Liquid membrane technology: fundamentals and review of its applications

OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical technology and biotechnology (1986) Vol. 85; no. 1; pp. 2 - 10
Main Authors San Román, M.F, Bringas, E, Ibañez, R, Ortiz, I
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2010
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc.IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane.APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. Copyright
AbstractList OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc. IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane. APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly.
OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc. IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane. APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. Copyright © 2009 Society of Chemical Industry
OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc. IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane. APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. Copyright © 2009 Society of Chemical Industry
OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in the use of this technology owing to strict environmental regulations and legislation together with the wider acceptance of this technology in preference to conventional separation processes has led to a spectacular advance in membrane development, module configurations, applications, etc.IMPACT: Liquid membrane technology makes it possible to attain high selectivity as well as efficient use of energy and material relative to many other separation systems. However, in spite of the known advantages of liquid membranes, there are very few examples of industrial applications because of the problems associated with the stability of the liquid membrane.APPLICATIONS: Liquid membrane technology has found applications in the fields of chemical and pharmaceutical technology, biotechnology, food processing and environmental engineering. On the other hand, its use in other fields, such as in the case of hydrogen separation, the recovery of aroma compounds from fruits, the application of ionic liquids in the membrane formulation, etc., is increasing rapidly. Copyright
Author San Román, M. F.
Ortiz, I.
Ibañez, R.
Bringas, E.
Author_xml – sequence: 1
  fullname: San Román, M.F
– sequence: 2
  fullname: Bringas, E
– sequence: 3
  fullname: Ibañez, R
– sequence: 4
  fullname: Ortiz, I
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22204001$$DView record in Pascal Francis
BookMark eNp9kc1v1DAQxS1UJLaFA38BufB1SDsefyXcYAtb0AoOtHC0HMcpLkm8tbO0-9_jZRcOCHoaafR7T_PmHZKDMYyOkMcUjikAnlzZqTlGFHiPzCjUquRSwgGZAcqqRKHEA3KY0hUAyArljCyW_nrt22JwQxPN6IrJ2W9j6MPl5lXRrcfWDG6cTJ8KM7ZFdD-8uylCV_gpb1ar3lsz-TCmh-R-lyn3aD-PyMW7t-fzs3L5afF-_npZWiEBS1mLhjHTVI0D4CC7fAivrKESWcWgNRJthcJKBeiMEEhtbWztVN01rK0VOyLPd76rGK7XLk168Mm6vs-3h3XSVXZhggPP5LM7SS65QMkxgy_uBKlSigqscOv5dI-aZE3f5Y9Zn_Qq-sHEjUbEHApo5k52nI0hpeg6bf3061FTNL7XFPS2Lb1tS2_byoqXfyl-m_6L3bvf-N5t_g_qD_PzN3tFuVP4NLnbPwoTv2upmBL668eFXs6_sDOlTjVk_smO70zQ5jLmjBefMQcDqihVXLKfoL280g
CODEN JCTBDC
CitedBy_id crossref_primary_10_1016_j_cej_2014_12_037
crossref_primary_10_1016_j_cep_2015_05_003
crossref_primary_10_1016_j_mineng_2015_01_016
crossref_primary_10_1016_j_memsci_2012_05_063
crossref_primary_10_4028_www_scientific_net_AMR_356_360_1675
crossref_primary_10_1007_s11356_020_09639_7
crossref_primary_10_1007_s11356_022_19586_0
crossref_primary_10_1080_15422119_2018_1470537
crossref_primary_10_1016_j_memsci_2012_12_017
crossref_primary_10_1016_j_memsci_2013_12_019
crossref_primary_10_1016_j_bej_2017_01_016
crossref_primary_10_1038_s41598_021_91326_9
crossref_primary_10_1021_acs_iecr_3c00830
crossref_primary_10_1515_psr_2018_0024
crossref_primary_10_1016_j_pnucene_2017_06_012
crossref_primary_10_1080_01496395_2014_890628
crossref_primary_10_1007_s11157_019_09492_2
crossref_primary_10_1007_s11012_022_01474_z
crossref_primary_10_1016_j_molliq_2021_117509
crossref_primary_10_3390_membranes8020021
crossref_primary_10_1007_s11426_023_1607_4
crossref_primary_10_1016_j_cej_2024_154309
crossref_primary_10_1016_j_cep_2020_107831
crossref_primary_10_1016_j_tifs_2012_03_003
crossref_primary_10_3390_membranes12040365
crossref_primary_10_7763_IJCEA_2014_V5_401
crossref_primary_10_1016_j_cep_2012_11_005
crossref_primary_10_1016_j_seppur_2012_09_026
crossref_primary_10_1039_D2LC00391K
crossref_primary_10_1016_j_memsci_2014_01_031
crossref_primary_10_1016_j_psep_2025_107047
crossref_primary_10_1016_j_seppur_2013_11_019
crossref_primary_10_1021_ie3003705
crossref_primary_10_2166_wst_2024_117
crossref_primary_10_1016_j_cej_2024_153201
crossref_primary_10_1016_j_proeng_2012_08_647
crossref_primary_10_1093_nsr_nwz197
crossref_primary_10_1016_j_cej_2012_07_136
crossref_primary_10_1016_j_seppur_2024_126759
crossref_primary_10_1016_j_desal_2013_10_029
crossref_primary_10_1002_macp_201900196
crossref_primary_10_1016_j_watres_2023_120706
crossref_primary_10_1080_01496395_2011_627079
crossref_primary_10_1016_j_seppur_2017_03_031
crossref_primary_10_1016_j_memsci_2013_12_034
crossref_primary_10_1016_j_jbiotec_2014_03_022
crossref_primary_10_1016_j_molliq_2016_06_070
crossref_primary_10_1039_D3CS00147D
crossref_primary_10_1016_j_jece_2018_01_037
crossref_primary_10_1016_j_cep_2021_108300
crossref_primary_10_1016_j_jwpe_2015_11_005
crossref_primary_10_1016_j_watres_2024_122122
crossref_primary_10_2166_wst_2015_225
crossref_primary_10_1016_j_cep_2015_01_003
crossref_primary_10_1016_j_jiec_2022_10_041
crossref_primary_10_1007_s40831_021_00396_6
crossref_primary_10_1063_5_0241089
crossref_primary_10_1016_j_cjche_2018_12_018
crossref_primary_10_5004_dwt_2018_22628
crossref_primary_10_1039_C6RA26463H
crossref_primary_10_1080_19443994_2015_1102772
crossref_primary_10_1016_j_memsci_2012_11_060
crossref_primary_10_1007_s13762_020_02743_8
crossref_primary_10_1007_s11696_020_01317_9
crossref_primary_10_1016_j_jre_2021_09_011
crossref_primary_10_1016_j_sab_2021_106170
crossref_primary_10_1016_j_chemosphere_2021_133175
crossref_primary_10_1016_j_memsci_2019_117799
crossref_primary_10_1021_acs_iecr_8b06234
crossref_primary_10_1016_j_molliq_2020_114606
crossref_primary_10_1021_acs_iecr_5b00297
crossref_primary_10_3390_membranes12020190
crossref_primary_10_1016_j_cej_2012_03_010
crossref_primary_10_1016_j_jiec_2014_03_016
crossref_primary_10_1016_j_desal_2012_10_004
crossref_primary_10_1515_ijcre_2020_0153
crossref_primary_10_5004_dwt_2011_2406
crossref_primary_10_1080_10408347_2015_1064759
crossref_primary_10_1016_j_mineng_2019_105861
crossref_primary_10_1016_j_jiec_2013_10_045
crossref_primary_10_1016_j_desal_2011_11_051
crossref_primary_10_1016_j_watres_2014_02_026
crossref_primary_10_1080_01496395_2020_1852259
crossref_primary_10_1016_j_jwpe_2023_104746
crossref_primary_10_1007_s11771_024_5640_5
crossref_primary_10_1016_j_cej_2014_03_024
crossref_primary_10_1016_j_memsci_2016_08_009
crossref_primary_10_1016_j_seppur_2023_123457
crossref_primary_10_1021_acs_oprd_9b00009
crossref_primary_10_1016_j_jiec_2014_05_011
crossref_primary_10_1002_adma_202005664
crossref_primary_10_1016_j_apenergy_2020_115016
crossref_primary_10_1021_acs_iecr_2c03268
crossref_primary_10_1016_j_seppur_2021_119640
crossref_primary_10_1016_j_seppur_2012_02_015
crossref_primary_10_1007_s42461_022_00726_6
crossref_primary_10_1016_j_jiec_2018_11_002
crossref_primary_10_1515_ract_2021_1143
crossref_primary_10_3390_polym16040554
crossref_primary_10_1007_s11783_023_1625_0
crossref_primary_10_1016_j_jece_2022_107457
crossref_primary_10_1007_s11696_020_01300_4
crossref_primary_10_1016_j_jclepro_2019_118250
crossref_primary_10_1016_j_seppur_2024_127401
crossref_primary_10_1252_jcej_13we008
crossref_primary_10_1016_j_arabjc_2022_104501
crossref_primary_10_7763_IJCEA_2015_V6_502
crossref_primary_10_1039_D0CS00347F
crossref_primary_10_1016_j_jhazmat_2020_123050
crossref_primary_10_1080_19443994_2013_775075
crossref_primary_10_1002_jctb_4328
crossref_primary_10_1021_acs_iecr_0c06161
crossref_primary_10_1080_15422119_2012_716134
crossref_primary_10_1016_j_jiec_2014_11_032
crossref_primary_10_1016_j_memsci_2016_07_010
crossref_primary_10_1039_C7FD00152E
crossref_primary_10_1007_s11356_023_26951_0
crossref_primary_10_1016_j_seppur_2018_08_015
crossref_primary_10_1080_01496395_2014_891614
crossref_primary_10_1016_j_compchemeng_2011_01_021
crossref_primary_10_1080_01932691_2011_567148
crossref_primary_10_3390_membranes11090682
crossref_primary_10_1016_j_seppur_2016_03_031
crossref_primary_10_1007_s11814_015_0130_y
crossref_primary_10_1007_s11270_022_05849_6
crossref_primary_10_1016_j_memsci_2019_117345
crossref_primary_10_1016_j_cej_2016_04_140
crossref_primary_10_1021_acs_iecr_0c05349
crossref_primary_10_1016_j_jechem_2018_02_004
crossref_primary_10_1088_1757_899X_427_1_012005
crossref_primary_10_1016_j_jece_2021_105860
crossref_primary_10_1007_s11356_021_16658_5
crossref_primary_10_1002_jctb_2557
crossref_primary_10_1016_j_seppur_2017_05_055
crossref_primary_10_1016_j_cherd_2017_08_012
crossref_primary_10_1016_j_molcatb_2015_10_010
crossref_primary_10_1016_j_jwpe_2022_103170
crossref_primary_10_1021_ie404210k
crossref_primary_10_1016_j_seppur_2014_02_039
crossref_primary_10_1016_j_seppur_2017_04_007
crossref_primary_10_1080_01932691_2024_2420880
crossref_primary_10_1007_s00289_022_04362_4
crossref_primary_10_1016_j_eti_2023_103469
crossref_primary_10_3390_pr9030536
crossref_primary_10_1016_j_jiec_2018_11_024
crossref_primary_10_5004_dwt_2021_27622
crossref_primary_10_1016_j_memsci_2013_07_046
crossref_primary_10_3390_membranes11120936
crossref_primary_10_1007_s11696_020_01240_z
crossref_primary_10_1016_j_seppur_2019_116385
crossref_primary_10_1021_acs_iecr_5b00099
crossref_primary_10_1016_j_cep_2022_108812
crossref_primary_10_1039_C6RA11566G
crossref_primary_10_1016_j_desal_2018_02_005
Cites_doi 10.1021/ie051418e
10.1007/978-94-009-1766-8
10.1021/ie0714798
10.1016/S0376-7388(00)00508-1
10.1016/S0376-7388(99)00040-X
10.1080/01496399608000695
10.1016/j.memsci.2007.05.016
10.1016/0376-7388(92)80020-K
10.1021/ie8016237
10.1007/BF02387303
10.1021/ie011044z
10.1016/j.fuproc.2006.12.007
10.1002/apj.81
10.1016/S1383-5866(00)00216-1
10.1126/science.131.3400.585
10.1016/j.seppur.2004.09.008
10.1016/j.hydromet.2004.10.021
10.1016/S1385-8947(01)00199-1
10.1021/ie980374p
10.1080/01496398408068598
10.1016/j.memsci.2007.05.018
10.1016/S0009-2509(00)00193-7
10.1021/ie00003a033
10.1016/j.memsci.2004.12.022
10.1002/(SICI)1097-0290(20000705)69:1<66::AID-BIT8>3.0.CO;2-I
10.1016/j.memsci.2004.09.003
10.1016/S0016-2361(03)00154-6
10.1021/ie980288p
10.1002/aic.690470211
10.1016/S0376-7388(01)00748-7
10.1002/aic.690341014
10.1002/ep.670200115
10.1016/j.seppur.2006.06.022
10.1021/ie030212f
10.1080/03602549809351641
10.1016/j.ces.2007.06.005
10.1016/j.memsci.2008.09.018
10.1080/01496399608000824
10.1016/0376-7388(95)00228-6
10.1016/0376-7388(92)80021-B
10.1021/ie00081a022
10.1021/ie950433o
10.1002/aic.690170607
10.1007/978-1-4615-3548-5
10.1016/j.cej.2008.03.020
ContentType Journal Article
Copyright Copyright © 2009 Society of Chemical Industry
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 Society of Chemical Industry
– notice: 2015 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SU
7U5
8FD
C1K
F28
FR3
L7M
7S9
L.6
7QO
P64
DOI 10.1002/jctb.2252
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Technology Research Database
Engineering Research Database
CrossRef


AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1097-4660
EndPage 10
ExternalDocumentID 22204001
10_1002_jctb_2252
JCTB2252
ark_67375_WNG_LCV3H77D_0
US201301711746
Genre miscellaneous
GrantInformation_xml – fundername: Spanish Ministry of Innovation and Science
  funderid: CTQ2008‐5545/PPQ; CTQ2008‐00690/PPQ; CTQ2008‐3225/PPQ
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29K
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D-I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UAO
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
XXG
ZXP
ZZTAW
~02
~IA
~KM
~WT
AEUQT
AFPWT
BSCLL
RBB
RWI
WRC
WSB
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SU
7U5
8FD
C1K
F28
FR3
L7M
7S9
L.6
7QO
P64
ID FETCH-LOGICAL-c5602-695b33ab8be00406f00048ca1623830da62c825c6702ea5521c9ac9e79fb3d973
IEDL.DBID DR2
ISSN 0268-2575
1097-4660
IngestDate Fri Jul 11 03:47:20 EDT 2025
Fri Jul 11 01:42:50 EDT 2025
Fri Jul 11 00:40:48 EDT 2025
Mon Jul 21 09:11:57 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Tue Jul 01 00:48:03 EDT 2025
Wed Jan 22 16:25:16 EST 2025
Wed Oct 30 09:55:29 EDT 2024
Thu Apr 03 09:44:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biotechnology
hollow fibre
Stability
Legislation
Liquid membrane
transport mechanisms
Ionic liquid
membrane contactors
Transport process
Food industry
Hollow fiber
Separation process
Regulation
Unit operation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5602-695b33ab8be00406f00048ca1623830da62c825c6702ea5521c9ac9e79fb3d973
Notes http://dx.doi.org/10.1002/jctb.2252
ark:/67375/WNG-LCV3H77D-0
Spanish Ministry of Innovation and Science - No. CTQ2008-5545/PPQ; No. CTQ2008-00690/PPQ; No. CTQ2008-3225/PPQ
ArticleID:JCTB2252
istex:CF3515F3F4F9FB3E9291F3646506DD70B237DC56
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1777152824
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_883035404
proquest_miscellaneous_46452642
proquest_miscellaneous_1777152824
pascalfrancis_primary_22204001
crossref_citationtrail_10_1002_jctb_2252
crossref_primary_10_1002_jctb_2252
wiley_primary_10_1002_jctb_2252_JCTB2252
istex_primary_ark_67375_WNG_LCV3H77D_0
fao_agris_US201301711746
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: January 2010
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Journal of chemical technology and biotechnology (1986)
PublicationTitleAlternate J. Chem. Technol. Biotechnol
PublicationYear 2010
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Alonso AI, Galán B, Gonzalez M and Ortiz I, Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr(VI) from a galvanic process wastewaters. Ind Eng Chem Res 38: 1666-1675 (1999).
Neplenbroek AM, Bargeman D and Smolders CA, Mechanism of supported liquid membrane degradation: emulsion formation. J Membr Sci 67: 133-148 (1992).
Miesiac I and Szymanowski J, Pertraction of penicillin G in hollow fiber contained liquid membranes. J Radioanal Nucl Chem 228: 77-81 (1998).
Urtiaga AM, Ortiz I, Salazar E and Irabien JA, Supported liquid membranes for the separation-concentration of phenol. 1. Viability and mass-transfer evaluation. Ind Eng Chem Res 31: 877-886 (1992).
Li K, Kong J and Tan X, Design of hollow fibre membrane modules for soluble gas removal. Chem Eng Sci 55: 5579-5588 (2000).
Kumar A, Haddad R, Alguacil FJ and Sastre AM, Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors. J Membr Sci 248: 1-14 (2005).
Figoli A, Sager WFC and Mulder MHV, Facilitated oxygen transport in liquid membranes: review and new concepts. J Membr Sci 181: 97-110 (2001).
Scholander PF, Oxygen transport through hemoglobin solutions. Science 131: 585-590 (1960).
Gabelman A and Hwang S-T, Hollow fiber membrane contactors. J Membr Sci 159: 61-106 (1999).
Araki T and Tsukube H, Liquid Membranes: Chemical Applications. CRC Press, FL (1990).
Ortiz I, Wongswan S and de Ortiz ESP, A systematic method for the study of the rate-controlling mechanism in liquid membrane permeation processes. Extraction of zinc by Bis(2-Ethylhexyl) phosphoric acids. Ind Eng Chem Res 27: 1696-1701 (1988b).
Alonso AI, Irabien A and Ortiz I, Nondispersive extraction of Cr(VI) with Aliquat 336: influence of carrier concentration. Sep Sci Technol 31: 271-282 (1996).
Kentish SE and Stevens GW, Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Eng J 84: 149-159 (2001).
Kumar A, Haddad R and Sastre AM, Integrated membrane process for gold recovery from hydrometallurgical solutions. AIChE J 47: 328-340 (2001).
Ortiz I, San Román MF, Corvalán SM and Eliceche AM, Modeling and optimization of an emulsion pertraction process for removal and concentration of Cr(VI). Ind Eng Chem Res 42: 5891-5899 (2003).
Ren Z, Zhang W, Dai Y, Yang Y and Hao Z, Modeling of Effect of pH on mass transfer of copper(II) extraction by hollow fiber renewal liquid membrane. Ind Eng Chem Res 47: 4256-4262 (2008).
Teramoto M, Takeuchi N, Maki T and Matsuyama H, Gas separation by liquid membrane accompanied by permeation of membrane liquid through membrane physical transport. Sep Purif Technol 24: 101-112 (2001).
Venkateswaran P and Palanivelu K, Studies on recovery of hexavalent chromium from wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometal 78: 107-115 (2005).
Kemperman AJB, Bargeman D, Van Den Boomgaard Th and Strathmann H, Stability of supported liquid membranes: state of the art. Sep Sci Technol 31: 2733-2762 (1996).
Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Janardan P, Changrani RD, et al, Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactactor. J Membr Sci 300: 131-136 (2007).
Bringas E, San Román MF and Ortiz I, Separation and recovery of anionic by the emulsion pertraction technology. Remediation of polluted groundwaters with Cr(VI). Ind Eng Chem Res 45: 4295-4303 (2006).
Ho WSW and Poddar TK, New membrane technology for removal and recovery of chromium from waste waters. Environ Prog 20: 44-52 (2001).
Cussler EL, Membranes which pump. AIChE J 17: 1300-1303 (1971).
De Gyves J and Rodriguez San Miguel E, Metal ion separations by supported liquid membranes. Ind Eng Chem Res 38: 2182-2202 (1999).
Sastre AM, Kumar A, Shukla JP and Singh RK, Improved techniques in liquid membrane separations: an overview. Sep Purif Methods 27: 213-298 (1998).
Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, et al, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48: 2739-2751 (2009).
Ortiz I, Galán B and Irabien A, Kinetic analysis of the simultaneous nondisepersive extraction and back-extraction of chromium(VI). Ind Eng Chem Res 35: 1369-1377 (1996).
Alonso AI and Pantelides CC, Modeling and simulation of integrated membrane processes for recovery of Cr(VI) with Aliquat 336. J Membr Sci 110: 151-167 (1996).
Kocherginsky NM, Yang Q and Seelam L, Recent advances in supported liquid membrane technology. Sep Purif Technol 53: 171-177 (2007).
Ren Z, Zhang W, Li H and Wei L, Mass transfer characteristics of citric acid extraction by hollow fiber renewal liquid membrane. Chem Eng J 146: 220-226 (2009).
Mavroudi M, Kaldis SP and Sakellaropoulos , Reduction of CO2 emissions by a membrane contacting process. Fuel 82: 2153-2159 (2003).
Yang C and Cussler EL, Reactive extraction of penicillin g in hollow-fiber and hollow-fiber fabric modules. Biotechnol Bioeng 69: 66-73 (2000).
Neplenbroek AM, Bargeman D and Smolders CA, Supported liquid membranes: instability effects. J Membr Sci 67: 121-132 (1992).
Sengupta A., Basu R and Sirkar KK, Separation of solutes from aqueous solutions by contained liquid membranes. AIChE J 34: 1698-1708 (1988).
Yan S, Fang M, Zhang W-F, Wang S-Y, Xu Z-K, Luo Z-Y, et al, Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88: 501-551 (2007).
Ho WSW and Sirkar KK, Membrane Handbook. Chapman & Hall, New York (1992).
Krull FF, Fritzmann C and Melin T, Liquid membranes for gas/vapour separations. J Membr Sci 325: 509-519 (2008).
Lazarova Z, Syska B and Schügerl K, Application of large-scale hollow fiber contactors for simultaneous extractive removal and stripping of penicillin G. J Membr Sci 202: 151-164 (2002).
Mulder M, Basic Principles of Membrane Technology. Kluwer Academic Publishers, The Netherlands (1996).
Kertész R, Simo M and Schlosser S, Membrane-based solvent extraction and stripping of Phenylalanine in HF contactors. J Membr Sci 257: 37-47 (2005).
Danesi PR, Separation of metal species by supported liquid membranes. Sep Sci Technol 19: 857-894 (1984-85).
Sonawane JV, Pabby AK and Sastre AM, Au(I) extraction by LIX-79/n-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique. J Membr Sci 300: 147-155 (2007).
Franken T, Liquid Membranes-academic exercise or industrial separation process? Membr Technol 85: 6-10 (1997).
Yang XJ, Fane AG and Soldenhoff K, Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity. Ind Eng Chem Res 42: 392-403 (2003).
Li J-L. and Chen B-H, Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41: 109-122 (2005).
Pabby A, Rizhi SHS and Sastre AM, Handbook of Membrane Separations. Chemical, Pharmaceutical, Food and Biotechnological Applications. CRC Press, New York (2009).
Bringas I, San Román MF, Irabien JA and Ortiz I, An overview on the mathematical modeling of liquid membrane separation processes in hollow fiber contactors. J Chem Technol Biotechnol (Accepted 8 May 2009). DOI 10.1002/jctb.2231.
Ren Z, Zhang W, Liu Y, Dai Y and Cui C, New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater. Chem Eng Sci 62: 6090-6101 (2007).
Smith E and Hossain Md.M, Extraction and recovery of penicillin G in a hollow-fiber membrane contactor. Asia-Pacific J Chem Eng 2: 455-459 (2007).
Baker RW, Membrane Technology and Applications. McGraw-Hill, New York (2000).
1998; 27
2007; 300
2000; 69
2001; 181
1997; 85
1960; 131
2005; 257
2009
2008
2005; 41
1996
1988; 34
2008; 325
1992
1992; 31
2007; 53
1996; 35
2001; 24
2001; 47
2001; 84
1996; 31
2009; 48
2001; 20
1990
1971; 17
2006; 45
2001
2000
1988b; 27
1999; 38
2000; 55
2002; 202
2005; 248
2008; 47
1984–85; 19
1998; 228
2009; 146
1996; 110
2007; 62
2007; 2
2003; 82
1999; 159
2007; 88
1992; 67
2003; 42
2005; 78
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_47_2
Pabby A (e_1_2_7_5_2) 2009
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
Baker RW (e_1_2_7_19_2) 2000
Franken T (e_1_2_7_23_2) 1997; 85
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
Bringas I (e_1_2_7_27_2)
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_2
Araki T (e_1_2_7_3_2) 1990
e_1_2_7_38_2
References_xml – reference: Figoli A, Sager WFC and Mulder MHV, Facilitated oxygen transport in liquid membranes: review and new concepts. J Membr Sci 181: 97-110 (2001).
– reference: Ho WSW and Sirkar KK, Membrane Handbook. Chapman & Hall, New York (1992).
– reference: Ho WSW and Poddar TK, New membrane technology for removal and recovery of chromium from waste waters. Environ Prog 20: 44-52 (2001).
– reference: Alonso AI and Pantelides CC, Modeling and simulation of integrated membrane processes for recovery of Cr(VI) with Aliquat 336. J Membr Sci 110: 151-167 (1996).
– reference: Franken T, Liquid Membranes-academic exercise or industrial separation process? Membr Technol 85: 6-10 (1997).
– reference: Sastre AM, Kumar A, Shukla JP and Singh RK, Improved techniques in liquid membrane separations: an overview. Sep Purif Methods 27: 213-298 (1998).
– reference: Mavroudi M, Kaldis SP and Sakellaropoulos , Reduction of CO2 emissions by a membrane contacting process. Fuel 82: 2153-2159 (2003).
– reference: Danesi PR, Separation of metal species by supported liquid membranes. Sep Sci Technol 19: 857-894 (1984-85).
– reference: Kemperman AJB, Bargeman D, Van Den Boomgaard Th and Strathmann H, Stability of supported liquid membranes: state of the art. Sep Sci Technol 31: 2733-2762 (1996).
– reference: Yan S, Fang M, Zhang W-F, Wang S-Y, Xu Z-K, Luo Z-Y, et al, Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88: 501-551 (2007).
– reference: Ren Z, Zhang W, Dai Y, Yang Y and Hao Z, Modeling of Effect of pH on mass transfer of copper(II) extraction by hollow fiber renewal liquid membrane. Ind Eng Chem Res 47: 4256-4262 (2008).
– reference: De Gyves J and Rodriguez San Miguel E, Metal ion separations by supported liquid membranes. Ind Eng Chem Res 38: 2182-2202 (1999).
– reference: Pabby A, Rizhi SHS and Sastre AM, Handbook of Membrane Separations. Chemical, Pharmaceutical, Food and Biotechnological Applications. CRC Press, New York (2009).
– reference: Scholander PF, Oxygen transport through hemoglobin solutions. Science 131: 585-590 (1960).
– reference: Neplenbroek AM, Bargeman D and Smolders CA, Mechanism of supported liquid membrane degradation: emulsion formation. J Membr Sci 67: 133-148 (1992).
– reference: Lazarova Z, Syska B and Schügerl K, Application of large-scale hollow fiber contactors for simultaneous extractive removal and stripping of penicillin G. J Membr Sci 202: 151-164 (2002).
– reference: Cussler EL, Membranes which pump. AIChE J 17: 1300-1303 (1971).
– reference: Ortiz I, Galán B and Irabien A, Kinetic analysis of the simultaneous nondisepersive extraction and back-extraction of chromium(VI). Ind Eng Chem Res 35: 1369-1377 (1996).
– reference: Urtiaga AM, Ortiz I, Salazar E and Irabien JA, Supported liquid membranes for the separation-concentration of phenol. 1. Viability and mass-transfer evaluation. Ind Eng Chem Res 31: 877-886 (1992).
– reference: Ren Z, Zhang W, Liu Y, Dai Y and Cui C, New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater. Chem Eng Sci 62: 6090-6101 (2007).
– reference: Ortiz I, Wongswan S and de Ortiz ESP, A systematic method for the study of the rate-controlling mechanism in liquid membrane permeation processes. Extraction of zinc by Bis(2-Ethylhexyl) phosphoric acids. Ind Eng Chem Res 27: 1696-1701 (1988b).
– reference: Gupta SK, Rathore NS, Sonawane JV, Pabby AK, Janardan P, Changrani RD, et al, Dispersion-free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactactor. J Membr Sci 300: 131-136 (2007).
– reference: Alonso AI, Galán B, Gonzalez M and Ortiz I, Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr(VI) from a galvanic process wastewaters. Ind Eng Chem Res 38: 1666-1675 (1999).
– reference: Kentish SE and Stevens GW, Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Eng J 84: 149-159 (2001).
– reference: Mulder M, Basic Principles of Membrane Technology. Kluwer Academic Publishers, The Netherlands (1996).
– reference: Li K, Kong J and Tan X, Design of hollow fibre membrane modules for soluble gas removal. Chem Eng Sci 55: 5579-5588 (2000).
– reference: Araki T and Tsukube H, Liquid Membranes: Chemical Applications. CRC Press, FL (1990).
– reference: Alonso AI, Irabien A and Ortiz I, Nondispersive extraction of Cr(VI) with Aliquat 336: influence of carrier concentration. Sep Sci Technol 31: 271-282 (1996).
– reference: Baker RW, Membrane Technology and Applications. McGraw-Hill, New York (2000).
– reference: Yang C and Cussler EL, Reactive extraction of penicillin g in hollow-fiber and hollow-fiber fabric modules. Biotechnol Bioeng 69: 66-73 (2000).
– reference: Ortiz I, San Román MF, Corvalán SM and Eliceche AM, Modeling and optimization of an emulsion pertraction process for removal and concentration of Cr(VI). Ind Eng Chem Res 42: 5891-5899 (2003).
– reference: Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, et al, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48: 2739-2751 (2009).
– reference: Li J-L. and Chen B-H, Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41: 109-122 (2005).
– reference: Kumar A, Haddad R and Sastre AM, Integrated membrane process for gold recovery from hydrometallurgical solutions. AIChE J 47: 328-340 (2001).
– reference: Kumar A, Haddad R, Alguacil FJ and Sastre AM, Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors. J Membr Sci 248: 1-14 (2005).
– reference: Sonawane JV, Pabby AK and Sastre AM, Au(I) extraction by LIX-79/n-heptane using the pseudo-emulsion-based hollow-fiber strip dispersion (PEHFSD) technique. J Membr Sci 300: 147-155 (2007).
– reference: Kertész R, Simo M and Schlosser S, Membrane-based solvent extraction and stripping of Phenylalanine in HF contactors. J Membr Sci 257: 37-47 (2005).
– reference: Miesiac I and Szymanowski J, Pertraction of penicillin G in hollow fiber contained liquid membranes. J Radioanal Nucl Chem 228: 77-81 (1998).
– reference: Gabelman A and Hwang S-T, Hollow fiber membrane contactors. J Membr Sci 159: 61-106 (1999).
– reference: Yang XJ, Fane AG and Soldenhoff K, Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity. Ind Eng Chem Res 42: 392-403 (2003).
– reference: Bringas E, San Román MF and Ortiz I, Separation and recovery of anionic by the emulsion pertraction technology. Remediation of polluted groundwaters with Cr(VI). Ind Eng Chem Res 45: 4295-4303 (2006).
– reference: Venkateswaran P and Palanivelu K, Studies on recovery of hexavalent chromium from wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometal 78: 107-115 (2005).
– reference: Teramoto M, Takeuchi N, Maki T and Matsuyama H, Gas separation by liquid membrane accompanied by permeation of membrane liquid through membrane physical transport. Sep Purif Technol 24: 101-112 (2001).
– reference: Sengupta A., Basu R and Sirkar KK, Separation of solutes from aqueous solutions by contained liquid membranes. AIChE J 34: 1698-1708 (1988).
– reference: Ren Z, Zhang W, Li H and Wei L, Mass transfer characteristics of citric acid extraction by hollow fiber renewal liquid membrane. Chem Eng J 146: 220-226 (2009).
– reference: Krull FF, Fritzmann C and Melin T, Liquid membranes for gas/vapour separations. J Membr Sci 325: 509-519 (2008).
– reference: Smith E and Hossain Md.M, Extraction and recovery of penicillin G in a hollow-fiber membrane contactor. Asia-Pacific J Chem Eng 2: 455-459 (2007).
– reference: Bringas I, San Román MF, Irabien JA and Ortiz I, An overview on the mathematical modeling of liquid membrane separation processes in hollow fiber contactors. J Chem Technol Biotechnol (Accepted 8 May 2009). DOI 10.1002/jctb.2231.
– reference: Kocherginsky NM, Yang Q and Seelam L, Recent advances in supported liquid membrane technology. Sep Purif Technol 53: 171-177 (2007).
– reference: Neplenbroek AM, Bargeman D and Smolders CA, Supported liquid membranes: instability effects. J Membr Sci 67: 121-132 (1992).
– year: 2009
– volume: 300
  start-page: 147
  year: 2007
  end-page: 155
  article-title: Au(I) extraction by LIX‐79/n‐heptane using the pseudo‐emulsion‐based hollow‐fiber strip dispersion (PEHFSD) technique
  publication-title: J Membr Sci
– volume: 48
  start-page: 2739
  year: 2009
  end-page: 2751
  article-title: Guide to CO separations in imidazolium‐based room‐temperature ionic liquids
  publication-title: Ind Eng Chem Res
– year: 2001
– volume: 47
  start-page: 328
  year: 2001
  end-page: 340
  article-title: Integrated membrane process for gold recovery from hydrometallurgical solutions
  publication-title: AIChE J
– year: 1990
– volume: 45
  start-page: 4295
  year: 2006
  end-page: 4303
  article-title: Separation and recovery of anionic by the emulsion pertraction technology. Remediation of polluted groundwaters with Cr(VI)
  publication-title: Ind Eng Chem Res
– volume: 84
  start-page: 149
  year: 2001
  end-page: 159
  article-title: Innovations in separations technology for the recycling and re‐use of liquid waste streams
  publication-title: Chem Eng J
– volume: 35
  start-page: 1369
  year: 1996
  end-page: 1377
  article-title: Kinetic analysis of the simultaneous nondisepersive extraction and back‐extraction of chromium(VI)
  publication-title: Ind Eng Chem Res
– volume: 62
  start-page: 6090
  year: 2007
  end-page: 6101
  article-title: New liquid membrane technology for simultaneous extraction and stripping of copper(II) from wastewater
  publication-title: Chem Eng Sci
– volume: 248
  start-page: 1
  year: 2005
  end-page: 14
  article-title: Comparative performance of non‐dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors
  publication-title: J Membr Sci
– volume: 2
  start-page: 455
  year: 2007
  end-page: 459
  article-title: Extraction and recovery of penicillin G in a hollow‐fiber membrane contactor
  publication-title: Asia‐Pacific J Chem Eng
– volume: 67
  start-page: 133
  year: 1992
  end-page: 148
  article-title: Mechanism of supported liquid membrane degradation: emulsion formation
  publication-title: J Membr Sci
– volume: 110
  start-page: 151
  year: 1996
  end-page: 167
  article-title: Modeling and simulation of integrated membrane processes for recovery of Cr(VI) with Aliquat 336
  publication-title: J Membr Sci
– volume: 159
  start-page: 61
  year: 1999
  end-page: 106
  article-title: Hollow fiber membrane contactors
  publication-title: J Membr Sci
– volume: 27
  start-page: 213
  year: 1998
  end-page: 298
  article-title: Improved techniques in liquid membrane separations: an overview
  publication-title: Sep Purif Methods
– volume: 17
  start-page: 1300
  year: 1971
  end-page: 1303
  article-title: Membranes which pump
  publication-title: AIChE J
– year: 2008
– volume: 67
  start-page: 121
  year: 1992
  end-page: 132
  article-title: Supported liquid membranes: instability effects
  publication-title: J Membr Sci
– volume: 42
  start-page: 5891
  year: 2003
  end-page: 5899
  article-title: Modeling and optimization of an emulsion pertraction process for removal and concentration of Cr(VI)
  publication-title: Ind Eng Chem Res
– volume: 257
  start-page: 37
  year: 2005
  end-page: 47
  article-title: Membrane‐based solvent extraction and stripping of Phenylalanine in HF contactors
  publication-title: J Membr Sci
– volume: 85
  start-page: 6
  year: 1997
  end-page: 10
  article-title: Liquid Membranes—academic exercise or industrial separation process?
  publication-title: Membr Technol
– volume: 19
  start-page: 857
  year: 1984–85
  end-page: 894
  article-title: Separation of metal species by supported liquid membranes
  publication-title: Sep Sci Technol
– volume: 325
  start-page: 509
  year: 2008
  end-page: 519
  article-title: Liquid membranes for gas/vapour separations
  publication-title: J Membr Sci
– volume: 34
  start-page: 1698
  year: 1988
  end-page: 1708
  article-title: Separation of solutes from aqueous solutions by contained liquid membranes
  publication-title: AIChE J
– volume: 38
  start-page: 1666
  year: 1999
  end-page: 1675
  article-title: Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr(VI) from a galvanic process wastewaters
  publication-title: Ind Eng Chem Res
– volume: 47
  start-page: 4256
  year: 2008
  end-page: 4262
  article-title: Modeling of Effect of pH on mass transfer of copper(II) extraction by hollow fiber renewal liquid membrane
  publication-title: Ind Eng Chem Res
– year: 2000
– year: 1996
– volume: 38
  start-page: 2182
  year: 1999
  end-page: 2202
  article-title: Metal ion separations by supported liquid membranes
  publication-title: Ind Eng Chem Res
– volume: 24
  start-page: 101
  year: 2001
  end-page: 112
  article-title: Gas separation by liquid membrane accompanied by permeation of membrane liquid through membrane physical transport
  publication-title: Sep Purif Technol
– volume: 27
  start-page: 1696
  year: 1988b
  end-page: 1701
  article-title: A systematic method for the study of the rate‐controlling mechanism in liquid membrane permeation processes. Extraction of zinc by Bis(2‐Ethylhexyl) phosphoric acids
  publication-title: Ind Eng Chem Res
– volume: 82
  start-page: 2153
  year: 2003
  end-page: 2159
  article-title: Reduction of CO emissions by a membrane contacting process
  publication-title: Fuel
– volume: 78
  start-page: 107
  year: 2005
  end-page: 115
  article-title: Studies on recovery of hexavalent chromium from wastewater by supported liquid membrane using tri‐n‐butyl phosphate as carrier
  publication-title: Hydrometal
– volume: 228
  start-page: 77
  year: 1998
  end-page: 81
  article-title: Pertraction of penicillin G in hollow fiber contained liquid membranes
  publication-title: J Radioanal Nucl Chem
– volume: 41
  start-page: 109
  year: 2005
  end-page: 122
  article-title: Review of CO absorption using chemical solvents in hollow fiber membrane contactors
  publication-title: Sep Purif Technol
– year: 1992
– volume: 53
  start-page: 171
  year: 2007
  end-page: 177
  article-title: Recent advances in supported liquid membrane technology
  publication-title: Sep Purif Technol
– volume: 300
  start-page: 131
  year: 2007
  end-page: 136
  article-title: Dispersion‐free solvent extraction of U(VI) in macro amount from nitric acid solutions using hollow fiber contactactor
  publication-title: J Membr Sci
– volume: 88
  start-page: 501
  year: 2007
  end-page: 551
  article-title: Experimental study on the separation of CO from flue gas using hollow fiber membrane contactors without wetting
  publication-title: Fuel Process Technol
– volume: 20
  start-page: 44
  year: 2001
  end-page: 52
  article-title: New membrane technology for removal and recovery of chromium from waste waters
  publication-title: Environ Prog
– volume: 181
  start-page: 97
  year: 2001
  end-page: 110
  article-title: Facilitated oxygen transport in liquid membranes: review and new concepts
  publication-title: J Membr Sci
– volume: 31
  start-page: 2733
  year: 1996
  end-page: 2762
  article-title: Stability of supported liquid membranes: state of the art
  publication-title: Sep Sci Technol
– volume: 42
  start-page: 392
  year: 2003
  end-page: 403
  article-title: Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity
  publication-title: Ind Eng Chem Res
– volume: 31
  start-page: 271
  year: 1996
  end-page: 282
  article-title: Nondispersive extraction of Cr(VI) with Aliquat 336: influence of carrier concentration
  publication-title: Sep Sci Technol
– volume: 69
  start-page: 66
  year: 2000
  end-page: 73
  article-title: Reactive extraction of penicillin g in hollow‐fiber and hollow‐fiber fabric modules
  publication-title: Biotechnol Bioeng
– volume: 31
  start-page: 877
  year: 1992
  end-page: 886
  article-title: Supported liquid membranes for the separation‐concentration of phenol. 1. Viability and mass‐transfer evaluation
  publication-title: Ind Eng Chem Res
– volume: 146
  start-page: 220
  year: 2009
  end-page: 226
  article-title: Mass transfer characteristics of citric acid extraction by hollow fiber renewal liquid membrane
  publication-title: Chem Eng J
– volume: 131
  start-page: 585
  year: 1960
  end-page: 590
  article-title: Oxygen transport through hemoglobin solutions
  publication-title: Science
– article-title: An overview on the mathematical modeling of liquid membrane separation processes in hollow fiber contactors
  publication-title: J Chem Technol Biotechnol
– volume: 202
  start-page: 151
  year: 2002
  end-page: 164
  article-title: Application of large‐scale hollow fiber contactors for simultaneous extractive removal and stripping of penicillin G
  publication-title: J Membr Sci
– volume: 55
  start-page: 5579
  year: 2000
  end-page: 5588
  article-title: Design of hollow fibre membrane modules for soluble gas removal
  publication-title: Chem Eng Sci
– ident: e_1_2_7_12_2
  doi: 10.1021/ie051418e
– ident: e_1_2_7_20_2
  doi: 10.1007/978-94-009-1766-8
– ident: e_1_2_7_17_2
  doi: 10.1021/ie0714798
– ident: e_1_2_7_38_2
– ident: e_1_2_7_8_2
  doi: 10.1016/S0376-7388(00)00508-1
– volume-title: Membrane Technology and Applications.
  year: 2000
  ident: e_1_2_7_19_2
– ident: e_1_2_7_11_2
  doi: 10.1016/S0376-7388(99)00040-X
– ident: e_1_2_7_46_2
  doi: 10.1080/01496399608000695
– ident: e_1_2_7_15_2
  doi: 10.1016/j.memsci.2007.05.016
– ident: e_1_2_7_35_2
  doi: 10.1016/0376-7388(92)80020-K
– ident: e_1_2_7_41_2
  doi: 10.1021/ie8016237
– ident: e_1_2_7_50_2
  doi: 10.1007/BF02387303
– ident: e_1_2_7_34_2
  doi: 10.1021/ie011044z
– ident: e_1_2_7_42_2
  doi: 10.1016/j.fuproc.2006.12.007
– ident: e_1_2_7_52_2
  doi: 10.1002/apj.81
– ident: e_1_2_7_7_2
  doi: 10.1016/S1383-5866(00)00216-1
– ident: e_1_2_7_22_2
  doi: 10.1126/science.131.3400.585
– ident: e_1_2_7_39_2
  doi: 10.1016/j.seppur.2004.09.008
– ident: e_1_2_7_45_2
  doi: 10.1016/j.hydromet.2004.10.021
– ident: e_1_2_7_4_2
  doi: 10.1016/S1385-8947(01)00199-1
– volume-title: Handbook of Membrane Separations. Chemical, Pharmaceutical, Food and Biotechnological Applications.
  year: 2009
  ident: e_1_2_7_5_2
– ident: e_1_2_7_10_2
  doi: 10.1021/ie980374p
– ident: e_1_2_7_25_2
  doi: 10.1080/01496398408068598
– ident: e_1_2_7_31_2
  doi: 10.1016/j.memsci.2007.05.018
– ident: e_1_2_7_43_2
  doi: 10.1016/S0009-2509(00)00193-7
– ident: e_1_2_7_21_2
  doi: 10.1021/ie00003a033
– ident: e_1_2_7_30_2
  doi: 10.1016/j.memsci.2004.12.022
– ident: e_1_2_7_51_2
  doi: 10.1002/(SICI)1097-0290(20000705)69:1<66::AID-BIT8>3.0.CO;2-I
– ident: e_1_2_7_32_2
  doi: 10.1016/j.memsci.2004.09.003
– ident: e_1_2_7_44_2
  doi: 10.1016/S0016-2361(03)00154-6
– ident: e_1_2_7_48_2
  doi: 10.1021/ie980288p
– ident: e_1_2_7_49_2
– volume: 85
  start-page: 6
  year: 1997
  ident: e_1_2_7_23_2
  article-title: Liquid Membranes—academic exercise or industrial separation process?
  publication-title: Membr Technol
– ident: e_1_2_7_28_2
  doi: 10.1002/aic.690470211
– ident: e_1_2_7_53_2
  doi: 10.1016/S0376-7388(01)00748-7
– ident: e_1_2_7_37_2
  doi: 10.1002/aic.690341014
– ident: e_1_2_7_13_2
  doi: 10.1002/ep.670200115
– volume-title: Liquid Membranes: Chemical Applications.
  year: 1990
  ident: e_1_2_7_3_2
– ident: e_1_2_7_24_2
  doi: 10.1016/j.seppur.2006.06.022
– ident: e_1_2_7_14_2
  doi: 10.1021/ie030212f
– ident: e_1_2_7_6_2
  doi: 10.1080/03602549809351641
– ident: e_1_2_7_16_2
  doi: 10.1016/j.ces.2007.06.005
– ident: e_1_2_7_40_2
  doi: 10.1016/j.memsci.2008.09.018
– ident: e_1_2_7_33_2
  doi: 10.1080/01496399608000824
– ident: e_1_2_7_29_2
  doi: 10.1016/0376-7388(95)00228-6
– ident: e_1_2_7_36_2
  doi: 10.1016/0376-7388(92)80021-B
– ident: e_1_2_7_26_2
  doi: 10.1021/ie00081a022
– ident: e_1_2_7_47_2
  doi: 10.1021/ie950433o
– ident: e_1_2_7_9_2
  doi: 10.1002/aic.690170607
– ident: e_1_2_7_2_2
  doi: 10.1007/978-1-4615-3548-5
– ident: e_1_2_7_18_2
  doi: 10.1016/j.cej.2008.03.020
– ident: e_1_2_7_27_2
  article-title: An overview on the mathematical modeling of liquid membrane separation processes in hollow fiber contactors
  publication-title: J Chem Technol Biotechnol
SSID ssj0006826
Score 2.3704383
SecondaryResourceType review_article
Snippet OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in...
OVERVIEW: During the past two decades, liquid membrane technology has grown into an accepted unit operation for a wide variety of separations. The increase in...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Applied sciences
Biological and medical sciences
Biotechnology
Chemical engineering
Chemical technology
energy
Exact sciences and technology
Food engineering
Food industries
fruits
Fundamental and applied biological sciences. Psychology
General aspects
hollow fibre
hydrogen
industrial applications
Ionic liquids
Legislation
liquid membrane
Liquid membranes
membrane contactors
Membranes
odor compounds
Separation
Technology utilization
transport mechanisms
Title Liquid membrane technology: fundamentals and review of its applications
URI https://api.istex.fr/ark:/67375/WNG-LCV3H77D-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.2252
https://www.proquest.com/docview/1777152824
https://www.proquest.com/docview/46452642
https://www.proquest.com/docview/883035404
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NPcED41MLH8MghPaSLbETO2FPUNiqaewBVtgDkuU4NurGUlhTCfHX7y5pshZRCfEWVec0Od9dfrbvfgfwMuU-SW0swhJDX5gkXoTGchtGxgjryzLLJdU7fziWw1FyeJqersFeVwvT8kP0G27kGU28Jgc3xXT3mjT0zNbFDlojxV_K1SJA9PGaOkpmTas1XGKgJSAm6ViFIr7bj1z6Ft3wZoIIlZT7izIkzRSV5NvuFkvwcxHENl-h_Q342j1_m3xyvjPDv7C__6B2_M8XvAO35-iUvWnN6S6sueoe3FrgLLwPB0fjn7NxyS7cBd68cqzuN-dfM091JW27gCkzVcnayhg28Wxc4y8Lp-UPYLT__mQwDOfdGEKLqIiHMk8LIUyRFY48X_qmHt2aGAFUJqLSSG5xuWmlirgzKcICmxubO5X7QpS5Eg9hvZpUbhOYFE5Y7qT3eZHkjhdGeI8jM-8kwjUewHY3L9rOqcqpY8Z33ZIsc0260aSbAF70oj9afo6_CW3i5GrzDeOmHn3idFobqxgXYzKAV82M94PN5TnluqlUfzk-0EeDz2Ko1DsdBbC1ZBL9AARYFAjjAJ53NqLRRencBSdhMpvqWCmFMCnjSQDPVsg0B8y4FgyArZDIUMm0SYc32W7MZvX76sPByVu6ePTvoo_hZpsYQbtLT2C9vpy5p4i36mKrcawr3z0k2g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN5pywE48GZqHq1ggOnFrS3Zss0MB0ho0zbNAZLSm5BlqZOWOtA4w-M38Vf4T6zs2E0YMsOlB24Zj2RH2k_ab6V9ADwLqQlC5TM3w63PDQLDXKmocj0pmTJZFifcxjsf9HhnEOwdhUdL8LOOhanyQzQHbnZllPu1XeD2QHrrImvoiSrSTYQjnbpU7uvvX9FgG7_abaN0n1O6_bbf6rjTmgKuQt1OXZ6EKWMyjVNt8ctNGVWtpI80IGZeJjlVaDQpHnlUyxCVm0qkSnSUmJRlScTwvctwxVYQt5n62-8uklXxuCzuhkYNYg9ZUJ3HyKNbzV-d037LRo6QE1txfrM-mXKMYjFVPY05wjtLm0u9t30TftUzVrm7nG5O8BPqxx_JJP-XKb0FN6YEnLyuVsxtWNL5Hbg-k5bxLux0h18mw4yc6TMcTa5J0dw_vCTGhs5UFRHGROYZqYJ_yMiQYYFPZhwC7sHgUkZyH1byUa5XgXCmmaKaG5OkQaJpKpkx2DM2miMjpQ5s1EAQapqN3RYF-SSqPNJUWFkIKwsHnjZNP1cpSP7WaBXRJOQxqgYxeE_thbQf-WhvcgdelBBrOsvzU-vOF4XiQ29HdFuHrBNFbeE5sDaHwaYDcki71_sOPKlBKXAXsldLKITRZCz8KIqQCcY0cGB9QZvyDh3NXQfIghYxTrI9h8SXbJQ4XTxesdfqv7E_Hvx703W42ukfdEV3t7f_EK5VfiD2MO0RrBTnE_0Y6WWRrpWrmsDHy8b8bz4WgDE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7ahoTggTtaBmwGAdpLtsROnASJB2jpuq1UCFbYm3EcG3Vj6VhTcflL_BV-FMdJk7WISrzsgbcqspPa57PPd-xzAXgcUhOEymduhlufGwSGuVJR5XpSMmWyLE64jXd-3efdQbB3GB4uwc86FqbKD9EcuNmVUe7XdoGfZmb7PGnokSrSLUQjnXpU7uvvX9FeGz_fbaNwn1DaeXXQ6rrTkgKuQtVOXZ6EKWMyjVNt4ctNGVStpI8sIGZeJjlVaDMpHnlUyxB1m0qkSnSUmJRlScTwvctwKeBeYutEtN-e56ricVnbDW0ahB6SoDqNkUe3m786p_yWjRwhJbbS_GZdMuUYpWKqchpzfHeWNZdqr3MdftUTVnm7HG9N8BPqxx-5JP-TGb0B16b0m7yo1stNWNL5Lbg6k5TxNuz0hl8mw4yc6BMcTK5J0dw-PCPGBs5U9RDGROYZqUJ_yMiQYYFPZtwB7sDgQkZyF1byUa5XgXCmmaKaG5OkQaJpKpkx2DM2miMfpQ5s1jgQapqL3ZYE-SyqLNJUWFkIKwsHHjVNT6sEJH9rtIpgEvITKgYxeEftdbQf-WhtcgeelghrOsuzY-vMF4XiQ39H9FrvWTeK2sJzYH0Ogk0HZJB2p_cdeFhjUuAeZC-WUAijyVj4URQhD4xp4MDGgjblDToauw6QBS1inGR7Cokv2Sxhuni8Yq918NL-WPv3phtw-U27I3q7_f17cKVyArEnafdhpTib6AfILYt0vVzTBD5eNOR_AyK3fuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+membrane+technology%3A+fundamentals+and+review+of+its+applications&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=San+Rom%C3%A1n%2C+M.F&rft.au=Bringas%2C+E&rft.au=Iba%C3%B1ez%2C+R&rft.au=Ortiz%2C+I&rft.date=2010-01-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0268-2575&rft.volume=85&rft.issue=1&rft.spage=2&rft.epage=10&rft_id=info:doi/10.1002%2Fjctb.2252&rft.externalDocID=US201301711746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon