A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell
ABSTRACT Wastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily...
Saved in:
Published in | Biotechnology and bioengineering Vol. 111; no. 4; pp. 709 - 718 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.04.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3592 1097-0290 1097-0290 |
DOI | 10.1002/bit.25137 |
Cover
Loading…
Abstract | ABSTRACT
Wastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater‐fed MFCs because of their complex microbial communities. Defined co‐culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory‐scale membrane‐less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co‐culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co‐culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m−2, compared to 63 mW m−2 from the co‐culture MFCs. Analysis of metabolites shows that succinate production in co‐culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co‐culture MFCs. Interestingly, pH adjustment is not required for co‐culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co‐culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. Biotechnol. Bioeng. 2014;111: 709–718. © 2013 Wiley Periodicals, Inc.
Co‐culture microbial fuel cell (MFC) with E. coli and G. sulfurreducens fed with glucose‐rich medium produce sustainable power higher that that measured in a single culture E. coli MFC. |
---|---|
AbstractList | Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m super(-2), compared to 63 mW m super(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. [PUBLICATIONABSTRACT] Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity.Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. ABSTRACT Wastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater‐fed MFCs because of their complex microbial communities. Defined co‐culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory‐scale membrane‐less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co‐culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co‐culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m−2, compared to 63 mW m−2 from the co‐culture MFCs. Analysis of metabolites shows that succinate production in co‐culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co‐culture MFCs. Interestingly, pH adjustment is not required for co‐culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co‐culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. Biotechnol. Bioeng. 2014;111: 709–718. © 2013 Wiley Periodicals, Inc. Co‐culture microbial fuel cell (MFC) with E. coli and G. sulfurreducens fed with glucose‐rich medium produce sustainable power higher that that measured in a single culture E. coli MFC. Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m^sup -2^, compared to 63 mW m^sup -2^ from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. [PUBLICATION ABSTRACT] Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. |
Author | Bourdakos, Nicholas Mahadevan, Radhakrishnan Marsili, Enrico |
Author_xml | – sequence: 1 givenname: Nicholas surname: Bourdakos fullname: Bourdakos, Nicholas organization: Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Ontario, M5S 3E5, Toronto, Canada – sequence: 2 givenname: Enrico surname: Marsili fullname: Marsili, Enrico email: enrico.marsili@dcu.ie organization: School of Biotechnology, National Centre for Sensor Research, Dublin City University, 9, Dublin, Ireland – sequence: 3 givenname: Radhakrishnan surname: Mahadevan fullname: Mahadevan, Radhakrishnan email: krishna.mahadevan@utoronto.ca organization: Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Ontario, M5S 3E5, Toronto, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24155100$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9PFDEYhxuDkQU9-AVMEy94GOj_zhyR4IoS5bDEY9PpvBOKnRlsp0G-vV121wPR6Klp8jy_vm9_B2hvnEZA6DUlx5QQdtL6-ZhJyvUztKCk0RVhDdlDC0KIqrhs2D46SOm2XHWt1Au0zwSVsqgLFE5xB70focNuqlwOc46Apx4vYWqtmyHilEOfY4QuOxgTtmOHz5O7gejdjbdFCx77EVs8wNBGO0IVICU8eBen1tuA-wwBOwjhJXre25Dg1fY8RNcfzldnH6vLr8uLs9PLyklFdCUVaFGTXgnBa0ka3tL14EI5xq1uLeG1I1o3QtWib1XvtGLQgawFI1Yw4IfoaJN7F6cfGdJsBp_WA5ThppwMVbomjNRU_RuVrDzXUM3-AyVCSKkf0bdP0Nspx7HsvKZqqYmWolBvtlRuB-jMXfSDjQ9m104BTjZA-cmUIvTG-dnOfhrnaH0wlJh1_6b0bx77L8a7J8Yu9E_sNv3eB3j4O2jeX6x2RrUxfJrh52_Dxu9Gaa6l-fZlaT7zTyt2xYRp-C-Eaco7 |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1038_s41579_019_0173_x crossref_primary_10_1016_j_bioelechem_2021_107954 crossref_primary_10_1016_j_scitotenv_2023_168410 crossref_primary_10_1021_acsami_5b11198 crossref_primary_10_3390_en8010399 crossref_primary_10_1016_j_cej_2022_136091 crossref_primary_10_1016_j_bej_2024_109442 crossref_primary_10_1002_elan_201400578 crossref_primary_10_1039_C8DT02445F crossref_primary_10_1002_ep_12967 crossref_primary_10_1016_j_ecoenv_2019_02_008 crossref_primary_10_1016_j_synbio_2016_02_001 crossref_primary_10_1016_j_biteb_2018_06_002 crossref_primary_10_1016_j_scitotenv_2020_140138 crossref_primary_10_1007_s00253_023_12829_1 crossref_primary_10_1186_s12934_019_1087_z crossref_primary_10_1016_j_biotechadv_2024_108348 crossref_primary_10_1128_mBio_02875_19 crossref_primary_10_1016_j_chemosphere_2021_131243 crossref_primary_10_3934_bioeng_2015_3_222 crossref_primary_10_1002_slct_201702868 crossref_primary_10_1007_s11356_024_32115_5 crossref_primary_10_1016_j_jbiosc_2017_03_016 crossref_primary_10_1016_j_copbio_2015_08_008 crossref_primary_10_3390_soilsystems4030047 crossref_primary_10_1002_bit_25723 crossref_primary_10_1016_j_jwpe_2022_103135 crossref_primary_10_57634_RCR5073 crossref_primary_10_3390_bios11060170 crossref_primary_10_1016_j_seta_2021_101226 crossref_primary_10_1002_aenm_202100713 crossref_primary_10_1016_j_biortech_2018_02_073 crossref_primary_10_1002_slct_201802694 crossref_primary_10_1016_j_scitotenv_2023_164623 crossref_primary_10_1021_acsami_2c18876 crossref_primary_10_1038_srep29182 crossref_primary_10_1002_biot_201800511 crossref_primary_10_1016_j_jmb_2015_10_019 crossref_primary_10_1021_acs_est_2c04368 crossref_primary_10_1002_cssc_202100294 crossref_primary_10_1021_acssynbio_0c00616 |
Cites_doi | 10.1021/es062644y 10.1073/pnas.0710525105 10.1016/j.jpowsour.2007.06.220 10.1007/s00253-007-1114-6 10.1016/j.jpowsour.2011.05.021 10.1128/AEM.69.3.1548-1555.2003 10.1128/AEM.00073-12 10.2166/wst.2009.444 10.1021/es034923g 10.1016/j.biortech.2011.02.003 10.1016/j.watres.2007.10.036 10.1038/nrmicro2113 10.1016/j.cej.2013.05.014 10.1111/j.1462-2920.2008.01675.x 10.1038/ismej.2010.117 10.1128/AEM.66.4.1292-1297.2000 10.1128/AEM.67.7.3180-3187.2001 10.1128/AEM.70.4.2525-2528.2004 10.1099/ijs.0.039321-0 10.1002/elan.200603628 10.1016/j.biotechadv.2007.05.004 10.1016/j.apenergy.2012.12.037 10.1021/es400631r 10.1007/s00203-004-0686-0 10.1186/1475-2859-9-90 10.1021/es070577h |
ContentType | Journal Article |
Copyright | 2013 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Apr 2014 |
Copyright_xml | – notice: 2013 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Apr 2014 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7QH 7QL 7UA F1W H97 L.G 7SU |
DOI | 10.1002/bit.25137 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Aqualine Bacteriology Abstracts (Microbiology B) Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Bacteriology Abstracts (Microbiology B) ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Engineering Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Materials Research Database Aerospace Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 718 |
ExternalDocumentID | 3250378851 24155100 10_1002_bit_25137 BIT25137 ark_67375_WNG_K3JT2P24_9 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Ontario Graduate Scholarship – fundername: Ontario Ministry of Research and Innovation – fundername: Canadian National Science and Engineering Research Council |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7QH 7QL 7UA F1W H97 L.G 7SU |
ID | FETCH-LOGICAL-c5607-56e7480f644385093b1078646c23a7ba038c07794684fb6fc762ede58420a42e3 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Fri Jul 11 07:32:14 EDT 2025 Fri Jul 11 09:15:32 EDT 2025 Thu Jul 10 22:07:12 EDT 2025 Fri Jul 25 19:17:37 EDT 2025 Mon Jul 21 05:55:39 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Tue Jul 01 01:08:51 EDT 2025 Wed Jan 22 17:10:39 EST 2025 Wed Oct 30 09:53:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Geobacter sulfurreducens Escherichia coli co-culture MFC |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5607-56e7480f644385093b1078646c23a7ba038c07794684fb6fc762ede58420a42e3 |
Notes | ark:/67375/WNG-K3JT2P24-9 ArticleID:BIT25137 Ontario Ministry of Research and Innovation Canadian National Science and Engineering Research Council istex:6A604F0B4813D19092D2AED36BF7A9C9717DFFC2 Ontario Graduate Scholarship SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24155100 |
PQID | 1508570754 |
PQPubID | 48814 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1678020816 proquest_miscellaneous_1520389172 proquest_miscellaneous_1504455772 proquest_journals_1508570754 pubmed_primary_24155100 crossref_citationtrail_10_1002_bit_25137 crossref_primary_10_1002_bit_25137 wiley_primary_10_1002_bit_25137_BIT25137 istex_primary_ark_67375_WNG_K3JT2P24_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Viulu S, Nakamura K, Okada Y, Saitou S, Takamizawa K. 2012. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud. Int J Syst Evol Microbiol 63:442-448. Yang TH, Coppi MV, Lovley DR, Sun J. 2010. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb Cell Fact 9:90-105. Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR. 2011. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305-316. Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375-381. Liu H, Ramnarayanan R, Logan BE. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281-2285. Logan BE. 2008. Microbial fuel cells. New York: John Wiley & Sons. 200 p. Straub KL, Schink B. 2004. Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria. Arch Microbiol 182:175-181. Qu Y, Feng Y, Wang X, Logan BE. 2012. Use of a coculture to enable current production by Geobacter sulfurreducens. Appl Environ Microbiol 78:3484-3487. He Z, Angenent LT. 2006. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009-2015. Sevda S, Dominguez-Benetton X, Vanbroekhoven K, Sreekrishnan TR, Pant D. 2013b. Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater. Chem Eng J 228:1-11. Nevin KP, Zhang P, Franks AE, Woodard TL, Lovley DR. 2011. Anaerobes unleashed: Aerobic fuel cells of Geobacter sulfurreducens J Power Sources 196:7514-7518. Marsili E, Baron DB, Shikare I, Coursolle D, Gralnick J, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968-3973. Logan B, Cheng S, Watson V, Estadt G. 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341-3346. Ren Z, Ward TE, Regan JM. 2007. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781-4786. Lin W, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70:2525-2528. Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548-1555. Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan TR, Pant D. 2013a. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194-206. Du Z, Li H, Gu T. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464-482. Oh SE, Kim JR, Joo J-H, Logan BE. 2009. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol 60:1311-1317. Fan Y, Hu H, Liu H. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. J Power Sources 171:348-354. Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff L, Jia H, Zhang M, Lovley DR. 2008. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505-2514. Lee H-S, Parameswaran P, Marcus AK, Torres CI, Rittmann BE. 2008. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501-1510. Park DH, Zeikus JG. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292-1297. Coppi MV, Leang C, Sandler S, Lovley DR. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180-3187. Lefebvre O, Shen Y, Tan Z, Uzabiaga A, Chang IS, Ng HY. 2011. A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresour Technol 102:6291-6294. Wang Y-F, Tsujimura S, Cheng S-S, Kano K. 2007. Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Appl Microbiol Biotechnol 76:1439-1446. Zhang F, Ge Z, Grimaud J, Hurst J, He Z. 2013. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47:4941-4948. 2013; 47 2013a; 105 2009; 60 2000; 66 2004; 182 2008 2006; 18 2008; 105 2008; 10 2011; 196 2001; 67 2007; 76 2012; 78 2011; 5 2011; 102 2004; 70 2004; 38 2007; 171 2003; 69 2009; 7 2008; 42 2007; 41 2013b; 228 2007; 25 2012; 63 2010; 9 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Logan BE (e_1_2_7_11_1) 2008 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – reference: Lefebvre O, Shen Y, Tan Z, Uzabiaga A, Chang IS, Ng HY. 2011. A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresour Technol 102:6291-6294. – reference: Ren Z, Ward TE, Regan JM. 2007. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781-4786. – reference: Park DH, Zeikus JG. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292-1297. – reference: Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan TR, Pant D. 2013a. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194-206. – reference: Du Z, Li H, Gu T. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464-482. – reference: Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff L, Jia H, Zhang M, Lovley DR. 2008. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505-2514. – reference: Marsili E, Baron DB, Shikare I, Coursolle D, Gralnick J, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968-3973. – reference: Lin W, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70:2525-2528. – reference: Yang TH, Coppi MV, Lovley DR, Sun J. 2010. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb Cell Fact 9:90-105. – reference: Logan BE. 2008. Microbial fuel cells. New York: John Wiley & Sons. 200 p. – reference: Fan Y, Hu H, Liu H. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. J Power Sources 171:348-354. – reference: Straub KL, Schink B. 2004. Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria. Arch Microbiol 182:175-181. – reference: He Z, Angenent LT. 2006. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009-2015. – reference: Lee H-S, Parameswaran P, Marcus AK, Torres CI, Rittmann BE. 2008. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501-1510. – reference: Zhang F, Ge Z, Grimaud J, Hurst J, He Z. 2013. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47:4941-4948. – reference: Wang Y-F, Tsujimura S, Cheng S-S, Kano K. 2007. Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Appl Microbiol Biotechnol 76:1439-1446. – reference: Oh SE, Kim JR, Joo J-H, Logan BE. 2009. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol 60:1311-1317. – reference: Nevin KP, Zhang P, Franks AE, Woodard TL, Lovley DR. 2011. Anaerobes unleashed: Aerobic fuel cells of Geobacter sulfurreducens J Power Sources 196:7514-7518. – reference: Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR. 2011. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305-316. – reference: Qu Y, Feng Y, Wang X, Logan BE. 2012. Use of a coculture to enable current production by Geobacter sulfurreducens. Appl Environ Microbiol 78:3484-3487. – reference: Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548-1555. – reference: Coppi MV, Leang C, Sandler S, Lovley DR. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180-3187. – reference: Logan B, Cheng S, Watson V, Estadt G. 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341-3346. – reference: Liu H, Ramnarayanan R, Logan BE. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281-2285. – reference: Sevda S, Dominguez-Benetton X, Vanbroekhoven K, Sreekrishnan TR, Pant D. 2013b. Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater. Chem Eng J 228:1-11. – reference: Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375-381. – reference: Viulu S, Nakamura K, Okada Y, Saitou S, Takamizawa K. 2012. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud. Int J Syst Evol Microbiol 63:442-448. – volume: 63 start-page: 442 year: 2012 end-page: 448 article-title: sp. nov., an Fe(III)‐reducing bacterium isolated from lotus field mud publication-title: Int J Syst Evol Microbiol – volume: 42 start-page: 1501 year: 2008 end-page: 1510 article-title: Evaluation of energy‐conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non‐fermentable substrates publication-title: Water Res – volume: 67 start-page: 3180 year: 2001 end-page: 3187 article-title: Development of a genetic system for publication-title: Appl Environ Microbiol – volume: 9 start-page: 90 year: 2010 end-page: 105 article-title: Metabolic response of towards electron donor/acceptor variation publication-title: Microb Cell Fact – volume: 105 start-page: 3968 year: 2008 end-page: 3973 article-title: secretes flavins that mediate extracellular electron transfer publication-title: Proc Natl Acad Sci USA – volume: 196 start-page: 7514 year: 2011 end-page: 7518 article-title: Anaerobes unleashed: Aerobic fuel cells of publication-title: J Power Sources – volume: 41 start-page: 4781 year: 2007 end-page: 4786 article-title: Electricity production from cellulose in a microbial fuel cell using a defined binary culture publication-title: Environ Sci Technol – volume: 69 start-page: 1548 year: 2003 end-page: 1555 article-title: Electricity production by attached to electrodes publication-title: Appl Environ Microbiol – volume: 66 start-page: 1292 year: 2000 end-page: 1297 article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore publication-title: Appl Environ Microbiol – volume: 18 start-page: 2009 year: 2006 end-page: 2015 article-title: Application of bacterial biocathodes in microbial fuel cells publication-title: Electroanalysis – volume: 102 start-page: 6291 year: 2011 end-page: 6294 article-title: A comparison of membranes and enrichment strategies for microbial fuel cells publication-title: Bioresour Technol – volume: 70 start-page: 2525 year: 2004 end-page: 2528 article-title: can grow with oxygen as a terminal electron acceptor publication-title: Appl Environ Microbiol – volume: 47 start-page: 4941 year: 2013 end-page: 4948 article-title: Long‐term performance of liter‐scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility publication-title: Environ Sci Technol – volume: 7 start-page: 375 year: 2009 end-page: 381 article-title: Exoelectrogenic bacteria that power microbial fuel cells publication-title: Nat Rev Microbiol – volume: 76 start-page: 1439 year: 2007 end-page: 1446 article-title: Self‐excreted mediator from K‐12 for electron transfer to carbon electrodes publication-title: Appl Microbiol Biotechnol – volume: 38 start-page: 2281 year: 2004 end-page: 2285 article-title: Production of electricity during wastewater treatment using a single chamber microbial fuel cell publication-title: Environ Sci Technol – volume: 5 start-page: 305 year: 2011 end-page: 316 article-title: Genome‐scale dynamic modeling of the competition between and in anoxic subsurface environments publication-title: ISME J – volume: 10 start-page: 2505 year: 2008 end-page: 2514 article-title: Power output and columbic efficiencies from biofilms of comparable to mixed community microbial fuel cells publication-title: Environ Microbiol – volume: 41 start-page: 3341 year: 2007 end-page: 3346 article-title: Graphite fiber brush anodes for increased power production in air‐cathode microbial fuel cells publication-title: Environ Sci Technol – volume: 105 start-page: 194 year: 2013a end-page: 206 article-title: High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell publication-title: Appl Energy – volume: 171 start-page: 348 year: 2007 end-page: 354 article-title: Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms publication-title: J Power Sources – volume: 228 start-page: 1 year: 2013b end-page: 11 article-title: Characterization and comparison of the performance of two different separator types in air–cathode microbial fuel cell treating synthetic wastewater publication-title: Chem Eng J – volume: 182 start-page: 175 year: 2004 end-page: 181 article-title: Ferrihydrite reduction by species is stimulated by secondary bacteria publication-title: Arch Microbiol – volume: 25 start-page: 464 year: 2007 end-page: 482 article-title: A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy publication-title: Biotechnol Adv – volume: 78 start-page: 3484 year: 2012 end-page: 3487 article-title: Use of a coculture to enable current production by publication-title: Appl Environ Microbiol – volume: 60 start-page: 1311 year: 2009 end-page: 1317 article-title: Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells publication-title: Water Sci Technol – start-page: 200 year: 2008 – ident: e_1_2_7_13_1 doi: 10.1021/es062644y – ident: e_1_2_7_14_1 doi: 10.1073/pnas.0710525105 – ident: e_1_2_7_5_1 doi: 10.1016/j.jpowsour.2007.06.220 – ident: e_1_2_7_25_1 doi: 10.1007/s00253-007-1114-6 – ident: e_1_2_7_16_1 doi: 10.1016/j.jpowsour.2011.05.021 – ident: e_1_2_7_2_1 doi: 10.1128/AEM.69.3.1548-1555.2003 – start-page: 200 volume-title: Microbial fuel cells year: 2008 ident: e_1_2_7_11_1 – ident: e_1_2_7_19_1 doi: 10.1128/AEM.00073-12 – ident: e_1_2_7_17_1 doi: 10.2166/wst.2009.444 – ident: e_1_2_7_10_1 doi: 10.1021/es034923g – ident: e_1_2_7_8_1 doi: 10.1016/j.biortech.2011.02.003 – ident: e_1_2_7_7_1 doi: 10.1016/j.watres.2007.10.036 – ident: e_1_2_7_12_1 doi: 10.1038/nrmicro2113 – ident: e_1_2_7_22_1 doi: 10.1016/j.cej.2013.05.014 – ident: e_1_2_7_15_1 doi: 10.1111/j.1462-2920.2008.01675.x – ident: e_1_2_7_28_1 doi: 10.1038/ismej.2010.117 – ident: e_1_2_7_18_1 doi: 10.1128/AEM.66.4.1292-1297.2000 – ident: e_1_2_7_3_1 doi: 10.1128/AEM.67.7.3180-3187.2001 – ident: e_1_2_7_9_1 doi: 10.1128/AEM.70.4.2525-2528.2004 – ident: e_1_2_7_24_1 doi: 10.1099/ijs.0.039321-0 – ident: e_1_2_7_6_1 doi: 10.1002/elan.200603628 – ident: e_1_2_7_4_1 doi: 10.1016/j.biotechadv.2007.05.004 – ident: e_1_2_7_21_1 doi: 10.1016/j.apenergy.2012.12.037 – ident: e_1_2_7_27_1 doi: 10.1021/es400631r – ident: e_1_2_7_23_1 doi: 10.1007/s00203-004-0686-0 – ident: e_1_2_7_26_1 doi: 10.1186/1475-2859-9-90 – ident: e_1_2_7_20_1 doi: 10.1021/es070577h |
SSID | ssj0007866 |
Score | 2.314363 |
Snippet | ABSTRACT
Wastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy... Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 709 |
SubjectTerms | Anaerobic conditions Bacteria Biochemical fuel cells Bioelectric Energy Sources - microbiology Bioengineering co-culture MFC Coculture Techniques - methods Culture E coli Electric power Electric power generation Escherichia coli Escherichia coli - metabolism Fuel cells Fuel technology Geobacter - metabolism Geobacter sulfurreducens Glucose - metabolism Hydrogen-Ion Concentration Metabolites Microbial activity Microorganisms Organic carbon Waste Water Water treatment |
Title | A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell |
URI | https://api.istex.fr/ark:/67375/WNG-K3JT2P24-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.25137 https://www.ncbi.nlm.nih.gov/pubmed/24155100 https://www.proquest.com/docview/1508570754 https://www.proquest.com/docview/1504455772 https://www.proquest.com/docview/1520389172 https://www.proquest.com/docview/1678020816 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFA9jIurD1DvnqlOiyPClW5smTYtPd2N_nDhE7nAPQkjaFMp6e8d6L6hPfgQ_o5_Ec9I_czKH-NbSk5KcnJz8kpz8DiGvuGYyF7AsSUzAfQ5u2Nd5wn3DE5gurRGpxbvD74_jwxN-dCpOl8ib_i5Myw8xbLjhyHD-Gge4Ns32JWmoKTHBdRjhTXKM1UJA9PGSOkom7TklrpgjkbKeVShg20PJK3PRLVTrl-uA5lXc6iae_fvkc1_lNt7kbGsxN1vZtz_YHP-zTQ_ISgdI6bi1oIdkydYjsjquYTE-_Uo3qQsRdXvvI3J7p3-6s9snihuRe79xGq6S8zHNbQHvOc1mP7__aKk9LJ0V9MCC80ByaNosqgKJoXIwrLqhus7pXoPmU2LoNRSsSlrWVNOpnUJ7ags_qsAn02npiKOgwsXCVhSPHR6Rk_29ye6h36V18DOAV9IXsZU8CQpAYlECeCUyIfYWjzMWaWl0ECVZIJH4PuGFu4sUM5tbQEos0JzZaI0s17ParhMqpQw1YF6ZiQJnWWOQZznKA5vJtEgLj7zuO1hlHec5pt6oVMvWzBRoXDmNe-TlIHreEn1cJ7TprGSQ0BdnGBknhfp0fKDeRUcT9oFxlXpkozcj1TmFRiH1vpCA0bhHXgyfobNQWaDK2cLJcC4ErHlukmFIixjeKAMgBPOvhrFHHrdmPFQaQRu44gC044zx7-1VO28n7uHJv4s-JXcBVHbRTRtkeX6xsM8AuM3NczdCfwEDSTzs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhw4LHlEShgEKq4pE0cJ04kLtvSdvtaIbRVe0FWHo4UNZutuhsJOPET-I38EmacTUpRqRC3RBlH9ng8_myPvwF4K2IuMx-XJWHiCFugG7bjLBR2IkKcLnXiR5ruDh8Ng8Gx2D_1TxfgfXsXpuGH6DbcaGQYf00DnDakNy5ZQ5OCMly7nrwFS5TRm_IXfPh0SR4lw-akktbMnh_xllfI4Rtd0Suz0RIp9st1UPMqcjVTz859-NxWuok4OVuvZ8l6-u0PPsf_bdUDuDfHpKzfGNFDWNBVD1b6Fa7Hx1_ZGjNRomb7vQe3N9un5a02V1wP7v5Ga7gC532W6RzfM5ZOfn7_0bB7aDbJ2a5G_0H80GxalzlxQ2VoW9WUxVXGtqdkQQVFX2PBsmBFxWI21mNsUKXxRyW6ZTYuDHcUVjivdcno5OERHO9sj7YG9jyzg50iwpK2H2gpQidHMOaFCFm8xKXuEkHKvVgmseOFqSOJ-z4UubmOFHCdaQRL3IkF195jWKwmlX4KTErpxgh7ZernNNEmCVEte5mjUxnlUW7Bu7aHVTqnPafsG6VqCJu5Qo0ro3EL3nSi5w3Xx3VCa8ZMOon44oyC46SvToa76sDbH_GPXKjIgtXWjtTcL0wVse_7EmGasOB19xk7i5SFqpzURkYI38dlz00ynJgR3RtlEIdQClY3sOBJY8ddpQm3oTd2UDvGGv_eXrW5NzIPz_5d9BUsD0ZHh-pwb3jwHO4gxpwHO63C4uyi1i8Qx82Sl2a4_gKtxUEG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVlwPHFuOQAGDUMVL2sRx4kQ8bUu3F6wqtBV9QLJyONKq2eyqu5GAJ34Cv5FfwoxzlKJSId4SZRzZ4_H4sz3-BuC1iLnMfFyWhIkjbIFu2I6zUNiJCHG61Ikfabo7_GEY7B2LgxP_ZAnetndhan6IbsONRobx1zTAZ1m-eU4amowpwbXryWuwIgIcLISIPp5zR8mwPqikJbPnR7ylFXL4Zlf0wmS0Qnr9chnSvAhczcwzuAuf2zrXASenG9Ui2Ui__UHn-J-Nugd3GkTK-rUJ3YclXfZgtV_ianzyla0zEyNqNt97cH2rfbq53WaK68Ht30gNV2HWZ5nO8T1j6fTn9x81t4dm05ztavQexA7N5lWREzNUhpZVzllcZmxnTvYzpthrLFiM2bhkMZvoCban1PijAp0ym4wNcxRWOK90wejc4QEcD3ZG23t2k9fBThFfSdsPtBShkyMU80IELF7iUm-JIOVeLJPY8cLUkcR8H4rcXEYKuM40QiXuxIJr7yEsl9NSPwYmpXRjBL0y9XOaZpOEiJa9zNGpjPIot-BN28EqbUjPKfdGoWq6Zq5Q48po3IJXneisZvq4TGjdWEknEZ-dUmic9NWn4a469A5G_IgLFVmw1pqRarzCXBH3vi8RpAkLXnafsbNIWajKaWVkhPB9XPRcJcOJF9G9UgZRCCVgdQMLHtVm3FWaUBv6Yge1Y4zx7-1VW_sj8_Dk30VfwI2jdwP1fn94-BRuIcBsIp3WYHlxVulnCOIWyXMzWH8B1dc_vg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+defined+co-culture+of+Geobacter+sulfurreducens+and+Escherichia+coli+in+a+membrane-less+microbial+fuel+cell&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Bourdakos%2C+Nicholas&rft.au=Marsili%2C+Enrico&rft.au=Mahadevan%2C+Radhakrishnan&rft.date=2014-04-01&rft.eissn=1097-0290&rft.volume=111&rft.issue=4&rft.spage=709&rft_id=info:doi/10.1002%2Fbit.25137&rft_id=info%3Apmid%2F24155100&rft.externalDocID=24155100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |