Effect of Host Moieties on the Phosphorescent Spectrum of Green Platinum Complex

Highly efficient, operationally stable, and pure-color organic light-emitting diodes (OLEDs) are of considerable significance for developing practical wide-color-gamut displays. Further, we have demonstrated the feasibility of an efficient pure green phosphorescent OLED (PHOLED) by employing a narro...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 24; no. 3; p. 454
Main Authors Iwasaki, Yukiko, Fukagawa, Hirohiko, Shimizu, Takahisa
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.01.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Highly efficient, operationally stable, and pure-color organic light-emitting diodes (OLEDs) are of considerable significance for developing practical wide-color-gamut displays. Further, we have demonstrated the feasibility of an efficient pure green phosphorescent OLED (PHOLED) by employing a narrow-band platinum complex and a top-emitting structure. The utilization of the thermally activated delayed fluorescence (TADF) material as the phosphorescent host is expected to serve as a promising solution for obtaining operationally stable PHOLEDs with high color purity. However, the emission spectrum of the platinum complex in the TADF host exhibits a considerably broad emission spectrum. This study investigates the cause of the spectral change by evaluating the photoluminescence spectra of the platinum complex in various hosts exhibiting different molecular structures. The triazine unit in the host material was observed to result in exciplex formation between the lowest unoccupied molecular orbital (LUMO) of the host and the highest occupied molecular orbital (HOMO) of the platinum complex. Therefore, the TADF material that sterically hinders the triazine unit is considered to be suitable to prevent both exciplex formation and spectral broadening.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24030454