Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications

[Display omitted] •Systematic calculation of elastic properties in Ti-containing, biocompatible refractory high-entropy alloys.•Modeling of non-random texture effects on poly-crystalline moduli.•Directionally preferential Young’s moduli achievable in single crystals and textured poly-crystals.•Valen...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 215; p. 110430
Main Authors Schönecker, Stephan, Li, Xiaojie, Wei, Daixiu, Nozaki, Shogo, Kato, Hidemi, Vitos, Levente, Li, Xiaoqing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Systematic calculation of elastic properties in Ti-containing, biocompatible refractory high-entropy alloys.•Modeling of non-random texture effects on poly-crystalline moduli.•Directionally preferential Young’s moduli achievable in single crystals and textured poly-crystals.•Valence electron count has a dominant influence on elastic anisotropy. A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young’s modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic density-functional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young’s modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young’s modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young’s modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi-isotropic Young’s moduli, and Wickers hardnesses.
AbstractList A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young's modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic densityfunctional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young's modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young's modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young's modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi isotropic Young's moduli, and Wickers hardnesses. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young’s modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic density-functional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young’s modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young’s modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young’s modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi-isotropic Young’s moduli, and Wickers hardnesses.
A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young's modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic densityfunctional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young's modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young's modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young's modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi isotropic Young's moduli, and Wickers hardnesses.
[Display omitted] •Systematic calculation of elastic properties in Ti-containing, biocompatible refractory high-entropy alloys.•Modeling of non-random texture effects on poly-crystalline moduli.•Directionally preferential Young’s moduli achievable in single crystals and textured poly-crystals.•Valence electron count has a dominant influence on elastic anisotropy. A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young’s modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic density-functional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young’s modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young’s modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young’s modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi-isotropic Young’s moduli, and Wickers hardnesses.
ArticleNumber 110430
Author Nozaki, Shogo
Vitos, Levente
Li, Xiaoqing
Wei, Daixiu
Kato, Hidemi
Schönecker, Stephan
Li, Xiaojie
Author_xml – sequence: 1
  givenname: Stephan
  surname: Schönecker
  fullname: Schönecker, Stephan
  organization: Unit of Properties, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
– sequence: 2
  givenname: Xiaojie
  surname: Li
  fullname: Li, Xiaojie
  email: lixj26@tzc.edu.cn
  organization: Department of Physics, Taizhou University, Taizhou 318000, Zhejiang, China
– sequence: 3
  givenname: Daixiu
  surname: Wei
  fullname: Wei, Daixiu
  email: wei1987xiu@imr.tohoku.ac.jp
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
– sequence: 4
  givenname: Shogo
  surname: Nozaki
  fullname: Nozaki, Shogo
  organization: Department of Materials Science, Tohoku University, 6-6-02 Aramaki Aza Aoba, Sendai, Miyagi 980-8579, Sendai, Japan
– sequence: 5
  givenname: Hidemi
  surname: Kato
  fullname: Kato, Hidemi
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
– sequence: 6
  givenname: Levente
  surname: Vitos
  fullname: Vitos, Levente
  organization: Unit of Properties, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
– sequence: 7
  givenname: Xiaoqing
  surname: Li
  fullname: Li, Xiaoqing
  email: xiaoqli@kth.se
  organization: Unit of Properties, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310062$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-470365$$DView record from Swedish Publication Index
BookMark eNqFkctu1DAUhrMoEm3hDVj4AchgO74kLJCqcmmlSmyArXXiy4wHTxzZTqt5e9wJQqKLdnUs-_8_yee7aM6mONmmeUfwhmAiPuw3ByjG5g3FlG4IwazDZ805poK1hEr-urnIeY_ro-zYeRNvIE02Zz9tkQ2Qi9cIJp9jSXE-ohIR6J239xaF-NAeolnCklGyLoEuMR3Rzm93rZ3WOIQQjxm5mNDo48EaryEgmOdQD8XHKb9pXjkI2b79Oy-bn1-__Li-ae--f7u9vrprNedDaR0fiJbANCWGjyAdxz3uQYIciR6tAyGoEKMQhjluu35kpsddZ4ALYuroLpvblWsi7NWc_AHSUUXw6nQR01ZBqp8NVsnBSeJkLzmVzPV4GARIZnvZU9EbOVTW-5WVH-y8jP_RPvtfVyfasigmcSd4jbcvx3-XneoIxoLWPFvzOsWc62r_NQhWj07VXq1O1aNTtTqttY9PatqX05JLAh9eKn9ay7Y6uPc2qay9nXQ1lqwudUn-ecAfYhbGPg
CitedBy_id crossref_primary_10_1016_j_matdes_2022_110820
crossref_primary_10_3390_met13050951
crossref_primary_10_1007_s00161_024_01321_4
crossref_primary_10_1088_1402_4896_ad4f2a
crossref_primary_10_1007_s44174_025_00314_4
crossref_primary_10_1134_S0031918X24602269
crossref_primary_10_3390_ma16062311
crossref_primary_10_1002_adma_202305192
crossref_primary_10_1016_j_physb_2024_416108
crossref_primary_10_3389_fbioe_2022_952536
crossref_primary_10_3390_met12071164
crossref_primary_10_1039_D3NA00090G
crossref_primary_10_1016_j_jmst_2023_07_077
crossref_primary_10_1016_j_ijplas_2024_103884
crossref_primary_10_1021_acs_jpcc_3c02390
crossref_primary_10_1007_s11837_024_06942_3
crossref_primary_10_1016_j_jmrt_2024_02_064
crossref_primary_10_1088_1402_4896_acf07e
crossref_primary_10_3390_cryst14100838
crossref_primary_10_1016_j_ijplas_2024_104051
crossref_primary_10_1016_j_jmapro_2022_11_046
crossref_primary_10_1007_s12540_024_01709_6
crossref_primary_10_1016_j_jallcom_2024_174823
crossref_primary_10_1016_j_jmrt_2024_04_136
crossref_primary_10_1016_j_jallcom_2024_174408
crossref_primary_10_1016_j_bioadv_2025_214244
crossref_primary_10_1016_j_intermet_2024_108575
crossref_primary_10_1016_j_corsci_2022_110828
crossref_primary_10_1007_s40195_023_01644_2
crossref_primary_10_1002_adma_202310926
Cites_doi 10.1016/j.jallcom.2006.08.267
10.1103/PhysRev.130.1324
10.1016/j.matdes.2016.11.079
10.1002/adem.201801215
10.1103/RevModPhys.18.409
10.1103/PhysRevB.3.4100
10.1144/SP360.10
10.1103/PhysRevB.5.2382
10.1016/j.matdes.2019.107771
10.1080/10408436.2013.772503
10.1021/acsabm.9b01127
10.1016/j.matchar.2017.12.034
10.1103/PhysRevLett.68.2802
10.1103/PhysRevB.86.014105
10.1080/02670836.2016.1231746
10.1016/j.stam.2003.09.002
10.1103/PhysRevB.45.13244
10.1016/j.commatsci.2018.12.027
10.1016/j.scriptamat.2016.12.038
10.1016/j.pmatsci.2008.06.004
10.1107/S0021889808030112
10.1016/B978-0-408-10642-9.50010-6
10.1103/PhysRevB.37.790
10.1002/srin.199100451
10.1088/0022-3727/4/2/312
10.1016/S0142-9612(97)00146-4
10.1016/j.matdes.2021.109548
10.1016/0956-7151(93)90063-X
10.1097/00003086-199201000-00014
10.1103/PhysRevB.48.5844
10.3390/met9121252
10.1146/annurev-bioeng-062117-121139
10.1007/s10659-014-9506-1
10.12998/wjcc.v3.i1.52
10.1088/0034-4885/67/8/R02
10.1016/j.bone.2015.11.018
10.1103/PhysRevLett.87.156401
10.1142/9789814503778_0003
10.1016/j.actbio.2012.06.037
10.1088/1757-899X/400/2/022049
10.1016/j.jmbbm.2012.05.005
10.1016/j.actamat.2008.02.017
10.1098/rsta.1999.0385
10.1016/0021-9290(75)90075-5
10.1016/j.jallcom.2018.04.082
10.1016/j.intermet.2019.106572
10.1371/journal.pone.0094525
10.1088/0370-1298/65/5/307
10.1016/S0927-0256(99)00098-1
10.1080/21663831.2019.1584592
10.1016/j.jallcom.2015.07.209
10.1016/j.matdes.2017.11.060
10.1016/0001-6160(70)90033-7
10.1016/j.actamat.2005.09.014
10.1016/j.scriptamat.2016.10.028
10.1103/PhysRevLett.101.055504
10.1007/BF02586159
10.1016/j.intermet.2020.106845
10.1016/j.msec.2019.110322
10.1016/j.mtla.2018.07.008
10.4028/www.scientific.net/MSF.157-162.597
10.1016/0025-5416(77)90165-3
10.1016/j.scriptamat.2019.07.011
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ACNBI
DF2
DOA
DOI 10.1016/j.matdes.2022.110430
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
SWEPUB Uppsala universitet full text
SWEPUB Uppsala universitet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_79f71f7875274f80996a74e878268d79
oai_DiVA_org_uu_470365
oai_DiVA_org_kth_310062
10_1016_j_matdes_2022_110430
S026412752200051X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
SSH
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ACNBI
DF2
ID FETCH-LOGICAL-c559t-f591c7a4c21d5ba7f50808a7a7b1cbefa66266b66d4f5e38b4d8033da561d3da3
IEDL.DBID DOA
ISSN 0264-1275
1873-4197
IngestDate Wed Aug 27 01:27:40 EDT 2025
Thu Aug 21 06:58:05 EDT 2025
Thu Aug 21 06:36:28 EDT 2025
Thu Jul 24 02:13:49 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Sat Aug 16 17:01:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Young’s modulus
Elastic anisotropy
ODF
Density-functional theory
DFT
Crystallographic texture
RHEA
SLM
VEC
Refractory high-entropy alloy
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-f591c7a4c21d5ba7f50808a7a7b1cbefa66266b66d4f5e38b4d8033da561d3da3
OpenAccessLink https://doaj.org/article/79f71f7875274f80996a74e878268d79
ParticipantIDs doaj_primary_oai_doaj_org_article_79f71f7875274f80996a74e878268d79
swepub_primary_oai_DiVA_org_uu_470365
swepub_primary_oai_DiVA_org_kth_310062
crossref_primary_10_1016_j_matdes_2022_110430
crossref_citationtrail_10_1016_j_matdes_2022_110430
elsevier_sciencedirect_doi_10_1016_j_matdes_2022_110430
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References S.G. Steinemann, Metallurgy and Technology of Practical Titanium alloys, The Minerals, Metals and Materials Society, 1994, Ch. Effect of alloying elements on corrosion resistance of titanium alloys for medical implants, pp. 313–321.
Ranganathan, Starzewski (b0140) 2008; 101
H.-J. Bunge, Texture Analysis in Materials Science, Butterworth & Co, 1982.
Hielscher, Schaeben (b0175) 2008
Ishimoto, Hagihara, Hisamoto, Sun, Nakano (b0230) 2017; 132
Kestens, Pirgazi (b0255) 2016; 32
Vitos, Skriver, Johansson, Kollár (b0190) 2000; 18
Perdew, Wang (b0195) 1992; 45
Reilly, Burstein (b0340) 1975; 8
Kocks, Tomé, Wenk (b0115) 2000
Todai, Nagase, Hori, Matsugaki, Sekita, Nakano (b0045) 2017; 129
Hori, Nagase, Todai, Matsugaki, Nakano (b0060) 2019; 172
Senkov, Semiatin (b0260) 2015; 649
Raabe, Lücke (b0245) 1994; 157–162
Ledbetter (b0285) 1977; 27
Bolef, Smith, Miller (b0305) 1971; 3
Matsumoto, Watanabe, Hanada (b0220) 2007; 439
Morgan, Unnikrisnan, Hussein (b0040) 2018; 20
Nye (b0125) 1960
Moruzzi, Janak, Schwarz (b0165) 1988; 37
Yang, Liu, Pang, Liaw, Zhang (b0075) 2020; 124
Hölscher, Raabe, Luecke (b0320) 1991; 62
Knowles, Howie (b0135) 2015; 120
Yang, Sanno, Ganse, Koy, Brüggemann, Müller, Rittweger (b0335) 2014; 9
Popescu, Ghiban, Popescu, Rosu, Trusca, Carcea, Soare, Dumitrescu, Constantin, Olaru, Carlan (b0055) 2018; 400
Hill (b0160) 1952; 65
B. Hutchinson, N. Hansen, P. van Houtte, D.J. Jensen, Deformation microstructures and textures in steels [and discussion], Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357 (1756) (1999) 1471–1485. URL http://www.jstor.org/stable/55196
D. Mainprice, R. Hielscher, H. Schaeben, Calculating anisotropic physical properties from texture data using the MTEX open source package, in: D.J. Prior, E.H. Rutter, D.J. Tatham (Eds.), Deformation Mechanism, Rheology & Tectonics: Microstructures, Mechanics & Anisotropy, Vol. 360, Geological Society, London, Special Publications, 2011, pp. 175–192. doi:10.1144/SP360.10.
Mirzaali, Schwiedrzik, Thaiwichai, Best, Michler, Zysset, Wolfram (b0035) 2016; 93
Zhang, Chen (b0315) 2019; 21
Fisher, Dever (b0325) 1970; 18
Nagase, Hori, Todai, Sun, Nakano (b0235) 2019; 173
Featherston, Neighbours (b0300) 1963; 130
Diehl, Niehuesbernd, Bruder (b0310) 2019; 9
Iijima, Nagase, Matsugaki, Wang, Ameyama, Nakano (b0090) 2021; 202
Wenk, Houtte (b0120) 2004; 67
Kim, Sasaki, Okutsu, Kim, Inamura, Hosoda, Miyazaki (b0215) 2006; 54
O.K. Andersen, O. Jepsen, G. Krier, Lectures on Methods of Electronic Structure Calculations, World Scientific, Singapore, 1994, Ch. Exact Muffin-Tin Theory, pp. 63–124.
Vitos, Abrikosov, Johansson (b0205) 2001; 87
Eleti, Raju, Veerasham, Reddy, Bhattacharjee (b0265) 2018; 136
Sun, Hagihara, Nakano (b0240) 2018; 140
Nagase, Iijima, Matsugaki, Ameyama, Nakano (b0085) 2020; 107
Tane, Akita, Nakano, Hagihara, Umakoshi, Niinomi, Nakajima (b0105) 2008; 56
Söderlind, Eriksson, Wills, Boring (b0275) 1993; 48
Huiskes, Weinans, van Rietbergen (b0025) 1992; 274
Turley, Sines (b0155) 1971; 4
Hearmon (b0130) 1946; 18
Al-Zoubi, Schönecker, Li, Li, Johansson, Vitos (b0280) 2019; 159
Nagase, Todai, Hori, Nakano (b0050) 2018; 753
Niinomi (b0030) 2003; 4
Matsumoto, Watanabe, Masahashi, Hanada (b0330) 2006; 37
Tian, Wang, Harris, Irving, Zhao, Vitos (b0295) 2017; 114
Vitos (b0210) 2007
Long, Rack (b0005) 2006; 19
S.G. Steinemann, Evaluation of Biomaterials, Wiley, 1980, Ch. Corrosion of surgical implants - in vivo and in vitro tests, pp. 1–34.
Wills, Eriksson, Söderlind, Boring (b0270) 1992; 68
Yuan, Wu, Yang, Liang, Lei, Huang, Wang, Liu, An, Wu, Lu (b0070) 2019; 7
Niinomi, Nakai, Hieda (b0020) 2012; 8
Li, Zhang, Lu, Li, Zhao, Johansson, Vitos (b0170) 2012; 86
Perumal, Grewal, Pole, Reddy, Mukherjee, Singh, Manivasagam, Arora (b0080) 2020; 3
Van Houtte, De Buyser (b0150) 1993; 41
Gyorffy (b0200) 1972; 5
Saini, Singh, Arora, Arora, Jain (b0015) 2009; 3
Lee, Todai, Tane, Hagihara, Nakajima, Nakano (b0110) 2012; 14
Geetha, Singh, Asokamani, Gogia (b0010) 2009; 54
Lejaeghere, Speybroeck, Oost, Cottenier (b0290) 2014; 39
Shinohara, Matsumoto, Tahara, Hosoda, Inamura (b0225) 2018; 1
Motallebzadeh, Peighambardoust, Sheikh, Murakami, Guo, Canadinc (b0065) 2019; 113
Featherston (10.1016/j.matdes.2022.110430_b0300) 1963; 130
Hill (10.1016/j.matdes.2022.110430_b0160) 1952; 65
Ledbetter (10.1016/j.matdes.2022.110430_b0285) 1977; 27
Kocks (10.1016/j.matdes.2022.110430_b0115) 2000
Perumal (10.1016/j.matdes.2022.110430_b0080) 2020; 3
Tane (10.1016/j.matdes.2022.110430_b0105) 2008; 56
Hölscher (10.1016/j.matdes.2022.110430_b0320) 1991; 62
Hori (10.1016/j.matdes.2022.110430_b0060) 2019; 172
Nagase (10.1016/j.matdes.2022.110430_b0050) 2018; 753
Van Houtte (10.1016/j.matdes.2022.110430_b0150) 1993; 41
Geetha (10.1016/j.matdes.2022.110430_b0010) 2009; 54
Senkov (10.1016/j.matdes.2022.110430_b0260) 2015; 649
Al-Zoubi (10.1016/j.matdes.2022.110430_b0280) 2019; 159
Niinomi (10.1016/j.matdes.2022.110430_b0020) 2012; 8
Yang (10.1016/j.matdes.2022.110430_b0075) 2020; 124
Saini (10.1016/j.matdes.2022.110430_b0015) 2009; 3
Lee (10.1016/j.matdes.2022.110430_b0110) 2012; 14
Mirzaali (10.1016/j.matdes.2022.110430_b0035) 2016; 93
Tian (10.1016/j.matdes.2022.110430_b0295) 2017; 114
Wills (10.1016/j.matdes.2022.110430_b0270) 1992; 68
Turley (10.1016/j.matdes.2022.110430_b0155) 1971; 4
Sun (10.1016/j.matdes.2022.110430_b0240) 2018; 140
Moruzzi (10.1016/j.matdes.2022.110430_b0165) 1988; 37
Gyorffy (10.1016/j.matdes.2022.110430_b0200) 1972; 5
Hearmon (10.1016/j.matdes.2022.110430_b0130) 1946; 18
Kim (10.1016/j.matdes.2022.110430_b0215) 2006; 54
Bolef (10.1016/j.matdes.2022.110430_b0305) 1971; 3
Reilly (10.1016/j.matdes.2022.110430_b0340) 1975; 8
Knowles (10.1016/j.matdes.2022.110430_b0135) 2015; 120
Long (10.1016/j.matdes.2022.110430_b0005) 2006; 19
Eleti (10.1016/j.matdes.2022.110430_b0265) 2018; 136
Vitos (10.1016/j.matdes.2022.110430_b0205) 2001; 87
Wenk (10.1016/j.matdes.2022.110430_b0120) 2004; 67
Fisher (10.1016/j.matdes.2022.110430_b0325) 1970; 18
Vitos (10.1016/j.matdes.2022.110430_b0210) 2007
Ishimoto (10.1016/j.matdes.2022.110430_b0230) 2017; 132
Popescu (10.1016/j.matdes.2022.110430_b0055) 2018; 400
Morgan (10.1016/j.matdes.2022.110430_b0040) 2018; 20
Matsumoto (10.1016/j.matdes.2022.110430_b0330) 2006; 37
Niinomi (10.1016/j.matdes.2022.110430_b0030) 2003; 4
Li (10.1016/j.matdes.2022.110430_b0170) 2012; 86
Raabe (10.1016/j.matdes.2022.110430_b0245) 1994; 157–162
Diehl (10.1016/j.matdes.2022.110430_b0310) 2019; 9
Vitos (10.1016/j.matdes.2022.110430_b0190) 2000; 18
Lejaeghere (10.1016/j.matdes.2022.110430_b0290) 2014; 39
10.1016/j.matdes.2022.110430_b0250
10.1016/j.matdes.2022.110430_b0095
Hielscher (10.1016/j.matdes.2022.110430_b0175) 2008
Motallebzadeh (10.1016/j.matdes.2022.110430_b0065) 2019; 113
Ranganathan (10.1016/j.matdes.2022.110430_b0140) 2008; 101
Nye (10.1016/j.matdes.2022.110430_b0125) 1960
Söderlind (10.1016/j.matdes.2022.110430_b0275) 1993; 48
Todai (10.1016/j.matdes.2022.110430_b0045) 2017; 129
Shinohara (10.1016/j.matdes.2022.110430_b0225) 2018; 1
Zhang (10.1016/j.matdes.2022.110430_b0315) 2019; 21
Iijima (10.1016/j.matdes.2022.110430_b0090) 2021; 202
Kestens (10.1016/j.matdes.2022.110430_b0255) 2016; 32
Yuan (10.1016/j.matdes.2022.110430_b0070) 2019; 7
Nagase (10.1016/j.matdes.2022.110430_b0085) 2020; 107
10.1016/j.matdes.2022.110430_b0185
Matsumoto (10.1016/j.matdes.2022.110430_b0220) 2007; 439
Huiskes (10.1016/j.matdes.2022.110430_b0025) 1992; 274
Yang (10.1016/j.matdes.2022.110430_b0335) 2014; 9
10.1016/j.matdes.2022.110430_b0180
Nagase (10.1016/j.matdes.2022.110430_b0235) 2019; 173
Perdew (10.1016/j.matdes.2022.110430_b0195) 1992; 45
10.1016/j.matdes.2022.110430_b0145
10.1016/j.matdes.2022.110430_b0100
References_xml – volume: 124
  start-page: 106845
  year: 2020
  ident: b0075
  article-title: Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy
  publication-title: Intermetallics
– volume: 9
  start-page: 1252
  year: 2019
  ident: b0310
  article-title: Quantifying the contribution of crystallographic texture and grain morphology on the elastic and plastic anisotropy of bcc steel
  publication-title: Metals
– volume: 173
  start-page: 107771
  year: 2019
  ident: b0235
  article-title: Additive manufacturing of dense components in beta-titanium alloys with crystallographic texture from a mixture of pure metallic element powders
  publication-title: Mater. Des.
– volume: 649
  start-page: 1110
  year: 2015
  end-page: 1123
  ident: b0260
  article-title: Microstructure and properties of a refractory high-entropy alloy after cold working
  publication-title: J. Alloys Compd.
– volume: 114
  start-page: 243
  year: 2017
  end-page: 252
  ident: b0295
  article-title: Alloying effect on the elastic properties of refractory high-entropy alloys
  publication-title: Materials & Design
– volume: 4
  start-page: 445
  year: 2003
  end-page: 454
  ident: b0030
  article-title: Recent research and development in titanium alloys for biomedical applications and healthcare goods
  publication-title: Sci. Tech. Adv. Mater.
– volume: 18
  start-page: 24
  year: 2000
  end-page: 28
  ident: b0190
  article-title: Application of the exact muffin-tin orbitals theory: the spherical cell approximation
  publication-title: Comput. Mater. Sci.
– volume: 8
  start-page: 3888
  year: 2012
  end-page: 3903
  ident: b0020
  article-title: Development of new metallic alloys for biomedical applications
  publication-title: Acta Biomater.
– volume: 101
  start-page: 055504
  year: 2008
  ident: b0140
  article-title: Universal elastic anisotropy index
  publication-title: Phys. Rev. Lett.
– reference: O.K. Andersen, O. Jepsen, G. Krier, Lectures on Methods of Electronic Structure Calculations, World Scientific, Singapore, 1994, Ch. Exact Muffin-Tin Theory, pp. 63–124.
– volume: 5
  start-page: 2382
  year: 1972
  end-page: 2384
  ident: b0200
  article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys
  publication-title: Phys. Rev. B
– volume: 136
  start-page: 286
  year: 2018
  end-page: 292
  ident: b0265
  article-title: Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy
  publication-title: Mater. Charact.
– year: 2000
  ident: b0115
  article-title: Texture and Anisotropy, Preferred Orientations in Polycrystals and their Effect on Materials Properties
– volume: 65
  start-page: 349
  year: 1952
  end-page: 354
  ident: b0160
  article-title: The elastic behaviour of a crystalline aggregate
  publication-title: Proc. phy. Soc. A
– volume: 172
  start-page: 83
  year: 2019
  end-page: 87
  ident: b0060
  article-title: Development of nonequiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials
  publication-title: Scr. Mater.
– volume: 439
  start-page: 146
  year: 2007
  end-page: 155
  ident: b0220
  article-title: Microstructures and mechanical properties of metastable
  publication-title: J. Alloys Compd.
– volume: 140
  start-page: 307
  year: 2018
  end-page: 316
  ident: b0240
  article-title: Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting
  publication-title: Mater. Des.
– volume: 9
  start-page: e94525
  year: 2014
  ident: b0335
  article-title: Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running
  publication-title: PLoS ONE
– reference: S.G. Steinemann, Metallurgy and Technology of Practical Titanium alloys, The Minerals, Metals and Materials Society, 1994, Ch. Effect of alloying elements on corrosion resistance of titanium alloys for medical implants, pp. 313–321.
– volume: 7
  start-page: 225
  year: 2019
  end-page: 231
  ident: b0070
  article-title: Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys
  publication-title: Mater. Res. Lett.
– volume: 3
  start-page: 1233
  year: 2020
  end-page: 1244
  ident: b0080
  article-title: Enhanced biocorrosion resistance and cellular response of a dualphase high entropy alloy through reduced elemental heterogeneity
  publication-title: ACS Appl. Bio Mater.
– volume: 86
  start-page: 014105
  year: 2012
  ident: b0170
  article-title: Elastic properties of vanadium-based alloys from first-principles theory
  publication-title: Phys. Rev. B
– volume: 129
  start-page: 65
  year: 2017
  end-page: 68
  ident: b0045
  article-title: Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials
  publication-title: Scr. Mater.
– volume: 54
  start-page: 423
  year: 2006
  end-page: 433
  ident: b0215
  article-title: Texture and shape memory behavior of Ti-22Nb-6Ta alloy
  publication-title: Acta Mater.
– volume: 8
  start-page: 393
  year: 1975
  end-page: 405
  ident: b0340
  article-title: The elastic and ultimate properties of compact bone tissue
  publication-title: J. Biomech.
– volume: 39
  start-page: 1
  year: 2014
  end-page: 24
  ident: b0290
  article-title: Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 67
  start-page: 1367
  year: 2004
  end-page: 1428
  ident: b0120
  article-title: Texture and anisotropy
  publication-title: Rep. Prog. Phys.
– volume: 87
  start-page: 156401
  year: 2001
  ident: b0205
  article-title: Anisotropic lattice distortions in random alloys from first-principles theory
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 5844
  year: 1993
  ident: b0275
  article-title: Theory of elastic constants of cubic transition metals and alloys
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 1801215
  year: 2019
  ident: b0315
  article-title: A review on biomedical titanium alloys: Recent progress and prospect
  publication-title: Adv. Eng. Mater.
– volume: 19
  start-page: 1621
  year: 2006
  end-page: 1639
  ident: b0005
  article-title: Review: Titanium alloys in total joint replacement: a materials science
  publication-title: Biomaterials
– volume: 14
  start-page: 48
  year: 2012
  end-page: 54
  ident: b0110
  article-title: Biocompatible low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 753
  start-page: 412
  year: 2018
  end-page: 421
  ident: b0050
  article-title: Microstructure of equiatomic and nonequiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials
  publication-title: J. Alloy. Comp.
– volume: 132
  start-page: 34
  year: 2017
  end-page: 38
  ident: b0230
  article-title: Crystallographic texture control of beta-type Ti-15Mo-5Zr-3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus
  publication-title: Scripta Mater.
– volume: 130
  start-page: 1324
  year: 1963
  end-page: 1333
  ident: b0300
  article-title: Elastic constants of tantalum, tungsten, and molybdenum
  publication-title: Phys. Rev.
– volume: 157–162
  start-page: 597
  year: 1994
  end-page: 610
  ident: b0245
  article-title: Rolling and annealing textures of bcc metals
  publication-title: Mater. Sci. Forum
– volume: 3
  start-page: 4100
  year: 1971
  end-page: 4108
  ident: b0305
  article-title: Elastic properties of vanadium. I. Temperature dependence of the elastic constants and the thermal expansion
  publication-title: Phys. Rev. B
– volume: 107
  start-page: 110322
  year: 2020
  ident: b0085
  article-title: Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials
  publication-title: Mater. Sci. Eng. C
– volume: 4
  start-page: 264
  year: 1971
  end-page: 272
  ident: b0155
  article-title: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials
  publication-title: J. Phys. D: Appl. Phys.
– volume: 37
  start-page: 790
  year: 1988
  ident: b0165
  article-title: Local density theory of metallic cohesion
  publication-title: Phys. Rev. B
– volume: 41
  start-page: 323
  year: 1993
  end-page: 336
  ident: b0150
  article-title: The influence of crystallographic texture on diffraction measurements of residual stress
  publication-title: Acta Metall. Mater.
– volume: 62
  start-page: 567
  year: 1991
  end-page: 575
  ident: b0320
  article-title: Rolling and recrystallization textures of bcc steels
  publication-title: Steel Res.
– volume: 45
  start-page: 13244
  year: 1992
  ident: b0195
  article-title: Accurate and simple analytic representation of the electron-gas correlation energy
  publication-title: Phys. Rev. B
– volume: 37
  start-page: 3239
  year: 2006
  end-page: 3249
  ident: b0330
  article-title: Composition dependence of Young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys
  publication-title: Metall. Mater. Trans. A
– volume: 202
  start-page: 109548
  year: 2021
  ident: b0090
  article-title: Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys for metallic biomaterials
  publication-title: Mater. Des.
– volume: 32
  start-page: 1303
  year: 2016
  end-page: 1315
  ident: b0255
  article-title: Texture formation in metal alloys with cubic crystal structures
  publication-title: Mater. Sci. Technol.
– volume: 120
  start-page: 87
  year: 2015
  end-page: 108
  ident: b0135
  article-title: The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials
  publication-title: J. Elast.
– reference: H.-J. Bunge, Texture Analysis in Materials Science, Butterworth & Co, 1982.
– volume: 113
  start-page: 106572
  year: 2019
  ident: b0065
  article-title: Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications
  publication-title: Intermetallics
– volume: 56
  start-page: 2856
  year: 2008
  end-page: 2863
  ident: b0105
  article-title: Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals
  publication-title: Acta Mater.
– reference: D. Mainprice, R. Hielscher, H. Schaeben, Calculating anisotropic physical properties from texture data using the MTEX open source package, in: D.J. Prior, E.H. Rutter, D.J. Tatham (Eds.), Deformation Mechanism, Rheology & Tectonics: Microstructures, Mechanics & Anisotropy, Vol. 360, Geological Society, London, Special Publications, 2011, pp. 175–192. doi:10.1144/SP360.10.
– volume: 93
  start-page: 196
  year: 2016
  end-page: 211
  ident: b0035
  article-title: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly
  publication-title: Bone
– volume: 1
  start-page: 52
  year: 2018
  end-page: 61
  ident: b0225
  article-title: Development of
  publication-title: Materialia
– volume: 274
  start-page: 124
  year: 1992
  end-page: 134
  ident: b0025
  article-title: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials
  publication-title: Clin. Orthop. Relat. Res.
– volume: 400
  start-page: 022049
  year: 2018
  ident: b0055
  article-title: New TiZrNbTaFe high entropy alloy used for medical applications
  publication-title: IOP Conf. Series
– year: 1960
  ident: b0125
  article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices
– volume: 20
  start-page: 119
  year: 2018
  end-page: 143
  ident: b0040
  article-title: Bone mechanical properties in healthy and diseased states
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 27
  start-page: 133
  year: 1977
  end-page: 136
  ident: b0285
  article-title: Ratio of the shear and Young’s moduli for polycrystalline metallic elements
  publication-title: Mater. Sci. Engin.
– reference: B. Hutchinson, N. Hansen, P. van Houtte, D.J. Jensen, Deformation microstructures and textures in steels [and discussion], Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357 (1756) (1999) 1471–1485. URL http://www.jstor.org/stable/55196
– year: 2008
  ident: b0175
  article-title: A novel pole figure inversion method: specification of the MTEX algorithm
  publication-title: J. Appl. Cryst.
– year: 2007
  ident: b0210
  article-title: Computational Quantum Mechanics for Materials Engineers
– reference: S.G. Steinemann, Evaluation of Biomaterials, Wiley, 1980, Ch. Corrosion of surgical implants - in vivo and in vitro tests, pp. 1–34.
– volume: 68
  start-page: 2802
  year: 1992
  ident: b0270
  article-title: Trends in the elastic constants of cubic transition metals
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: 397
  year: 2009
  end-page: 425
  ident: b0010
  article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants-a review
  publication-title: Prog. Mater. Sci.
– volume: 3
  start-page: 52
  year: 2009
  end-page: 57
  ident: b0015
  article-title: Implant biomaterials: a comprehensive review
  publication-title: World J. Clin. Cases.
– volume: 18
  start-page: 265
  year: 1970
  end-page: 269
  ident: b0325
  article-title: Relation of the
  publication-title: Acta Metall.
– volume: 18
  start-page: 409
  year: 1946
  end-page: 440
  ident: b0130
  article-title: The elastic constants of anisotropic materials
  publication-title: Rev. Mod. Phys.
– volume: 159
  start-page: 273
  year: 2019
  end-page: 280
  ident: b0280
  article-title: Elastic properties of 4d transition metal alloys: Values and trends
  publication-title: Comp. Mater. Sci.
– volume: 439
  start-page: 146
  issue: 1
  year: 2007
  ident: 10.1016/j.matdes.2022.110430_b0220
  article-title: Microstructures and mechanical properties of metastable βTiNbSn alloys cold rolled and heat treated
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2006.08.267
– volume: 130
  start-page: 1324
  year: 1963
  ident: 10.1016/j.matdes.2022.110430_b0300
  article-title: Elastic constants of tantalum, tungsten, and molybdenum
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.130.1324
– volume: 114
  start-page: 243
  year: 2017
  ident: 10.1016/j.matdes.2022.110430_b0295
  article-title: Alloying effect on the elastic properties of refractory high-entropy alloys
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2016.11.079
– volume: 21
  start-page: 1801215
  year: 2019
  ident: 10.1016/j.matdes.2022.110430_b0315
  article-title: A review on biomedical titanium alloys: Recent progress and prospect
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201801215
– volume: 18
  start-page: 409
  year: 1946
  ident: 10.1016/j.matdes.2022.110430_b0130
  article-title: The elastic constants of anisotropic materials
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.18.409
– volume: 3
  start-page: 4100
  year: 1971
  ident: 10.1016/j.matdes.2022.110430_b0305
  article-title: Elastic properties of vanadium. I. Temperature dependence of the elastic constants and the thermal expansion
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.3.4100
– ident: 10.1016/j.matdes.2022.110430_b0180
  doi: 10.1144/SP360.10
– ident: 10.1016/j.matdes.2022.110430_b0095
– volume: 5
  start-page: 2382
  year: 1972
  ident: 10.1016/j.matdes.2022.110430_b0200
  article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.5.2382
– volume: 173
  start-page: 107771
  year: 2019
  ident: 10.1016/j.matdes.2022.110430_b0235
  article-title: Additive manufacturing of dense components in beta-titanium alloys with crystallographic texture from a mixture of pure metallic element powders
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107771
– volume: 39
  start-page: 1
  year: 2014
  ident: 10.1016/j.matdes.2022.110430_b0290
  article-title: Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2013.772503
– volume: 3
  start-page: 1233
  year: 2020
  ident: 10.1016/j.matdes.2022.110430_b0080
  article-title: Enhanced biocorrosion resistance and cellular response of a dualphase high entropy alloy through reduced elemental heterogeneity
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.9b01127
– volume: 136
  start-page: 286
  year: 2018
  ident: 10.1016/j.matdes.2022.110430_b0265
  article-title: Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2017.12.034
– volume: 68
  start-page: 2802
  year: 1992
  ident: 10.1016/j.matdes.2022.110430_b0270
  article-title: Trends in the elastic constants of cubic transition metals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.2802
– volume: 86
  start-page: 014105
  year: 2012
  ident: 10.1016/j.matdes.2022.110430_b0170
  article-title: Elastic properties of vanadium-based alloys from first-principles theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.014105
– volume: 32
  start-page: 1303
  issue: 13
  year: 2016
  ident: 10.1016/j.matdes.2022.110430_b0255
  article-title: Texture formation in metal alloys with cubic crystal structures
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2016.1231746
– volume: 4
  start-page: 445
  year: 2003
  ident: 10.1016/j.matdes.2022.110430_b0030
  article-title: Recent research and development in titanium alloys for biomedical applications and healthcare goods
  publication-title: Sci. Tech. Adv. Mater.
  doi: 10.1016/j.stam.2003.09.002
– ident: 10.1016/j.matdes.2022.110430_b0100
– volume: 45
  start-page: 13244
  year: 1992
  ident: 10.1016/j.matdes.2022.110430_b0195
  article-title: Accurate and simple analytic representation of the electron-gas correlation energy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 159
  start-page: 273
  year: 2019
  ident: 10.1016/j.matdes.2022.110430_b0280
  article-title: Elastic properties of 4d transition metal alloys: Values and trends
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.12.027
– volume: 132
  start-page: 34
  year: 2017
  ident: 10.1016/j.matdes.2022.110430_b0230
  article-title: Crystallographic texture control of beta-type Ti-15Mo-5Zr-3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2016.12.038
– volume: 54
  start-page: 397
  year: 2009
  ident: 10.1016/j.matdes.2022.110430_b0010
  article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants-a review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2008.06.004
– year: 2008
  ident: 10.1016/j.matdes.2022.110430_b0175
  article-title: A novel pole figure inversion method: specification of the MTEX algorithm
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889808030112
– ident: 10.1016/j.matdes.2022.110430_b0145
  doi: 10.1016/B978-0-408-10642-9.50010-6
– volume: 37
  start-page: 790
  year: 1988
  ident: 10.1016/j.matdes.2022.110430_b0165
  article-title: Local density theory of metallic cohesion
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.790
– volume: 62
  start-page: 567
  year: 1991
  ident: 10.1016/j.matdes.2022.110430_b0320
  article-title: Rolling and recrystallization textures of bcc steels
  publication-title: Steel Res.
  doi: 10.1002/srin.199100451
– volume: 4
  start-page: 264
  year: 1971
  ident: 10.1016/j.matdes.2022.110430_b0155
  article-title: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/4/2/312
– volume: 19
  start-page: 1621
  year: 2006
  ident: 10.1016/j.matdes.2022.110430_b0005
  article-title: Review: Titanium alloys in total joint replacement: a materials science
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(97)00146-4
– volume: 202
  start-page: 109548
  year: 2021
  ident: 10.1016/j.matdes.2022.110430_b0090
  article-title: Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys for metallic biomaterials
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109548
– volume: 41
  start-page: 323
  issue: 2
  year: 1993
  ident: 10.1016/j.matdes.2022.110430_b0150
  article-title: The influence of crystallographic texture on diffraction measurements of residual stress
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(93)90063-X
– volume: 274
  start-page: 124
  year: 1992
  ident: 10.1016/j.matdes.2022.110430_b0025
  article-title: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-199201000-00014
– volume: 48
  start-page: 5844
  year: 1993
  ident: 10.1016/j.matdes.2022.110430_b0275
  article-title: Theory of elastic constants of cubic transition metals and alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.5844
– volume: 9
  start-page: 1252
  year: 2019
  ident: 10.1016/j.matdes.2022.110430_b0310
  article-title: Quantifying the contribution of crystallographic texture and grain morphology on the elastic and plastic anisotropy of bcc steel
  publication-title: Metals
  doi: 10.3390/met9121252
– volume: 20
  start-page: 119
  year: 2018
  ident: 10.1016/j.matdes.2022.110430_b0040
  article-title: Bone mechanical properties in healthy and diseased states
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-062117-121139
– volume: 120
  start-page: 87
  year: 2015
  ident: 10.1016/j.matdes.2022.110430_b0135
  article-title: The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials
  publication-title: J. Elast.
  doi: 10.1007/s10659-014-9506-1
– volume: 3
  start-page: 52
  year: 2009
  ident: 10.1016/j.matdes.2022.110430_b0015
  article-title: Implant biomaterials: a comprehensive review
  publication-title: World J. Clin. Cases.
  doi: 10.12998/wjcc.v3.i1.52
– volume: 67
  start-page: 1367
  year: 2004
  ident: 10.1016/j.matdes.2022.110430_b0120
  article-title: Texture and anisotropy
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/67/8/R02
– volume: 93
  start-page: 196
  year: 2016
  ident: 10.1016/j.matdes.2022.110430_b0035
  article-title: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly
  publication-title: Bone
  doi: 10.1016/j.bone.2015.11.018
– volume: 87
  start-page: 156401
  year: 2001
  ident: 10.1016/j.matdes.2022.110430_b0205
  article-title: Anisotropic lattice distortions in random alloys from first-principles theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.156401
– ident: 10.1016/j.matdes.2022.110430_b0185
  doi: 10.1142/9789814503778_0003
– volume: 8
  start-page: 3888
  year: 2012
  ident: 10.1016/j.matdes.2022.110430_b0020
  article-title: Development of new metallic alloys for biomedical applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.06.037
– volume: 400
  start-page: 022049
  year: 2018
  ident: 10.1016/j.matdes.2022.110430_b0055
  article-title: New TiZrNbTaFe high entropy alloy used for medical applications
  publication-title: IOP Conf. Series
  doi: 10.1088/1757-899X/400/2/022049
– volume: 14
  start-page: 48
  year: 2012
  ident: 10.1016/j.matdes.2022.110430_b0110
  article-title: Biocompatible low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2012.05.005
– volume: 56
  start-page: 2856
  year: 2008
  ident: 10.1016/j.matdes.2022.110430_b0105
  article-title: Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2008.02.017
– ident: 10.1016/j.matdes.2022.110430_b0250
  doi: 10.1098/rsta.1999.0385
– volume: 8
  start-page: 393
  year: 1975
  ident: 10.1016/j.matdes.2022.110430_b0340
  article-title: The elastic and ultimate properties of compact bone tissue
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(75)90075-5
– volume: 753
  start-page: 412
  year: 2018
  ident: 10.1016/j.matdes.2022.110430_b0050
  article-title: Microstructure of equiatomic and nonequiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.04.082
– year: 2007
  ident: 10.1016/j.matdes.2022.110430_b0210
– volume: 113
  start-page: 106572
  year: 2019
  ident: 10.1016/j.matdes.2022.110430_b0065
  article-title: Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2019.106572
– volume: 9
  start-page: e94525
  year: 2014
  ident: 10.1016/j.matdes.2022.110430_b0335
  article-title: Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0094525
– year: 2000
  ident: 10.1016/j.matdes.2022.110430_b0115
– volume: 65
  start-page: 349
  year: 1952
  ident: 10.1016/j.matdes.2022.110430_b0160
  article-title: The elastic behaviour of a crystalline aggregate
  publication-title: Proc. phy. Soc. A
  doi: 10.1088/0370-1298/65/5/307
– volume: 18
  start-page: 24
  year: 2000
  ident: 10.1016/j.matdes.2022.110430_b0190
  article-title: Application of the exact muffin-tin orbitals theory: the spherical cell approximation
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(99)00098-1
– volume: 7
  start-page: 225
  year: 2019
  ident: 10.1016/j.matdes.2022.110430_b0070
  article-title: Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2019.1584592
– volume: 649
  start-page: 1110
  year: 2015
  ident: 10.1016/j.matdes.2022.110430_b0260
  article-title: Microstructure and properties of a refractory high-entropy alloy after cold working
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.07.209
– volume: 140
  start-page: 307
  year: 2018
  ident: 10.1016/j.matdes.2022.110430_b0240
  article-title: Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.060
– year: 1960
  ident: 10.1016/j.matdes.2022.110430_b0125
– volume: 18
  start-page: 265
  year: 1970
  ident: 10.1016/j.matdes.2022.110430_b0325
  article-title: Relation of the cprime elastic modulus to stability of b.c.c. transition metals
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(70)90033-7
– volume: 54
  start-page: 423
  issue: 2
  year: 2006
  ident: 10.1016/j.matdes.2022.110430_b0215
  article-title: Texture and shape memory behavior of Ti-22Nb-6Ta alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.09.014
– volume: 129
  start-page: 65
  year: 2017
  ident: 10.1016/j.matdes.2022.110430_b0045
  article-title: Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.10.028
– volume: 101
  start-page: 055504
  year: 2008
  ident: 10.1016/j.matdes.2022.110430_b0140
  article-title: Universal elastic anisotropy index
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.055504
– volume: 37
  start-page: 3239
  year: 2006
  ident: 10.1016/j.matdes.2022.110430_b0330
  article-title: Composition dependence of Young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/BF02586159
– volume: 124
  start-page: 106845
  year: 2020
  ident: 10.1016/j.matdes.2022.110430_b0075
  article-title: Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2020.106845
– volume: 107
  start-page: 110322
  year: 2020
  ident: 10.1016/j.matdes.2022.110430_b0085
  article-title: Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110322
– volume: 1
  start-page: 52
  year: 2018
  ident: 10.1016/j.matdes.2022.110430_b0225
  article-title: Development of 〈001〉 -fiber texture in cold-groove-rolled Ti-Mo-Al-Zr biomedical alloy
  publication-title: Materialia
  doi: 10.1016/j.mtla.2018.07.008
– volume: 157–162
  start-page: 597
  year: 1994
  ident: 10.1016/j.matdes.2022.110430_b0245
  article-title: Rolling and annealing textures of bcc metals
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.157-162.597
– volume: 27
  start-page: 133
  year: 1977
  ident: 10.1016/j.matdes.2022.110430_b0285
  article-title: Ratio of the shear and Young’s moduli for polycrystalline metallic elements
  publication-title: Mater. Sci. Engin.
  doi: 10.1016/0025-5416(77)90165-3
– volume: 172
  start-page: 83
  year: 2019
  ident: 10.1016/j.matdes.2022.110430_b0060
  article-title: Development of nonequiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2019.07.011
SSID ssj0022734
Score 2.5002291
Snippet [Display omitted] •Systematic calculation of elastic properties in Ti-containing, biocompatible refractory high-entropy alloys.•Modeling of non-random texture...
A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young's modulus approximating that of...
A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young’s modulus approximating that of...
SourceID doaj
swepub
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 110430
SubjectTerms Crystallographic texture
Density-functional theory
Elastic anisotropy
Refractory high-entropy alloy
Young's modulus
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW3QscEE9RXvIBuFltEr9yLAurAmIvsKg3y0lsyFKaKk1A_ffM2EnVXliJU-Rokow8k_E39vgzIa88lw4SZcUKbh3j2cyz3HvB7MwmpVPCi8DT_flSLq74x6VYnpDzcS8MllUOsT_G9BCthzvToTenm7qefoHsgSM9eZoGILK8Rc7SLJfg2mfzD58Wl_u8Cxlc4lQLUvQpMe6gC2VegAsrh7zdaYol8RzLoQ9GqEDkfzxQHTKKhlHo4h65O8BHOo8a3icnbv2A3DkgFXxImoVtMX5BgzrAxiBJ7breNl3bbHa0ayjWT7rfjq6aP-xXU_WrfktBjTYcvbOjyGDMcNIXxXFdfrelAG1p3KmPRqWHy96PyNXF-6_nCzYcq8BKSB865kWelMryMk0qUVjlAaPNtFVWFUlZOG8lJDmykLLiXrhMF7zSsyyrLECtCi7ZY3K6btbuCaFIV6d9JriCPDN1SW615l5xUbocgEA-IdnYlaYcOMfx6IuVGYvLrk00gEEDmGiACWH7pzaRc-MG-bdopb0sMmaHG0373QwuY1TuVeIhPAnIw70GYCyt4k4DQpK6UqCqGm1sjhwQXlXf8Pk30SWOFHhXf5sHBX52Pwyuosh0Ql7_S7DvDUc6NPH0v1V5Rm5jK9bIPSenXdu7FwCauuLl8FP8BRCtFxs
  priority: 102
  providerName: Elsevier
Title Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications
URI https://dx.doi.org/10.1016/j.matdes.2022.110430
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310062
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-470365
https://doaj.org/article/79f71f7875274f80996a74e878268d79
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQXNpD1dJW3ZYiH6A3q5vErxyXlxYQnKDiZjmJrW67bNBuUrT_nhk7QeHCXnqKEk2SSWaS-cYef0PIgefSQaKsWMGtYzwbe5Z7L5gd26R0SngReLqvruX0ll_cibtBqy-sCYv0wPHF_VS5V4kHtxKQP3kNgEZaxZ2GyCZ1pcLSPYh5fTLVpVpI2hJHV5CVT4l-0Vyo7AIoWDmk6k5TrILnWAE9CEqBu_9lbBqSiIbAc_aevOsQI51ETT-QLbfYJW8HPIIfST21S_xlwQ51AIdBktrFbFU3y_phTZuaYsmk--fovH5k93XVztsVBTWWodvOmiJpMcNxXhTHqfj1igKapXFxPtqRDme6P5Hbs9Ob4ynrOimwEjKGhnmRJ6WyvEyTShRWeYBlY22VVUVSFs5bCXmNLKSsuBcu0wWv9DjLKgvoqoJN9plsL-qF-0IoMtRpnwmuILVMXZJbrblXXJQuh9ifj0jWv0pTdjTj2O1ibvp6sj8mGsCgAUw0wIiw57MeIs3GBvkjtNKzLJJkhwPgOqZzHbPJdUZE9TY2Hd6IOAIuNdtw-x_RJV4ocDL7NQkK_G1-G5w4kemIHL4m2LaGIwOa-Po_nucbeYM6xgq5PbLdLFv3HSBTU-yTncn55fR6P3wlT2B2FI4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gE4IJ6iPH0AblabxI_kWBZWWXa3F3ZRb5aT2EugNFWagPrvmYmTqr2wEqcoziQeeZzxN_b4MyHvHJcWAmXFMm4s49HUscQ5wczUBLlVwomOp_tyLtNr_mUhFkfkZNgLg2mVve_3Pr3z1n3JpG_NybosJ18heuBITx6GHRBZ3CHHyE4lRuR4dnaezndxFzK4-KkWpOhTYthB16V5AS4sLPJ2hyGmxHNMh94boToi_8OBap9RtBuFTh-SBz18pDOv4SNyZFePyf09UsEnpEpNjf4LbqgFbAyS1KzKTdXU1XpLm4pi_qT9bemy-sN-VUW7bDcU1Ki7o3e2FBmMGU76ojiuy283FKAt9Tv10ah0f9n7Kbk-_Xx1krL-WAWWQ_jQMCeSIFeG52FQiMwoBxhtGhtlVBbkmXVGQpAjMykL7oSN4owX8TSKCgNQq4BL9IyMVtXKPicU6epiF0GrQ5wZ2iAxccyd4iK3CQCBZEyioSl13nOO49EXSz0kl_3Q3gAaDaC9AcaE7d5ae86NW-Q_opV2ssiY3RVU9Y3uu4xWiVOBA_ckIA53MQBjaRS3MSAkGRcKVFWDjfVBB4RPlbdU_8F3iQMFPpXfZp0CP5vvGldRZDgm7_8l2LaaIx2aePHfqrwld9Orywt9cTY_f0nu4ROfL_eKjJq6ta8BQDXZm_4H-Qs5fxoB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+elastic+anisotropy+to+achieve+low-modulus+refractory+high-entropy+alloys+for+biomedical+applications&rft.jtitle=Materials+%26+design&rft.au=Stephan+Sch%C3%B6necker&rft.au=Xiaojie+Li&rft.au=Daixiu+Wei&rft.au=Shogo+Nozaki&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=215&rft.spage=110430&rft_id=info:doi/10.1016%2Fj.matdes.2022.110430&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79f71f7875274f80996a74e878268d79
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon