Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects

New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons,...

Full description

Saved in:
Bibliographic Details
Published inExperimental physiology Vol. 99; no. 2; pp. 368 - 380
Main Authors Pollak, Kelly A., Swenson, Jeffrey D., Vanhaitsma, Timothy A., Hughen, Ronald W., Jo, Daehyun, Light, Kathleen C., Schweinhardt, Petra, Amann, Markus, Light, Alan R.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose‐dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.
AbstractList New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. [PUBLICATION ABSTRACT]
What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.NEW FINDINGSWhat is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.
The perception of fatigue is common in many disease states, however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate, and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine if this combination could activate sensations, and if so determined how these subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30-s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis (APB). Infusion of individual metabolites at maximum amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4+300nM ATP+1mM lactate) also evoked no sensation. The infusion of a metabolite-combination found in muscle during moderate endurance-exercise (pH 7.3+400nM ATP+5 mM lactate) produced significant fatigue sensations. Infusion of a metabolite-combination associated with vigorous exercise (pH 7.2+500nM ATP+10mM lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischemic exercise) caused more ache but no additional fatigue-sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate, and ATP leads to fatigue-sensation and eventually pain, probably through activation of ASIC, P2X, and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.
New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose‐dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.
What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.
Author Light, Kathleen C.
Schweinhardt, Petra
Hughen, Ronald W.
Jo, Daehyun
Amann, Markus
Vanhaitsma, Timothy A.
Swenson, Jeffrey D.
Light, Alan R.
Pollak, Kelly A.
AuthorAffiliation 2 Dept of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
1 Dept. of Anesthesiology, University of Utah Salt Lake City, UT
3 Exercise and Sport Science, University of Utah
4 Anesthesiology and Pain Medicine Department, Daejeon St. Mary’s Hospital, The Catholic University of Korea
7 GRECC, Veterans’ Affairs Medical Center, Salt Lake City, UT
6 Department of Medicine, University of Utah, Salt Lake City, UT
5 Alan Edwards Centre for Research on Pain, McGill University, Montreal, CA
8 Dept Neurobiology and Anatomy University of Utah Salt Lake City, UT, USA
AuthorAffiliation_xml – name: 8 Dept Neurobiology and Anatomy University of Utah Salt Lake City, UT, USA
– name: 3 Exercise and Sport Science, University of Utah
– name: 5 Alan Edwards Centre for Research on Pain, McGill University, Montreal, CA
– name: 7 GRECC, Veterans’ Affairs Medical Center, Salt Lake City, UT
– name: 4 Anesthesiology and Pain Medicine Department, Daejeon St. Mary’s Hospital, The Catholic University of Korea
– name: 2 Dept of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
– name: 1 Dept. of Anesthesiology, University of Utah Salt Lake City, UT
– name: 6 Department of Medicine, University of Utah, Salt Lake City, UT
Author_xml – sequence: 1
  givenname: Kelly A.
  surname: Pollak
  fullname: Pollak, Kelly A.
  organization: University of Washington
– sequence: 2
  givenname: Jeffrey D.
  surname: Swenson
  fullname: Swenson, Jeffrey D.
  organization: Departments of Anesthesiology
– sequence: 3
  givenname: Timothy A.
  surname: Vanhaitsma
  fullname: Vanhaitsma, Timothy A.
  organization: Exercise and Sport Science
– sequence: 4
  givenname: Ronald W.
  surname: Hughen
  fullname: Hughen, Ronald W.
  organization: Departments of Anesthesiology
– sequence: 5
  givenname: Daehyun
  surname: Jo
  fullname: Jo, Daehyun
  organization: The Catholic University of Korea
– sequence: 6
  givenname: Kathleen C.
  surname: Light
  fullname: Light, Kathleen C.
  organization: Departments of Anesthesiology
– sequence: 7
  givenname: Petra
  surname: Schweinhardt
  fullname: Schweinhardt, Petra
  organization: McGill University
– sequence: 8
  givenname: Markus
  surname: Amann
  fullname: Amann, Markus
  organization: Veterans’ Affairs Medical Center
– sequence: 9
  givenname: Alan R.
  surname: Light
  fullname: Light, Alan R.
  organization: University of Utah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24142455$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU7Lb6F0rAG29mTSYfM4MiSNnaQqFeKHgXMpkzu1kzyTiZqZ1_37TbrdqbCoFA8jwnJ-c9Qgc-eEDohJIlpZS9h5u-38zRBrfMCWVLUoiS5i_QgnJZZZyLHwdoQSpRZkQW5BAdxbglCSQlf4UOc055zoVYoHF1E9bgwxTdjHXfOwsN7qZoHOAORl0HZ0eIOM4ehrWNozXaJRSuw0_AEXzUow0-4tDutTadrCfA2je419bjtDZTpz2OU70FM8bX6GWrXYQ3D_sx-n62-nZ6nl1efbk4_XyZGSEJyQQUlWyNaNpCAuFak7rhspa6LowUhJlWGFoTU7GybCS0hWZtWRthDMuTJ9kx-rSr2091B40BPw7aqX6wnR5mFbRV_954u1HrcK1YxaUseCrw7qHAEH5NEEfV2WjAOe0hjUxRXnFGWF6WCX37BN2GafDpe_dUUVDBWaJO_u7osZV9IAn4uAPMEGIcoFXGjvcjTg1apyhRd_mrP_mru_zVLv-kyyf6_oVnxQ878bd1MP-npVZfzykrCbsF9mDQXg
CitedBy_id crossref_primary_10_1007_s12016_015_8509_4
crossref_primary_10_1016_j_neuroscience_2023_07_005
crossref_primary_10_1161_HYPERTENSIONAHA_118_11076
crossref_primary_10_1016_j_physbeh_2021_113490
crossref_primary_10_1055_a_2301_9115
crossref_primary_10_3389_fncel_2020_00215
crossref_primary_10_1186_1744_8069_10_30
crossref_primary_10_1016_j_jpsychores_2015_08_008
crossref_primary_10_7759_cureus_43219
crossref_primary_10_1007_s00421_025_05750_0
crossref_primary_10_1093_ptj_pzad033
crossref_primary_10_1016_j_neuropharm_2014_12_013
crossref_primary_10_1002_ejp_758
crossref_primary_10_1016_j_physbeh_2017_04_023
crossref_primary_10_4236_jbise_2022_153011
crossref_primary_10_1186_s40798_016_0065_9
crossref_primary_10_1123_ijspp_2021_0205
crossref_primary_10_1152_ajpheart_00303_2023
crossref_primary_10_1152_ajpregu_00190_2022
crossref_primary_10_3389_fmed_2018_00077
crossref_primary_10_1007_s00421_023_05255_8
crossref_primary_10_1249_MSS_0000000000001295
crossref_primary_10_1016_j_autneu_2025_103269
crossref_primary_10_1249_MSS_0000000000000923
crossref_primary_10_1016_j_ijpsycho_2018_07_475
crossref_primary_10_1152_japplphysiol_00739_2017
crossref_primary_10_1113_JP273218
crossref_primary_10_1016_j_physbeh_2023_114217
crossref_primary_10_1113_expphysiol_2013_076810
crossref_primary_10_1113_JP276971
crossref_primary_10_1152_ajpregu_00055_2017
crossref_primary_10_1007_s00421_021_04600_z
crossref_primary_10_1152_japplphysiol_00630_2015
crossref_primary_10_1113_expphysiol_2014_078816
crossref_primary_10_3389_fnhum_2022_856432
crossref_primary_10_3390_ijerph18062854
crossref_primary_10_1007_s13668_023_00500_0
crossref_primary_10_1152_japplphysiol_00375_2014
crossref_primary_10_1016_j_jpain_2014_09_003
crossref_primary_10_1113_EP091705
crossref_primary_10_1152_ajpregu_00272_2023
crossref_primary_10_1155_2015_136409
crossref_primary_10_1371_journal_pone_0123214
crossref_primary_10_1177_15459683211046257
crossref_primary_10_3389_fspor_2025_1536747
crossref_primary_10_1007_s12576_018_0593_9
crossref_primary_10_1139_apnm_2024_0383
crossref_primary_10_1249_MSS_0000000000001044
crossref_primary_10_3389_fncel_2017_00419
crossref_primary_10_1249_MSS_0000000000001606
crossref_primary_10_1080_17461391_2016_1188992
crossref_primary_10_1249_MSS_0000000000001447
crossref_primary_10_1113_JP279456
crossref_primary_10_1242_jeb_186585
crossref_primary_10_1371_journal_pone_0138576
crossref_primary_10_1152_ajpheart_00115_2023
crossref_primary_10_1016_j_cophys_2019_03_006
crossref_primary_10_3389_fnhum_2015_00508
crossref_primary_10_1249_MSS_0000000000003097
crossref_primary_10_1111_psyp_14466
crossref_primary_10_1161_HYPERTENSIONAHA_119_13366
crossref_primary_10_1139_apnm_2021_0597
crossref_primary_10_1016_j_pharmthera_2017_02_029
crossref_primary_10_1055_a_1082_1372
crossref_primary_10_1152_japplphysiol_00672_2021
crossref_primary_10_7717_peerj_10044
crossref_primary_10_1249_MSS_0000000000002444
crossref_primary_10_1080_17461391_2022_2039781
crossref_primary_10_1113_EP091911
crossref_primary_10_1371_journal_pone_0162010
crossref_primary_10_23736_S0022_4707_20_11113_7
crossref_primary_10_1371_journal_pone_0136705
crossref_primary_10_3390_ijms22179482
crossref_primary_10_3390_brainsci11010108
crossref_primary_10_3389_fneur_2021_694271
crossref_primary_10_1007_s00221_018_5280_9
crossref_primary_10_1016_j_biopsycho_2022_108442
crossref_primary_10_1113_JP284376
crossref_primary_10_1007_s11302_021_09816_4
crossref_primary_10_14814_phy2_13342
crossref_primary_10_1249_MSS_0000000000002399
crossref_primary_10_1007_s40279_022_01721_z
crossref_primary_10_1080_17461391_2019_1635212
crossref_primary_10_1007_s00421_023_05186_4
crossref_primary_10_1123_ijspp_2018_0224
crossref_primary_10_1152_japplphysiol_00139_2020
crossref_primary_10_1007_s40279_022_01762_4
crossref_primary_10_1002_acr_22639
crossref_primary_10_1007_s00426_017_0859_5
crossref_primary_10_1016_j_mehy_2019_109370
crossref_primary_10_1590_s2175_97902022e20110
crossref_primary_10_1016_j_celrep_2024_114129
crossref_primary_10_1249_JES_0000000000000233
crossref_primary_10_1558_bar_31763
crossref_primary_10_1139_cjpp_2016_0080
crossref_primary_10_3390_ijms231911117
crossref_primary_10_7717_peerj_18027
crossref_primary_10_1016_j_autneu_2014_10_018
crossref_primary_10_1038_s41380_024_02726_y
crossref_primary_10_1097_j_pain_0000000000002887
crossref_primary_10_3390_ijerph18158171
crossref_primary_10_1007_s00421_015_3311_9
crossref_primary_10_1038_s41598_022_11683_x
crossref_primary_10_1080_1612197X_2021_1995020
crossref_primary_10_1152_japplphysiol_00449_2020
crossref_primary_10_1016_j_cophys_2019_06_006
crossref_primary_10_1080_00048402_2024_2351208
crossref_primary_10_1523_JNEUROSCI_2856_15_2016
crossref_primary_10_1007_s00421_017_3794_7
crossref_primary_10_1113_EP091753
crossref_primary_10_1002_art_40746
crossref_primary_10_1152_japplphysiol_00764_2021
crossref_primary_10_1152_japplphysiol_00553_2019
crossref_primary_10_1007_s00421_023_05242_z
crossref_primary_10_1152_ajpregu_00007_2022
crossref_primary_10_1152_ajpregu_00151_2015
crossref_primary_10_1007_s40750_017_0086_8
crossref_primary_10_3389_fnins_2017_00612
crossref_primary_10_1016_j_jvoice_2024_08_017
crossref_primary_10_1186_1550_2783_11_9
crossref_primary_10_1152_japplphysiol_00876_2015
crossref_primary_10_1152_ajpregu_00234_2024
crossref_primary_10_1080_02640414_2021_1872930
crossref_primary_10_1249_MSS_0000000000001921
crossref_primary_10_1152_ajpregu_00069_2024
crossref_primary_10_1007_s00221_022_06342_6
crossref_primary_10_1152_japplphysiol_00302_2022
crossref_primary_10_1152_japplphysiol_00768_2019
crossref_primary_10_1002_tsm2_184
crossref_primary_10_3389_fphys_2023_1297242
crossref_primary_10_1080_17461391_2016_1252428
crossref_primary_10_1007_s12035_019_01852_x
crossref_primary_10_1113_EP091687
crossref_primary_10_1139_apnm_2018_0432
crossref_primary_10_1113_EP085328
crossref_primary_10_1249_MSS_0000000000002362
crossref_primary_10_1111_sms_12659
crossref_primary_10_1152_ajpheart_00214_2023
crossref_primary_10_3389_fpsyg_2022_1010596
crossref_primary_10_1249_JSR_0000000000000283
crossref_primary_10_1152_ajpregu_00061_2015
crossref_primary_10_1016_j_neucli_2017_03_002
crossref_primary_10_21518_ms2024_116
crossref_primary_10_1113_expphysiol_2014_078832
crossref_primary_10_1080_1750984X_2020_1762240
crossref_primary_10_1113_JP275465
crossref_primary_10_3389_fphys_2014_00115
crossref_primary_10_3390_biology3030606
crossref_primary_10_1016_j_jpain_2016_11_004
crossref_primary_10_1113_expphysiol_2014_078717
crossref_primary_10_32345_2664_4738_2_2021_17
crossref_primary_10_53841_bpssepr_2023_18_1_4
crossref_primary_10_1016_j_neuroscience_2020_08_036
crossref_primary_10_1073_pnas_1910905116
crossref_primary_10_1007_s00421_023_05384_0
crossref_primary_10_1007_s00421_020_04425_2
crossref_primary_10_1007_s00421_023_05206_3
crossref_primary_10_52082_jssm_2025_1
crossref_primary_10_1038_s41598_024_55672_8
crossref_primary_10_1113_jphysiol_2014_277095
crossref_primary_10_3389_fonc_2025_1534300
crossref_primary_10_1007_s00421_017_3708_8
crossref_primary_10_1113_EP085054
crossref_primary_10_1139_apnm_2023_0503
crossref_primary_10_1007_s00421_017_3705_y
crossref_primary_10_1097_j_pain_0000000000000110
crossref_primary_10_1186_s40798_022_00428_9
crossref_primary_10_1007_s12035_024_04613_7
Cites_doi 10.1113/jphysiol.2008.163303
10.1152/jappl.1992.73.6.2524
10.1113/jphysiol.1977.sp011802
10.1016/S0304-3940(02)01360-5
10.1152/ajpregu.00251.2006
10.1152/ajpheart.00395.2002
10.1007/BF02388630
10.1007/BF00239809
10.1016/0006-8993(74)90870-1
10.1152/japplphysiol.00185.2003
10.1152/jn.01344.2007
10.1093/cvr/18.11.663
10.1161/01.RES.22.4.507
10.1177/1545968306298934
10.1007/BF00319597
10.1113/jphysiol.1937.sp003485
10.1152/japplphysiol.01020.2003
10.1113/expphysiol.2011.057679
10.1152/jn.1995.73.5.1752
10.1016/j.pain.2011.07.005
10.1152/jappl.1983.55.1.105
10.1113/jphysiol.1993.sp019546
10.1161/01.RES.84.8.921
10.1152/japplphysiol.00462.2010
10.1152/ajpheart.01051.2005
10.1186/1744-8069-1-35
10.1161/01.CIR.0000162473.10951.0A
10.1113/jphysiol.2007.141838
10.1161/01.RES.0000238388.79295.4c
10.1038/nn0901-869
10.1113/jphysiol.2001.013336
10.1016/S1471-4892(01)00014-5
10.1073/pnas.98.2.711
10.1016/j.pain.2013.02.013
10.1113/jphysiol.2011.209353
10.1016/j.pain.2004.12.020
10.1016/j.pain.2004.03.043
10.1007/BF00585151
10.1152/jappl.1997.82.6.1811
10.1113/jphysiol.2011.213769
10.1016/j.pain.2008.08.014
10.1080/03009740600865980
10.1023/A:1009802308872
10.1152/jn.1993.69.4.1053
10.1152/ajpendo.2001.280.6.E956
10.1152/ajpheart.00258.2007
10.1161/01.CIR.98.1.6
10.1016/0304-3940(86)90318-6
10.1016/S0896-6273(02)01130-3
10.1161/CIRCULATIONAHA.104.510669
10.1016/S0006-8993(96)00851-7
10.1152/jappl.1985.58.3.936
10.1139/y93-070
10.1590/S0100-879X2005001100001
10.1152/jappl.1988.64.6.2306
10.1186/1744-8069-1-31
10.1007/BF00581907
10.1016/S1440-2440(01)80005-0
10.1100/tsw.2001.254
10.1152/japplphysiol.01310.2006
10.1016/j.apmr.2006.06.012
10.1152/jn.01067.2012
10.1152/japplphysiol.00049.2013
10.1152/physrev.2001.81.4.1725
10.1096/fj.12-220400
10.1016/S1090-3801(02)00069-1
10.1146/annurev.ph.45.030183.001305
10.1016/j.neuron.2010.09.029
ContentType Journal Article
Copyright 2013 The Authors. Experimental Physiology © 2013 The Physiological Society
2014 The Physiological Society
Copyright_xml – notice: 2013 The Authors. Experimental Physiology © 2013 The Physiological Society
– notice: 2014 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TS
7X8
5PM
DOI 10.1113/expphysiol.2013.075812
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList Calcium & Calcified Tissue Abstracts
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-445X
EndPage 380
ExternalDocumentID PMC3946674
3207396591
24142455
10_1113_expphysiol_2013_075812
EPH1380
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: University of Utah, Department of Anesthesiology
– fundername: NHLBI
  funderid: HL‐103786; HL107529
– fundername: NIAMS
  funderid: AR060336
– fundername: NHLBI NIH HHS
  grantid: K99 HL103786
– fundername: NHLBI NIH HHS
  grantid: R00 HL103786
– fundername: NHLBI NIH HHS
  grantid: HL107529
– fundername: NHLBI NIH HHS
  grantid: R01 HL116579
– fundername: NIAMS NIH HHS
  grantid: AR060336
– fundername: NHLBI NIH HHS
  grantid: R01 HL107529
– fundername: NIAMS NIH HHS
  grantid: R01 AR060336
– fundername: NHLBI NIH HHS
  grantid: HL-103786
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
18M
1OC
24P
29G
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABITZ
ABPVW
ABVKB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFZJQ
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQS
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RCA
ROL
RX1
SUPJJ
SV3
TEORI
TLM
TR2
UB1
V8K
W8F
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.55
.GJ
31~
3O-
53G
AAYXX
ABUWG
ACCMX
ACQPF
AFKRA
BBNVY
BENPR
BHPHI
C1A
CAG
CCPQU
CHEAL
CITATION
COF
GROUPED_DOAJ
H13
HCIFZ
HF~
L98
M7P
MVM
PGMZT
PHGZM
PHGZT
RIG
RPM
X7M
ZXP
1OB
CGR
CUY
CVF
ECM
EIF
NPM
SAMSI
7QP
7TK
7TS
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7X8
5PM
ID FETCH-LOGICAL-c5600-5e796fc5df76e04aa0bd46b6ab7c6503cf5c1b0c9388d6ef7a3f8bc5cc326fc63
IEDL.DBID DR2
ISSN 0958-0670
1469-445X
IngestDate Thu Aug 21 13:53:19 EDT 2025
Fri Jul 11 06:01:17 EDT 2025
Fri Jul 25 19:26:19 EDT 2025
Wed Feb 19 02:27:19 EST 2025
Tue Jul 01 02:03:57 EDT 2025
Thu Apr 24 23:04:45 EDT 2025
Wed Jan 22 16:37:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5600-5e796fc5df76e04aa0bd46b6ab7c6503cf5c1b0c9388d6ef7a3f8bc5cc326fc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1113/expphysiol.2013.075812
PMID 24142455
PQID 1494771543
PQPubID 37290
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946674
proquest_miscellaneous_1494303288
proquest_journals_1494771543
pubmed_primary_24142455
crossref_citationtrail_10_1113_expphysiol_2013_075812
crossref_primary_10_1113_expphysiol_2013_075812
wiley_primary_10_1113_expphysiol_2013_075812_EPH1380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 February 2014
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 1 February 2014
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Experimental physiology
PublicationTitleAlternate Exp Physiol
PublicationYear 2014
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2007; 103
1993; 69
2011a; 589
1995; 73
1997; 82
2010; 109
2013; 27
1990; 59
2000; 5
1978; 31
1976; 367
1937; 89
2006; 290
1999; 84
2008; 586
2011; 152
2008; 100
2003; 95
1996; 740
2008; 140
1968; 22
2012; 97
1983; 55
2010; 68
2001a; 1
2007; 293
1993; 71
2007; 292
2011b; 589
2013; 115
2003; 7
2002; 540
1984; 18
2008; 22
2013; 154
2005; 38
1985; 172
1998; 98
2006; 122
1985; 58
2001; 98
2001b; 4
2003; 338
2013; 109
2005; 111
1974; 72
2001; 280
2006; 99
2005; 114
2003; 37
1977; 267
1993; 462
1992; 73
2001; 81
2004; 96
2004; 110
1987; 410
1987; 61
2006; 87
2002; 283
2001; 4
1986; 67
2005; 1
1998; 3
2001; 1
1988; 64
2009; 587
1983; 45
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_67_1
e_1_2_5_69_1
e_1_2_5_29_1
Decherchi P (e_1_2_5_21_1) 1998; 3
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
e_1_2_5_60_1
e_1_2_5_62_1
Kaufman MP (e_1_2_5_41_1) 1987; 61
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_71_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
25100796 - Exp Physiol. 2014 May 1;99(5):836
26751722 - Exp Physiol. 2014 Apr 1;99(4):740
25100795 - Exp Physiol. 2014 May 1;99(5):835
Exp Physiol. 2014 Apr;99(4):740
24487245 - Exp Physiol. 2014 Feb;99(2):340-1
Exp Physiol. 2014 Apr 1;99(4):740
References_xml – volume: 82
  start-page: 1811
  year: 1997
  end-page: 1817
  article-title: Responses of group III and IV muscle afferents to dynamic exercise
  publication-title: J Appl Physiol
– volume: 410
  start-page: 143
  year: 1987
  end-page: 152
  article-title: Response of chemosensitive nerve fibers of group III and IV to metabolic changes in rat muscle
  publication-title: Pflugers Arch
– volume: 280
  start-page: E956
  year: 2001
  end-page: E964
  article-title: ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise
  publication-title: Am J Physiol Endocrinol Metab
– volume: 31
  start-page: 511
  year: 1978
  end-page: 522
  article-title: Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation
  publication-title: Exp Brain Res
– volume: 98
  start-page: 711
  year: 2001
  end-page: 716
  article-title: Acid‐sensing ion channel 3 matches the acid‐gated current in cardiac ischemia‐sensing neurons
  publication-title: Proc Natl Acad Sci U S A
– volume: 1
  start-page: 510
  year: 2001a
  end-page: 512
  article-title: ASIC3: a lactic acid sensor for cardiac pain
  publication-title: ScientificWorldJournal
– volume: 64
  start-page: 2306
  year: 1988
  end-page: 2313
  article-title: Effect of metabolic products of muscular contraction on discharge of group III and IV afferents
  publication-title: J Appl Physiol
– volume: 99
  start-page: 501
  year: 2006
  end-page: 509
  article-title: Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia
  publication-title: Circ Res
– volume: 27
  start-page: 793
  year: 2013
  end-page: 802
  article-title: Acid‐sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits
  publication-title: FASEB J
– volume: 81
  start-page: 1725
  year: 2001
  end-page: 1789
  article-title: Spinal and supraspinal factors in human muscle fatigue
  publication-title: Physiol Rev
– volume: 283
  start-page: H2636
  year: 2002
  end-page: H2643
  article-title: ATP stimulates chemically sensitive and sensitizes mechanically sensitive afferents
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 1
  start-page: 45
  year: 2001
  end-page: 51
  article-title: Molecular physiology of proton transduction in nociceptors
  publication-title: Curr Opin Pharmacol
– volume: 267
  start-page: 75
  year: 1977
  end-page: 88
  article-title: Nervous outflow from skeletal muscle following chemical noxious stimulation
  publication-title: J Physiol
– volume: 67
  start-page: 257
  year: 1986
  end-page: 262
  article-title: The effects of ischemia, lactic acid and hypertonic sodium chloride on phrenic afferent discharge during spontaneous diaphragmatic contraction
  publication-title: Neurosci Lett
– volume: 152
  start-page: 2399
  year: 2011
  end-page: 2404
  article-title: Validity of four pain intensity rating scales
  publication-title: Pain
– volume: 110
  start-page: 149
  year: 2004
  end-page: 157
  article-title: Acidic pH and capsaicin activate mechanosensitive group IV muscle receptors in the rat
  publication-title: Pain
– volume: 114
  start-page: 168
  year: 2005
  end-page: 176
  article-title: Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat
  publication-title: Pain
– volume: 589
  start-page: 5299
  year: 2011a
  end-page: 5309
  article-title: Implications of group III and IV muscle afferents for high‐intensity endurance exercise performance in humans
  publication-title: J Physiol
– volume: 111
  start-page: 2056
  year: 2005
  end-page: 2065
  article-title: The capsaicin‐sensitive afferent neuron in skeletal muscle is abnormal in heart failure
  publication-title: Circulation
– volume: 293
  start-page: H1861
  year: 2007
  end-page: H1868
  article-title: The role of the cyclooxygenase products in evoking sympathetic activation in exercise
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 3
  start-page: 267
  year: 1998
  end-page: 276
  article-title: Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically‐induced fatigue
  publication-title: J Peripher Nerv Syst
– volume: 98
  start-page: 6
  year: 1998
  end-page: 8
  article-title: Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle
  publication-title: Circulation
– volume: 73
  start-page: 2524
  year: 1992
  end-page: 2529
  article-title: Effects of hypoxia on the discharge of group III and IV muscle afferents in cats
  publication-title: J Appl Physiol
– volume: 71
  start-page: 484
  year: 1993
  end-page: 490
  article-title: Skeletal muscle ammonia production and repeated, intense exercise in humans
  publication-title: Can J Physiol Pharmacol
– volume: 58
  start-page: 936
  year: 1985
  end-page: 941
  article-title: Increasing gracilis muscle interstitial potassium concentrations stimulate group III and IV afferents
  publication-title: J Appl Physiol
– volume: 22
  start-page: 507
  year: 1968
  end-page: 516
  article-title: Effect on left ventricular performance of stimulation of an afferent nerve from muscle
  publication-title: Circ Res
– volume: 292
  start-page: R1594
  year: 2007
  end-page: R1602
  article-title: Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development
  publication-title: Am J Physiol Regul integr Comp Physiol
– volume: 109
  start-page: 966
  year: 2010
  end-page: 976
  article-title: Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans
  publication-title: J Appl Physiol
– volume: 73
  start-page: 1752
  year: 1995
  end-page: 1762
  article-title: Unmyelinated nociceptors of rat paraspinal tissues
  publication-title: J Neurophysiol
– volume: 7
  start-page: 93
  year: 2003
  end-page: 102
  article-title: Experimental pain by ischaemic contractions compared with pain by intramuscular infusions of adenosine and hypertonic saline
  publication-title: Eur J Pain
– volume: 59
  start-page: 465
  year: 1990
  end-page: 470
  article-title: Continuous intramuscular pH measurement during the recovery from brief, maximal exercise in man
  publication-title: Eur J Appl Physiol Occup Physiol
– volume: 111
  start-page: 2748
  year: 2005
  end-page: 2751
  article-title: Interstitial ATP and norepinephrine concentrations in active muscle
  publication-title: Circulation
– volume: 68
  start-page: 739
  year: 2010
  end-page: 749
  article-title: Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels
  publication-title: Neuron
– volume: 367
  start-page: 151
  year: 1976
  end-page: 156
  article-title: The interstitial pH of the working gastrocnemius muscle of the dog
  publication-title: Pflugers Arch
– volume: 122
  start-page: 1
  year: 2006
  end-page: 43
  article-title: Fundamentals of muscle pain, referred pain, and deep tissue hyperalgesia
  publication-title: Scand J Rheumatol Suppl
– volume: 84
  start-page: 921
  year: 1999
  end-page: 928
  article-title: Acid‐evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation
  publication-title: Circ Res
– volume: 45
  start-page: 229
  year: 1983
  end-page: 242
  article-title: The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways
  publication-title: Annu Rev Physiol
– volume: 115
  start-page: 355
  year: 2013
  end-page: 364
  article-title: Peripheral fatigue limits endurance exercise via a sensory feedback‐mediated reduction in spinal motoneuronal output
  publication-title: J Appl Physiol
– volume: 338
  start-page: 25
  year: 2003
  end-page: 28
  article-title: Adenosine triphosphate as a stimulant for nociceptive and non‐nociceptive muscle group IV receptors in the rat
  publication-title: Neurosci Lett
– volume: 540
  start-page: 647
  year: 2002
  end-page: 656
  article-title: Thermosensitivity of muscle: high‐intensity thermal stimulation of muscle tissue induces muscle pain in humans
  publication-title: J Physiol
– volume: 38
  start-page: 1561
  year: 2005
  end-page: 1569
  article-title: An acid‐sensing ion channel that detects ischemic pain
  publication-title: Braz J Med Biol Res
– volume: 4
  start-page: 30
  year: 2001
  end-page: 38
  article-title: Feeling state responses to acute exercise of high and low intensity
  publication-title: J Sci Med Sport
– volume: 154
  start-page: 1150
  year: 2013
  end-page: 1155
  article-title: Does throbbing pain have a brain signature
  publication-title: Pain
– volume: 586
  start-page: 161
  year: 2008
  end-page: 173
  article-title: Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance
  publication-title: J Physiol
– volume: 22
  start-page: 91
  year: 2008
  end-page: 100
  article-title: Origin of fatigue in multiple sclerosis: review of the literature
  publication-title: Neurorehabil Neural Repair
– volume: 1
  start-page: 35
  year: 2005
  article-title: ASIC3, an acid‐sensing ion channel, is expressed in metaboreceptive sensory neurons
  publication-title: Mol pain
– volume: 4
  start-page: 869
  year: 2001b
  end-page: 870
  article-title: Lactate enhances the acid‐sensing Na channel on ischemia‐sensing neurons
  publication-title: Nat Neurosci
– volume: 589
  start-page: 3855
  year: 2011b
  end-page: 3866
  article-title: On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans
  publication-title: J Physiol
– volume: 55
  start-page: 105
  year: 1983
  end-page: 112
  article-title: Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats
  publication-title: J Appl Physiol
– volume: 89
  start-page: 372
  year: 1937
  end-page: 383
  article-title: Observations in man upon a blood pressure raising reflex arising from the voluntary muscles
  publication-title: J Physiol
– volume: 95
  start-page: 577
  year: 2003
  end-page: 583
  article-title: ATP concentrations and muscle tension increase linearly with muscle contraction
  publication-title: J Appl Physiol
– volume: 100
  start-page: 1184
  year: 2008
  end-page: 1201
  article-title: Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1
  publication-title: J Neurophysiol
– volume: 18
  start-page: 663
  year: 1984
  end-page: 668
  article-title: Effects of static and rhythmic twitch contractions on the discharge of group III and IV muscle afferents
  publication-title: Cardiovasc Res
– volume: 740
  start-page: 109
  year: 1996
  end-page: 116
  article-title: Pain from excitation of identified muscle nociceptors in humans
  publication-title: Brain Res
– volume: 72
  start-page: 305
  year: 1974
  end-page: 310
  article-title: Activation of group IV afferent units from muscle by algesic agents
  publication-title: Brain Res
– volume: 587
  start-page: 271
  year: 2009
  end-page: 283
  article-title: Opioid‐mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans
  publication-title: J Physiol
– volume: 290
  start-page: H1214
  year: 2006
  end-page: H1219
  article-title: P2 antagonist PPADS attenuates responses of thin fiber afferents to static contraction and tendon stretch
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 5
  start-page: 87
  year: 2000
  end-page: 100
  article-title: Muscle reflex control of sympathetic nerve activity in heart failure: the role of exercise conditioning
  publication-title: Heart Fail Rev
– volume: 97
  start-page: 59
  year: 2012
  end-page: 69
  article-title: Human investigations into the exercise pressor reflex
  publication-title: Exp Physiol
– volume: 69
  start-page: 1053
  year: 1993
  end-page: 1059
  article-title: Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats
  publication-title: J Neurophysiol
– volume: 103
  start-page: 979
  year: 2007
  end-page: 989
  article-title: Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles
  publication-title: J Appl Physiol
– volume: 1
  start-page: 31
  year: 2005
  article-title: Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat
  publication-title: Mol Pain
– volume: 87
  start-page: 1412
  year: 2006
  end-page: 1417
  article-title: An experimental pain model to investigate the specificity of the neurodynamic test for the median nerve in the differential diagnosis of hand symptoms
  publication-title: Arch Phys Med Rehabil
– volume: 109
  start-page: 2374
  year: 2013
  end-page: 2381
  article-title: Comprehensive phenotyping of group III and IV muscle afferents in mouse
  publication-title: J Neurophysiol
– volume: 61
  start-page: I60
  year: 1987
  end-page: I65
  article-title: Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli
  publication-title: Circ Res
– volume: 140
  start-page: 254
  year: 2008
  end-page: 264
  article-title: Acidic buffer induced muscle pain evokes referred pain and mechanical hyperalgesia in humans
  publication-title: Pain
– volume: 37
  start-page: 75
  year: 2003
  end-page: 84
  article-title: Protons open acid‐sensing ion channels by catalyzing relief of Ca blockade
  publication-title: Neuron
– volume: 462
  start-page: 115
  year: 1993
  end-page: 133
  article-title: Lactate and H effluxes from human skeletal muscles during intense, dynamic exercise
  publication-title: J Physiol
– volume: 96
  start-page: 1166
  year: 2004
  end-page: 1169
  article-title: Activation of thin‐fiber muscle afferents by a P2X agonist in cats
  publication-title: J Appl Physiol
– volume: 172
  start-page: 145
  year: 1985
  end-page: 156
  article-title: Sensory innervation of the Achilles tendon by group III and IV afferent fibers
  publication-title: Anat Embryol
– ident: e_1_2_5_8_1
  doi: 10.1113/jphysiol.2008.163303
– ident: e_1_2_5_33_1
  doi: 10.1152/jappl.1992.73.6.2524
– ident: e_1_2_5_52_1
  doi: 10.1113/jphysiol.1977.sp011802
– ident: e_1_2_5_61_1
  doi: 10.1016/S0304-3940(02)01360-5
– ident: e_1_2_5_57_1
  doi: 10.1152/ajpregu.00251.2006
– ident: e_1_2_5_47_1
  doi: 10.1152/ajpheart.00395.2002
– ident: e_1_2_5_4_1
  doi: 10.1007/BF02388630
– ident: e_1_2_5_45_1
  doi: 10.1007/BF00239809
– ident: e_1_2_5_53_1
  doi: 10.1016/0006-8993(74)90870-1
– ident: e_1_2_5_48_1
  doi: 10.1152/japplphysiol.00185.2003
– ident: e_1_2_5_50_1
  doi: 10.1152/jn.01344.2007
– ident: e_1_2_5_42_1
  doi: 10.1093/cvr/18.11.663
– ident: e_1_2_5_55_1
  doi: 10.1161/01.RES.22.4.507
– ident: e_1_2_5_46_1
  doi: 10.1177/1545968306298934
– ident: e_1_2_5_11_1
  doi: 10.1007/BF00319597
– ident: e_1_2_5_3_1
  doi: 10.1113/jphysiol.1937.sp003485
– ident: e_1_2_5_31_1
  doi: 10.1152/japplphysiol.01020.2003
– ident: e_1_2_5_64_1
  doi: 10.1113/expphysiol.2011.057679
– ident: e_1_2_5_17_1
  doi: 10.1152/jn.1995.73.5.1752
– ident: e_1_2_5_22_1
  doi: 10.1016/j.pain.2011.07.005
– ident: e_1_2_5_40_1
  doi: 10.1152/jappl.1983.55.1.105
– ident: e_1_2_5_12_1
  doi: 10.1113/jphysiol.1993.sp019546
– ident: e_1_2_5_14_1
  doi: 10.1161/01.RES.84.8.921
– ident: e_1_2_5_5_1
  doi: 10.1152/japplphysiol.00462.2010
– ident: e_1_2_5_44_1
  doi: 10.1152/ajpheart.01051.2005
– ident: e_1_2_5_58_1
  doi: 10.1186/1744-8069-1-35
– ident: e_1_2_5_67_1
  doi: 10.1161/01.CIR.0000162473.10951.0A
– ident: e_1_2_5_7_1
  doi: 10.1113/jphysiol.2007.141838
– ident: e_1_2_5_71_1
  doi: 10.1161/01.RES.0000238388.79295.4c
– ident: e_1_2_5_37_1
  doi: 10.1038/nn0901-869
– ident: e_1_2_5_29_1
  doi: 10.1113/jphysiol.2001.013336
– ident: e_1_2_5_60_1
  doi: 10.1016/S1471-4892(01)00014-5
– ident: e_1_2_5_69_1
  doi: 10.1073/pnas.98.2.711
– ident: e_1_2_5_56_1
  doi: 10.1016/j.pain.2013.02.013
– ident: e_1_2_5_9_1
  doi: 10.1113/jphysiol.2011.209353
– ident: e_1_2_5_35_1
  doi: 10.1016/j.pain.2004.12.020
– ident: e_1_2_5_34_1
  doi: 10.1016/j.pain.2004.03.043
– ident: e_1_2_5_68_1
  doi: 10.1007/BF00585151
– ident: e_1_2_5_2_1
  doi: 10.1152/jappl.1997.82.6.1811
– ident: e_1_2_5_6_1
  doi: 10.1113/jphysiol.2011.213769
– ident: e_1_2_5_23_1
  doi: 10.1016/j.pain.2008.08.014
– ident: e_1_2_5_28_1
  doi: 10.1080/03009740600865980
– ident: e_1_2_5_43_1
  doi: 10.1023/A:1009802308872
– ident: e_1_2_5_66_1
  doi: 10.1152/jn.1993.69.4.1053
– ident: e_1_2_5_13_1
  doi: 10.1152/ajpendo.2001.280.6.E956
– ident: e_1_2_5_20_1
  doi: 10.1152/ajpheart.00258.2007
– ident: e_1_2_5_32_1
  doi: 10.1161/01.CIR.98.1.6
– ident: e_1_2_5_27_1
  doi: 10.1016/0304-3940(86)90318-6
– ident: e_1_2_5_38_1
  doi: 10.1016/S0896-6273(02)01130-3
– ident: e_1_2_5_49_1
  doi: 10.1161/CIRCULATIONAHA.104.510669
– ident: e_1_2_5_51_1
  doi: 10.1016/S0006-8993(96)00851-7
– ident: e_1_2_5_63_1
  doi: 10.1152/jappl.1985.58.3.936
– ident: e_1_2_5_26_1
  doi: 10.1139/y93-070
– ident: e_1_2_5_59_1
  doi: 10.1590/S0100-879X2005001100001
– ident: e_1_2_5_62_1
  doi: 10.1152/jappl.1988.64.6.2306
– ident: e_1_2_5_18_1
  doi: 10.1186/1744-8069-1-31
– ident: e_1_2_5_70_1
  doi: 10.1007/BF00581907
– ident: e_1_2_5_16_1
  doi: 10.1016/S1440-2440(01)80005-0
– ident: e_1_2_5_36_1
  doi: 10.1100/tsw.2001.254
– ident: e_1_2_5_65_1
  doi: 10.1152/japplphysiol.01310.2006
– ident: e_1_2_5_19_1
  doi: 10.1016/j.apmr.2006.06.012
– ident: e_1_2_5_39_1
  doi: 10.1152/jn.01067.2012
– volume: 61
  start-page: I60
  year: 1987
  ident: e_1_2_5_41_1
  article-title: Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli
  publication-title: Circ Res
– ident: e_1_2_5_10_1
  doi: 10.1152/japplphysiol.00049.2013
– ident: e_1_2_5_24_1
  doi: 10.1152/physrev.2001.81.4.1725
– volume: 3
  start-page: 267
  year: 1998
  ident: e_1_2_5_21_1
  article-title: Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically‐induced fatigue
  publication-title: J Peripher Nerv Syst
– ident: e_1_2_5_25_1
  doi: 10.1096/fj.12-220400
– ident: e_1_2_5_30_1
  doi: 10.1016/S1090-3801(02)00069-1
– ident: e_1_2_5_54_1
  doi: 10.1146/annurev.ph.45.030183.001305
– ident: e_1_2_5_15_1
  doi: 10.1016/j.neuron.2010.09.029
– reference: 26751722 - Exp Physiol. 2014 Apr 1;99(4):740
– reference: - Exp Physiol. 2014 Apr;99(4):740
– reference: - Exp Physiol. 2014 Apr 1;99(4):740
– reference: 25100795 - Exp Physiol. 2014 May 1;99(5):835
– reference: 25100796 - Exp Physiol. 2014 May 1;99(5):836
– reference: 24487245 - Exp Physiol. 2014 Feb;99(2):340-1
SSID ssj0013084
Score 2.474298
Snippet New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when...
What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into...
New Findings What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when...
The perception of fatigue is common in many disease states, however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 368
SubjectTerms Adenosine Triphosphate - metabolism
Adult
Exercise - physiology
Female
Humans
Lactic Acid - metabolism
Male
Middle Aged
Muscle Fatigue - physiology
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiopathology
Neurons, Afferent - metabolism
Neurons, Afferent - physiology
Pain - metabolism
Pain - physiopathology
Physical Endurance - physiology
Sensation - physiology
Sensory Receptor Cells - metabolism
Sensory Receptor Cells - physiology
Title Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fexpphysiol.2013.075812
https://www.ncbi.nlm.nih.gov/pubmed/24142455
https://www.proquest.com/docview/1494771543
https://www.proquest.com/docview/1494303288
https://pubmed.ncbi.nlm.nih.gov/PMC3946674
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6Pu1lX92H165oMPaW1IlkSX4sIyUMNsJYoW9GkuUuNLFDbY9mf31Pku0u62BjDPwk62RLOkm_k3S_A3hntUljk7ioAYKPWKqKUcpch9hcKl5wmvuti0-f-fycfbxILvZg3vvCBH6IYcPNjQw_X7sBrnQXhWTiyAbszcYb_5U7QJjQMa590ocbdhe3HDr6Mr07Toh96GGEE9L9VNy5CmNBJ78vZneVugc979-g_BnZ-qXp7DEs-0qFGylX47bRY_PjF77H_1HrJ_Cow6_kNCjcU9iz5TM4OC3Rdl9vyXuyCGLV5fYAmtlNFThgV1uiAtwl67ZGQbK2Daqfc4CuSb11DoieMVqtMKv9Xl1ZUqOBHbYTSVX0YgWmXLaWqDInG7UsCT4-zCCpW-22lOrncH42-_phPuqiPIyMQ1ujxIqUFybJC8FtzJSKdc645koLg_CRmiIxEx2blEqZc1sIRQupTWIMIs_CcPoC9suqtK-AUBZrK_Q01wztxtykUljBTYrFCclVHEHS92pmOgp0F4ljlQVTiGZ3zZu55s1C80ZwMshtAgnIHyWOeqXJukmhRisrZUIgZqURvB1e43B2ZzSqtNgdPg91HIcygpdBx4ZPIthy59RJBGJH-4YMjip89025_OYpw6kLIyBYBMwr11_WIpst5hMq49f_JnYIDzGVhTvuR7DfXLf2DUK4Rh_DgylbHPtBegtjD0hf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOcCFV3kEChgJccs2Wzt2cqzQVgu0VYVaqbfIduy2dDdZkQR1-fXM2NmUpUgghJRT4nFieyb-Zmx_Q8hbq02emBSzBkgR81y5OOc4ILbMlHCClT50cXAopif842l62lMK4VmYwA8xBNzQMvz_Gg0cA9K9lSPbgL1aeO-_xhWEMRvB5JdhvuHbmN7be1efd64XFBKffBgARYaflfSHhaGm7d_Xsz5P3QCfN_dQ_oxt_eS0d598WTUr7Em5HHWtHpnvvzA-_pd2PyD3eghLd4POPSS3bPWIbO5W4L7Pl_QdPQpi9dlyk7STqzrQwM6WVAXES-ddA4J0blvQQDwD3dBmiWcQPWm0mkFR-62-tLQBHztEFGntVmIO7px1lqqqpAt1UVG4fKZB2nQao0rNY3KyNzl-P437RA-xQcAVp1bmwpm0dFLYhCuV6JILLZSWBhAkMy41Y52YnGVZKayTirlMm9QYAJ_OCPaEbFR1ZZ8RyniirdQ7pebgOpYmz6SVwuRQncyESiKSroa1MD0LOibjmBXBG2LFdfcW2L1F6N6IbA9yi8AD8keJrZXWFP1_oQFHK-dSAmxlEXkzPAaLxmUaVVkYDl-GIc1hFpGnQcmGVwLewqXqNCJyTf2GAsgWvv6kujj3rOEMMwlIHhHutesvW1FMjqZjliXP_03sNbkzPT7YL_Y_HH56Qe5CCR62vG-RjfZrZ18Comv1K2-rPwDp0kuj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTUK8IMb4CAwwEuItLMWO7TxW0Kp8TX2gaOIlsh17TLRJRVq0_ve7s9OMakggpDzFPjvJ3cW_88fvCHnpjC0ym2PWAClSXmifFhwV4iqlhResClMXn0_FZMY_nOVne2SyPQsT-SH6CTf0jPC_RgdfVr5zciQbcJfLEPw3uIAwYK9h7FOYbvgAKfPAvg-GX2ffZtcrClnIPgyIQuFzZd1pYWjr5M8t7Q5UN9DnzU2Uv4PbMDqN75I7Haykw2gHh2TP1ffI0bCGkHqxoa_oNPbcnG-OyGp02URq1vmG6ohC6WLdgiBduBVYBZ5Lbmm7wXOBgchZz6Gq-9X8cLSFuDfO8tHGb8U83DlfO6rrii71RU3hCtn_aLs2ONPT3iez8ejL20naJV9ILYKgNHeyEN7mlZfCZVzrzFRcGKGNtIDqmPW5HZjMFkypSjgvNfPK2NxaAITeCvaA7NdN7R4RynhmnDRvKsMhnKtsoaSTwhbQnFRCZwnJt1-6tB0zOSbImJcxQmHltYZK1FAZNZSQk15uGbk5_ipxvFVk2flqC8FPwaUEKMkS8qIvBi_DpRNdO1BHqMOQelAl5GHUe98lYCBcPs4TIncsoq-ADN67JfXF98DkzZDdX_KE8GA7__gW5Wg6GTCVPf4_sefk1vTduPz0_vTjE3IbKvC4C_2Y7K9-rt1TAFkr86zznyuOtieX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenously+applied+muscle+metabolites+synergistically+evoke+sensations+of+muscle+fatigue+and+pain+in+human+subjects&rft.jtitle=Experimental+physiology&rft.au=Pollak%2C+Kelly+A&rft.au=Swenson%2C+Jeffrey+D&rft.au=Vanhaitsma%2C+Timothy+A&rft.au=Hughen%2C+Ronald+W&rft.date=2014-02-01&rft.issn=1469-445X&rft.eissn=1469-445X&rft.volume=99&rft.issue=2&rft.spage=368&rft_id=info:doi/10.1113%2Fexpphysiol.2013.075812&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon