A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell

ABSTRACT Wastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 111; no. 4; pp. 709 - 718
Main Authors Bourdakos, Nicholas, Marsili, Enrico, Mahadevan, Radhakrishnan
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
1097-0290
DOI10.1002/bit.25137

Cover

Loading…
Abstract ABSTRACT Wastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater‐fed MFCs because of their complex microbial communities. Defined co‐culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory‐scale membrane‐less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co‐culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co‐culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m−2, compared to 63 mW m−2 from the co‐culture MFCs. Analysis of metabolites shows that succinate production in co‐culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co‐culture MFCs. Interestingly, pH adjustment is not required for co‐culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co‐culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. Biotechnol. Bioeng. 2014;111: 709–718. © 2013 Wiley Periodicals, Inc. Co‐culture microbial fuel cell (MFC) with E. coli and G. sulfurreducens fed with glucose‐rich medium produce sustainable power higher that that measured in a single culture E. coli MFC.
AbstractList Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m super(-2), compared to 63 mW m super(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. [PUBLICATIONABSTRACT]
Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity.Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity.
ABSTRACT Wastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater‐fed MFCs because of their complex microbial communities. Defined co‐culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory‐scale membrane‐less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co‐culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co‐culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m−2, compared to 63 mW m−2 from the co‐culture MFCs. Analysis of metabolites shows that succinate production in co‐culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co‐culture MFCs. Interestingly, pH adjustment is not required for co‐culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co‐culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. Biotechnol. Bioeng. 2014;111: 709–718. © 2013 Wiley Periodicals, Inc. Co‐culture microbial fuel cell (MFC) with E. coli and G. sulfurreducens fed with glucose‐rich medium produce sustainable power higher that that measured in a single culture E. coli MFC.
Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m^sup -2^, compared to 63 mW m^sup -2^ from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity. [PUBLICATION ABSTRACT]
Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity.
Author Bourdakos, Nicholas
Mahadevan, Radhakrishnan
Marsili, Enrico
Author_xml – sequence: 1
  givenname: Nicholas
  surname: Bourdakos
  fullname: Bourdakos, Nicholas
  organization: Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Ontario, M5S 3E5, Toronto, Canada
– sequence: 2
  givenname: Enrico
  surname: Marsili
  fullname: Marsili, Enrico
  email: enrico.marsili@dcu.ie
  organization: School of Biotechnology, National Centre for Sensor Research, Dublin City University, 9, Dublin, Ireland
– sequence: 3
  givenname: Radhakrishnan
  surname: Mahadevan
  fullname: Mahadevan, Radhakrishnan
  email: krishna.mahadevan@utoronto.ca
  organization: Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Ontario, M5S 3E5, Toronto, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24155100$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9PFDEYhxuDkQU9-AVMEy94GOj_zhyR4IoS5bDEY9PpvBOKnRlsp0G-vV121wPR6Klp8jy_vm9_B2hvnEZA6DUlx5QQdtL6-ZhJyvUztKCk0RVhDdlDC0KIqrhs2D46SOm2XHWt1Au0zwSVsqgLFE5xB70focNuqlwOc46Apx4vYWqtmyHilEOfY4QuOxgTtmOHz5O7gejdjbdFCx77EVs8wNBGO0IVICU8eBen1tuA-wwBOwjhJXre25Dg1fY8RNcfzldnH6vLr8uLs9PLyklFdCUVaFGTXgnBa0ka3tL14EI5xq1uLeG1I1o3QtWib1XvtGLQgawFI1Yw4IfoaJN7F6cfGdJsBp_WA5ThppwMVbomjNRU_RuVrDzXUM3-AyVCSKkf0bdP0Nspx7HsvKZqqYmWolBvtlRuB-jMXfSDjQ9m104BTjZA-cmUIvTG-dnOfhrnaH0wlJh1_6b0bx77L8a7J8Yu9E_sNv3eB3j4O2jeX6x2RrUxfJrh52_Dxu9Gaa6l-fZlaT7zTyt2xYRp-C-Eaco7
CODEN BIBIAU
CitedBy_id crossref_primary_10_1038_s41579_019_0173_x
crossref_primary_10_1016_j_bioelechem_2021_107954
crossref_primary_10_1016_j_scitotenv_2023_168410
crossref_primary_10_1021_acsami_5b11198
crossref_primary_10_3390_en8010399
crossref_primary_10_1016_j_cej_2022_136091
crossref_primary_10_1016_j_bej_2024_109442
crossref_primary_10_1002_elan_201400578
crossref_primary_10_1039_C8DT02445F
crossref_primary_10_1002_ep_12967
crossref_primary_10_1016_j_ecoenv_2019_02_008
crossref_primary_10_1016_j_synbio_2016_02_001
crossref_primary_10_1016_j_biteb_2018_06_002
crossref_primary_10_1016_j_scitotenv_2020_140138
crossref_primary_10_1007_s00253_023_12829_1
crossref_primary_10_1186_s12934_019_1087_z
crossref_primary_10_1016_j_biotechadv_2024_108348
crossref_primary_10_1128_mBio_02875_19
crossref_primary_10_1016_j_chemosphere_2021_131243
crossref_primary_10_3934_bioeng_2015_3_222
crossref_primary_10_1002_slct_201702868
crossref_primary_10_1007_s11356_024_32115_5
crossref_primary_10_1016_j_jbiosc_2017_03_016
crossref_primary_10_1016_j_copbio_2015_08_008
crossref_primary_10_3390_soilsystems4030047
crossref_primary_10_1002_bit_25723
crossref_primary_10_1016_j_jwpe_2022_103135
crossref_primary_10_57634_RCR5073
crossref_primary_10_3390_bios11060170
crossref_primary_10_1016_j_seta_2021_101226
crossref_primary_10_1002_aenm_202100713
crossref_primary_10_1016_j_biortech_2018_02_073
crossref_primary_10_1002_slct_201802694
crossref_primary_10_1016_j_scitotenv_2023_164623
crossref_primary_10_1021_acsami_2c18876
crossref_primary_10_1038_srep29182
crossref_primary_10_1002_biot_201800511
crossref_primary_10_1016_j_jmb_2015_10_019
crossref_primary_10_1021_acs_est_2c04368
crossref_primary_10_1002_cssc_202100294
crossref_primary_10_1021_acssynbio_0c00616
Cites_doi 10.1021/es062644y
10.1073/pnas.0710525105
10.1016/j.jpowsour.2007.06.220
10.1007/s00253-007-1114-6
10.1016/j.jpowsour.2011.05.021
10.1128/AEM.69.3.1548-1555.2003
10.1128/AEM.00073-12
10.2166/wst.2009.444
10.1021/es034923g
10.1016/j.biortech.2011.02.003
10.1016/j.watres.2007.10.036
10.1038/nrmicro2113
10.1016/j.cej.2013.05.014
10.1111/j.1462-2920.2008.01675.x
10.1038/ismej.2010.117
10.1128/AEM.66.4.1292-1297.2000
10.1128/AEM.67.7.3180-3187.2001
10.1128/AEM.70.4.2525-2528.2004
10.1099/ijs.0.039321-0
10.1002/elan.200603628
10.1016/j.biotechadv.2007.05.004
10.1016/j.apenergy.2012.12.037
10.1021/es400631r
10.1007/s00203-004-0686-0
10.1186/1475-2859-9-90
10.1021/es070577h
ContentType Journal Article
Copyright 2013 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Apr 2014
Copyright_xml – notice: 2013 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Apr 2014
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7QH
7QL
7UA
F1W
H97
L.G
7SU
DOI 10.1002/bit.25137
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Aqualine
Bacteriology Abstracts (Microbiology B)
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Engineering Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

Materials Research Database
Aerospace Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 718
ExternalDocumentID 3250378851
24155100
10_1002_bit_25137
BIT25137
ark_67375_WNG_K3JT2P24_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Ontario Graduate Scholarship
– fundername: Ontario Ministry of Research and Innovation
– fundername: Canadian National Science and Engineering Research Council
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7QH
7QL
7UA
F1W
H97
L.G
7SU
ID FETCH-LOGICAL-c5607-56e7480f644385093b1078646c23a7ba038c07794684fb6fc762ede58420a42e3
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri Jul 11 07:32:14 EDT 2025
Fri Jul 11 09:15:32 EDT 2025
Thu Jul 10 22:07:12 EDT 2025
Fri Jul 25 19:17:37 EDT 2025
Mon Jul 21 05:55:39 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Tue Jul 01 01:08:51 EDT 2025
Wed Jan 22 17:10:39 EST 2025
Wed Oct 30 09:53:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Geobacter sulfurreducens
Escherichia coli
co-culture MFC
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5607-56e7480f644385093b1078646c23a7ba038c07794684fb6fc762ede58420a42e3
Notes ark:/67375/WNG-K3JT2P24-9
ArticleID:BIT25137
Ontario Ministry of Research and Innovation
Canadian National Science and Engineering Research Council
istex:6A604F0B4813D19092D2AED36BF7A9C9717DFFC2
Ontario Graduate Scholarship
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24155100
PQID 1508570754
PQPubID 48814
PageCount 10
ParticipantIDs proquest_miscellaneous_1678020816
proquest_miscellaneous_1520389172
proquest_miscellaneous_1504455772
proquest_journals_1508570754
pubmed_primary_24155100
crossref_citationtrail_10_1002_bit_25137
crossref_primary_10_1002_bit_25137
wiley_primary_10_1002_bit_25137_BIT25137
istex_primary_ark_67375_WNG_K3JT2P24_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Viulu S, Nakamura K, Okada Y, Saitou S, Takamizawa K. 2012. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud. Int J Syst Evol Microbiol 63:442-448.
Yang TH, Coppi MV, Lovley DR, Sun J. 2010. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb Cell Fact 9:90-105.
Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR. 2011. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305-316.
Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375-381.
Liu H, Ramnarayanan R, Logan BE. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281-2285.
Logan BE. 2008. Microbial fuel cells. New York: John Wiley & Sons. 200 p.
Straub KL, Schink B. 2004. Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria. Arch Microbiol 182:175-181.
Qu Y, Feng Y, Wang X, Logan BE. 2012. Use of a coculture to enable current production by Geobacter sulfurreducens. Appl Environ Microbiol 78:3484-3487.
He Z, Angenent LT. 2006. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009-2015.
Sevda S, Dominguez-Benetton X, Vanbroekhoven K, Sreekrishnan TR, Pant D. 2013b. Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater. Chem Eng J 228:1-11.
Nevin KP, Zhang P, Franks AE, Woodard TL, Lovley DR. 2011. Anaerobes unleashed: Aerobic fuel cells of Geobacter sulfurreducens J Power Sources 196:7514-7518.
Marsili E, Baron DB, Shikare I, Coursolle D, Gralnick J, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968-3973.
Logan B, Cheng S, Watson V, Estadt G. 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341-3346.
Ren Z, Ward TE, Regan JM. 2007. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781-4786.
Lin W, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70:2525-2528.
Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548-1555.
Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan TR, Pant D. 2013a. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194-206.
Du Z, Li H, Gu T. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464-482.
Oh SE, Kim JR, Joo J-H, Logan BE. 2009. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol 60:1311-1317.
Fan Y, Hu H, Liu H. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. J Power Sources 171:348-354.
Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff L, Jia H, Zhang M, Lovley DR. 2008. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505-2514.
Lee H-S, Parameswaran P, Marcus AK, Torres CI, Rittmann BE. 2008. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501-1510.
Park DH, Zeikus JG. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292-1297.
Coppi MV, Leang C, Sandler S, Lovley DR. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180-3187.
Lefebvre O, Shen Y, Tan Z, Uzabiaga A, Chang IS, Ng HY. 2011. A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresour Technol 102:6291-6294.
Wang Y-F, Tsujimura S, Cheng S-S, Kano K. 2007. Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Appl Microbiol Biotechnol 76:1439-1446.
Zhang F, Ge Z, Grimaud J, Hurst J, He Z. 2013. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47:4941-4948.
2013; 47
2013a; 105
2009; 60
2000; 66
2004; 182
2008
2006; 18
2008; 105
2008; 10
2011; 196
2001; 67
2007; 76
2012; 78
2011; 5
2011; 102
2004; 70
2004; 38
2007; 171
2003; 69
2009; 7
2008; 42
2007; 41
2013b; 228
2007; 25
2012; 63
2010; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Logan BE (e_1_2_7_11_1) 2008
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Lefebvre O, Shen Y, Tan Z, Uzabiaga A, Chang IS, Ng HY. 2011. A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresour Technol 102:6291-6294.
– reference: Ren Z, Ward TE, Regan JM. 2007. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781-4786.
– reference: Park DH, Zeikus JG. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292-1297.
– reference: Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan TR, Pant D. 2013a. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194-206.
– reference: Du Z, Li H, Gu T. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464-482.
– reference: Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff L, Jia H, Zhang M, Lovley DR. 2008. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505-2514.
– reference: Marsili E, Baron DB, Shikare I, Coursolle D, Gralnick J, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968-3973.
– reference: Lin W, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70:2525-2528.
– reference: Yang TH, Coppi MV, Lovley DR, Sun J. 2010. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb Cell Fact 9:90-105.
– reference: Logan BE. 2008. Microbial fuel cells. New York: John Wiley & Sons. 200 p.
– reference: Fan Y, Hu H, Liu H. 2007. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. J Power Sources 171:348-354.
– reference: Straub KL, Schink B. 2004. Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria. Arch Microbiol 182:175-181.
– reference: He Z, Angenent LT. 2006. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009-2015.
– reference: Lee H-S, Parameswaran P, Marcus AK, Torres CI, Rittmann BE. 2008. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501-1510.
– reference: Zhang F, Ge Z, Grimaud J, Hurst J, He Z. 2013. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47:4941-4948.
– reference: Wang Y-F, Tsujimura S, Cheng S-S, Kano K. 2007. Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Appl Microbiol Biotechnol 76:1439-1446.
– reference: Oh SE, Kim JR, Joo J-H, Logan BE. 2009. Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol 60:1311-1317.
– reference: Nevin KP, Zhang P, Franks AE, Woodard TL, Lovley DR. 2011. Anaerobes unleashed: Aerobic fuel cells of Geobacter sulfurreducens J Power Sources 196:7514-7518.
– reference: Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR. 2011. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305-316.
– reference: Qu Y, Feng Y, Wang X, Logan BE. 2012. Use of a coculture to enable current production by Geobacter sulfurreducens. Appl Environ Microbiol 78:3484-3487.
– reference: Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548-1555.
– reference: Coppi MV, Leang C, Sandler S, Lovley DR. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180-3187.
– reference: Logan B, Cheng S, Watson V, Estadt G. 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341-3346.
– reference: Liu H, Ramnarayanan R, Logan BE. 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281-2285.
– reference: Sevda S, Dominguez-Benetton X, Vanbroekhoven K, Sreekrishnan TR, Pant D. 2013b. Characterization and comparison of the performance of two different separator types in air-cathode microbial fuel cell treating synthetic wastewater. Chem Eng J 228:1-11.
– reference: Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375-381.
– reference: Viulu S, Nakamura K, Okada Y, Saitou S, Takamizawa K. 2012. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud. Int J Syst Evol Microbiol 63:442-448.
– volume: 63
  start-page: 442
  year: 2012
  end-page: 448
  article-title: sp. nov., an Fe(III)‐reducing bacterium isolated from lotus field mud
  publication-title: Int J Syst Evol Microbiol
– volume: 42
  start-page: 1501
  year: 2008
  end-page: 1510
  article-title: Evaluation of energy‐conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non‐fermentable substrates
  publication-title: Water Res
– volume: 67
  start-page: 3180
  year: 2001
  end-page: 3187
  article-title: Development of a genetic system for
  publication-title: Appl Environ Microbiol
– volume: 9
  start-page: 90
  year: 2010
  end-page: 105
  article-title: Metabolic response of towards electron donor/acceptor variation
  publication-title: Microb Cell Fact
– volume: 105
  start-page: 3968
  year: 2008
  end-page: 3973
  article-title: secretes flavins that mediate extracellular electron transfer
  publication-title: Proc Natl Acad Sci USA
– volume: 196
  start-page: 7514
  year: 2011
  end-page: 7518
  article-title: Anaerobes unleashed: Aerobic fuel cells of
  publication-title: J Power Sources
– volume: 41
  start-page: 4781
  year: 2007
  end-page: 4786
  article-title: Electricity production from cellulose in a microbial fuel cell using a defined binary culture
  publication-title: Environ Sci Technol
– volume: 69
  start-page: 1548
  year: 2003
  end-page: 1555
  article-title: Electricity production by attached to electrodes
  publication-title: Appl Environ Microbiol
– volume: 66
  start-page: 1292
  year: 2000
  end-page: 1297
  article-title: Electricity generation in microbial fuel cells using neutral red as an electronophore
  publication-title: Appl Environ Microbiol
– volume: 18
  start-page: 2009
  year: 2006
  end-page: 2015
  article-title: Application of bacterial biocathodes in microbial fuel cells
  publication-title: Electroanalysis
– volume: 102
  start-page: 6291
  year: 2011
  end-page: 6294
  article-title: A comparison of membranes and enrichment strategies for microbial fuel cells
  publication-title: Bioresour Technol
– volume: 70
  start-page: 2525
  year: 2004
  end-page: 2528
  article-title: can grow with oxygen as a terminal electron acceptor
  publication-title: Appl Environ Microbiol
– volume: 47
  start-page: 4941
  year: 2013
  end-page: 4948
  article-title: Long‐term performance of liter‐scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility
  publication-title: Environ Sci Technol
– volume: 7
  start-page: 375
  year: 2009
  end-page: 381
  article-title: Exoelectrogenic bacteria that power microbial fuel cells
  publication-title: Nat Rev Microbiol
– volume: 76
  start-page: 1439
  year: 2007
  end-page: 1446
  article-title: Self‐excreted mediator from K‐12 for electron transfer to carbon electrodes
  publication-title: Appl Microbiol Biotechnol
– volume: 38
  start-page: 2281
  year: 2004
  end-page: 2285
  article-title: Production of electricity during wastewater treatment using a single chamber microbial fuel cell
  publication-title: Environ Sci Technol
– volume: 5
  start-page: 305
  year: 2011
  end-page: 316
  article-title: Genome‐scale dynamic modeling of the competition between and in anoxic subsurface environments
  publication-title: ISME J
– volume: 10
  start-page: 2505
  year: 2008
  end-page: 2514
  article-title: Power output and columbic efficiencies from biofilms of comparable to mixed community microbial fuel cells
  publication-title: Environ Microbiol
– volume: 41
  start-page: 3341
  year: 2007
  end-page: 3346
  article-title: Graphite fiber brush anodes for increased power production in air‐cathode microbial fuel cells
  publication-title: Environ Sci Technol
– volume: 105
  start-page: 194
  year: 2013a
  end-page: 206
  article-title: High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell
  publication-title: Appl Energy
– volume: 171
  start-page: 348
  year: 2007
  end-page: 354
  article-title: Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms
  publication-title: J Power Sources
– volume: 228
  start-page: 1
  year: 2013b
  end-page: 11
  article-title: Characterization and comparison of the performance of two different separator types in air–cathode microbial fuel cell treating synthetic wastewater
  publication-title: Chem Eng J
– volume: 182
  start-page: 175
  year: 2004
  end-page: 181
  article-title: Ferrihydrite reduction by species is stimulated by secondary bacteria
  publication-title: Arch Microbiol
– volume: 25
  start-page: 464
  year: 2007
  end-page: 482
  article-title: A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy
  publication-title: Biotechnol Adv
– volume: 78
  start-page: 3484
  year: 2012
  end-page: 3487
  article-title: Use of a coculture to enable current production by
  publication-title: Appl Environ Microbiol
– volume: 60
  start-page: 1311
  year: 2009
  end-page: 1317
  article-title: Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells
  publication-title: Water Sci Technol
– start-page: 200
  year: 2008
– ident: e_1_2_7_13_1
  doi: 10.1021/es062644y
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.0710525105
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jpowsour.2007.06.220
– ident: e_1_2_7_25_1
  doi: 10.1007/s00253-007-1114-6
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jpowsour.2011.05.021
– ident: e_1_2_7_2_1
  doi: 10.1128/AEM.69.3.1548-1555.2003
– start-page: 200
  volume-title: Microbial fuel cells
  year: 2008
  ident: e_1_2_7_11_1
– ident: e_1_2_7_19_1
  doi: 10.1128/AEM.00073-12
– ident: e_1_2_7_17_1
  doi: 10.2166/wst.2009.444
– ident: e_1_2_7_10_1
  doi: 10.1021/es034923g
– ident: e_1_2_7_8_1
  doi: 10.1016/j.biortech.2011.02.003
– ident: e_1_2_7_7_1
  doi: 10.1016/j.watres.2007.10.036
– ident: e_1_2_7_12_1
  doi: 10.1038/nrmicro2113
– ident: e_1_2_7_22_1
  doi: 10.1016/j.cej.2013.05.014
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1462-2920.2008.01675.x
– ident: e_1_2_7_28_1
  doi: 10.1038/ismej.2010.117
– ident: e_1_2_7_18_1
  doi: 10.1128/AEM.66.4.1292-1297.2000
– ident: e_1_2_7_3_1
  doi: 10.1128/AEM.67.7.3180-3187.2001
– ident: e_1_2_7_9_1
  doi: 10.1128/AEM.70.4.2525-2528.2004
– ident: e_1_2_7_24_1
  doi: 10.1099/ijs.0.039321-0
– ident: e_1_2_7_6_1
  doi: 10.1002/elan.200603628
– ident: e_1_2_7_4_1
  doi: 10.1016/j.biotechadv.2007.05.004
– ident: e_1_2_7_21_1
  doi: 10.1016/j.apenergy.2012.12.037
– ident: e_1_2_7_27_1
  doi: 10.1021/es400631r
– ident: e_1_2_7_23_1
  doi: 10.1007/s00203-004-0686-0
– ident: e_1_2_7_26_1
  doi: 10.1186/1475-2859-9-90
– ident: e_1_2_7_20_1
  doi: 10.1021/es070577h
SSID ssj0007866
Score 2.314363
Snippet ABSTRACT Wastewater‐fed microbial fuel cells (MFCs) are a promising technology to treat low‐organic carbon wastewater and recover part of the chemical energy...
Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 709
SubjectTerms Anaerobic conditions
Bacteria
Biochemical fuel cells
Bioelectric Energy Sources - microbiology
Bioengineering
co-culture MFC
Coculture Techniques - methods
Culture
E coli
Electric power
Electric power generation
Escherichia coli
Escherichia coli - metabolism
Fuel cells
Fuel technology
Geobacter - metabolism
Geobacter sulfurreducens
Glucose - metabolism
Hydrogen-Ion Concentration
Metabolites
Microbial activity
Microorganisms
Organic carbon
Waste Water
Water treatment
Title A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell
URI https://api.istex.fr/ark:/67375/WNG-K3JT2P24-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.25137
https://www.ncbi.nlm.nih.gov/pubmed/24155100
https://www.proquest.com/docview/1508570754
https://www.proquest.com/docview/1504455772
https://www.proquest.com/docview/1520389172
https://www.proquest.com/docview/1678020816
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFA9jIurD1DvnqlOiyPClW5smTYtPd2N_nDhE7nAPQkjaFMp6e8d6L6hPfgQ_o5_Ec9I_czKH-NbSk5KcnJz8kpz8DiGvuGYyF7AsSUzAfQ5u2Nd5wn3DE5gurRGpxbvD74_jwxN-dCpOl8ib_i5Myw8xbLjhyHD-Gge4Ns32JWmoKTHBdRjhTXKM1UJA9PGSOkom7TklrpgjkbKeVShg20PJK3PRLVTrl-uA5lXc6iae_fvkc1_lNt7kbGsxN1vZtz_YHP-zTQ_ISgdI6bi1oIdkydYjsjquYTE-_Uo3qQsRdXvvI3J7p3-6s9snihuRe79xGq6S8zHNbQHvOc1mP7__aKk9LJ0V9MCC80ByaNosqgKJoXIwrLqhus7pXoPmU2LoNRSsSlrWVNOpnUJ7ags_qsAn02npiKOgwsXCVhSPHR6Rk_29ye6h36V18DOAV9IXsZU8CQpAYlECeCUyIfYWjzMWaWl0ECVZIJH4PuGFu4sUM5tbQEos0JzZaI0s17ParhMqpQw1YF6ZiQJnWWOQZznKA5vJtEgLj7zuO1hlHec5pt6oVMvWzBRoXDmNe-TlIHreEn1cJ7TprGSQ0BdnGBknhfp0fKDeRUcT9oFxlXpkozcj1TmFRiH1vpCA0bhHXgyfobNQWaDK2cLJcC4ErHlukmFIixjeKAMgBPOvhrFHHrdmPFQaQRu44gC044zx7-1VO28n7uHJv4s-JXcBVHbRTRtkeX6xsM8AuM3NczdCfwEDSTzs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhw4LHlEShgEKq4pE0cJ04kLtvSdvtaIbRVe0FWHo4UNZutuhsJOPET-I38EmacTUpRqRC3RBlH9ng8_myPvwF4K2IuMx-XJWHiCFugG7bjLBR2IkKcLnXiR5ruDh8Ng8Gx2D_1TxfgfXsXpuGH6DbcaGQYf00DnDakNy5ZQ5OCMly7nrwFS5TRm_IXfPh0SR4lw-akktbMnh_xllfI4Rtd0Suz0RIp9st1UPMqcjVTz859-NxWuok4OVuvZ8l6-u0PPsf_bdUDuDfHpKzfGNFDWNBVD1b6Fa7Hx1_ZGjNRomb7vQe3N9un5a02V1wP7v5Ga7gC532W6RzfM5ZOfn7_0bB7aDbJ2a5G_0H80GxalzlxQ2VoW9WUxVXGtqdkQQVFX2PBsmBFxWI21mNsUKXxRyW6ZTYuDHcUVjivdcno5OERHO9sj7YG9jyzg50iwpK2H2gpQidHMOaFCFm8xKXuEkHKvVgmseOFqSOJ-z4UubmOFHCdaQRL3IkF195jWKwmlX4KTErpxgh7ZernNNEmCVEte5mjUxnlUW7Bu7aHVTqnPafsG6VqCJu5Qo0ro3EL3nSi5w3Xx3VCa8ZMOon44oyC46SvToa76sDbH_GPXKjIgtXWjtTcL0wVse_7EmGasOB19xk7i5SFqpzURkYI38dlz00ynJgR3RtlEIdQClY3sOBJY8ddpQm3oTd2UDvGGv_eXrW5NzIPz_5d9BUsD0ZHh-pwb3jwHO4gxpwHO63C4uyi1i8Qx82Sl2a4_gKtxUEG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVlwPHFuOQAGDUMVL2sRx4kQ8bUu3F6wqtBV9QLJyONKq2eyqu5GAJ34Cv5FfwoxzlKJSId4SZRzZ4_H4sz3-BuC1iLnMfFyWhIkjbIFu2I6zUNiJCHG61Ikfabo7_GEY7B2LgxP_ZAnetndhan6IbsONRobx1zTAZ1m-eU4amowpwbXryWuwIgIcLISIPp5zR8mwPqikJbPnR7ylFXL4Zlf0wmS0Qnr9chnSvAhczcwzuAuf2zrXASenG9Ui2Ui__UHn-J-Nugd3GkTK-rUJ3YclXfZgtV_ianzyla0zEyNqNt97cH2rfbq53WaK68Ht30gNV2HWZ5nO8T1j6fTn9x81t4dm05ztavQexA7N5lWREzNUhpZVzllcZmxnTvYzpthrLFiM2bhkMZvoCban1PijAp0ym4wNcxRWOK90wejc4QEcD3ZG23t2k9fBThFfSdsPtBShkyMU80IELF7iUm-JIOVeLJPY8cLUkcR8H4rcXEYKuM40QiXuxIJr7yEsl9NSPwYmpXRjBL0y9XOaZpOEiJa9zNGpjPIot-BN28EqbUjPKfdGoWq6Zq5Q48po3IJXneisZvq4TGjdWEknEZ-dUmic9NWn4a469A5G_IgLFVmw1pqRarzCXBH3vi8RpAkLXnafsbNIWajKaWVkhPB9XPRcJcOJF9G9UgZRCCVgdQMLHtVm3FWaUBv6Yge1Y4zx7-1VW_sj8_Dk30VfwI2jdwP1fn94-BRuIcBsIp3WYHlxVulnCOIWyXMzWH8B1dc_vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+defined+co-culture+of+Geobacter+sulfurreducens+and+Escherichia+coli+in+a+membrane-less+microbial+fuel+cell&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Bourdakos%2C+Nicholas&rft.au=Marsili%2C+Enrico&rft.au=Mahadevan%2C+Radhakrishnan&rft.date=2014-04-01&rft.eissn=1097-0290&rft.volume=111&rft.issue=4&rft.spage=709&rft_id=info:doi/10.1002%2Fbit.25137&rft_id=info%3Apmid%2F24155100&rft.externalDocID=24155100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon