Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects
New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons,...
Saved in:
Published in | Experimental physiology Vol. 99; no. 2; pp. 368 - 380 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New Findings
What is the central question of this study?
Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked?
What is the main finding and its importance?
Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot.
The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose‐dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. |
---|---|
AbstractList | New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. [PUBLICATION ABSTRACT] What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.NEW FINDINGSWhat is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. The perception of fatigue is common in many disease states, however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate, and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine if this combination could activate sensations, and if so determined how these subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30-s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis (APB). Infusion of individual metabolites at maximum amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4+300nM ATP+1mM lactate) also evoked no sensation. The infusion of a metabolite-combination found in muscle during moderate endurance-exercise (pH 7.3+400nM ATP+5 mM lactate) produced significant fatigue sensations. Infusion of a metabolite-combination associated with vigorous exercise (pH 7.2+500nM ATP+10mM lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischemic exercise) caused more ache but no additional fatigue-sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate, and ATP leads to fatigue-sensation and eventually pain, probably through activation of ASIC, P2X, and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose‐dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. |
Author | Light, Kathleen C. Schweinhardt, Petra Hughen, Ronald W. Jo, Daehyun Amann, Markus Vanhaitsma, Timothy A. Swenson, Jeffrey D. Light, Alan R. Pollak, Kelly A. |
AuthorAffiliation | 2 Dept of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 1 Dept. of Anesthesiology, University of Utah Salt Lake City, UT 3 Exercise and Sport Science, University of Utah 4 Anesthesiology and Pain Medicine Department, Daejeon St. Mary’s Hospital, The Catholic University of Korea 7 GRECC, Veterans’ Affairs Medical Center, Salt Lake City, UT 6 Department of Medicine, University of Utah, Salt Lake City, UT 5 Alan Edwards Centre for Research on Pain, McGill University, Montreal, CA 8 Dept Neurobiology and Anatomy University of Utah Salt Lake City, UT, USA |
AuthorAffiliation_xml | – name: 8 Dept Neurobiology and Anatomy University of Utah Salt Lake City, UT, USA – name: 3 Exercise and Sport Science, University of Utah – name: 5 Alan Edwards Centre for Research on Pain, McGill University, Montreal, CA – name: 7 GRECC, Veterans’ Affairs Medical Center, Salt Lake City, UT – name: 4 Anesthesiology and Pain Medicine Department, Daejeon St. Mary’s Hospital, The Catholic University of Korea – name: 2 Dept of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA – name: 1 Dept. of Anesthesiology, University of Utah Salt Lake City, UT – name: 6 Department of Medicine, University of Utah, Salt Lake City, UT |
Author_xml | – sequence: 1 givenname: Kelly A. surname: Pollak fullname: Pollak, Kelly A. organization: University of Washington – sequence: 2 givenname: Jeffrey D. surname: Swenson fullname: Swenson, Jeffrey D. organization: Departments of Anesthesiology – sequence: 3 givenname: Timothy A. surname: Vanhaitsma fullname: Vanhaitsma, Timothy A. organization: Exercise and Sport Science – sequence: 4 givenname: Ronald W. surname: Hughen fullname: Hughen, Ronald W. organization: Departments of Anesthesiology – sequence: 5 givenname: Daehyun surname: Jo fullname: Jo, Daehyun organization: The Catholic University of Korea – sequence: 6 givenname: Kathleen C. surname: Light fullname: Light, Kathleen C. organization: Departments of Anesthesiology – sequence: 7 givenname: Petra surname: Schweinhardt fullname: Schweinhardt, Petra organization: McGill University – sequence: 8 givenname: Markus surname: Amann fullname: Amann, Markus organization: Veterans’ Affairs Medical Center – sequence: 9 givenname: Alan R. surname: Light fullname: Light, Alan R. organization: University of Utah |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24142455$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1rFDEUhoNU7Lb6F0rAG29mTSYfM4MiSNnaQqFeKHgXMpkzu1kzyTiZqZ1_37TbrdqbCoFA8jwnJ-c9Qgc-eEDohJIlpZS9h5u-38zRBrfMCWVLUoiS5i_QgnJZZZyLHwdoQSpRZkQW5BAdxbglCSQlf4UOc055zoVYoHF1E9bgwxTdjHXfOwsN7qZoHOAORl0HZ0eIOM4ehrWNozXaJRSuw0_AEXzUow0-4tDutTadrCfA2je419bjtDZTpz2OU70FM8bX6GWrXYQ3D_sx-n62-nZ6nl1efbk4_XyZGSEJyQQUlWyNaNpCAuFak7rhspa6LowUhJlWGFoTU7GybCS0hWZtWRthDMuTJ9kx-rSr2091B40BPw7aqX6wnR5mFbRV_954u1HrcK1YxaUseCrw7qHAEH5NEEfV2WjAOe0hjUxRXnFGWF6WCX37BN2GafDpe_dUUVDBWaJO_u7osZV9IAn4uAPMEGIcoFXGjvcjTg1apyhRd_mrP_mru_zVLv-kyyf6_oVnxQ878bd1MP-npVZfzykrCbsF9mDQXg |
CitedBy_id | crossref_primary_10_1007_s12016_015_8509_4 crossref_primary_10_1016_j_neuroscience_2023_07_005 crossref_primary_10_1161_HYPERTENSIONAHA_118_11076 crossref_primary_10_1016_j_physbeh_2021_113490 crossref_primary_10_1055_a_2301_9115 crossref_primary_10_3389_fncel_2020_00215 crossref_primary_10_1186_1744_8069_10_30 crossref_primary_10_1016_j_jpsychores_2015_08_008 crossref_primary_10_7759_cureus_43219 crossref_primary_10_1007_s00421_025_05750_0 crossref_primary_10_1093_ptj_pzad033 crossref_primary_10_1016_j_neuropharm_2014_12_013 crossref_primary_10_1002_ejp_758 crossref_primary_10_1016_j_physbeh_2017_04_023 crossref_primary_10_4236_jbise_2022_153011 crossref_primary_10_1186_s40798_016_0065_9 crossref_primary_10_1123_ijspp_2021_0205 crossref_primary_10_1152_ajpheart_00303_2023 crossref_primary_10_1152_ajpregu_00190_2022 crossref_primary_10_3389_fmed_2018_00077 crossref_primary_10_1007_s00421_023_05255_8 crossref_primary_10_1249_MSS_0000000000001295 crossref_primary_10_1016_j_autneu_2025_103269 crossref_primary_10_1249_MSS_0000000000000923 crossref_primary_10_1016_j_ijpsycho_2018_07_475 crossref_primary_10_1152_japplphysiol_00739_2017 crossref_primary_10_1113_JP273218 crossref_primary_10_1016_j_physbeh_2023_114217 crossref_primary_10_1113_expphysiol_2013_076810 crossref_primary_10_1113_JP276971 crossref_primary_10_1152_ajpregu_00055_2017 crossref_primary_10_1007_s00421_021_04600_z crossref_primary_10_1152_japplphysiol_00630_2015 crossref_primary_10_1113_expphysiol_2014_078816 crossref_primary_10_3389_fnhum_2022_856432 crossref_primary_10_3390_ijerph18062854 crossref_primary_10_1007_s13668_023_00500_0 crossref_primary_10_1152_japplphysiol_00375_2014 crossref_primary_10_1016_j_jpain_2014_09_003 crossref_primary_10_1113_EP091705 crossref_primary_10_1152_ajpregu_00272_2023 crossref_primary_10_1155_2015_136409 crossref_primary_10_1371_journal_pone_0123214 crossref_primary_10_1177_15459683211046257 crossref_primary_10_3389_fspor_2025_1536747 crossref_primary_10_1007_s12576_018_0593_9 crossref_primary_10_1139_apnm_2024_0383 crossref_primary_10_1249_MSS_0000000000001044 crossref_primary_10_3389_fncel_2017_00419 crossref_primary_10_1249_MSS_0000000000001606 crossref_primary_10_1080_17461391_2016_1188992 crossref_primary_10_1249_MSS_0000000000001447 crossref_primary_10_1113_JP279456 crossref_primary_10_1242_jeb_186585 crossref_primary_10_1371_journal_pone_0138576 crossref_primary_10_1152_ajpheart_00115_2023 crossref_primary_10_1016_j_cophys_2019_03_006 crossref_primary_10_3389_fnhum_2015_00508 crossref_primary_10_1249_MSS_0000000000003097 crossref_primary_10_1111_psyp_14466 crossref_primary_10_1161_HYPERTENSIONAHA_119_13366 crossref_primary_10_1139_apnm_2021_0597 crossref_primary_10_1016_j_pharmthera_2017_02_029 crossref_primary_10_1055_a_1082_1372 crossref_primary_10_1152_japplphysiol_00672_2021 crossref_primary_10_7717_peerj_10044 crossref_primary_10_1249_MSS_0000000000002444 crossref_primary_10_1080_17461391_2022_2039781 crossref_primary_10_1113_EP091911 crossref_primary_10_1371_journal_pone_0162010 crossref_primary_10_23736_S0022_4707_20_11113_7 crossref_primary_10_1371_journal_pone_0136705 crossref_primary_10_3390_ijms22179482 crossref_primary_10_3390_brainsci11010108 crossref_primary_10_3389_fneur_2021_694271 crossref_primary_10_1007_s00221_018_5280_9 crossref_primary_10_1016_j_biopsycho_2022_108442 crossref_primary_10_1113_JP284376 crossref_primary_10_1007_s11302_021_09816_4 crossref_primary_10_14814_phy2_13342 crossref_primary_10_1249_MSS_0000000000002399 crossref_primary_10_1007_s40279_022_01721_z crossref_primary_10_1080_17461391_2019_1635212 crossref_primary_10_1007_s00421_023_05186_4 crossref_primary_10_1123_ijspp_2018_0224 crossref_primary_10_1152_japplphysiol_00139_2020 crossref_primary_10_1007_s40279_022_01762_4 crossref_primary_10_1002_acr_22639 crossref_primary_10_1007_s00426_017_0859_5 crossref_primary_10_1016_j_mehy_2019_109370 crossref_primary_10_1590_s2175_97902022e20110 crossref_primary_10_1016_j_celrep_2024_114129 crossref_primary_10_1249_JES_0000000000000233 crossref_primary_10_1558_bar_31763 crossref_primary_10_1139_cjpp_2016_0080 crossref_primary_10_3390_ijms231911117 crossref_primary_10_7717_peerj_18027 crossref_primary_10_1016_j_autneu_2014_10_018 crossref_primary_10_1038_s41380_024_02726_y crossref_primary_10_1097_j_pain_0000000000002887 crossref_primary_10_3390_ijerph18158171 crossref_primary_10_1007_s00421_015_3311_9 crossref_primary_10_1038_s41598_022_11683_x crossref_primary_10_1080_1612197X_2021_1995020 crossref_primary_10_1152_japplphysiol_00449_2020 crossref_primary_10_1016_j_cophys_2019_06_006 crossref_primary_10_1080_00048402_2024_2351208 crossref_primary_10_1523_JNEUROSCI_2856_15_2016 crossref_primary_10_1007_s00421_017_3794_7 crossref_primary_10_1113_EP091753 crossref_primary_10_1002_art_40746 crossref_primary_10_1152_japplphysiol_00764_2021 crossref_primary_10_1152_japplphysiol_00553_2019 crossref_primary_10_1007_s00421_023_05242_z crossref_primary_10_1152_ajpregu_00007_2022 crossref_primary_10_1152_ajpregu_00151_2015 crossref_primary_10_1007_s40750_017_0086_8 crossref_primary_10_3389_fnins_2017_00612 crossref_primary_10_1016_j_jvoice_2024_08_017 crossref_primary_10_1186_1550_2783_11_9 crossref_primary_10_1152_japplphysiol_00876_2015 crossref_primary_10_1152_ajpregu_00234_2024 crossref_primary_10_1080_02640414_2021_1872930 crossref_primary_10_1249_MSS_0000000000001921 crossref_primary_10_1152_ajpregu_00069_2024 crossref_primary_10_1007_s00221_022_06342_6 crossref_primary_10_1152_japplphysiol_00302_2022 crossref_primary_10_1152_japplphysiol_00768_2019 crossref_primary_10_1002_tsm2_184 crossref_primary_10_3389_fphys_2023_1297242 crossref_primary_10_1080_17461391_2016_1252428 crossref_primary_10_1007_s12035_019_01852_x crossref_primary_10_1113_EP091687 crossref_primary_10_1139_apnm_2018_0432 crossref_primary_10_1113_EP085328 crossref_primary_10_1249_MSS_0000000000002362 crossref_primary_10_1111_sms_12659 crossref_primary_10_1152_ajpheart_00214_2023 crossref_primary_10_3389_fpsyg_2022_1010596 crossref_primary_10_1249_JSR_0000000000000283 crossref_primary_10_1152_ajpregu_00061_2015 crossref_primary_10_1016_j_neucli_2017_03_002 crossref_primary_10_21518_ms2024_116 crossref_primary_10_1113_expphysiol_2014_078832 crossref_primary_10_1080_1750984X_2020_1762240 crossref_primary_10_1113_JP275465 crossref_primary_10_3389_fphys_2014_00115 crossref_primary_10_3390_biology3030606 crossref_primary_10_1016_j_jpain_2016_11_004 crossref_primary_10_1113_expphysiol_2014_078717 crossref_primary_10_32345_2664_4738_2_2021_17 crossref_primary_10_53841_bpssepr_2023_18_1_4 crossref_primary_10_1016_j_neuroscience_2020_08_036 crossref_primary_10_1073_pnas_1910905116 crossref_primary_10_1007_s00421_023_05384_0 crossref_primary_10_1007_s00421_020_04425_2 crossref_primary_10_1007_s00421_023_05206_3 crossref_primary_10_52082_jssm_2025_1 crossref_primary_10_1038_s41598_024_55672_8 crossref_primary_10_1113_jphysiol_2014_277095 crossref_primary_10_3389_fonc_2025_1534300 crossref_primary_10_1007_s00421_017_3708_8 crossref_primary_10_1113_EP085054 crossref_primary_10_1139_apnm_2023_0503 crossref_primary_10_1007_s00421_017_3705_y crossref_primary_10_1097_j_pain_0000000000000110 crossref_primary_10_1186_s40798_022_00428_9 crossref_primary_10_1007_s12035_024_04613_7 |
Cites_doi | 10.1113/jphysiol.2008.163303 10.1152/jappl.1992.73.6.2524 10.1113/jphysiol.1977.sp011802 10.1016/S0304-3940(02)01360-5 10.1152/ajpregu.00251.2006 10.1152/ajpheart.00395.2002 10.1007/BF02388630 10.1007/BF00239809 10.1016/0006-8993(74)90870-1 10.1152/japplphysiol.00185.2003 10.1152/jn.01344.2007 10.1093/cvr/18.11.663 10.1161/01.RES.22.4.507 10.1177/1545968306298934 10.1007/BF00319597 10.1113/jphysiol.1937.sp003485 10.1152/japplphysiol.01020.2003 10.1113/expphysiol.2011.057679 10.1152/jn.1995.73.5.1752 10.1016/j.pain.2011.07.005 10.1152/jappl.1983.55.1.105 10.1113/jphysiol.1993.sp019546 10.1161/01.RES.84.8.921 10.1152/japplphysiol.00462.2010 10.1152/ajpheart.01051.2005 10.1186/1744-8069-1-35 10.1161/01.CIR.0000162473.10951.0A 10.1113/jphysiol.2007.141838 10.1161/01.RES.0000238388.79295.4c 10.1038/nn0901-869 10.1113/jphysiol.2001.013336 10.1016/S1471-4892(01)00014-5 10.1073/pnas.98.2.711 10.1016/j.pain.2013.02.013 10.1113/jphysiol.2011.209353 10.1016/j.pain.2004.12.020 10.1016/j.pain.2004.03.043 10.1007/BF00585151 10.1152/jappl.1997.82.6.1811 10.1113/jphysiol.2011.213769 10.1016/j.pain.2008.08.014 10.1080/03009740600865980 10.1023/A:1009802308872 10.1152/jn.1993.69.4.1053 10.1152/ajpendo.2001.280.6.E956 10.1152/ajpheart.00258.2007 10.1161/01.CIR.98.1.6 10.1016/0304-3940(86)90318-6 10.1016/S0896-6273(02)01130-3 10.1161/CIRCULATIONAHA.104.510669 10.1016/S0006-8993(96)00851-7 10.1152/jappl.1985.58.3.936 10.1139/y93-070 10.1590/S0100-879X2005001100001 10.1152/jappl.1988.64.6.2306 10.1186/1744-8069-1-31 10.1007/BF00581907 10.1016/S1440-2440(01)80005-0 10.1100/tsw.2001.254 10.1152/japplphysiol.01310.2006 10.1016/j.apmr.2006.06.012 10.1152/jn.01067.2012 10.1152/japplphysiol.00049.2013 10.1152/physrev.2001.81.4.1725 10.1096/fj.12-220400 10.1016/S1090-3801(02)00069-1 10.1146/annurev.ph.45.030183.001305 10.1016/j.neuron.2010.09.029 |
ContentType | Journal Article |
Copyright | 2013 The Authors. Experimental Physiology © 2013 The Physiological Society 2014 The Physiological Society |
Copyright_xml | – notice: 2013 The Authors. Experimental Physiology © 2013 The Physiological Society – notice: 2014 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 7TS 7X8 5PM |
DOI | 10.1113/expphysiol.2013.075812 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-445X |
EndPage | 380 |
ExternalDocumentID | PMC3946674 3207396591 24142455 10_1113_expphysiol_2013_075812 EPH1380 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: University of Utah, Department of Anesthesiology – fundername: NHLBI funderid: HL‐103786; HL107529 – fundername: NIAMS funderid: AR060336 – fundername: NHLBI NIH HHS grantid: K99 HL103786 – fundername: NHLBI NIH HHS grantid: R00 HL103786 – fundername: NHLBI NIH HHS grantid: HL107529 – fundername: NHLBI NIH HHS grantid: R01 HL116579 – fundername: NIAMS NIH HHS grantid: AR060336 – fundername: NHLBI NIH HHS grantid: R01 HL107529 – fundername: NIAMS NIH HHS grantid: R01 AR060336 – fundername: NHLBI NIH HHS grantid: HL-103786 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 18M 1OC 24P 29G 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABGDZ ABITZ ABPVW ABVKB ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADPDF ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFPWT AFZJQ AIACR AIAGR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AVUZU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 NF~ NQS O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RCA ROL RX1 SUPJJ SV3 TEORI TLM TR2 UB1 V8K W8F W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 ZZTAW ~IA ~WT .55 .GJ 31~ 3O- 53G AAYXX ABUWG ACCMX ACQPF AFKRA BBNVY BENPR BHPHI C1A CAG CCPQU CHEAL CITATION COF GROUPED_DOAJ H13 HCIFZ HF~ L98 M7P MVM PGMZT PHGZM PHGZT RIG RPM X7M ZXP 1OB CGR CUY CVF ECM EIF NPM SAMSI 7QP 7TK 7TS AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 5PM |
ID | FETCH-LOGICAL-c5600-5e796fc5df76e04aa0bd46b6ab7c6503cf5c1b0c9388d6ef7a3f8bc5cc326fc63 |
IEDL.DBID | DR2 |
ISSN | 0958-0670 1469-445X |
IngestDate | Thu Aug 21 13:53:19 EDT 2025 Fri Jul 11 06:01:17 EDT 2025 Fri Jul 25 19:26:19 EDT 2025 Wed Feb 19 02:27:19 EST 2025 Tue Jul 01 02:03:57 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Wed Jan 22 16:37:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5600-5e796fc5df76e04aa0bd46b6ab7c6503cf5c1b0c9388d6ef7a3f8bc5cc326fc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1113/expphysiol.2013.075812 |
PMID | 24142455 |
PQID | 1494771543 |
PQPubID | 37290 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946674 proquest_miscellaneous_1494303288 proquest_journals_1494771543 pubmed_primary_24142455 crossref_citationtrail_10_1113_expphysiol_2013_075812 crossref_primary_10_1113_expphysiol_2013_075812 wiley_primary_10_1113_expphysiol_2013_075812_EPH1380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 February 2014 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 1 February 2014 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Experimental physiology |
PublicationTitleAlternate | Exp Physiol |
PublicationYear | 2014 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2007; 103 1993; 69 2011a; 589 1995; 73 1997; 82 2010; 109 2013; 27 1990; 59 2000; 5 1978; 31 1976; 367 1937; 89 2006; 290 1999; 84 2008; 586 2011; 152 2008; 100 2003; 95 1996; 740 2008; 140 1968; 22 2012; 97 1983; 55 2010; 68 2001a; 1 2007; 293 1993; 71 2007; 292 2011b; 589 2013; 115 2003; 7 2002; 540 1984; 18 2008; 22 2013; 154 2005; 38 1985; 172 1998; 98 2006; 122 1985; 58 2001; 98 2001b; 4 2003; 338 2013; 109 2005; 111 1974; 72 2001; 280 2006; 99 2005; 114 2003; 37 1977; 267 1993; 462 1992; 73 2001; 81 2004; 96 2004; 110 1987; 410 1987; 61 2006; 87 2002; 283 2001; 4 1986; 67 2005; 1 1998; 3 2001; 1 1988; 64 2009; 587 1983; 45 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_67_1 e_1_2_5_69_1 e_1_2_5_29_1 Decherchi P (e_1_2_5_21_1) 1998; 3 e_1_2_5_61_1 e_1_2_5_63_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_70_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_66_1 e_1_2_5_68_1 e_1_2_5_60_1 e_1_2_5_62_1 Kaufman MP (e_1_2_5_41_1) 1987; 61 e_1_2_5_64_1 e_1_2_5_20_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_71_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 25100796 - Exp Physiol. 2014 May 1;99(5):836 26751722 - Exp Physiol. 2014 Apr 1;99(4):740 25100795 - Exp Physiol. 2014 May 1;99(5):835 Exp Physiol. 2014 Apr;99(4):740 24487245 - Exp Physiol. 2014 Feb;99(2):340-1 Exp Physiol. 2014 Apr 1;99(4):740 |
References_xml | – volume: 82 start-page: 1811 year: 1997 end-page: 1817 article-title: Responses of group III and IV muscle afferents to dynamic exercise publication-title: J Appl Physiol – volume: 410 start-page: 143 year: 1987 end-page: 152 article-title: Response of chemosensitive nerve fibers of group III and IV to metabolic changes in rat muscle publication-title: Pflugers Arch – volume: 280 start-page: E956 year: 2001 end-page: E964 article-title: ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise publication-title: Am J Physiol Endocrinol Metab – volume: 31 start-page: 511 year: 1978 end-page: 522 article-title: Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation publication-title: Exp Brain Res – volume: 98 start-page: 711 year: 2001 end-page: 716 article-title: Acid‐sensing ion channel 3 matches the acid‐gated current in cardiac ischemia‐sensing neurons publication-title: Proc Natl Acad Sci U S A – volume: 1 start-page: 510 year: 2001a end-page: 512 article-title: ASIC3: a lactic acid sensor for cardiac pain publication-title: ScientificWorldJournal – volume: 64 start-page: 2306 year: 1988 end-page: 2313 article-title: Effect of metabolic products of muscular contraction on discharge of group III and IV afferents publication-title: J Appl Physiol – volume: 99 start-page: 501 year: 2006 end-page: 509 article-title: Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia publication-title: Circ Res – volume: 27 start-page: 793 year: 2013 end-page: 802 article-title: Acid‐sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits publication-title: FASEB J – volume: 81 start-page: 1725 year: 2001 end-page: 1789 article-title: Spinal and supraspinal factors in human muscle fatigue publication-title: Physiol Rev – volume: 283 start-page: H2636 year: 2002 end-page: H2643 article-title: ATP stimulates chemically sensitive and sensitizes mechanically sensitive afferents publication-title: Am J Physiol Heart Circ Physiol – volume: 1 start-page: 45 year: 2001 end-page: 51 article-title: Molecular physiology of proton transduction in nociceptors publication-title: Curr Opin Pharmacol – volume: 267 start-page: 75 year: 1977 end-page: 88 article-title: Nervous outflow from skeletal muscle following chemical noxious stimulation publication-title: J Physiol – volume: 67 start-page: 257 year: 1986 end-page: 262 article-title: The effects of ischemia, lactic acid and hypertonic sodium chloride on phrenic afferent discharge during spontaneous diaphragmatic contraction publication-title: Neurosci Lett – volume: 152 start-page: 2399 year: 2011 end-page: 2404 article-title: Validity of four pain intensity rating scales publication-title: Pain – volume: 110 start-page: 149 year: 2004 end-page: 157 article-title: Acidic pH and capsaicin activate mechanosensitive group IV muscle receptors in the rat publication-title: Pain – volume: 114 start-page: 168 year: 2005 end-page: 176 article-title: Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat publication-title: Pain – volume: 589 start-page: 5299 year: 2011a end-page: 5309 article-title: Implications of group III and IV muscle afferents for high‐intensity endurance exercise performance in humans publication-title: J Physiol – volume: 111 start-page: 2056 year: 2005 end-page: 2065 article-title: The capsaicin‐sensitive afferent neuron in skeletal muscle is abnormal in heart failure publication-title: Circulation – volume: 293 start-page: H1861 year: 2007 end-page: H1868 article-title: The role of the cyclooxygenase products in evoking sympathetic activation in exercise publication-title: Am J Physiol Heart Circ Physiol – volume: 3 start-page: 267 year: 1998 end-page: 276 article-title: Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically‐induced fatigue publication-title: J Peripher Nerv Syst – volume: 98 start-page: 6 year: 1998 end-page: 8 article-title: Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle publication-title: Circulation – volume: 73 start-page: 2524 year: 1992 end-page: 2529 article-title: Effects of hypoxia on the discharge of group III and IV muscle afferents in cats publication-title: J Appl Physiol – volume: 71 start-page: 484 year: 1993 end-page: 490 article-title: Skeletal muscle ammonia production and repeated, intense exercise in humans publication-title: Can J Physiol Pharmacol – volume: 58 start-page: 936 year: 1985 end-page: 941 article-title: Increasing gracilis muscle interstitial potassium concentrations stimulate group III and IV afferents publication-title: J Appl Physiol – volume: 22 start-page: 507 year: 1968 end-page: 516 article-title: Effect on left ventricular performance of stimulation of an afferent nerve from muscle publication-title: Circ Res – volume: 292 start-page: R1594 year: 2007 end-page: R1602 article-title: Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development publication-title: Am J Physiol Regul integr Comp Physiol – volume: 109 start-page: 966 year: 2010 end-page: 976 article-title: Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans publication-title: J Appl Physiol – volume: 73 start-page: 1752 year: 1995 end-page: 1762 article-title: Unmyelinated nociceptors of rat paraspinal tissues publication-title: J Neurophysiol – volume: 7 start-page: 93 year: 2003 end-page: 102 article-title: Experimental pain by ischaemic contractions compared with pain by intramuscular infusions of adenosine and hypertonic saline publication-title: Eur J Pain – volume: 59 start-page: 465 year: 1990 end-page: 470 article-title: Continuous intramuscular pH measurement during the recovery from brief, maximal exercise in man publication-title: Eur J Appl Physiol Occup Physiol – volume: 111 start-page: 2748 year: 2005 end-page: 2751 article-title: Interstitial ATP and norepinephrine concentrations in active muscle publication-title: Circulation – volume: 68 start-page: 739 year: 2010 end-page: 749 article-title: Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels publication-title: Neuron – volume: 367 start-page: 151 year: 1976 end-page: 156 article-title: The interstitial pH of the working gastrocnemius muscle of the dog publication-title: Pflugers Arch – volume: 122 start-page: 1 year: 2006 end-page: 43 article-title: Fundamentals of muscle pain, referred pain, and deep tissue hyperalgesia publication-title: Scand J Rheumatol Suppl – volume: 84 start-page: 921 year: 1999 end-page: 928 article-title: Acid‐evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation publication-title: Circ Res – volume: 45 start-page: 229 year: 1983 end-page: 242 article-title: The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways publication-title: Annu Rev Physiol – volume: 115 start-page: 355 year: 2013 end-page: 364 article-title: Peripheral fatigue limits endurance exercise via a sensory feedback‐mediated reduction in spinal motoneuronal output publication-title: J Appl Physiol – volume: 338 start-page: 25 year: 2003 end-page: 28 article-title: Adenosine triphosphate as a stimulant for nociceptive and non‐nociceptive muscle group IV receptors in the rat publication-title: Neurosci Lett – volume: 540 start-page: 647 year: 2002 end-page: 656 article-title: Thermosensitivity of muscle: high‐intensity thermal stimulation of muscle tissue induces muscle pain in humans publication-title: J Physiol – volume: 38 start-page: 1561 year: 2005 end-page: 1569 article-title: An acid‐sensing ion channel that detects ischemic pain publication-title: Braz J Med Biol Res – volume: 4 start-page: 30 year: 2001 end-page: 38 article-title: Feeling state responses to acute exercise of high and low intensity publication-title: J Sci Med Sport – volume: 154 start-page: 1150 year: 2013 end-page: 1155 article-title: Does throbbing pain have a brain signature publication-title: Pain – volume: 586 start-page: 161 year: 2008 end-page: 173 article-title: Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance publication-title: J Physiol – volume: 22 start-page: 91 year: 2008 end-page: 100 article-title: Origin of fatigue in multiple sclerosis: review of the literature publication-title: Neurorehabil Neural Repair – volume: 1 start-page: 35 year: 2005 article-title: ASIC3, an acid‐sensing ion channel, is expressed in metaboreceptive sensory neurons publication-title: Mol pain – volume: 4 start-page: 869 year: 2001b end-page: 870 article-title: Lactate enhances the acid‐sensing Na channel on ischemia‐sensing neurons publication-title: Nat Neurosci – volume: 589 start-page: 3855 year: 2011b end-page: 3866 article-title: On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans publication-title: J Physiol – volume: 55 start-page: 105 year: 1983 end-page: 112 article-title: Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats publication-title: J Appl Physiol – volume: 89 start-page: 372 year: 1937 end-page: 383 article-title: Observations in man upon a blood pressure raising reflex arising from the voluntary muscles publication-title: J Physiol – volume: 95 start-page: 577 year: 2003 end-page: 583 article-title: ATP concentrations and muscle tension increase linearly with muscle contraction publication-title: J Appl Physiol – volume: 100 start-page: 1184 year: 2008 end-page: 1201 article-title: Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1 publication-title: J Neurophysiol – volume: 18 start-page: 663 year: 1984 end-page: 668 article-title: Effects of static and rhythmic twitch contractions on the discharge of group III and IV muscle afferents publication-title: Cardiovasc Res – volume: 740 start-page: 109 year: 1996 end-page: 116 article-title: Pain from excitation of identified muscle nociceptors in humans publication-title: Brain Res – volume: 72 start-page: 305 year: 1974 end-page: 310 article-title: Activation of group IV afferent units from muscle by algesic agents publication-title: Brain Res – volume: 587 start-page: 271 year: 2009 end-page: 283 article-title: Opioid‐mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans publication-title: J Physiol – volume: 290 start-page: H1214 year: 2006 end-page: H1219 article-title: P2 antagonist PPADS attenuates responses of thin fiber afferents to static contraction and tendon stretch publication-title: Am J Physiol Heart Circ Physiol – volume: 5 start-page: 87 year: 2000 end-page: 100 article-title: Muscle reflex control of sympathetic nerve activity in heart failure: the role of exercise conditioning publication-title: Heart Fail Rev – volume: 97 start-page: 59 year: 2012 end-page: 69 article-title: Human investigations into the exercise pressor reflex publication-title: Exp Physiol – volume: 69 start-page: 1053 year: 1993 end-page: 1059 article-title: Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats publication-title: J Neurophysiol – volume: 103 start-page: 979 year: 2007 end-page: 989 article-title: Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles publication-title: J Appl Physiol – volume: 1 start-page: 31 year: 2005 article-title: Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat publication-title: Mol Pain – volume: 87 start-page: 1412 year: 2006 end-page: 1417 article-title: An experimental pain model to investigate the specificity of the neurodynamic test for the median nerve in the differential diagnosis of hand symptoms publication-title: Arch Phys Med Rehabil – volume: 109 start-page: 2374 year: 2013 end-page: 2381 article-title: Comprehensive phenotyping of group III and IV muscle afferents in mouse publication-title: J Neurophysiol – volume: 61 start-page: I60 year: 1987 end-page: I65 article-title: Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli publication-title: Circ Res – volume: 140 start-page: 254 year: 2008 end-page: 264 article-title: Acidic buffer induced muscle pain evokes referred pain and mechanical hyperalgesia in humans publication-title: Pain – volume: 37 start-page: 75 year: 2003 end-page: 84 article-title: Protons open acid‐sensing ion channels by catalyzing relief of Ca blockade publication-title: Neuron – volume: 462 start-page: 115 year: 1993 end-page: 133 article-title: Lactate and H effluxes from human skeletal muscles during intense, dynamic exercise publication-title: J Physiol – volume: 96 start-page: 1166 year: 2004 end-page: 1169 article-title: Activation of thin‐fiber muscle afferents by a P2X agonist in cats publication-title: J Appl Physiol – volume: 172 start-page: 145 year: 1985 end-page: 156 article-title: Sensory innervation of the Achilles tendon by group III and IV afferent fibers publication-title: Anat Embryol – ident: e_1_2_5_8_1 doi: 10.1113/jphysiol.2008.163303 – ident: e_1_2_5_33_1 doi: 10.1152/jappl.1992.73.6.2524 – ident: e_1_2_5_52_1 doi: 10.1113/jphysiol.1977.sp011802 – ident: e_1_2_5_61_1 doi: 10.1016/S0304-3940(02)01360-5 – ident: e_1_2_5_57_1 doi: 10.1152/ajpregu.00251.2006 – ident: e_1_2_5_47_1 doi: 10.1152/ajpheart.00395.2002 – ident: e_1_2_5_4_1 doi: 10.1007/BF02388630 – ident: e_1_2_5_45_1 doi: 10.1007/BF00239809 – ident: e_1_2_5_53_1 doi: 10.1016/0006-8993(74)90870-1 – ident: e_1_2_5_48_1 doi: 10.1152/japplphysiol.00185.2003 – ident: e_1_2_5_50_1 doi: 10.1152/jn.01344.2007 – ident: e_1_2_5_42_1 doi: 10.1093/cvr/18.11.663 – ident: e_1_2_5_55_1 doi: 10.1161/01.RES.22.4.507 – ident: e_1_2_5_46_1 doi: 10.1177/1545968306298934 – ident: e_1_2_5_11_1 doi: 10.1007/BF00319597 – ident: e_1_2_5_3_1 doi: 10.1113/jphysiol.1937.sp003485 – ident: e_1_2_5_31_1 doi: 10.1152/japplphysiol.01020.2003 – ident: e_1_2_5_64_1 doi: 10.1113/expphysiol.2011.057679 – ident: e_1_2_5_17_1 doi: 10.1152/jn.1995.73.5.1752 – ident: e_1_2_5_22_1 doi: 10.1016/j.pain.2011.07.005 – ident: e_1_2_5_40_1 doi: 10.1152/jappl.1983.55.1.105 – ident: e_1_2_5_12_1 doi: 10.1113/jphysiol.1993.sp019546 – ident: e_1_2_5_14_1 doi: 10.1161/01.RES.84.8.921 – ident: e_1_2_5_5_1 doi: 10.1152/japplphysiol.00462.2010 – ident: e_1_2_5_44_1 doi: 10.1152/ajpheart.01051.2005 – ident: e_1_2_5_58_1 doi: 10.1186/1744-8069-1-35 – ident: e_1_2_5_67_1 doi: 10.1161/01.CIR.0000162473.10951.0A – ident: e_1_2_5_7_1 doi: 10.1113/jphysiol.2007.141838 – ident: e_1_2_5_71_1 doi: 10.1161/01.RES.0000238388.79295.4c – ident: e_1_2_5_37_1 doi: 10.1038/nn0901-869 – ident: e_1_2_5_29_1 doi: 10.1113/jphysiol.2001.013336 – ident: e_1_2_5_60_1 doi: 10.1016/S1471-4892(01)00014-5 – ident: e_1_2_5_69_1 doi: 10.1073/pnas.98.2.711 – ident: e_1_2_5_56_1 doi: 10.1016/j.pain.2013.02.013 – ident: e_1_2_5_9_1 doi: 10.1113/jphysiol.2011.209353 – ident: e_1_2_5_35_1 doi: 10.1016/j.pain.2004.12.020 – ident: e_1_2_5_34_1 doi: 10.1016/j.pain.2004.03.043 – ident: e_1_2_5_68_1 doi: 10.1007/BF00585151 – ident: e_1_2_5_2_1 doi: 10.1152/jappl.1997.82.6.1811 – ident: e_1_2_5_6_1 doi: 10.1113/jphysiol.2011.213769 – ident: e_1_2_5_23_1 doi: 10.1016/j.pain.2008.08.014 – ident: e_1_2_5_28_1 doi: 10.1080/03009740600865980 – ident: e_1_2_5_43_1 doi: 10.1023/A:1009802308872 – ident: e_1_2_5_66_1 doi: 10.1152/jn.1993.69.4.1053 – ident: e_1_2_5_13_1 doi: 10.1152/ajpendo.2001.280.6.E956 – ident: e_1_2_5_20_1 doi: 10.1152/ajpheart.00258.2007 – ident: e_1_2_5_32_1 doi: 10.1161/01.CIR.98.1.6 – ident: e_1_2_5_27_1 doi: 10.1016/0304-3940(86)90318-6 – ident: e_1_2_5_38_1 doi: 10.1016/S0896-6273(02)01130-3 – ident: e_1_2_5_49_1 doi: 10.1161/CIRCULATIONAHA.104.510669 – ident: e_1_2_5_51_1 doi: 10.1016/S0006-8993(96)00851-7 – ident: e_1_2_5_63_1 doi: 10.1152/jappl.1985.58.3.936 – ident: e_1_2_5_26_1 doi: 10.1139/y93-070 – ident: e_1_2_5_59_1 doi: 10.1590/S0100-879X2005001100001 – ident: e_1_2_5_62_1 doi: 10.1152/jappl.1988.64.6.2306 – ident: e_1_2_5_18_1 doi: 10.1186/1744-8069-1-31 – ident: e_1_2_5_70_1 doi: 10.1007/BF00581907 – ident: e_1_2_5_16_1 doi: 10.1016/S1440-2440(01)80005-0 – ident: e_1_2_5_36_1 doi: 10.1100/tsw.2001.254 – ident: e_1_2_5_65_1 doi: 10.1152/japplphysiol.01310.2006 – ident: e_1_2_5_19_1 doi: 10.1016/j.apmr.2006.06.012 – ident: e_1_2_5_39_1 doi: 10.1152/jn.01067.2012 – volume: 61 start-page: I60 year: 1987 ident: e_1_2_5_41_1 article-title: Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli publication-title: Circ Res – ident: e_1_2_5_10_1 doi: 10.1152/japplphysiol.00049.2013 – ident: e_1_2_5_24_1 doi: 10.1152/physrev.2001.81.4.1725 – volume: 3 start-page: 267 year: 1998 ident: e_1_2_5_21_1 article-title: Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically‐induced fatigue publication-title: J Peripher Nerv Syst – ident: e_1_2_5_25_1 doi: 10.1096/fj.12-220400 – ident: e_1_2_5_30_1 doi: 10.1016/S1090-3801(02)00069-1 – ident: e_1_2_5_54_1 doi: 10.1146/annurev.ph.45.030183.001305 – ident: e_1_2_5_15_1 doi: 10.1016/j.neuron.2010.09.029 – reference: 26751722 - Exp Physiol. 2014 Apr 1;99(4):740 – reference: - Exp Physiol. 2014 Apr;99(4):740 – reference: - Exp Physiol. 2014 Apr 1;99(4):740 – reference: 25100795 - Exp Physiol. 2014 May 1;99(5):835 – reference: 25100796 - Exp Physiol. 2014 May 1;99(5):836 – reference: 24487245 - Exp Physiol. 2014 Feb;99(2):340-1 |
SSID | ssj0013084 |
Score | 2.474298 |
Snippet | New Findings
What is the central question of this study?
Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when... What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into... New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when... The perception of fatigue is common in many disease states, however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats,... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 368 |
SubjectTerms | Adenosine Triphosphate - metabolism Adult Exercise - physiology Female Humans Lactic Acid - metabolism Male Middle Aged Muscle Fatigue - physiology Muscle, Skeletal - metabolism Muscle, Skeletal - physiopathology Neurons, Afferent - metabolism Neurons, Afferent - physiology Pain - metabolism Pain - physiopathology Physical Endurance - physiology Sensation - physiology Sensory Receptor Cells - metabolism Sensory Receptor Cells - physiology |
Title | Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fexpphysiol.2013.075812 https://www.ncbi.nlm.nih.gov/pubmed/24142455 https://www.proquest.com/docview/1494771543 https://www.proquest.com/docview/1494303288 https://pubmed.ncbi.nlm.nih.gov/PMC3946674 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6Pu1lX92H165oMPaW1IlkSX4sIyUMNsJYoW9GkuUuNLFDbY9mf31Pku0u62BjDPwk62RLOkm_k3S_A3hntUljk7ioAYKPWKqKUcpch9hcKl5wmvuti0-f-fycfbxILvZg3vvCBH6IYcPNjQw_X7sBrnQXhWTiyAbszcYb_5U7QJjQMa590ocbdhe3HDr6Mr07Toh96GGEE9L9VNy5CmNBJ78vZneVugc979-g_BnZ-qXp7DEs-0qFGylX47bRY_PjF77H_1HrJ_Cow6_kNCjcU9iz5TM4OC3Rdl9vyXuyCGLV5fYAmtlNFThgV1uiAtwl67ZGQbK2Daqfc4CuSb11DoieMVqtMKv9Xl1ZUqOBHbYTSVX0YgWmXLaWqDInG7UsCT4-zCCpW-22lOrncH42-_phPuqiPIyMQ1ujxIqUFybJC8FtzJSKdc645koLg_CRmiIxEx2blEqZc1sIRQupTWIMIs_CcPoC9suqtK-AUBZrK_Q01wztxtykUljBTYrFCclVHEHS92pmOgp0F4ljlQVTiGZ3zZu55s1C80ZwMshtAgnIHyWOeqXJukmhRisrZUIgZqURvB1e43B2ZzSqtNgdPg91HIcygpdBx4ZPIthy59RJBGJH-4YMjip89025_OYpw6kLIyBYBMwr11_WIpst5hMq49f_JnYIDzGVhTvuR7DfXLf2DUK4Rh_DgylbHPtBegtjD0hf |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOcCFV3kEChgJccs2Wzt2cqzQVgu0VYVaqbfIduy2dDdZkQR1-fXM2NmUpUgghJRT4nFieyb-Zmx_Q8hbq02emBSzBkgR81y5OOc4ILbMlHCClT50cXAopif842l62lMK4VmYwA8xBNzQMvz_Gg0cA9K9lSPbgL1aeO-_xhWEMRvB5JdhvuHbmN7be1efd64XFBKffBgARYaflfSHhaGm7d_Xsz5P3QCfN_dQ_oxt_eS0d598WTUr7Em5HHWtHpnvvzA-_pd2PyD3eghLd4POPSS3bPWIbO5W4L7Pl_QdPQpi9dlyk7STqzrQwM6WVAXES-ddA4J0blvQQDwD3dBmiWcQPWm0mkFR-62-tLQBHztEFGntVmIO7px1lqqqpAt1UVG4fKZB2nQao0rNY3KyNzl-P437RA-xQcAVp1bmwpm0dFLYhCuV6JILLZSWBhAkMy41Y52YnGVZKayTirlMm9QYAJ_OCPaEbFR1ZZ8RyniirdQ7pebgOpYmz6SVwuRQncyESiKSroa1MD0LOibjmBXBG2LFdfcW2L1F6N6IbA9yi8AD8keJrZXWFP1_oQFHK-dSAmxlEXkzPAaLxmUaVVkYDl-GIc1hFpGnQcmGVwLewqXqNCJyTf2GAsgWvv6kujj3rOEMMwlIHhHutesvW1FMjqZjliXP_03sNbkzPT7YL_Y_HH56Qe5CCR62vG-RjfZrZ18Comv1K2-rPwDp0kuj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTUK8IMb4CAwwEuItLMWO7TxW0Kp8TX2gaOIlsh17TLRJRVq0_ve7s9OMakggpDzFPjvJ3cW_88fvCHnpjC0ym2PWAClSXmifFhwV4iqlhResClMXn0_FZMY_nOVne2SyPQsT-SH6CTf0jPC_RgdfVr5zciQbcJfLEPw3uIAwYK9h7FOYbvgAKfPAvg-GX2ffZtcrClnIPgyIQuFzZd1pYWjr5M8t7Q5UN9DnzU2Uv4PbMDqN75I7Haykw2gHh2TP1ffI0bCGkHqxoa_oNPbcnG-OyGp02URq1vmG6ohC6WLdgiBduBVYBZ5Lbmm7wXOBgchZz6Gq-9X8cLSFuDfO8tHGb8U83DlfO6rrii71RU3hCtn_aLs2ONPT3iez8ejL20naJV9ILYKgNHeyEN7mlZfCZVzrzFRcGKGNtIDqmPW5HZjMFkypSjgvNfPK2NxaAITeCvaA7NdN7R4RynhmnDRvKsMhnKtsoaSTwhbQnFRCZwnJt1-6tB0zOSbImJcxQmHltYZK1FAZNZSQk15uGbk5_ipxvFVk2flqC8FPwaUEKMkS8qIvBi_DpRNdO1BHqMOQelAl5GHUe98lYCBcPs4TIncsoq-ADN67JfXF98DkzZDdX_KE8GA7__gW5Wg6GTCVPf4_sefk1vTduPz0_vTjE3IbKvC4C_2Y7K9-rt1TAFkr86zznyuOtieX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenously+applied+muscle+metabolites+synergistically+evoke+sensations+of+muscle+fatigue+and+pain+in+human+subjects&rft.jtitle=Experimental+physiology&rft.au=Pollak%2C+Kelly+A&rft.au=Swenson%2C+Jeffrey+D&rft.au=Vanhaitsma%2C+Timothy+A&rft.au=Hughen%2C+Ronald+W&rft.date=2014-02-01&rft.issn=1469-445X&rft.eissn=1469-445X&rft.volume=99&rft.issue=2&rft.spage=368&rft_id=info:doi/10.1113%2Fexpphysiol.2013.075812&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon |