基于FCM的暂态电能质量扰动识别
提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为FCM的输入,得到聚类中心和隶属度矩阵。最后通过计算待测样本与已知样本的聚类中心的欧氏距离实现扰动类型识别。通过仿真分析,该分层识别方法准确可行。...
Saved in:
Published in | 电力系统保护与控制 Vol. 44; no. 9; pp. 62 - 68 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
太原理工大学电力系统运行与控制山西省重点实验室,山西太原,030024%国网晋中供电公司,山西晋中,030600%山西大学,山西太原,030006
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-3415 |
DOI | 10.7667/PSPC150959 |
Cover
Abstract | 提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为FCM的输入,得到聚类中心和隶属度矩阵。最后通过计算待测样本与已知样本的聚类中心的欧氏距离实现扰动类型识别。通过仿真分析,该分层识别方法准确可行。 |
---|---|
AbstractList | 提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为FCM的输入,得到聚类中心和隶属度矩阵。最后通过计算待测样本与已知样本的聚类中心的欧氏距离实现扰动类型识别。通过仿真分析,该分层识别方法准确可行。 提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为 FCM 的输入,得到聚类中心和隶属度矩阵。最后通过计算待测样本与已知样本的聚类中心的欧氏距离实现扰动类型识别。通过仿真分析,该分层识别方法准确可行。 |
Abstract_FL | A new method to identify the transient power quality disturbance based on FCMis proposed. This recognition method is implemented hierarchically. The first layer can judge whether transient oscillation disturbance is included in the signal. The second layer judges whether transient oscillation pulse is contained in the signal. The third layer judges whether the signal contains the magnitude of the disturbance and has a comprehensive judgment on the specific type of complexdisturbances. Through combination with the ensemble empirical mode decomposition(EEMD)and singular valuedecomposition method, effective feature vectors can be extracted hierarchically, which is used as the input of FCM. In this way, the optimized classified matrix and clustering centers are obtained. Calculating the Euclidean distance between the unknown-sample samples and the known-sample ones, the disturbance type is identified. The simulation result indicates that this method is accurate and feasible. |
Author | 韩玉环 赵庆生 郭贺宏 王振起 张学军 |
AuthorAffiliation | 太原理工大学电力系统运行与控制山西省重点实验室,山西太原030024 国网晋中供电公司,山西晋中030600 山西大学,山西太原030006 |
AuthorAffiliation_xml | – name: 太原理工大学电力系统运行与控制山西省重点实验室,山西太原,030024%国网晋中供电公司,山西晋中,030600%山西大学,山西太原,030006 |
Author_FL | ZHAO Qingsheng GUO Hehong ZHANG Xuejun WANG Zhenqi HAN Yuhuan |
Author_FL_xml | – sequence: 1 fullname: HAN Yuhuan – sequence: 2 fullname: ZHAO Qingsheng – sequence: 3 fullname: GUO Hehong – sequence: 4 fullname: WANG Zhenqi – sequence: 5 fullname: ZHANG Xuejun |
Author_xml | – sequence: 1 fullname: 韩玉环 赵庆生 郭贺宏 王振起 张学军 |
BookMark | eNotjj1Lw0Ach2-oYK1d_AjiJETvJfe_u1GCVaFiwe7hcvZqil5sgoibb_g26OLUxbXgoIMuBb-NSeO3MFCn3_Lwe54FVHOJ6yG0RPCaABDrnf1OQDhWXNVQnYDwPeYTPo-aWRZHGDPCOUhVR6v56-Rn8tQKdqejm2J0VVxcTl--yuvv8nP8e_dcPHzkj-Py_Ta_f1tEc1YfZb3m_zZQt7XZDba99t7WTrDR9gwH7HHfsspLRQSCAiHGCKukjyUVFjQWivpCahOxqtJoSiTXPUG0NMwIorRlDbQyuz3TzmrXDwfJaeoqYTg4GFJMACtMcIUtzzBzmLj-MK7AkzQ-1ul5CCBBMKWA_QHpBVl9 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.7667/PSPC150959 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Identification of transient power quality disturbances based on FCM |
DocumentTitle_FL | Identification of transient power quality disturbancesbased on FCM |
EndPage | 68 |
ExternalDocumentID | jdq201609010 668673996 |
GrantInformation_xml | – fundername: 山西省自然科学基金项目; 国家自然科学青年基金项目 funderid: (2015011057); (51505317) |
GroupedDBID | -03 2RA 5XA 5XD 92L ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CQIGP GROUPED_DOAJ U1G W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
ID | FETCH-LOGICAL-c560-54f350927b672611cc7f9840827f6a0792478acb3667ca2185ae71a8c3c719af3 |
ISSN | 1674-3415 |
IngestDate | Thu May 29 04:03:02 EDT 2025 Wed Feb 14 10:20:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | fuzzy C mean clustering arithmetic 奇异值分解 模糊C均值聚类算法 集合经验模态分解 分层识别 暂态识别 singularvaluedecomposition transientidentification hierarchical identification ensemble empirical mode decomposition |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c560-54f350927b672611cc7f9840827f6a0792478acb3667ca2185ae71a8c3c719af3 |
Notes | 41-1401/TM A new method to identify the transient power quality disturbance based on FCM is proposed. This recognition method is implemented hierarchically. The first layer can judge whether transient oscillation disturbance is included in the signal. The second layer judges whether transient oscillation pulse is contained in the signal. The third layer judges whether the signal contains the magnitude of the disturbance and has a comprehensive judgment on the specific type of complex disturbances. Through combination with the ensemble empirical mode decomposition(EEMD) and singular value decomposition method, effective feature vectors can be extracted hierarchically, which is used as the input of FCM. In this way, the optimized classified matrix and clustering centers are obtained. Calculating the Euclidean distance between the unknown-sample samples and the known-sample ones, the disturbance type is identified. The simulation result indicates that this method is accurate and feasible. HAN Yuhuan,ZHAO Qingsheng |
PageCount | 7 |
ParticipantIDs | wanfang_journals_jdq201609010 chongqing_primary_668673996 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 电力系统保护与控制 |
PublicationTitleAlternate | Relay |
PublicationYear | 2016 |
Publisher | 太原理工大学电力系统运行与控制山西省重点实验室,山西太原,030024%国网晋中供电公司,山西晋中,030600%山西大学,山西太原,030006 |
Publisher_xml | – name: 太原理工大学电力系统运行与控制山西省重点实验室,山西太原,030024%国网晋中供电公司,山西晋中,030600%山西大学,山西太原,030006 |
SSID | ssib003155689 ssib017479473 ssib023166999 ssj0002912115 ssib051374514 ssib002424069 ssib036435463 |
Score | 2.1029928 |
Snippet | ... 提出一种应用模糊C均值聚类(FCM)对暂态电能质量扰动进行识别的新方法。该识别方法分层实现,第一层判断信号中是否包含暂态振荡扰动,第二层判断是否包含暂态脉冲扰动,第三层判断是否包含幅值扰动及综合判断出各种复合扰动的类型。通过与集合经验模态分解(EEMD)和奇异值分解方法的结合,分层提取出有效特征量,并将其作为 FCM... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 62 |
SubjectTerms | 分层识别 奇异值分解 暂态识别 模糊C均值聚类算法 集合经验模态分解 |
Title | 基于FCM的暂态电能质量扰动识别 |
URI | http://lib.cqvip.com/qk/90494A/201609/668673996.html https://d.wanfangdata.com.cn/periodical/jdq201609010 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELaO0NAgECBCCEqBG6KF24df5fqyqwgJFIlDSnfaZyKKSwKXJhUv8SqgoUpDG4kCCmgi8RP4F9zl-BfM2M7eghACGmtu7J2d2fHZ3-zaY0KuhjAr8kpxiE3yDIpSeHnkZ55fwGRbqzIra7NA9jZfvRvdXGfrnc7X1qql3VF-vdj77b6S__Eq8MCvuEv2HzzbCAUG0OBfKMHDUP6Vj2nCqEqpjmkSYSmTtHeLJoIqoCOacEMESMguYEZTBS0ZTSSVIdUrSOiIxpImikpBZWoaK6q7KFzGpkrSOKWSGw7Quo1oWzJNe6WRo0G4JTRqiOqlVK0Y4SAzMhzQITGchMbCCdfNm0LUCC6NFYqBJvKYiNNlozZzN0XDuVNDYZ1C2-Jj2_DpMBqDAKyzorS5bQ_NcpLEshEFLGM4XB1be-EZ6varEbtn043jXEQeTNCsPdDbRJOuQ6vWqO3mAzv_21N-fp1ZBOf4bXvtzloPILRyWcx_ztTNueQCAB8_QU4GQvisFeE7NIT7jFvDKaZ_a35DbAiD4wxNAvLmXM2ixRDAY_vwAuaHImLuIzgCj0Bhvj5ctNuYbxPyovI3ZqpjGpHNreHGDoAjs1dtWGfDjRas6p8hp108tBTbzn2WdPY2z5Fr43eH3w5fQ2c-2n862X88efjo6O3n6ZMv008H35-_mbz8OH51MP3wbPzi_XnST5N-b9Vzh3p48O_veiyqQ1AiEDkXELz7RSFqJfHUc1HzrCtUEAmZFXkIKhcZ4E-WVcLPZBEWwldZHV4gc8OtYXWRLKlKBgWv6jwqIcznpQp4GWJ4XaqSqTCfJwuNmYNtm7tl0Phoniw6wwfuH_1gcK_cwW7UxSVLl_549QI5hS3tu7jLZG50f7daBHQ6yq8Yn_8Arm1ipQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EFCM%E7%9A%84%E6%9A%82%E6%80%81%E7%94%B5%E8%83%BD%E8%B4%A8%E9%87%8F%E6%89%B0%E5%8A%A8%E8%AF%86%E5%88%AB&rft.jtitle=%E7%94%B5%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%BF%9D%E6%8A%A4%E4%B8%8E%E6%8E%A7%E5%88%B6&rft.au=%E9%9F%A9%E7%8E%89%E7%8E%AF+%E8%B5%B5%E5%BA%86%E7%94%9F+%E9%83%AD%E8%B4%BA%E5%AE%8F+%E7%8E%8B%E6%8C%AF%E8%B5%B7+%E5%BC%A0%E5%AD%A6%E5%86%9B&rft.date=2016&rft.issn=1674-3415&rft.volume=44&rft.issue=9&rft.spage=62&rft.epage=68&rft_id=info:doi/10.7667%2FPSPC150959&rft.externalDocID=668673996 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90494A%2F90494A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjdq%2Fjdq.jpg |