基于FCM的暂态电能质量扰动识别

提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为FCM的输入,得到聚类中心和隶属度矩阵。最后通过计算待测样本与已知样本的聚类中心的欧氏距离实现扰动类型识别。通过仿真分析,该分层识别方法准确可行。...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 44; no. 9; pp. 62 - 68
Main Author 韩玉环 赵庆生 郭贺宏 王振起 张学军
Format Journal Article
LanguageChinese
Published 太原理工大学电力系统运行与控制山西省重点实验室,山西太原,030024%国网晋中供电公司,山西晋中,030600%山西大学,山西太原,030006 2016
Subjects
Online AccessGet full text
ISSN1674-3415
DOI10.7667/PSPC150959

Cover

Abstract 提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为FCM的输入,得到聚类中心和隶属度矩阵。最后通过计算待测样本与已知样本的聚类中心的欧氏距离实现扰动类型识别。通过仿真分析,该分层识别方法准确可行。
AbstractList 提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为FCM的输入,得到聚类中心和隶属度矩阵。最后通过计算待测样本与已知样本的聚类中心的欧氏距离实现扰动类型识别。通过仿真分析,该分层识别方法准确可行。
提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为 FCM 的输入,得到聚类中心和隶属度矩阵。最后通过计算待测样本与已知样本的聚类中心的欧氏距离实现扰动类型识别。通过仿真分析,该分层识别方法准确可行。
Abstract_FL A new method to identify the transient power quality disturbance based on FCMis proposed. This recognition method is implemented hierarchically. The first layer can judge whether transient oscillation disturbance is included in the signal. The second layer judges whether transient oscillation pulse is contained in the signal. The third layer judges whether the signal contains the magnitude of the disturbance and has a comprehensive judgment on the specific type of complexdisturbances. Through combination with the ensemble empirical mode decomposition(EEMD)and singular valuedecomposition method, effective feature vectors can be extracted hierarchically, which is used as the input of FCM. In this way, the optimized classified matrix and clustering centers are obtained. Calculating the Euclidean distance between the unknown-sample samples and the known-sample ones, the disturbance type is identified. The simulation result indicates that this method is accurate and feasible.
Author 韩玉环 赵庆生 郭贺宏 王振起 张学军
AuthorAffiliation 太原理工大学电力系统运行与控制山西省重点实验室,山西太原030024 国网晋中供电公司,山西晋中030600 山西大学,山西太原030006
AuthorAffiliation_xml – name: 太原理工大学电力系统运行与控制山西省重点实验室,山西太原,030024%国网晋中供电公司,山西晋中,030600%山西大学,山西太原,030006
Author_FL ZHAO Qingsheng
GUO Hehong
ZHANG Xuejun
WANG Zhenqi
HAN Yuhuan
Author_FL_xml – sequence: 1
  fullname: HAN Yuhuan
– sequence: 2
  fullname: ZHAO Qingsheng
– sequence: 3
  fullname: GUO Hehong
– sequence: 4
  fullname: WANG Zhenqi
– sequence: 5
  fullname: ZHANG Xuejun
Author_xml – sequence: 1
  fullname: 韩玉环 赵庆生 郭贺宏 王振起 张学军
BookMark eNotjj1Lw0Ach2-oYK1d_AjiJETvJfe_u1GCVaFiwe7hcvZqil5sgoibb_g26OLUxbXgoIMuBb-NSeO3MFCn3_Lwe54FVHOJ6yG0RPCaABDrnf1OQDhWXNVQnYDwPeYTPo-aWRZHGDPCOUhVR6v56-Rn8tQKdqejm2J0VVxcTl--yuvv8nP8e_dcPHzkj-Py_Ta_f1tEc1YfZb3m_zZQt7XZDba99t7WTrDR9gwH7HHfsspLRQSCAiHGCKukjyUVFjQWivpCahOxqtJoSiTXPUG0NMwIorRlDbQyuz3TzmrXDwfJaeoqYTg4GFJMACtMcIUtzzBzmLj-MK7AkzQ-1ul5CCBBMKWA_QHpBVl9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7667/PSPC150959
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Identification of transient power quality disturbances based on FCM
DocumentTitle_FL Identification of transient power quality disturbancesbased on FCM
EndPage 68
ExternalDocumentID jdq201609010
668673996
GrantInformation_xml – fundername: 山西省自然科学基金项目; 国家自然科学青年基金项目
  funderid: (2015011057); (51505317)
GroupedDBID -03
2RA
5XA
5XD
92L
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
GROUPED_DOAJ
U1G
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c560-54f350927b672611cc7f9840827f6a0792478acb3667ca2185ae71a8c3c719af3
ISSN 1674-3415
IngestDate Thu May 29 04:03:02 EDT 2025
Wed Feb 14 10:20:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords fuzzy C mean clustering arithmetic
奇异值分解
模糊C均值聚类算法
集合经验模态分解
分层识别
暂态识别
singularvaluedecomposition
transientidentification
hierarchical identification
ensemble empirical mode decomposition
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c560-54f350927b672611cc7f9840827f6a0792478acb3667ca2185ae71a8c3c719af3
Notes 41-1401/TM
A new method to identify the transient power quality disturbance based on FCM is proposed. This recognition method is implemented hierarchically. The first layer can judge whether transient oscillation disturbance is included in the signal. The second layer judges whether transient oscillation pulse is contained in the signal. The third layer judges whether the signal contains the magnitude of the disturbance and has a comprehensive judgment on the specific type of complex disturbances. Through combination with the ensemble empirical mode decomposition(EEMD) and singular value decomposition method, effective feature vectors can be extracted hierarchically, which is used as the input of FCM. In this way, the optimized classified matrix and clustering centers are obtained. Calculating the Euclidean distance between the unknown-sample samples and the known-sample ones, the disturbance type is identified. The simulation result indicates that this method is accurate and feasible.
HAN Yuhuan,ZHAO Qingsheng
PageCount 7
ParticipantIDs wanfang_journals_jdq201609010
chongqing_primary_668673996
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 电力系统保护与控制
PublicationTitleAlternate Relay
PublicationYear 2016
Publisher 太原理工大学电力系统运行与控制山西省重点实验室,山西太原,030024%国网晋中供电公司,山西晋中,030600%山西大学,山西太原,030006
Publisher_xml – name: 太原理工大学电力系统运行与控制山西省重点实验室,山西太原,030024%国网晋中供电公司,山西晋中,030600%山西大学,山西太原,030006
SSID ssib003155689
ssib017479473
ssib023166999
ssj0002912115
ssib051374514
ssib002424069
ssib036435463
Score 2.1029928
Snippet ...
提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为 FCM...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 62
SubjectTerms 分层识别
奇异值分解
暂态识别
模糊C均值聚类算法
集合经验模态分解
Title 基于FCM的暂态电能质量扰动识别
URI http://lib.cqvip.com/qk/90494A/201609/668673996.html
https://d.wanfangdata.com.cn/periodical/jdq201609010
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELaO0NAgECBCCEqBG6KF24df5fqyqwgJFIlDSnfaZyKKSwKXJhUv8SqgoUpDG4kCCmgi8RP4F9zl-BfM2M7eghACGmtu7J2d2fHZ3-zaY0KuhjAr8kpxiE3yDIpSeHnkZ55fwGRbqzIra7NA9jZfvRvdXGfrnc7X1qql3VF-vdj77b6S__Eq8MCvuEv2HzzbCAUG0OBfKMHDUP6Vj2nCqEqpjmkSYSmTtHeLJoIqoCOacEMESMguYEZTBS0ZTSSVIdUrSOiIxpImikpBZWoaK6q7KFzGpkrSOKWSGw7Quo1oWzJNe6WRo0G4JTRqiOqlVK0Y4SAzMhzQITGchMbCCdfNm0LUCC6NFYqBJvKYiNNlozZzN0XDuVNDYZ1C2-Jj2_DpMBqDAKyzorS5bQ_NcpLEshEFLGM4XB1be-EZ6varEbtn043jXEQeTNCsPdDbRJOuQ6vWqO3mAzv_21N-fp1ZBOf4bXvtzloPILRyWcx_ztTNueQCAB8_QU4GQvisFeE7NIT7jFvDKaZ_a35DbAiD4wxNAvLmXM2ixRDAY_vwAuaHImLuIzgCj0Bhvj5ctNuYbxPyovI3ZqpjGpHNreHGDoAjs1dtWGfDjRas6p8hp108tBTbzn2WdPY2z5Fr43eH3w5fQ2c-2n862X88efjo6O3n6ZMv008H35-_mbz8OH51MP3wbPzi_XnST5N-b9Vzh3p48O_veiyqQ1AiEDkXELz7RSFqJfHUc1HzrCtUEAmZFXkIKhcZ4E-WVcLPZBEWwldZHV4gc8OtYXWRLKlKBgWv6jwqIcznpQp4GWJ4XaqSqTCfJwuNmYNtm7tl0Phoniw6wwfuH_1gcK_cwW7UxSVLl_549QI5hS3tu7jLZG50f7daBHQ6yq8Yn_8Arm1ipQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EFCM%E7%9A%84%E6%9A%82%E6%80%81%E7%94%B5%E8%83%BD%E8%B4%A8%E9%87%8F%E6%89%B0%E5%8A%A8%E8%AF%86%E5%88%AB&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%9F%A9%E7%8E%89%E7%8E%AF+%E8%B5%B5%E5%BA%86%E7%94%9F+%E9%83%AD%E8%B4%BA%E5%AE%8F+%E7%8E%8B%E6%8C%AF%E8%B5%B7+%E5%BC%A0%E5%AD%A6%E5%86%9B&rft.date=2016&rft.issn=1674-3415&rft.volume=44&rft.issue=9&rft.spage=62&rft.epage=68&rft_id=info:doi/10.7667%2FPSPC150959&rft.externalDocID=668673996
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg