Liquid membrane technology: fundamentals and review of its applications
OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in...
Saved in:
Published in | Journal of chemical technology and biotechnology (1986) Vol. 85; no. 1; pp. 2 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2010
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc.IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane.APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. Copyright |
---|---|
AbstractList | OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc. IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane. APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc. IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane. APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. Copyright © 2009 Society of Chemical Industry OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc. IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane. APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. Copyright © 2009 Society of Chemical Industry OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc.IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane.APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. Copyright |
Author | San Román, M. F. Ortiz, I. Ibañez, R. Bringas, E. |
Author_xml | – sequence: 1 fullname: San Román, M.F – sequence: 2 fullname: Bringas, E – sequence: 3 fullname: Ibañez, R – sequence: 4 fullname: Ortiz, I |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22204001$$DView record in Pascal Francis |
BookMark | eNp9kc1v1DAQxS1UJLaFA38BufB1SDsefyXcYAtb0AoOtHC0HMcpLkm8tbO0-9_jZRcOCHoaafR7T_PmHZKDMYyOkMcUjikAnlzZqTlGFHiPzCjUquRSwgGZAcqqRKHEA3KY0hUAyArljCyW_nrt22JwQxPN6IrJ2W9j6MPl5lXRrcfWDG6cTJ8KM7ZFdD-8uylCV_gpb1ar3lsz-TCmh-R-lyn3aD-PyMW7t-fzs3L5afF-_npZWiEBS1mLhjHTVI0D4CC7fAivrKESWcWgNRJthcJKBeiMEEhtbWztVN01rK0VOyLPd76rGK7XLk168Mm6vs-3h3XSVXZhggPP5LM7SS65QMkxgy_uBKlSigqscOv5dI-aZE3f5Y9Zn_Qq-sHEjUbEHApo5k52nI0hpeg6bf3061FTNL7XFPS2Lb1tS2_byoqXfyl-m_6L3bvf-N5t_g_qD_PzN3tFuVP4NLnbPwoTv2upmBL668eFXs6_sDOlTjVk_smO70zQ5jLmjBefMQcDqihVXLKfoL280g |
CODEN | JCTBDC |
CitedBy_id | crossref_primary_10_1016_j_cej_2014_12_037 crossref_primary_10_1016_j_cep_2015_05_003 crossref_primary_10_1016_j_mineng_2015_01_016 crossref_primary_10_1016_j_memsci_2012_05_063 crossref_primary_10_4028_www_scientific_net_AMR_356_360_1675 crossref_primary_10_1007_s11356_020_09639_7 crossref_primary_10_1007_s11356_022_19586_0 crossref_primary_10_1080_15422119_2018_1470537 crossref_primary_10_1016_j_memsci_2012_12_017 crossref_primary_10_1016_j_memsci_2013_12_019 crossref_primary_10_1016_j_bej_2017_01_016 crossref_primary_10_1038_s41598_021_91326_9 crossref_primary_10_1021_acs_iecr_3c00830 crossref_primary_10_1515_psr_2018_0024 crossref_primary_10_1016_j_pnucene_2017_06_012 crossref_primary_10_1080_01496395_2014_890628 crossref_primary_10_1007_s11157_019_09492_2 crossref_primary_10_1007_s11012_022_01474_z crossref_primary_10_1016_j_molliq_2021_117509 crossref_primary_10_3390_membranes8020021 crossref_primary_10_1007_s11426_023_1607_4 crossref_primary_10_1016_j_cej_2024_154309 crossref_primary_10_1016_j_cep_2020_107831 crossref_primary_10_1016_j_tifs_2012_03_003 crossref_primary_10_3390_membranes12040365 crossref_primary_10_7763_IJCEA_2014_V5_401 crossref_primary_10_1016_j_cep_2012_11_005 crossref_primary_10_1016_j_seppur_2012_09_026 crossref_primary_10_1039_D2LC00391K crossref_primary_10_1016_j_memsci_2014_01_031 crossref_primary_10_1016_j_psep_2025_107047 crossref_primary_10_1016_j_seppur_2013_11_019 crossref_primary_10_1021_ie3003705 crossref_primary_10_2166_wst_2024_117 crossref_primary_10_1016_j_cej_2024_153201 crossref_primary_10_1016_j_proeng_2012_08_647 crossref_primary_10_1093_nsr_nwz197 crossref_primary_10_1016_j_cej_2012_07_136 crossref_primary_10_1016_j_seppur_2024_126759 crossref_primary_10_1016_j_desal_2013_10_029 crossref_primary_10_1002_macp_201900196 crossref_primary_10_1016_j_watres_2023_120706 crossref_primary_10_1080_01496395_2011_627079 crossref_primary_10_1016_j_seppur_2017_03_031 crossref_primary_10_1016_j_memsci_2013_12_034 crossref_primary_10_1016_j_jbiotec_2014_03_022 crossref_primary_10_1016_j_molliq_2016_06_070 crossref_primary_10_1039_D3CS00147D crossref_primary_10_1016_j_jece_2018_01_037 crossref_primary_10_1016_j_cep_2021_108300 crossref_primary_10_1016_j_jwpe_2015_11_005 crossref_primary_10_1016_j_watres_2024_122122 crossref_primary_10_2166_wst_2015_225 crossref_primary_10_1016_j_cep_2015_01_003 crossref_primary_10_1016_j_jiec_2022_10_041 crossref_primary_10_1007_s40831_021_00396_6 crossref_primary_10_1063_5_0241089 crossref_primary_10_1016_j_cjche_2018_12_018 crossref_primary_10_5004_dwt_2018_22628 crossref_primary_10_1039_C6RA26463H crossref_primary_10_1080_19443994_2015_1102772 crossref_primary_10_1016_j_memsci_2012_11_060 crossref_primary_10_1007_s13762_020_02743_8 crossref_primary_10_1007_s11696_020_01317_9 crossref_primary_10_1016_j_jre_2021_09_011 crossref_primary_10_1016_j_sab_2021_106170 crossref_primary_10_1016_j_chemosphere_2021_133175 crossref_primary_10_1016_j_memsci_2019_117799 crossref_primary_10_1021_acs_iecr_8b06234 crossref_primary_10_1016_j_molliq_2020_114606 crossref_primary_10_1021_acs_iecr_5b00297 crossref_primary_10_3390_membranes12020190 crossref_primary_10_1016_j_cej_2012_03_010 crossref_primary_10_1016_j_jiec_2014_03_016 crossref_primary_10_1016_j_desal_2012_10_004 crossref_primary_10_1515_ijcre_2020_0153 crossref_primary_10_5004_dwt_2011_2406 crossref_primary_10_1080_10408347_2015_1064759 crossref_primary_10_1016_j_mineng_2019_105861 crossref_primary_10_1016_j_jiec_2013_10_045 crossref_primary_10_1016_j_desal_2011_11_051 crossref_primary_10_1016_j_watres_2014_02_026 crossref_primary_10_1080_01496395_2020_1852259 crossref_primary_10_1016_j_jwpe_2023_104746 crossref_primary_10_1007_s11771_024_5640_5 crossref_primary_10_1016_j_cej_2014_03_024 crossref_primary_10_1016_j_memsci_2016_08_009 crossref_primary_10_1016_j_seppur_2023_123457 crossref_primary_10_1021_acs_oprd_9b00009 crossref_primary_10_1016_j_jiec_2014_05_011 crossref_primary_10_1002_adma_202005664 crossref_primary_10_1016_j_apenergy_2020_115016 crossref_primary_10_1021_acs_iecr_2c03268 crossref_primary_10_1016_j_seppur_2021_119640 crossref_primary_10_1016_j_seppur_2012_02_015 crossref_primary_10_1007_s42461_022_00726_6 crossref_primary_10_1016_j_jiec_2018_11_002 crossref_primary_10_1515_ract_2021_1143 crossref_primary_10_3390_polym16040554 crossref_primary_10_1007_s11783_023_1625_0 crossref_primary_10_1016_j_jece_2022_107457 crossref_primary_10_1007_s11696_020_01300_4 crossref_primary_10_1016_j_jclepro_2019_118250 crossref_primary_10_1016_j_seppur_2024_127401 crossref_primary_10_1252_jcej_13we008 crossref_primary_10_1016_j_arabjc_2022_104501 crossref_primary_10_7763_IJCEA_2015_V6_502 crossref_primary_10_1039_D0CS00347F crossref_primary_10_1016_j_jhazmat_2020_123050 crossref_primary_10_1080_19443994_2013_775075 crossref_primary_10_1002_jctb_4328 crossref_primary_10_1021_acs_iecr_0c06161 crossref_primary_10_1080_15422119_2012_716134 crossref_primary_10_1016_j_jiec_2014_11_032 crossref_primary_10_1016_j_memsci_2016_07_010 crossref_primary_10_1039_C7FD00152E crossref_primary_10_1007_s11356_023_26951_0 crossref_primary_10_1016_j_seppur_2018_08_015 crossref_primary_10_1080_01496395_2014_891614 crossref_primary_10_1016_j_compchemeng_2011_01_021 crossref_primary_10_1080_01932691_2011_567148 crossref_primary_10_3390_membranes11090682 crossref_primary_10_1016_j_seppur_2016_03_031 crossref_primary_10_1007_s11814_015_0130_y crossref_primary_10_1007_s11270_022_05849_6 crossref_primary_10_1016_j_memsci_2019_117345 crossref_primary_10_1016_j_cej_2016_04_140 crossref_primary_10_1021_acs_iecr_0c05349 crossref_primary_10_1016_j_jechem_2018_02_004 crossref_primary_10_1088_1757_899X_427_1_012005 crossref_primary_10_1016_j_jece_2021_105860 crossref_primary_10_1007_s11356_021_16658_5 crossref_primary_10_1002_jctb_2557 crossref_primary_10_1016_j_seppur_2017_05_055 crossref_primary_10_1016_j_cherd_2017_08_012 crossref_primary_10_1016_j_molcatb_2015_10_010 crossref_primary_10_1016_j_jwpe_2022_103170 crossref_primary_10_1021_ie404210k crossref_primary_10_1016_j_seppur_2014_02_039 crossref_primary_10_1016_j_seppur_2017_04_007 crossref_primary_10_1080_01932691_2024_2420880 crossref_primary_10_1007_s00289_022_04362_4 crossref_primary_10_1016_j_eti_2023_103469 crossref_primary_10_3390_pr9030536 crossref_primary_10_1016_j_jiec_2018_11_024 crossref_primary_10_5004_dwt_2021_27622 crossref_primary_10_1016_j_memsci_2013_07_046 crossref_primary_10_3390_membranes11120936 crossref_primary_10_1007_s11696_020_01240_z crossref_primary_10_1016_j_seppur_2019_116385 crossref_primary_10_1021_acs_iecr_5b00099 crossref_primary_10_1016_j_cep_2022_108812 crossref_primary_10_1039_C6RA11566G crossref_primary_10_1016_j_desal_2018_02_005 |
Cites_doi | 10.1021/ie051418e 10.1007/978-94-009-1766-8 10.1021/ie0714798 10.1016/S0376-7388(00)00508-1 10.1016/S0376-7388(99)00040-X 10.1080/01496399608000695 10.1016/j.memsci.2007.05.016 10.1016/0376-7388(92)80020-K 10.1021/ie8016237 10.1007/BF02387303 10.1021/ie011044z 10.1016/j.fuproc.2006.12.007 10.1002/apj.81 10.1016/S1383-5866(00)00216-1 10.1126/science.131.3400.585 10.1016/j.seppur.2004.09.008 10.1016/j.hydromet.2004.10.021 10.1016/S1385-8947(01)00199-1 10.1021/ie980374p 10.1080/01496398408068598 10.1016/j.memsci.2007.05.018 10.1016/S0009-2509(00)00193-7 10.1021/ie00003a033 10.1016/j.memsci.2004.12.022 10.1002/(SICI)1097-0290(20000705)69:1<66::AID-BIT8>3.0.CO;2-I 10.1016/j.memsci.2004.09.003 10.1016/S0016-2361(03)00154-6 10.1021/ie980288p 10.1002/aic.690470211 10.1016/S0376-7388(01)00748-7 10.1002/aic.690341014 10.1002/ep.670200115 10.1016/j.seppur.2006.06.022 10.1021/ie030212f 10.1080/03602549809351641 10.1016/j.ces.2007.06.005 10.1016/j.memsci.2008.09.018 10.1080/01496399608000824 10.1016/0376-7388(95)00228-6 10.1016/0376-7388(92)80021-B 10.1021/ie00081a022 10.1021/ie950433o 10.1002/aic.690170607 10.1007/978-1-4615-3548-5 10.1016/j.cej.2008.03.020 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Society of Chemical Industry 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2009 Society of Chemical Industry – notice: 2015 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7SU 7U5 8FD C1K F28 FR3 L7M 7S9 L.6 7QO P64 |
DOI | 10.1002/jctb.2252 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Technology Research Database Engineering Research Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1097-4660 |
EndPage | 10 |
ExternalDocumentID | 22204001 10_1002_jctb_2252 JCTB2252 ark_67375_WNG_LCV3H77D_0 US201301711746 |
Genre | miscellaneous |
GrantInformation_xml | – fundername: Spanish Ministry of Innovation and Science funderid: CTQ2008‐5545/PPQ; CTQ2008‐00690/PPQ; CTQ2008‐3225/PPQ |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29K 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F D-I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UAO UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 XXG ZXP ZZTAW ~02 ~IA ~KM ~WT AEUQT AFPWT BSCLL RBB RWI WRC WSB AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SU 7U5 8FD C1K F28 FR3 L7M 7S9 L.6 7QO P64 |
ID | FETCH-LOGICAL-c5602-695b33ab8be00406f00048ca1623830da62c825c6702ea5521c9ac9e79fb3d973 |
IEDL.DBID | DR2 |
ISSN | 0268-2575 1097-4660 |
IngestDate | Fri Jul 11 03:47:20 EDT 2025 Fri Jul 11 01:42:50 EDT 2025 Fri Jul 11 00:40:48 EDT 2025 Mon Jul 21 09:11:57 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 00:48:03 EDT 2025 Wed Jan 22 16:25:16 EST 2025 Wed Oct 30 09:55:29 EDT 2024 Thu Apr 03 09:44:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Biotechnology hollow fibre Stability Legislation Liquid membrane transport mechanisms Ionic liquid membrane contactors Transport process Food industry Hollow fiber Separation process Regulation Unit operation |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5602-695b33ab8be00406f00048ca1623830da62c825c6702ea5521c9ac9e79fb3d973 |
Notes | http://dx.doi.org/10.1002/jctb.2252 ark:/67375/WNG-LCV3H77D-0 Spanish Ministry of Innovation and Science - No. CTQ2008-5545/PPQ; No. CTQ2008-00690/PPQ; No. CTQ2008-3225/PPQ ArticleID:JCTB2252 istex:CF3515F3F4F9FB3E9291F3646506DD70B237DC56 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1777152824 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_883035404 proquest_miscellaneous_46452642 proquest_miscellaneous_1777152824 pascalfrancis_primary_22204001 crossref_citationtrail_10_1002_jctb_2252 crossref_primary_10_1002_jctb_2252 wiley_primary_10_1002_jctb_2252_JCTB2252 istex_primary_ark_67375_WNG_LCV3H77D_0 fao_agris_US201301711746 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2010 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: January 2010 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | Journal of chemical technology and biotechnology (1986) |
PublicationTitleAlternate | J. Chem. Technol. Biotechnol |
PublicationYear | 2010 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Alonso AI, Galán B, Gonzalez M and Ortiz I, Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr(VI) from a galvanic process wastewaters. Ind Eng Chem Res 38: 1666-1675 (1999). Neplenbroek AM, Bargeman D and Smolders CA, Mechanism of supported liquid membrane degradation: emulsion formation. J Membr Sci 67: 133-148 (1992). Miesiac I and Szymanowski J, Pertraction of penicillin G in hollow fiber contained liquid membranes. J Radioanal Nucl Chem 228: 77-81 (1998). Urtiaga AM, Ortiz I, Salazar E and Irabien JA, Supported liquid membranes for the separation-concentration of phenol. 1. Viability and mass-transfer evaluation. Ind Eng Chem Res 31: 877-886 (1992). Li K, Kong J and Tan X, Design of hollow fibre membrane modules for soluble gas removal. Chem Eng Sci 55: 5579-5588 (2000). Kumar A, Haddad R, Alguacil FJ and Sastre AM, Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors. J Membr Sci 248: 1-14 (2005). Figoli A, Sager WFC and Mulder MHV, Facilitated oxygen transport in liquid membranes: review and new concepts. J Membr Sci 181: 97-110 (2001). Scholander PF, Oxygen transport through hemoglobin solutions. Science 131: 585-590 (1960). Gabelman A and Hwang S-T, Hollow fiber membrane contactors. J Membr Sci 159: 61-106 (1999). Araki T and Tsukube H, Liquid Membranes: Chemical Applications. CRC Press, FL (1990). Ortiz I, Wongswan S and de Ortiz ESP, A systematic method for the study of the rate-controlling mechanism in liquid membrane permeation processes. Extraction of zinc by Bis(2-Ethylhexyl) phosphoric acids. Ind Eng Chem Res 27: 1696-1701 (1988b). Alonso AI, Irabien A and Ortiz I, Nondispersive extraction of Cr(VI) with Aliquat 336: influence of carrier concentration. Sep Sci Technol 31: 271-282 (1996). Kentish SE and Stevens GW, Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Eng J 84: 149-159 (2001). Kumar A, Haddad R and Sastre AM, Integrated membrane process for gold recovery from hydrometallurgical solutions. AIChE J 47: 328-340 (2001). Ortiz I, San Román MF, Corvalán SM and Eliceche AM, Modeling and optimization of an emulsion pertraction process for removal and concentration of Cr(VI). Ind Eng Chem Res 42: 5891-5899 (2003). Ren Z, Zhang W, Dai Y, Yang Y and Hao Z, Modeling of Effect of pH on mass transfer of copper(II) extraction by hollow fiber renewal liquid membrane. Ind Eng Chem Res 47: 4256-4262 (2008). Teramoto M, Takeuchi N, Maki T and Matsuyama H, Gas separation by liquid membrane accompanied by permeation of membrane liquid through membrane physical transport. Sep Purif Technol 24: 101-112 (2001). Venkateswaran P and Palanivelu K, Studies on recovery of hexavalent chromium from wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometal 78: 107-115 (2005). Kemperman AJB, Bargeman D, Van Den Boomgaard Th and Strathmann H, Stability of supported liquid membranes: state of the art. Sep Sci Technol 31: 2733-2762 (1996). Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Janardan P, Changrani RD, et al, Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactactor. J Membr Sci 300: 131-136 (2007). Bringas E, San Román MF and Ortiz I, Separation and recovery of anionic by the emulsion pertraction technology. Remediation of polluted groundwaters with Cr(VI). Ind Eng Chem Res 45: 4295-4303 (2006). Ho WSW and Poddar TK, New membrane technology for removal and recovery of chromium from waste waters. Environ Prog 20: 44-52 (2001). Cussler EL, Membranes which pump. AIChE J 17: 1300-1303 (1971). De Gyves J and Rodriguez San Miguel E, Metal ion separations by supported liquid membranes. Ind Eng Chem Res 38: 2182-2202 (1999). Sastre AM, Kumar A, Shukla JP and Singh RK, Improved techniques in liquid membrane separations: an overview. Sep Purif Methods 27: 213-298 (1998). Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, et al, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48: 2739-2751 (2009). Ortiz I, Galán B and Irabien A, Kinetic analysis of the simultaneous nondisepersive extraction and back-extraction of chromium(VI). Ind Eng Chem Res 35: 1369-1377 (1996). Alonso AI and Pantelides CC, Modeling and simulation of integrated membrane processes for recovery of Cr(VI) with Aliquat 336. J Membr Sci 110: 151-167 (1996). Kocherginsky NM, Yang Q and Seelam L, Recent advances in supported liquid membrane technology. Sep Purif Technol 53: 171-177 (2007). Ren Z, Zhang W, Li H and Wei L, Mass transfer characteristics of citric acid extraction by hollow fiber renewal liquid membrane. Chem Eng J 146: 220-226 (2009). Mavroudi M, Kaldis SP and Sakellaropoulos , Reduction of CO2 emissions by a membrane contacting process. Fuel 82: 2153-2159 (2003). Yang C and Cussler EL, Reactive extraction of penicillin g in hollow-fiber and hollow-fiber fabric modules. Biotechnol Bioeng 69: 66-73 (2000). Neplenbroek AM, Bargeman D and Smolders CA, Supported liquid membranes: instability effects. J Membr Sci 67: 121-132 (1992). Sengupta A., Basu R and Sirkar KK, Separation of solutes from aqueous solutions by contained liquid membranes. AIChE J 34: 1698-1708 (1988). Yan S, Fang M, Zhang W-F, Wang S-Y, Xu Z-K, Luo Z-Y, et al, Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88: 501-551 (2007). Ho WSW and Sirkar KK, Membrane Handbook. Chapman & Hall, New York (1992). Krull FF, Fritzmann C and Melin T, Liquid membranes for gas/vapour separations. J Membr Sci 325: 509-519 (2008). Lazarova Z, Syska B and Schügerl K, Application of large-scale hollow fiber contactors for simultaneous extractive removal and stripping of penicillin G. J Membr Sci 202: 151-164 (2002). Mulder M, Basic Principles of Membrane Technology. Kluwer Academic Publishers, The Netherlands (1996). Kertész R, Simo M and Schlosser S, Membrane-based solvent extraction and stripping of Phenylalanine in HF contactors. J Membr Sci 257: 37-47 (2005). Danesi PR, Separation of metal species by supported liquid membranes. Sep Sci Technol 19: 857-894 (1984-85). Sonawane JV, Pabby AK and Sastre AM, Au(I) extraction by LIX-79/n-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique. J Membr Sci 300: 147-155 (2007). Franken T, Liquid Membranes-academic exercise or industrial separation process? Membr Technol 85: 6-10 (1997). Yang XJ, Fane AG and Soldenhoff K, Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity. Ind Eng Chem Res 42: 392-403 (2003). Li J-L. and Chen B-H, Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41: 109-122 (2005). Pabby A, Rizhi SHS and Sastre AM, Handbook of Membrane Separations. Chemical, Pharmaceutical, Food and Biotechnological Applications. CRC Press, New York (2009). Bringas I, San Román MF, Irabien JA and Ortiz I, An overview on the mathematical modeling of liquid membrane separation processes in hollow fiber contactors. J Chem Technol Biotechnol (Accepted 8 May 2009). DOI 10.1002/jctb.2231. Ren Z, Zhang W, Liu Y, Dai Y and Cui C, New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater. Chem Eng Sci 62: 6090-6101 (2007). Smith E and Hossain Md.M, Extraction and recovery of penicillin G in a hollow-fiber membrane contactor. Asia-Pacific J Chem Eng 2: 455-459 (2007). Baker RW, Membrane Technology and Applications. McGraw-Hill, New York (2000). 1998; 27 2007; 300 2000; 69 2001; 181 1997; 85 1960; 131 2005; 257 2009 2008 2005; 41 1996 1988; 34 2008; 325 1992 1992; 31 2007; 53 1996; 35 2001; 24 2001; 47 2001; 84 1996; 31 2009; 48 2001; 20 1990 1971; 17 2006; 45 2001 2000 1988b; 27 1999; 38 2000; 55 2002; 202 2005; 248 2008; 47 1984–85; 19 1998; 228 2009; 146 1996; 110 2007; 62 2007; 2 2003; 82 1999; 159 2007; 88 1992; 67 2003; 42 2005; 78 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 Pabby A (e_1_2_7_5_2) 2009 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 Baker RW (e_1_2_7_19_2) 2000 Franken T (e_1_2_7_23_2) 1997; 85 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 Bringas I (e_1_2_7_27_2) e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_2 Araki T (e_1_2_7_3_2) 1990 e_1_2_7_38_2 |
References_xml | – reference: Figoli A, Sager WFC and Mulder MHV, Facilitated oxygen transport in liquid membranes: review and new concepts. J Membr Sci 181: 97-110 (2001). – reference: Ho WSW and Sirkar KK, Membrane Handbook. Chapman & Hall, New York (1992). – reference: Ho WSW and Poddar TK, New membrane technology for removal and recovery of chromium from waste waters. Environ Prog 20: 44-52 (2001). – reference: Alonso AI and Pantelides CC, Modeling and simulation of integrated membrane processes for recovery of Cr(VI) with Aliquat 336. J Membr Sci 110: 151-167 (1996). – reference: Franken T, Liquid Membranes-academic exercise or industrial separation process? Membr Technol 85: 6-10 (1997). – reference: Sastre AM, Kumar A, Shukla JP and Singh RK, Improved techniques in liquid membrane separations: an overview. Sep Purif Methods 27: 213-298 (1998). – reference: Mavroudi M, Kaldis SP and Sakellaropoulos , Reduction of CO2 emissions by a membrane contacting process. Fuel 82: 2153-2159 (2003). – reference: Danesi PR, Separation of metal species by supported liquid membranes. Sep Sci Technol 19: 857-894 (1984-85). – reference: Kemperman AJB, Bargeman D, Van Den Boomgaard Th and Strathmann H, Stability of supported liquid membranes: state of the art. Sep Sci Technol 31: 2733-2762 (1996). – reference: Yan S, Fang M, Zhang W-F, Wang S-Y, Xu Z-K, Luo Z-Y, et al, Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88: 501-551 (2007). – reference: Ren Z, Zhang W, Dai Y, Yang Y and Hao Z, Modeling of Effect of pH on mass transfer of copper(II) extraction by hollow fiber renewal liquid membrane. Ind Eng Chem Res 47: 4256-4262 (2008). – reference: De Gyves J and Rodriguez San Miguel E, Metal ion separations by supported liquid membranes. Ind Eng Chem Res 38: 2182-2202 (1999). – reference: Pabby A, Rizhi SHS and Sastre AM, Handbook of Membrane Separations. Chemical, Pharmaceutical, Food and Biotechnological Applications. CRC Press, New York (2009). – reference: Scholander PF, Oxygen transport through hemoglobin solutions. Science 131: 585-590 (1960). – reference: Neplenbroek AM, Bargeman D and Smolders CA, Mechanism of supported liquid membrane degradation: emulsion formation. J Membr Sci 67: 133-148 (1992). – reference: Lazarova Z, Syska B and Schügerl K, Application of large-scale hollow fiber contactors for simultaneous extractive removal and stripping of penicillin G. J Membr Sci 202: 151-164 (2002). – reference: Cussler EL, Membranes which pump. AIChE J 17: 1300-1303 (1971). – reference: Ortiz I, Galán B and Irabien A, Kinetic analysis of the simultaneous nondisepersive extraction and back-extraction of chromium(VI). Ind Eng Chem Res 35: 1369-1377 (1996). – reference: Urtiaga AM, Ortiz I, Salazar E and Irabien JA, Supported liquid membranes for the separation-concentration of phenol. 1. Viability and mass-transfer evaluation. Ind Eng Chem Res 31: 877-886 (1992). – reference: Ren Z, Zhang W, Liu Y, Dai Y and Cui C, New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater. Chem Eng Sci 62: 6090-6101 (2007). – reference: Ortiz I, Wongswan S and de Ortiz ESP, A systematic method for the study of the rate-controlling mechanism in liquid membrane permeation processes. Extraction of zinc by Bis(2-Ethylhexyl) phosphoric acids. Ind Eng Chem Res 27: 1696-1701 (1988b). – reference: Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Janardan P, Changrani RD, et al, Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactactor. J Membr Sci 300: 131-136 (2007). – reference: Alonso AI, Galán B, Gonzalez M and Ortiz I, Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr(VI) from a galvanic process wastewaters. Ind Eng Chem Res 38: 1666-1675 (1999). – reference: Kentish SE and Stevens GW, Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Eng J 84: 149-159 (2001). – reference: Mulder M, Basic Principles of Membrane Technology. Kluwer Academic Publishers, The Netherlands (1996). – reference: Li K, Kong J and Tan X, Design of hollow fibre membrane modules for soluble gas removal. Chem Eng Sci 55: 5579-5588 (2000). – reference: Araki T and Tsukube H, Liquid Membranes: Chemical Applications. CRC Press, FL (1990). – reference: Alonso AI, Irabien A and Ortiz I, Nondispersive extraction of Cr(VI) with Aliquat 336: influence of carrier concentration. Sep Sci Technol 31: 271-282 (1996). – reference: Baker RW, Membrane Technology and Applications. McGraw-Hill, New York (2000). – reference: Yang C and Cussler EL, Reactive extraction of penicillin g in hollow-fiber and hollow-fiber fabric modules. Biotechnol Bioeng 69: 66-73 (2000). – reference: Ortiz I, San Román MF, Corvalán SM and Eliceche AM, Modeling and optimization of an emulsion pertraction process for removal and concentration of Cr(VI). Ind Eng Chem Res 42: 5891-5899 (2003). – reference: Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, et al, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48: 2739-2751 (2009). – reference: Li J-L. and Chen B-H, Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41: 109-122 (2005). – reference: Kumar A, Haddad R and Sastre AM, Integrated membrane process for gold recovery from hydrometallurgical solutions. AIChE J 47: 328-340 (2001). – reference: Kumar A, Haddad R, Alguacil FJ and Sastre AM, Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors. J Membr Sci 248: 1-14 (2005). – reference: Sonawane JV, Pabby AK and Sastre AM, Au(I) extraction by LIX-79/n-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique. J Membr Sci 300: 147-155 (2007). – reference: Kertész R, Simo M and Schlosser S, Membrane-based solvent extraction and stripping of Phenylalanine in HF contactors. J Membr Sci 257: 37-47 (2005). – reference: Miesiac I and Szymanowski J, Pertraction of penicillin G in hollow fiber contained liquid membranes. J Radioanal Nucl Chem 228: 77-81 (1998). – reference: Gabelman A and Hwang S-T, Hollow fiber membrane contactors. J Membr Sci 159: 61-106 (1999). – reference: Yang XJ, Fane AG and Soldenhoff K, Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity. Ind Eng Chem Res 42: 392-403 (2003). – reference: Bringas E, San Román MF and Ortiz I, Separation and recovery of anionic by the emulsion pertraction technology. Remediation of polluted groundwaters with Cr(VI). Ind Eng Chem Res 45: 4295-4303 (2006). – reference: Venkateswaran P and Palanivelu K, Studies on recovery of hexavalent chromium from wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometal 78: 107-115 (2005). – reference: Teramoto M, Takeuchi N, Maki T and Matsuyama H, Gas separation by liquid membrane accompanied by permeation of membrane liquid through membrane physical transport. Sep Purif Technol 24: 101-112 (2001). – reference: Sengupta A., Basu R and Sirkar KK, Separation of solutes from aqueous solutions by contained liquid membranes. AIChE J 34: 1698-1708 (1988). – reference: Ren Z, Zhang W, Li H and Wei L, Mass transfer characteristics of citric acid extraction by hollow fiber renewal liquid membrane. Chem Eng J 146: 220-226 (2009). – reference: Krull FF, Fritzmann C and Melin T, Liquid membranes for gas/vapour separations. J Membr Sci 325: 509-519 (2008). – reference: Smith E and Hossain Md.M, Extraction and recovery of penicillin G in a hollow-fiber membrane contactor. Asia-Pacific J Chem Eng 2: 455-459 (2007). – reference: Bringas I, San Román MF, Irabien JA and Ortiz I, An overview on the mathematical modeling of liquid membrane separation processes in hollow fiber contactors. J Chem Technol Biotechnol (Accepted 8 May 2009). DOI 10.1002/jctb.2231. – reference: Kocherginsky NM, Yang Q and Seelam L, Recent advances in supported liquid membrane technology. Sep Purif Technol 53: 171-177 (2007). – reference: Neplenbroek AM, Bargeman D and Smolders CA, Supported liquid membranes: instability effects. J Membr Sci 67: 121-132 (1992). – year: 2009 – volume: 300 start-page: 147 year: 2007 end-page: 155 article-title: Au(I) extraction by LIX‐79/n‐heptane using the pseudo‐emulsion‐based hollow‐fiber strip dispersion (PEHFSD) technique publication-title: J Membr Sci – volume: 48 start-page: 2739 year: 2009 end-page: 2751 article-title: Guide to CO separations in imidazolium‐based room‐temperature ionic liquids publication-title: Ind Eng Chem Res – year: 2001 – volume: 47 start-page: 328 year: 2001 end-page: 340 article-title: Integrated membrane process for gold recovery from hydrometallurgical solutions publication-title: AIChE J – year: 1990 – volume: 45 start-page: 4295 year: 2006 end-page: 4303 article-title: Separation and recovery of anionic by the emulsion pertraction technology. Remediation of polluted groundwaters with Cr(VI) publication-title: Ind Eng Chem Res – volume: 84 start-page: 149 year: 2001 end-page: 159 article-title: Innovations in separations technology for the recycling and re‐use of liquid waste streams publication-title: Chem Eng J – volume: 35 start-page: 1369 year: 1996 end-page: 1377 article-title: Kinetic analysis of the simultaneous nondisepersive extraction and back‐extraction of chromium(VI) publication-title: Ind Eng Chem Res – volume: 62 start-page: 6090 year: 2007 end-page: 6101 article-title: New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater publication-title: Chem Eng Sci – volume: 248 start-page: 1 year: 2005 end-page: 14 article-title: Comparative performance of non‐dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors publication-title: J Membr Sci – volume: 2 start-page: 455 year: 2007 end-page: 459 article-title: Extraction and recovery of penicillin G in a hollow‐fiber membrane contactor publication-title: Asia‐Pacific J Chem Eng – volume: 67 start-page: 133 year: 1992 end-page: 148 article-title: Mechanism of supported liquid membrane degradation: emulsion formation publication-title: J Membr Sci – volume: 110 start-page: 151 year: 1996 end-page: 167 article-title: Modeling and simulation of integrated membrane processes for recovery of Cr(VI) with Aliquat 336 publication-title: J Membr Sci – volume: 159 start-page: 61 year: 1999 end-page: 106 article-title: Hollow fiber membrane contactors publication-title: J Membr Sci – volume: 27 start-page: 213 year: 1998 end-page: 298 article-title: Improved techniques in liquid membrane separations: an overview publication-title: Sep Purif Methods – volume: 17 start-page: 1300 year: 1971 end-page: 1303 article-title: Membranes which pump publication-title: AIChE J – year: 2008 – volume: 67 start-page: 121 year: 1992 end-page: 132 article-title: Supported liquid membranes: instability effects publication-title: J Membr Sci – volume: 42 start-page: 5891 year: 2003 end-page: 5899 article-title: Modeling and optimization of an emulsion pertraction process for removal and concentration of Cr(VI) publication-title: Ind Eng Chem Res – volume: 257 start-page: 37 year: 2005 end-page: 47 article-title: Membrane‐based solvent extraction and stripping of Phenylalanine in HF contactors publication-title: J Membr Sci – volume: 85 start-page: 6 year: 1997 end-page: 10 article-title: Liquid Membranes—academic exercise or industrial separation process? publication-title: Membr Technol – volume: 19 start-page: 857 year: 1984–85 end-page: 894 article-title: Separation of metal species by supported liquid membranes publication-title: Sep Sci Technol – volume: 325 start-page: 509 year: 2008 end-page: 519 article-title: Liquid membranes for gas/vapour separations publication-title: J Membr Sci – volume: 34 start-page: 1698 year: 1988 end-page: 1708 article-title: Separation of solutes from aqueous solutions by contained liquid membranes publication-title: AIChE J – volume: 38 start-page: 1666 year: 1999 end-page: 1675 article-title: Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr(VI) from a galvanic process wastewaters publication-title: Ind Eng Chem Res – volume: 47 start-page: 4256 year: 2008 end-page: 4262 article-title: Modeling of Effect of pH on mass transfer of copper(II) extraction by hollow fiber renewal liquid membrane publication-title: Ind Eng Chem Res – year: 2000 – year: 1996 – volume: 38 start-page: 2182 year: 1999 end-page: 2202 article-title: Metal ion separations by supported liquid membranes publication-title: Ind Eng Chem Res – volume: 24 start-page: 101 year: 2001 end-page: 112 article-title: Gas separation by liquid membrane accompanied by permeation of membrane liquid through membrane physical transport publication-title: Sep Purif Technol – volume: 27 start-page: 1696 year: 1988b end-page: 1701 article-title: A systematic method for the study of the rate‐controlling mechanism in liquid membrane permeation processes. Extraction of zinc by Bis(2‐Ethylhexyl) phosphoric acids publication-title: Ind Eng Chem Res – volume: 82 start-page: 2153 year: 2003 end-page: 2159 article-title: Reduction of CO emissions by a membrane contacting process publication-title: Fuel – volume: 78 start-page: 107 year: 2005 end-page: 115 article-title: Studies on recovery of hexavalent chromium from wastewater by supported liquid membrane using tri‐n‐butyl phosphate as carrier publication-title: Hydrometal – volume: 228 start-page: 77 year: 1998 end-page: 81 article-title: Pertraction of penicillin G in hollow fiber contained liquid membranes publication-title: J Radioanal Nucl Chem – volume: 41 start-page: 109 year: 2005 end-page: 122 article-title: Review of CO absorption using chemical solvents in hollow fiber membrane contactors publication-title: Sep Purif Technol – year: 1992 – volume: 53 start-page: 171 year: 2007 end-page: 177 article-title: Recent advances in supported liquid membrane technology publication-title: Sep Purif Technol – volume: 300 start-page: 131 year: 2007 end-page: 136 article-title: Dispersion‐free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactactor publication-title: J Membr Sci – volume: 88 start-page: 501 year: 2007 end-page: 551 article-title: Experimental study on the separation of CO from flue gas using hollow fiber membrane contactors without wetting publication-title: Fuel Process Technol – volume: 20 start-page: 44 year: 2001 end-page: 52 article-title: New membrane technology for removal and recovery of chromium from waste waters publication-title: Environ Prog – volume: 181 start-page: 97 year: 2001 end-page: 110 article-title: Facilitated oxygen transport in liquid membranes: review and new concepts publication-title: J Membr Sci – volume: 31 start-page: 2733 year: 1996 end-page: 2762 article-title: Stability of supported liquid membranes: state of the art publication-title: Sep Sci Technol – volume: 42 start-page: 392 year: 2003 end-page: 403 article-title: Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity publication-title: Ind Eng Chem Res – volume: 31 start-page: 271 year: 1996 end-page: 282 article-title: Nondispersive extraction of Cr(VI) with Aliquat 336: influence of carrier concentration publication-title: Sep Sci Technol – volume: 69 start-page: 66 year: 2000 end-page: 73 article-title: Reactive extraction of penicillin g in hollow‐fiber and hollow‐fiber fabric modules publication-title: Biotechnol Bioeng – volume: 31 start-page: 877 year: 1992 end-page: 886 article-title: Supported liquid membranes for the separation‐concentration of phenol. 1. Viability and mass‐transfer evaluation publication-title: Ind Eng Chem Res – volume: 146 start-page: 220 year: 2009 end-page: 226 article-title: Mass transfer characteristics of citric acid extraction by hollow fiber renewal liquid membrane publication-title: Chem Eng J – volume: 131 start-page: 585 year: 1960 end-page: 590 article-title: Oxygen transport through hemoglobin solutions publication-title: Science – article-title: An overview on the mathematical modeling of liquid membrane separation processes in hollow fiber contactors publication-title: J Chem Technol Biotechnol – volume: 202 start-page: 151 year: 2002 end-page: 164 article-title: Application of large‐scale hollow fiber contactors for simultaneous extractive removal and stripping of penicillin G publication-title: J Membr Sci – volume: 55 start-page: 5579 year: 2000 end-page: 5588 article-title: Design of hollow fibre membrane modules for soluble gas removal publication-title: Chem Eng Sci – ident: e_1_2_7_12_2 doi: 10.1021/ie051418e – ident: e_1_2_7_20_2 doi: 10.1007/978-94-009-1766-8 – ident: e_1_2_7_17_2 doi: 10.1021/ie0714798 – ident: e_1_2_7_38_2 – ident: e_1_2_7_8_2 doi: 10.1016/S0376-7388(00)00508-1 – volume-title: Membrane Technology and Applications. year: 2000 ident: e_1_2_7_19_2 – ident: e_1_2_7_11_2 doi: 10.1016/S0376-7388(99)00040-X – ident: e_1_2_7_46_2 doi: 10.1080/01496399608000695 – ident: e_1_2_7_15_2 doi: 10.1016/j.memsci.2007.05.016 – ident: e_1_2_7_35_2 doi: 10.1016/0376-7388(92)80020-K – ident: e_1_2_7_41_2 doi: 10.1021/ie8016237 – ident: e_1_2_7_50_2 doi: 10.1007/BF02387303 – ident: e_1_2_7_34_2 doi: 10.1021/ie011044z – ident: e_1_2_7_42_2 doi: 10.1016/j.fuproc.2006.12.007 – ident: e_1_2_7_52_2 doi: 10.1002/apj.81 – ident: e_1_2_7_7_2 doi: 10.1016/S1383-5866(00)00216-1 – ident: e_1_2_7_22_2 doi: 10.1126/science.131.3400.585 – ident: e_1_2_7_39_2 doi: 10.1016/j.seppur.2004.09.008 – ident: e_1_2_7_45_2 doi: 10.1016/j.hydromet.2004.10.021 – ident: e_1_2_7_4_2 doi: 10.1016/S1385-8947(01)00199-1 – volume-title: Handbook of Membrane Separations. Chemical, Pharmaceutical, Food and Biotechnological Applications. year: 2009 ident: e_1_2_7_5_2 – ident: e_1_2_7_10_2 doi: 10.1021/ie980374p – ident: e_1_2_7_25_2 doi: 10.1080/01496398408068598 – ident: e_1_2_7_31_2 doi: 10.1016/j.memsci.2007.05.018 – ident: e_1_2_7_43_2 doi: 10.1016/S0009-2509(00)00193-7 – ident: e_1_2_7_21_2 doi: 10.1021/ie00003a033 – ident: e_1_2_7_30_2 doi: 10.1016/j.memsci.2004.12.022 – ident: e_1_2_7_51_2 doi: 10.1002/(SICI)1097-0290(20000705)69:1<66::AID-BIT8>3.0.CO;2-I – ident: e_1_2_7_32_2 doi: 10.1016/j.memsci.2004.09.003 – ident: e_1_2_7_44_2 doi: 10.1016/S0016-2361(03)00154-6 – ident: e_1_2_7_48_2 doi: 10.1021/ie980288p – ident: e_1_2_7_49_2 – volume: 85 start-page: 6 year: 1997 ident: e_1_2_7_23_2 article-title: Liquid Membranes—academic exercise or industrial separation process? publication-title: Membr Technol – ident: e_1_2_7_28_2 doi: 10.1002/aic.690470211 – ident: e_1_2_7_53_2 doi: 10.1016/S0376-7388(01)00748-7 – ident: e_1_2_7_37_2 doi: 10.1002/aic.690341014 – ident: e_1_2_7_13_2 doi: 10.1002/ep.670200115 – volume-title: Liquid Membranes: Chemical Applications. year: 1990 ident: e_1_2_7_3_2 – ident: e_1_2_7_24_2 doi: 10.1016/j.seppur.2006.06.022 – ident: e_1_2_7_14_2 doi: 10.1021/ie030212f – ident: e_1_2_7_6_2 doi: 10.1080/03602549809351641 – ident: e_1_2_7_16_2 doi: 10.1016/j.ces.2007.06.005 – ident: e_1_2_7_40_2 doi: 10.1016/j.memsci.2008.09.018 – ident: e_1_2_7_33_2 doi: 10.1080/01496399608000824 – ident: e_1_2_7_29_2 doi: 10.1016/0376-7388(95)00228-6 – ident: e_1_2_7_36_2 doi: 10.1016/0376-7388(92)80021-B – ident: e_1_2_7_26_2 doi: 10.1021/ie00081a022 – ident: e_1_2_7_47_2 doi: 10.1021/ie950433o – ident: e_1_2_7_9_2 doi: 10.1002/aic.690170607 – ident: e_1_2_7_2_2 doi: 10.1007/978-1-4615-3548-5 – ident: e_1_2_7_18_2 doi: 10.1016/j.cej.2008.03.020 – ident: e_1_2_7_27_2 article-title: An overview on the mathematical modeling of liquid membrane separation processes in hollow fiber contactors publication-title: J Chem Technol Biotechnol |
SSID | ssj0006826 |
Score | 2.3704383 |
SecondaryResourceType | review_article |
Snippet | OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in... OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in... |
SourceID | proquest pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2 |
SubjectTerms | Applied sciences Biological and medical sciences Biotechnology Chemical engineering Chemical technology energy Exact sciences and technology Food engineering Food industries fruits Fundamental and applied biological sciences. Psychology General aspects hollow fibre hydrogen industrial applications Ionic liquids Legislation liquid membrane Liquid membranes membrane contactors Membranes odor compounds Separation Technology utilization transport mechanisms |
Title | Liquid membrane technology: fundamentals and review of its applications |
URI | https://api.istex.fr/ark:/67375/WNG-LCV3H77D-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.2252 https://www.proquest.com/docview/1777152824 https://www.proquest.com/docview/46452642 https://www.proquest.com/docview/883035404 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NPcED41MLH8MghPaSLbETO2FPUNiqaewBVtgDkuU4NurGUlhTCfHX7y5pshZRCfEWVec0Od9dfrbvfgfwMuU-SW0swhJDX5gkXoTGchtGxgjryzLLJdU7fziWw1FyeJqersFeVwvT8kP0G27kGU28Jgc3xXT3mjT0zNbFDlojxV_K1SJA9PGaOkpmTas1XGKgJSAm6ViFIr7bj1z6Ft3wZoIIlZT7izIkzRSV5NvuFkvwcxHENl-h_Q342j1_m3xyvjPDv7C__6B2_M8XvAO35-iUvWnN6S6sueoe3FrgLLwPB0fjn7NxyS7cBd68cqzuN-dfM091JW27gCkzVcnayhg28Wxc4y8Lp-UPYLT__mQwDOfdGEKLqIiHMk8LIUyRFY48X_qmHt2aGAFUJqLSSG5xuWmlirgzKcICmxubO5X7QpS5Eg9hvZpUbhOYFE5Y7qT3eZHkjhdGeI8jM-8kwjUewHY3L9rOqcqpY8Z33ZIsc0260aSbAF70oj9afo6_CW3i5GrzDeOmHn3idFobqxgXYzKAV82M94PN5TnluqlUfzk-0EeDz2Ko1DsdBbC1ZBL9AARYFAjjAJ53NqLRRencBSdhMpvqWCmFMCnjSQDPVsg0B8y4FgyArZDIUMm0SYc32W7MZvX76sPByVu6ePTvoo_hZpsYQbtLT2C9vpy5p4i36mKrcawr3z0k2g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN5pywE48GZqHq1ggOnFrS3Zss0MB0ho0zbNAZLSm5BlqZOWOtA4w-M38Vf4T6zs2E0YMsOlB24Zj2RH2k_ab6V9ADwLqQlC5TM3w63PDQLDXKmocj0pmTJZFifcxjsf9HhnEOwdhUdL8LOOhanyQzQHbnZllPu1XeD2QHrrImvoiSrSTYQjnbpU7uvvX9FgG7_abaN0n1O6_bbf6rjTmgKuQt1OXZ6EKWMyjVNt8ctNGVWtpI80IGZeJjlVaDQpHnlUyxCVm0qkSnSUmJRlScTwvctwxVYQt5n62-8uklXxuCzuhkYNYg9ZUJ3HyKNbzV-d037LRo6QE1txfrM-mXKMYjFVPY05wjtLm0u9t30TftUzVrm7nG5O8BPqxx_JJP-XKb0FN6YEnLyuVsxtWNL5Hbg-k5bxLux0h18mw4yc6TMcTa5J0dw_vCTGhs5UFRHGROYZqYJ_yMiQYYFPZhwC7sHgUkZyH1byUa5XgXCmmaKaG5OkQaJpKpkx2DM2miMjpQ5s1EAQapqN3RYF-SSqPNJUWFkIKwsHnjZNP1cpSP7WaBXRJOQxqgYxeE_thbQf-WhvcgdelBBrOsvzU-vOF4XiQ29HdFuHrBNFbeE5sDaHwaYDcki71_sOPKlBKXAXsldLKITRZCz8KIqQCcY0cGB9QZvyDh3NXQfIghYxTrI9h8SXbJQ4XTxesdfqv7E_Hvx703W42ukfdEV3t7f_EK5VfiD2MO0RrBTnE_0Y6WWRrpWrmsDHy8b8bz4WgDE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7ahoTggTtaBmwGAdpLtsROnASJB2jpuq1UCFbYm3EcG3Vj6VhTcflL_BV-FMdJk7WISrzsgbcqspPa57PPd-xzAXgcUhOEymduhlufGwSGuVJR5XpSMmWyLE64jXd-3efdQbB3GB4uwc86FqbKD9EcuNmVUe7XdoGfZmb7PGnokSrSLUQjnXpU7uvvX9FeGz_fbaNwn1DaeXXQ6rrTkgKuQtVOXZ6EKWMyjVNt4ctNGVStpI8sIGZeJjlVaDMpHnlUyxB1m0qkSnSUmJRlScTwvctwKeBeYutEtN-e56ricVnbDW0ahB6SoDqNkUe3m786p_yWjRwhJbbS_GZdMuUYpWKqchpzfHeWNZdqr3MdftUTVnm7HG9N8BPqxx-5JP-TGb0B16b0m7yo1stNWNL5Lbg6k5TxNuz0hl8mw4yc6BMcTK5J0dw-PCPGBs5U9RDGROYZqUJ_yMiQYYFPZtwB7sDgQkZyF1byUa5XgXCmmaKaG5OkQaJpKpkx2DM2miMfpQ5s1jgQapqL3ZYE-SyqLNJUWFkIKwsHHjVNT6sEJH9rtIpgEvITKgYxeEftdbQf-WhtcgeelghrOsuzY-vMF4XiQ39H9FrvWTeK2sJzYH0Ogk0HZJB2p_cdeFhjUuAeZC-WUAijyVj4URQhD4xp4MDGgjblDToauw6QBS1inGR7Cokv2Sxhuni8Yq918NL-WPv3phtw-U27I3q7_f17cKVyArEnafdhpTib6AfILYt0vVzTBD5eNOR_AyK3fuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+membrane+technology%3A+fundamentals+and+review+of+its+applications&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=San+Rom%C3%A1n%2C+M.F&rft.au=Bringas%2C+E&rft.au=Iba%C3%B1ez%2C+R&rft.au=Ortiz%2C+I&rft.date=2010-01-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0268-2575&rft.volume=85&rft.issue=1&rft.spage=2&rft.epage=10&rft_id=info:doi/10.1002%2Fjctb.2252&rft.externalDocID=US201301711746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon |