_146_1
  doi: 10.1016/j.drudis.2010.12.006
– ident: e_1_2_11_70_1
  doi: 10.1016/j.molcel.2011.04.025
– ident: e_1_2_11_23_1
  doi: 10.1038/sj.onc.1209604
– ident: e_1_2_11_33_1
  doi: 10.1038/nrd3137
– ident: e_1_2_11_115_1
  doi: 10.1152/ajpregu.90902.2008
– ident: e_1_2_11_103_1
  doi: 10.1158/0008-5472.CAN-06-3717
– ident: e_1_2_11_120_1
  doi: 10.1016/j.ccr.2006.08.009
– ident: e_1_2_11_71_1
  doi: 10.4161/cc.9.16.12553
– ident: e_1_2_11_47_1
  doi: 10.1113/eph8802510
– ident: e_1_2_11_143_1
  doi: 10.1186/s12885-015-1349-z
– ident: e_1_2_11_147_1
  doi: 10.1016/j.bbagen.2013.02.016
– ident: e_1_2_11_24_1
  doi: 10.1016/j.freeradbiomed.2014.08.027
– ident: e_1_2_11_77_1
  doi: 10.1007/s00018-005-5178-0
– ident: e_1_2_11_22_1
  doi: 10.1158/1940-6207.CAPR-10-0326
– ident: e_1_2_11_123_1
  doi: 10.1530/ERC-13-0398
– ident: e_1_2_11_76_1
  doi: 10.3390/ijms160817394
– ident: e_1_2_11_50_1
  doi: 10.1038/cr.2011.145
– ident: e_1_2_11_20_1
  doi: 10.1016/j.bpj.2008.10.042
– ident: e_1_2_11_104_1
  doi: 10.1196/annals.1297.043
– ident: e_1_2_11_44_1
  doi: 10.1016/j.tibs.2010.04.002
– ident: e_1_2_11_99_1
  doi: 10.1038/nrc3803
– ident: e_1_2_11_92_1
  doi: 10.1016/S1383-5742(01)00053-9
– ident: e_1_2_11_72_1
  doi: 10.1016/j.biocel.2011.01.023
– ident: e_1_2_11_54_1
  doi: 10.1134/S000629791002001X
– ident: e_1_2_11_89_1
  doi: 10.1186/1479-5876-11-94
– ident: e_1_2_11_139_1
  doi: 10.1016/j.bbamem.2007.11.002
– ident: e_1_2_11_117_1
  doi: 10.1016/j.cmet.2014.12.003
– ident: e_1_2_11_17_1
  doi: 10.1007/s00280-006-0291-9
– ident: e_1_2_11_107_1
  doi: 10.2353/ajpath.2009.080924
– ident: e_1_2_11_35_1
  doi: 10.1111/j.1478-3231.2010.02250.x
– ident: e_1_2_11_105_1
  doi: 10.1038/jhg.2009.71
– ident: e_1_2_11_112_1
  doi: 10.1073/pnas.0510511103
– ident: e_1_2_11_34_1
  doi: 10.1016/j.cell.2008.12.004
– ident: e_1_2_11_122_1
  doi: 10.1155/2013/612369
– ident: e_1_2_11_29_1
  doi: 10.1016/S1535-6108(03)00109-0
– ident: e_1_2_11_37_1
  doi: 10.1016/j.tcb.2008.01.006
– ident: e_1_2_11_4_1
  doi: 10.1134/S0006297908120031
– ident: e_1_2_11_51_1
  doi: 10.1038/35030140
– ident: e_1_2_11_80_1
  doi: 10.1016/S0169-409X(99)00069-1
– ident: e_1_2_11_2_1
  doi: 10.1016/j.cmet.2011.03.024
– ident: e_1_2_11_97_1
  doi: 10.1042/bj20021594
– ident: e_1_2_11_69_1
  doi: 10.1046/j.1474-9728.2002.00004.x
– ident: e_1_2_11_65_1
  doi: 10.1016/S0140-6736(99)05226-5
– ident: e_1_2_11_45_1
  doi: 10.1172/JCI119339
– ident: e_1_2_11_138_1
  doi: 10.1073/pnas.94.2.514
– ident: e_1_2_11_41_1
  doi: 10.1161/HYPERTENSIONAHA.109.130351
– ident: e_1_2_11_101_1
  doi: 10.1016/0165-1110(87)90028-5
– ident: e_1_2_11_83_1
  doi: 10.1038/nature03579
– ident: e_1_2_11_106_1
  doi: 10.1134/S0006297907120139
– ident: e_1_2_11_25_1
  doi: 10.1038/sj.cdd.4402020
– ident: e_1_2_11_74_1
  doi: 10.1038/nrm3877
– ident: e_1_2_11_93_1
  doi: 10.1073/pnas.0408894102
– ident: e_1_2_11_66_1
  doi: 10.1038/2221076a0
– ident: e_1_2_11_111_1
  doi: 10.1155/2014/292017
– ident: e_1_2_11_137_1
  doi: 10.1016/j.bbcan.2013.10.002
– ident: e_1_2_11_136_1
  doi: 10.2353/ajpath.2009.080873
– ident: e_1_2_11_59_1
  doi: 10.1074/jbc.M009093200
– ident: e_1_2_11_75_1
  doi: 10.1016/j.mito.2004.07.027
– ident: e_1_2_11_28_1
  doi: 10.1038/sj.onc.1203299
SSID ssj0009933
Score 2.650137
SecondaryResourceType review_article
Snippet Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2570
SubjectTerms Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Antioxidants
DNA, Mitochondrial - genetics
Drug Delivery Systems
Humans
Mitochondria - drug effects
Mitochondria - metabolism
Neoplasms - drug therapy
Neoplasms - metabolism
Reactive Oxygen Species - metabolism
Title Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy
URI https://api.istex.fr/ark:/67375/WNG-H79NDXLJ-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.25349
https://www.ncbi.nlm.nih.gov/pubmed/26895995
https://www.proquest.com/docview/1812949880
https://www.proquest.com/docview/1813900124
https://www.proquest.com/docview/1832245426
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahpB44bJxCQxkEJp4SdcmzsXwVBW2qmIFlU70AcmyHUeClXTqBTF-PefYScbQQIi3KDmRYvuc48_O5-8APOdZoktFtMGuyUKOCJ80IEVoBVWPy3QvU7RQPB6nwxM-miWzLXjVnIXx-hDthhtFhsvXFOBKrw4uREO_mLNOlMScDu8RV4sA0eRCOkrUZeQdBSHhvUZVqBsdtG9emouuUbd-vwpoXsatbuI5vAWfmk_2fJPTzmatO-bHb2qO_9mm23CzBqSs7z3oDmzZagd2-xUuxr-es33mKKJu730HrvvKlee7MDnGTICZsyrQgZmqCvbrjTmbvPvAPldsQD61fMnGi292zqaOdb5iiJNZv6JNdHrKpl7Y4C6cHL6ZDoZhXZ4hNAiTRMh1bBAflmlWIoooTImLzTK2BR36V8IWwqB_ICJMlSjibiRSYTIdW8XTbm6KMonvwXa1qOwDYGgWl0LZtJfnnBda9dCzcsMza4RR2gTwohkoaWrtciqhMZdedTmS2HPS9VwAz1rTMy_YcZXRvhvt1kItT4nhliXy4_hIDjMxfj17O5JHAew17iDr4F5JAkWCC8x8ATxtH2NY0r8WVdnFxtnEgrAk_5sNZlOeIEYK4L53tfaDojQXpAWHLXcO8-e2yNHgvbt4-O-mj-AGDlnqaTl7sL1ebuxjBFdr_cRF0U-Z5x1n
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTYi98LEBCwwwCE28pGsT58OIl6pjK6UNqHSiL8hyHEeClXTqWsT467lzPsbQQIi3KL5I_rg7_3w5_w7gOY-CNFeUNtjWkcsR4RMHpHCNoOpxUdqJFB0UR0nYP-aDaTBdg1f1XZiSH6IJuJFlWH9NBk4B6f0L1tAv-rTlBT4X12CDKnoTc_7B-II8SlSF5G0SQsA7Na9Q29tvPr20G23QxH6_CmpeRq526zm8BZ_qTpcZJyet1TJt6R-_8Tn-76huw80Kk7JuqUR3YM0UW7DdLfA8_vWc7TGbJWrD71twvSxeeb4N4xE6A3SeRYY6zFSRsV9fzNj43Qf2uWA9UqvFS5bMv5kZm9jE8zOGUJl1C4qjUyublNwGd-H48PWk13erCg2uRqQkXJ76GiFiHkY5AolM53jezH2T0b1_JUwmNKoIgsJQicxveyIUOkp9o3jYjnWWB_49WC_mhdkBhmJ-LpQJO3HMeZaqDipXrHlktNAq1Q68qFdK6oq-nKpozGRJvOxJnDlpZ86BZ43oacnZcZXQnl3uRkItTijJLQrkx-RI9iORHEyHA3nkwG6tD7Ky7zNJuEhwgc7PgadNM1om_W5RhZmvrIwvCE7yv8mgQ-UBwiQH7pe61nTIC2NBdHA4cqsxfx6LHPTe24cH_y76BG70J6OhHL5J3j6ETVy-sMzS2YX15WJlHiHWWqaPrUn9BGBrIYM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am0C8cNmABQYYhCZe0rWJc_F4qlq6UrYwlU7rA5LlOI40Vtyqa6dtv55j5zKGBkK8RfGJZPtc_Nk5_g7AOxoFaS5M2mBTRi5FhG84IJmrmKkeF6WtSJiN4kES9o_oYByMV-BDdRem4IeoD9yMZ9h4bRx8luU716Sh3-Ws4QU-ZXdgjYZNZuo2dIfX3FGsrCNvcxAC2qpohZreTv3pjcVozczrxW1I8yZwtStP7yF8q_pcJJycNpaLtCGvfqNz_M9BPYIHJSIl7cKEHsOK0uuw0da4G_9xSbaJzRG1h-_rcLcoXXm5AcMDDAUYOnWGFkyEzsivLyZk-OUrOdGkY4xqvkuS6bmakJFNOz8jCJRJW5tTdNNKRgWzwRM46n0cdfpuWZ_BlYiTmEtTXyJAzMMoRxiRyRx3m7mvMnPrXzCVMYkGgpAwFCzzmx4LmYxSXwnUViyzPPCfwqqearUJBMX8nAkVtuKY0iwVLTStWNJISSZFKh14XymKy5K83NTQmPCCdtnjOHPczpwDb2vRWcHYcZvQttV2LSHmpybFLQr4cbLH-xFLuuP9Ad9zYKsyB1569xk3qIhRhqHPgTd1M_ql-dkitJourYzPDJikf5PBcEoDBEkOPCtMre6QF8bMkMHhyK3B_HksfNA5tA_P_130Ndw77Pb4_qfk8wu4j9oLixSdLVhdzJfqJQKtRfrKOtRP4MggMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria+and+Mitochondrial+ROS+in+Cancer%3A+Novel+Targets+for+Anticancer+Therapy&rft.jtitle=Journal+of+cellular+physiology&rft.au=Yang%2C+Yuhui&rft.au=Karakhanova%2C+Svetlana&rft.au=Hartwig%2C+Werner&rft.au=D%27Haese%2C+Jan+G.&rft.date=2016-12-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=231&rft.issue=12&rft.spage=2570&rft.epage=2581&rft_id=info:doi/10.1002%2Fjcp.25349&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_25349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon