Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications
[Display omitted] •Systematic calculation of elastic properties in Ti-containing, biocompatible refractory high-entropy alloys.•Modeling of non-random texture effects on poly-crystalline moduli.•Directionally preferential Young’s moduli achievable in single crystals and textured poly-crystals.•Valen...
Saved in:
Published in | Materials & design Vol. 215; p. 110430 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Systematic calculation of elastic properties in Ti-containing, biocompatible refractory high-entropy alloys.•Modeling of non-random texture effects on poly-crystalline moduli.•Directionally preferential Young’s moduli achievable in single crystals and textured poly-crystals.•Valence electron count has a dominant influence on elastic anisotropy.
A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young’s modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic density-functional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young’s modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young’s modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young’s modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi-isotropic Young’s moduli, and Wickers hardnesses. |
---|---|
AbstractList | A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young's modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic densityfunctional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young's modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young's modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young's modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi isotropic Young's moduli, and Wickers hardnesses. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/). A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young’s modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic density-functional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young’s modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young’s modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young’s modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi-isotropic Young’s moduli, and Wickers hardnesses. A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young's modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic densityfunctional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young's modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young's modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young's modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi isotropic Young's moduli, and Wickers hardnesses. [Display omitted] •Systematic calculation of elastic properties in Ti-containing, biocompatible refractory high-entropy alloys.•Modeling of non-random texture effects on poly-crystalline moduli.•Directionally preferential Young’s moduli achievable in single crystals and textured poly-crystals.•Valence electron count has a dominant influence on elastic anisotropy. A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young’s modulus approximating that of cortical bone in the predominant loading direction. Here, we explore how directionally preferential bulk elastic properties of implant materials are achieved by harnessing elastic anisotropy. Specifically focusing on recently proposed biocompatible refractory high-entropy alloys (RHEAs) in the body-centered cubic structure, we conduct systematic density-functional theory calculations to investigate the single-crystal elastic properties of 21 Ti-containing RHEAs. Our results provide evidence that the valence electron count has a dominant influence on elastic anisotropy and crystal directions of low Young’s modulus and high torsion modulus in the RHEAs. By means of modeling the orientation distribution function for crystallographic texture, we examine the effect of non-random texture on the anisotropic poly-crystalline Young’s modulus and torsion modulus with varying texture sharpness. We adopt fiber textures that can result from rolling and distinct texture orientations that can form during rapid directional solidification. We discuss the potential for lowering Young’s modulus in the RHEAs by using single crystals or textured aggregates. Furthermore, we prepare four of the theoretically considered alloys by arc-melting and report their lattice parameters, quasi-isotropic Young’s moduli, and Wickers hardnesses. |
ArticleNumber | 110430 |
Author | Nozaki, Shogo Vitos, Levente Li, Xiaoqing Wei, Daixiu Kato, Hidemi Schönecker, Stephan Li, Xiaojie |
Author_xml | – sequence: 1 givenname: Stephan surname: Schönecker fullname: Schönecker, Stephan organization: Unit of Properties, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden – sequence: 2 givenname: Xiaojie surname: Li fullname: Li, Xiaojie email: lixj26@tzc.edu.cn organization: Department of Physics, Taizhou University, Taizhou 318000, Zhejiang, China – sequence: 3 givenname: Daixiu surname: Wei fullname: Wei, Daixiu email: wei1987xiu@imr.tohoku.ac.jp organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan – sequence: 4 givenname: Shogo surname: Nozaki fullname: Nozaki, Shogo organization: Department of Materials Science, Tohoku University, 6-6-02 Aramaki Aza Aoba, Sendai, Miyagi 980-8579, Sendai, Japan – sequence: 5 givenname: Hidemi surname: Kato fullname: Kato, Hidemi organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan – sequence: 6 givenname: Levente surname: Vitos fullname: Vitos, Levente organization: Unit of Properties, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden – sequence: 7 givenname: Xiaoqing surname: Li fullname: Li, Xiaoqing email: xiaoqli@kth.se organization: Unit of Properties, Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310062$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-470365$$DView record from Swedish Publication Index |
BookMark | eNqFkctu1DAUhrMoEm3hDVj4AchgO74kLJCqcmmlSmyArXXiy4wHTxzZTqt5e9wJQqKLdnUs-_8_yee7aM6mONmmeUfwhmAiPuw3ByjG5g3FlG4IwazDZ805poK1hEr-urnIeY_ro-zYeRNvIE02Zz9tkQ2Qi9cIJp9jSXE-ohIR6J239xaF-NAeolnCklGyLoEuMR3Rzm93rZ3WOIQQjxm5mNDo48EaryEgmOdQD8XHKb9pXjkI2b79Oy-bn1-__Li-ae--f7u9vrprNedDaR0fiJbANCWGjyAdxz3uQYIciR6tAyGoEKMQhjluu35kpsddZ4ALYuroLpvblWsi7NWc_AHSUUXw6nQR01ZBqp8NVsnBSeJkLzmVzPV4GARIZnvZU9EbOVTW-5WVH-y8jP_RPvtfVyfasigmcSd4jbcvx3-XneoIxoLWPFvzOsWc62r_NQhWj07VXq1O1aNTtTqttY9PatqX05JLAh9eKn9ay7Y6uPc2qay9nXQ1lqwudUn-ecAfYhbGPg |
CitedBy_id | crossref_primary_10_1016_j_matdes_2022_110820 crossref_primary_10_3390_met13050951 crossref_primary_10_1007_s00161_024_01321_4 crossref_primary_10_1088_1402_4896_ad4f2a crossref_primary_10_1007_s44174_025_00314_4 crossref_primary_10_1134_S0031918X24602269 crossref_primary_10_3390_ma16062311 crossref_primary_10_1002_adma_202305192 crossref_primary_10_1016_j_physb_2024_416108 crossref_primary_10_3389_fbioe_2022_952536 crossref_primary_10_3390_met12071164 crossref_primary_10_1039_D3NA00090G crossref_primary_10_1016_j_jmst_2023_07_077 crossref_primary_10_1016_j_ijplas_2024_103884 crossref_primary_10_1021_acs_jpcc_3c02390 crossref_primary_10_1007_s11837_024_06942_3 crossref_primary_10_1016_j_jmrt_2024_02_064 crossref_primary_10_1088_1402_4896_acf07e crossref_primary_10_3390_cryst14100838 crossref_primary_10_1016_j_ijplas_2024_104051 crossref_primary_10_1016_j_jmapro_2022_11_046 crossref_primary_10_1007_s12540_024_01709_6 crossref_primary_10_1016_j_jallcom_2024_174823 crossref_primary_10_1016_j_jmrt_2024_04_136 crossref_primary_10_1016_j_jallcom_2024_174408 crossref_primary_10_1016_j_bioadv_2025_214244 crossref_primary_10_1016_j_intermet_2024_108575 crossref_primary_10_1016_j_corsci_2022_110828 crossref_primary_10_1007_s40195_023_01644_2 crossref_primary_10_1002_adma_202310926 |
Cites_doi | 10.1016/j.jallcom.2006.08.267 10.1103/PhysRev.130.1324 10.1016/j.matdes.2016.11.079 10.1002/adem.201801215 10.1103/RevModPhys.18.409 10.1103/PhysRevB.3.4100 10.1144/SP360.10 10.1103/PhysRevB.5.2382 10.1016/j.matdes.2019.107771 10.1080/10408436.2013.772503 10.1021/acsabm.9b01127 10.1016/j.matchar.2017.12.034 10.1103/PhysRevLett.68.2802 10.1103/PhysRevB.86.014105 10.1080/02670836.2016.1231746 10.1016/j.stam.2003.09.002 10.1103/PhysRevB.45.13244 10.1016/j.commatsci.2018.12.027 10.1016/j.scriptamat.2016.12.038 10.1016/j.pmatsci.2008.06.004 10.1107/S0021889808030112 10.1016/B978-0-408-10642-9.50010-6 10.1103/PhysRevB.37.790 10.1002/srin.199100451 10.1088/0022-3727/4/2/312 10.1016/S0142-9612(97)00146-4 10.1016/j.matdes.2021.109548 10.1016/0956-7151(93)90063-X 10.1097/00003086-199201000-00014 10.1103/PhysRevB.48.5844 10.3390/met9121252 10.1146/annurev-bioeng-062117-121139 10.1007/s10659-014-9506-1 10.12998/wjcc.v3.i1.52 10.1088/0034-4885/67/8/R02 10.1016/j.bone.2015.11.018 10.1103/PhysRevLett.87.156401 10.1142/9789814503778_0003 10.1016/j.actbio.2012.06.037 10.1088/1757-899X/400/2/022049 10.1016/j.jmbbm.2012.05.005 10.1016/j.actamat.2008.02.017 10.1098/rsta.1999.0385 10.1016/0021-9290(75)90075-5 10.1016/j.jallcom.2018.04.082 10.1016/j.intermet.2019.106572 10.1371/journal.pone.0094525 10.1088/0370-1298/65/5/307 10.1016/S0927-0256(99)00098-1 10.1080/21663831.2019.1584592 10.1016/j.jallcom.2015.07.209 10.1016/j.matdes.2017.11.060 10.1016/0001-6160(70)90033-7 10.1016/j.actamat.2005.09.014 10.1016/j.scriptamat.2016.10.028 10.1103/PhysRevLett.101.055504 10.1007/BF02586159 10.1016/j.intermet.2020.106845 10.1016/j.msec.2019.110322 10.1016/j.mtla.2018.07.008 10.4028/www.scientific.net/MSF.157-162.597 10.1016/0025-5416(77)90165-3 10.1016/j.scriptamat.2019.07.011 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION ADTPV AFDQA AOWAS D8T D8V ZZAVC ACNBI DF2 DOA |
DOI | 10.1016/j.matdes.2022.110430 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text SWEPUB Uppsala universitet full text SWEPUB Uppsala universitet DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_79f71f7875274f80996a74e878268d79 oai_DiVA_org_uu_470365 oai_DiVA_org_kth_310062 10_1016_j_matdes_2022_110430 S026412752200051X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAFTH AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGQPQ AGUBO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AAYXX AFXIZ AGRNS BNPGV CITATION SSH ADTPV AFDQA AOWAS D8T D8V ZZAVC ACNBI DF2 |
ID | FETCH-LOGICAL-c559t-f591c7a4c21d5ba7f50808a7a7b1cbefa66266b66d4f5e38b4d8033da561d3da3 |
IEDL.DBID | DOA |
ISSN | 0264-1275 1873-4197 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Thu Aug 21 06:58:05 EDT 2025 Thu Aug 21 06:36:28 EDT 2025 Thu Jul 24 02:13:49 EDT 2025 Thu Apr 24 22:56:04 EDT 2025 Sat Aug 16 17:01:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Young’s modulus Elastic anisotropy ODF Density-functional theory DFT Crystallographic texture RHEA SLM VEC Refractory high-entropy alloy |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-f591c7a4c21d5ba7f50808a7a7b1cbefa66266b66d4f5e38b4d8033da561d3da3 |
OpenAccessLink | https://doaj.org/article/79f71f7875274f80996a74e878268d79 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_79f71f7875274f80996a74e878268d79 swepub_primary_oai_DiVA_org_uu_470365 swepub_primary_oai_DiVA_org_kth_310062 crossref_primary_10_1016_j_matdes_2022_110430 crossref_citationtrail_10_1016_j_matdes_2022_110430 elsevier_sciencedirect_doi_10_1016_j_matdes_2022_110430 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | S.G. Steinemann, Metallurgy and Technology of Practical Titanium alloys, The Minerals, Metals and Materials Society, 1994, Ch. Effect of alloying elements on corrosion resistance of titanium alloys for medical implants, pp. 313–321. Ranganathan, Starzewski (b0140) 2008; 101 H.-J. Bunge, Texture Analysis in Materials Science, Butterworth & Co, 1982. Hielscher, Schaeben (b0175) 2008 Ishimoto, Hagihara, Hisamoto, Sun, Nakano (b0230) 2017; 132 Kestens, Pirgazi (b0255) 2016; 32 Vitos, Skriver, Johansson, Kollár (b0190) 2000; 18 Perdew, Wang (b0195) 1992; 45 Reilly, Burstein (b0340) 1975; 8 Kocks, Tomé, Wenk (b0115) 2000 Todai, Nagase, Hori, Matsugaki, Sekita, Nakano (b0045) 2017; 129 Hori, Nagase, Todai, Matsugaki, Nakano (b0060) 2019; 172 Senkov, Semiatin (b0260) 2015; 649 Raabe, Lücke (b0245) 1994; 157–162 Ledbetter (b0285) 1977; 27 Bolef, Smith, Miller (b0305) 1971; 3 Matsumoto, Watanabe, Hanada (b0220) 2007; 439 Morgan, Unnikrisnan, Hussein (b0040) 2018; 20 Nye (b0125) 1960 Moruzzi, Janak, Schwarz (b0165) 1988; 37 Yang, Liu, Pang, Liaw, Zhang (b0075) 2020; 124 Hölscher, Raabe, Luecke (b0320) 1991; 62 Knowles, Howie (b0135) 2015; 120 Yang, Sanno, Ganse, Koy, Brüggemann, Müller, Rittweger (b0335) 2014; 9 Popescu, Ghiban, Popescu, Rosu, Trusca, Carcea, Soare, Dumitrescu, Constantin, Olaru, Carlan (b0055) 2018; 400 Hill (b0160) 1952; 65 B. Hutchinson, N. Hansen, P. van Houtte, D.J. Jensen, Deformation microstructures and textures in steels [and discussion], Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357 (1756) (1999) 1471–1485. URL http://www.jstor.org/stable/55196 D. Mainprice, R. Hielscher, H. Schaeben, Calculating anisotropic physical properties from texture data using the MTEX open source package, in: D.J. Prior, E.H. Rutter, D.J. Tatham (Eds.), Deformation Mechanism, Rheology & Tectonics: Microstructures, Mechanics & Anisotropy, Vol. 360, Geological Society, London, Special Publications, 2011, pp. 175–192. doi:10.1144/SP360.10. Mirzaali, Schwiedrzik, Thaiwichai, Best, Michler, Zysset, Wolfram (b0035) 2016; 93 Zhang, Chen (b0315) 2019; 21 Fisher, Dever (b0325) 1970; 18 Nagase, Hori, Todai, Sun, Nakano (b0235) 2019; 173 Featherston, Neighbours (b0300) 1963; 130 Diehl, Niehuesbernd, Bruder (b0310) 2019; 9 Iijima, Nagase, Matsugaki, Wang, Ameyama, Nakano (b0090) 2021; 202 Wenk, Houtte (b0120) 2004; 67 Kim, Sasaki, Okutsu, Kim, Inamura, Hosoda, Miyazaki (b0215) 2006; 54 O.K. Andersen, O. Jepsen, G. Krier, Lectures on Methods of Electronic Structure Calculations, World Scientific, Singapore, 1994, Ch. Exact Muffin-Tin Theory, pp. 63–124. Vitos, Abrikosov, Johansson (b0205) 2001; 87 Eleti, Raju, Veerasham, Reddy, Bhattacharjee (b0265) 2018; 136 Sun, Hagihara, Nakano (b0240) 2018; 140 Nagase, Iijima, Matsugaki, Ameyama, Nakano (b0085) 2020; 107 Tane, Akita, Nakano, Hagihara, Umakoshi, Niinomi, Nakajima (b0105) 2008; 56 Söderlind, Eriksson, Wills, Boring (b0275) 1993; 48 Huiskes, Weinans, van Rietbergen (b0025) 1992; 274 Turley, Sines (b0155) 1971; 4 Hearmon (b0130) 1946; 18 Al-Zoubi, Schönecker, Li, Li, Johansson, Vitos (b0280) 2019; 159 Nagase, Todai, Hori, Nakano (b0050) 2018; 753 Niinomi (b0030) 2003; 4 Matsumoto, Watanabe, Masahashi, Hanada (b0330) 2006; 37 Tian, Wang, Harris, Irving, Zhao, Vitos (b0295) 2017; 114 Vitos (b0210) 2007 Long, Rack (b0005) 2006; 19 S.G. Steinemann, Evaluation of Biomaterials, Wiley, 1980, Ch. Corrosion of surgical implants - in vivo and in vitro tests, pp. 1–34. Wills, Eriksson, Söderlind, Boring (b0270) 1992; 68 Yuan, Wu, Yang, Liang, Lei, Huang, Wang, Liu, An, Wu, Lu (b0070) 2019; 7 Niinomi, Nakai, Hieda (b0020) 2012; 8 Li, Zhang, Lu, Li, Zhao, Johansson, Vitos (b0170) 2012; 86 Perumal, Grewal, Pole, Reddy, Mukherjee, Singh, Manivasagam, Arora (b0080) 2020; 3 Van Houtte, De Buyser (b0150) 1993; 41 Gyorffy (b0200) 1972; 5 Saini, Singh, Arora, Arora, Jain (b0015) 2009; 3 Lee, Todai, Tane, Hagihara, Nakajima, Nakano (b0110) 2012; 14 Geetha, Singh, Asokamani, Gogia (b0010) 2009; 54 Lejaeghere, Speybroeck, Oost, Cottenier (b0290) 2014; 39 Shinohara, Matsumoto, Tahara, Hosoda, Inamura (b0225) 2018; 1 Motallebzadeh, Peighambardoust, Sheikh, Murakami, Guo, Canadinc (b0065) 2019; 113 Featherston (10.1016/j.matdes.2022.110430_b0300) 1963; 130 Hill (10.1016/j.matdes.2022.110430_b0160) 1952; 65 Ledbetter (10.1016/j.matdes.2022.110430_b0285) 1977; 27 Kocks (10.1016/j.matdes.2022.110430_b0115) 2000 Perumal (10.1016/j.matdes.2022.110430_b0080) 2020; 3 Tane (10.1016/j.matdes.2022.110430_b0105) 2008; 56 Hölscher (10.1016/j.matdes.2022.110430_b0320) 1991; 62 Hori (10.1016/j.matdes.2022.110430_b0060) 2019; 172 Nagase (10.1016/j.matdes.2022.110430_b0050) 2018; 753 Van Houtte (10.1016/j.matdes.2022.110430_b0150) 1993; 41 Geetha (10.1016/j.matdes.2022.110430_b0010) 2009; 54 Senkov (10.1016/j.matdes.2022.110430_b0260) 2015; 649 Al-Zoubi (10.1016/j.matdes.2022.110430_b0280) 2019; 159 Niinomi (10.1016/j.matdes.2022.110430_b0020) 2012; 8 Yang (10.1016/j.matdes.2022.110430_b0075) 2020; 124 Saini (10.1016/j.matdes.2022.110430_b0015) 2009; 3 Lee (10.1016/j.matdes.2022.110430_b0110) 2012; 14 Mirzaali (10.1016/j.matdes.2022.110430_b0035) 2016; 93 Tian (10.1016/j.matdes.2022.110430_b0295) 2017; 114 Wills (10.1016/j.matdes.2022.110430_b0270) 1992; 68 Turley (10.1016/j.matdes.2022.110430_b0155) 1971; 4 Sun (10.1016/j.matdes.2022.110430_b0240) 2018; 140 Moruzzi (10.1016/j.matdes.2022.110430_b0165) 1988; 37 Gyorffy (10.1016/j.matdes.2022.110430_b0200) 1972; 5 Hearmon (10.1016/j.matdes.2022.110430_b0130) 1946; 18 Kim (10.1016/j.matdes.2022.110430_b0215) 2006; 54 Bolef (10.1016/j.matdes.2022.110430_b0305) 1971; 3 Reilly (10.1016/j.matdes.2022.110430_b0340) 1975; 8 Knowles (10.1016/j.matdes.2022.110430_b0135) 2015; 120 Long (10.1016/j.matdes.2022.110430_b0005) 2006; 19 Eleti (10.1016/j.matdes.2022.110430_b0265) 2018; 136 Vitos (10.1016/j.matdes.2022.110430_b0205) 2001; 87 Wenk (10.1016/j.matdes.2022.110430_b0120) 2004; 67 Fisher (10.1016/j.matdes.2022.110430_b0325) 1970; 18 Vitos (10.1016/j.matdes.2022.110430_b0210) 2007 Ishimoto (10.1016/j.matdes.2022.110430_b0230) 2017; 132 Popescu (10.1016/j.matdes.2022.110430_b0055) 2018; 400 Morgan (10.1016/j.matdes.2022.110430_b0040) 2018; 20 Matsumoto (10.1016/j.matdes.2022.110430_b0330) 2006; 37 Niinomi (10.1016/j.matdes.2022.110430_b0030) 2003; 4 Li (10.1016/j.matdes.2022.110430_b0170) 2012; 86 Raabe (10.1016/j.matdes.2022.110430_b0245) 1994; 157–162 Diehl (10.1016/j.matdes.2022.110430_b0310) 2019; 9 Vitos (10.1016/j.matdes.2022.110430_b0190) 2000; 18 Lejaeghere (10.1016/j.matdes.2022.110430_b0290) 2014; 39 10.1016/j.matdes.2022.110430_b0250 10.1016/j.matdes.2022.110430_b0095 Hielscher (10.1016/j.matdes.2022.110430_b0175) 2008 Motallebzadeh (10.1016/j.matdes.2022.110430_b0065) 2019; 113 Ranganathan (10.1016/j.matdes.2022.110430_b0140) 2008; 101 Nye (10.1016/j.matdes.2022.110430_b0125) 1960 Söderlind (10.1016/j.matdes.2022.110430_b0275) 1993; 48 Todai (10.1016/j.matdes.2022.110430_b0045) 2017; 129 Shinohara (10.1016/j.matdes.2022.110430_b0225) 2018; 1 Zhang (10.1016/j.matdes.2022.110430_b0315) 2019; 21 Iijima (10.1016/j.matdes.2022.110430_b0090) 2021; 202 Kestens (10.1016/j.matdes.2022.110430_b0255) 2016; 32 Yuan (10.1016/j.matdes.2022.110430_b0070) 2019; 7 Nagase (10.1016/j.matdes.2022.110430_b0085) 2020; 107 10.1016/j.matdes.2022.110430_b0185 Matsumoto (10.1016/j.matdes.2022.110430_b0220) 2007; 439 Huiskes (10.1016/j.matdes.2022.110430_b0025) 1992; 274 Yang (10.1016/j.matdes.2022.110430_b0335) 2014; 9 10.1016/j.matdes.2022.110430_b0180 Nagase (10.1016/j.matdes.2022.110430_b0235) 2019; 173 Perdew (10.1016/j.matdes.2022.110430_b0195) 1992; 45 10.1016/j.matdes.2022.110430_b0145 10.1016/j.matdes.2022.110430_b0100 |
References_xml | – volume: 124 start-page: 106845 year: 2020 ident: b0075 article-title: Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy publication-title: Intermetallics – volume: 9 start-page: 1252 year: 2019 ident: b0310 article-title: Quantifying the contribution of crystallographic texture and grain morphology on the elastic and plastic anisotropy of bcc steel publication-title: Metals – volume: 173 start-page: 107771 year: 2019 ident: b0235 article-title: Additive manufacturing of dense components in beta-titanium alloys with crystallographic texture from a mixture of pure metallic element powders publication-title: Mater. Des. – volume: 649 start-page: 1110 year: 2015 end-page: 1123 ident: b0260 article-title: Microstructure and properties of a refractory high-entropy alloy after cold working publication-title: J. Alloys Compd. – volume: 114 start-page: 243 year: 2017 end-page: 252 ident: b0295 article-title: Alloying effect on the elastic properties of refractory high-entropy alloys publication-title: Materials & Design – volume: 4 start-page: 445 year: 2003 end-page: 454 ident: b0030 article-title: Recent research and development in titanium alloys for biomedical applications and healthcare goods publication-title: Sci. Tech. Adv. Mater. – volume: 18 start-page: 24 year: 2000 end-page: 28 ident: b0190 article-title: Application of the exact muffin-tin orbitals theory: the spherical cell approximation publication-title: Comput. Mater. Sci. – volume: 8 start-page: 3888 year: 2012 end-page: 3903 ident: b0020 article-title: Development of new metallic alloys for biomedical applications publication-title: Acta Biomater. – volume: 101 start-page: 055504 year: 2008 ident: b0140 article-title: Universal elastic anisotropy index publication-title: Phys. Rev. Lett. – reference: O.K. Andersen, O. Jepsen, G. Krier, Lectures on Methods of Electronic Structure Calculations, World Scientific, Singapore, 1994, Ch. Exact Muffin-Tin Theory, pp. 63–124. – volume: 5 start-page: 2382 year: 1972 end-page: 2384 ident: b0200 article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys publication-title: Phys. Rev. B – volume: 136 start-page: 286 year: 2018 end-page: 292 ident: b0265 article-title: Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy publication-title: Mater. Charact. – year: 2000 ident: b0115 article-title: Texture and Anisotropy, Preferred Orientations in Polycrystals and their Effect on Materials Properties – volume: 65 start-page: 349 year: 1952 end-page: 354 ident: b0160 article-title: The elastic behaviour of a crystalline aggregate publication-title: Proc. phy. Soc. A – volume: 172 start-page: 83 year: 2019 end-page: 87 ident: b0060 article-title: Development of nonequiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials publication-title: Scr. Mater. – volume: 439 start-page: 146 year: 2007 end-page: 155 ident: b0220 article-title: Microstructures and mechanical properties of metastable publication-title: J. Alloys Compd. – volume: 140 start-page: 307 year: 2018 end-page: 316 ident: b0240 article-title: Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting publication-title: Mater. Des. – volume: 9 start-page: e94525 year: 2014 ident: b0335 article-title: Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running publication-title: PLoS ONE – reference: S.G. Steinemann, Metallurgy and Technology of Practical Titanium alloys, The Minerals, Metals and Materials Society, 1994, Ch. Effect of alloying elements on corrosion resistance of titanium alloys for medical implants, pp. 313–321. – volume: 7 start-page: 225 year: 2019 end-page: 231 ident: b0070 article-title: Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys publication-title: Mater. Res. Lett. – volume: 3 start-page: 1233 year: 2020 end-page: 1244 ident: b0080 article-title: Enhanced biocorrosion resistance and cellular response of a dualphase high entropy alloy through reduced elemental heterogeneity publication-title: ACS Appl. Bio Mater. – volume: 86 start-page: 014105 year: 2012 ident: b0170 article-title: Elastic properties of vanadium-based alloys from first-principles theory publication-title: Phys. Rev. B – volume: 129 start-page: 65 year: 2017 end-page: 68 ident: b0045 article-title: Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials publication-title: Scr. Mater. – volume: 54 start-page: 423 year: 2006 end-page: 433 ident: b0215 article-title: Texture and shape memory behavior of Ti-22Nb-6Ta alloy publication-title: Acta Mater. – volume: 8 start-page: 393 year: 1975 end-page: 405 ident: b0340 article-title: The elastic and ultimate properties of compact bone tissue publication-title: J. Biomech. – volume: 39 start-page: 1 year: 2014 end-page: 24 ident: b0290 article-title: Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 67 start-page: 1367 year: 2004 end-page: 1428 ident: b0120 article-title: Texture and anisotropy publication-title: Rep. Prog. Phys. – volume: 87 start-page: 156401 year: 2001 ident: b0205 article-title: Anisotropic lattice distortions in random alloys from first-principles theory publication-title: Phys. Rev. Lett. – volume: 48 start-page: 5844 year: 1993 ident: b0275 article-title: Theory of elastic constants of cubic transition metals and alloys publication-title: Phys. Rev. B – volume: 21 start-page: 1801215 year: 2019 ident: b0315 article-title: A review on biomedical titanium alloys: Recent progress and prospect publication-title: Adv. Eng. Mater. – volume: 19 start-page: 1621 year: 2006 end-page: 1639 ident: b0005 article-title: Review: Titanium alloys in total joint replacement: a materials science publication-title: Biomaterials – volume: 14 start-page: 48 year: 2012 end-page: 54 ident: b0110 article-title: Biocompatible low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal publication-title: J. Mech. Behav. Biomed. Mater. – volume: 753 start-page: 412 year: 2018 end-page: 421 ident: b0050 article-title: Microstructure of equiatomic and nonequiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials publication-title: J. Alloy. Comp. – volume: 132 start-page: 34 year: 2017 end-page: 38 ident: b0230 article-title: Crystallographic texture control of beta-type Ti-15Mo-5Zr-3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus publication-title: Scripta Mater. – volume: 130 start-page: 1324 year: 1963 end-page: 1333 ident: b0300 article-title: Elastic constants of tantalum, tungsten, and molybdenum publication-title: Phys. Rev. – volume: 157–162 start-page: 597 year: 1994 end-page: 610 ident: b0245 article-title: Rolling and annealing textures of bcc metals publication-title: Mater. Sci. Forum – volume: 3 start-page: 4100 year: 1971 end-page: 4108 ident: b0305 article-title: Elastic properties of vanadium. I. Temperature dependence of the elastic constants and the thermal expansion publication-title: Phys. Rev. B – volume: 107 start-page: 110322 year: 2020 ident: b0085 article-title: Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials publication-title: Mater. Sci. Eng. C – volume: 4 start-page: 264 year: 1971 end-page: 272 ident: b0155 article-title: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials publication-title: J. Phys. D: Appl. Phys. – volume: 37 start-page: 790 year: 1988 ident: b0165 article-title: Local density theory of metallic cohesion publication-title: Phys. Rev. B – volume: 41 start-page: 323 year: 1993 end-page: 336 ident: b0150 article-title: The influence of crystallographic texture on diffraction measurements of residual stress publication-title: Acta Metall. Mater. – volume: 62 start-page: 567 year: 1991 end-page: 575 ident: b0320 article-title: Rolling and recrystallization textures of bcc steels publication-title: Steel Res. – volume: 45 start-page: 13244 year: 1992 ident: b0195 article-title: Accurate and simple analytic representation of the electron-gas correlation energy publication-title: Phys. Rev. B – volume: 37 start-page: 3239 year: 2006 end-page: 3249 ident: b0330 article-title: Composition dependence of Young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys publication-title: Metall. Mater. Trans. A – volume: 202 start-page: 109548 year: 2021 ident: b0090 article-title: Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys for metallic biomaterials publication-title: Mater. Des. – volume: 32 start-page: 1303 year: 2016 end-page: 1315 ident: b0255 article-title: Texture formation in metal alloys with cubic crystal structures publication-title: Mater. Sci. Technol. – volume: 120 start-page: 87 year: 2015 end-page: 108 ident: b0135 article-title: The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials publication-title: J. Elast. – reference: H.-J. Bunge, Texture Analysis in Materials Science, Butterworth & Co, 1982. – volume: 113 start-page: 106572 year: 2019 ident: b0065 article-title: Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications publication-title: Intermetallics – volume: 56 start-page: 2856 year: 2008 end-page: 2863 ident: b0105 article-title: Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals publication-title: Acta Mater. – reference: D. Mainprice, R. Hielscher, H. Schaeben, Calculating anisotropic physical properties from texture data using the MTEX open source package, in: D.J. Prior, E.H. Rutter, D.J. Tatham (Eds.), Deformation Mechanism, Rheology & Tectonics: Microstructures, Mechanics & Anisotropy, Vol. 360, Geological Society, London, Special Publications, 2011, pp. 175–192. doi:10.1144/SP360.10. – volume: 93 start-page: 196 year: 2016 end-page: 211 ident: b0035 article-title: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly publication-title: Bone – volume: 1 start-page: 52 year: 2018 end-page: 61 ident: b0225 article-title: Development of publication-title: Materialia – volume: 274 start-page: 124 year: 1992 end-page: 134 ident: b0025 article-title: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials publication-title: Clin. Orthop. Relat. Res. – volume: 400 start-page: 022049 year: 2018 ident: b0055 article-title: New TiZrNbTaFe high entropy alloy used for medical applications publication-title: IOP Conf. Series – year: 1960 ident: b0125 article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices – volume: 20 start-page: 119 year: 2018 end-page: 143 ident: b0040 article-title: Bone mechanical properties in healthy and diseased states publication-title: Annu. Rev. Biomed. Eng. – volume: 27 start-page: 133 year: 1977 end-page: 136 ident: b0285 article-title: Ratio of the shear and Young’s moduli for polycrystalline metallic elements publication-title: Mater. Sci. Engin. – reference: B. Hutchinson, N. Hansen, P. van Houtte, D.J. Jensen, Deformation microstructures and textures in steels [and discussion], Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357 (1756) (1999) 1471–1485. URL http://www.jstor.org/stable/55196 – year: 2008 ident: b0175 article-title: A novel pole figure inversion method: specification of the MTEX algorithm publication-title: J. Appl. Cryst. – year: 2007 ident: b0210 article-title: Computational Quantum Mechanics for Materials Engineers – reference: S.G. Steinemann, Evaluation of Biomaterials, Wiley, 1980, Ch. Corrosion of surgical implants - in vivo and in vitro tests, pp. 1–34. – volume: 68 start-page: 2802 year: 1992 ident: b0270 article-title: Trends in the elastic constants of cubic transition metals publication-title: Phys. Rev. Lett. – volume: 54 start-page: 397 year: 2009 end-page: 425 ident: b0010 article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants-a review publication-title: Prog. Mater. Sci. – volume: 3 start-page: 52 year: 2009 end-page: 57 ident: b0015 article-title: Implant biomaterials: a comprehensive review publication-title: World J. Clin. Cases. – volume: 18 start-page: 265 year: 1970 end-page: 269 ident: b0325 article-title: Relation of the publication-title: Acta Metall. – volume: 18 start-page: 409 year: 1946 end-page: 440 ident: b0130 article-title: The elastic constants of anisotropic materials publication-title: Rev. Mod. Phys. – volume: 159 start-page: 273 year: 2019 end-page: 280 ident: b0280 article-title: Elastic properties of 4d transition metal alloys: Values and trends publication-title: Comp. Mater. Sci. – volume: 439 start-page: 146 issue: 1 year: 2007 ident: 10.1016/j.matdes.2022.110430_b0220 article-title: Microstructures and mechanical properties of metastable βTiNbSn alloys cold rolled and heat treated publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.08.267 – volume: 130 start-page: 1324 year: 1963 ident: 10.1016/j.matdes.2022.110430_b0300 article-title: Elastic constants of tantalum, tungsten, and molybdenum publication-title: Phys. Rev. doi: 10.1103/PhysRev.130.1324 – volume: 114 start-page: 243 year: 2017 ident: 10.1016/j.matdes.2022.110430_b0295 article-title: Alloying effect on the elastic properties of refractory high-entropy alloys publication-title: Materials & Design doi: 10.1016/j.matdes.2016.11.079 – volume: 21 start-page: 1801215 year: 2019 ident: 10.1016/j.matdes.2022.110430_b0315 article-title: A review on biomedical titanium alloys: Recent progress and prospect publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201801215 – volume: 18 start-page: 409 year: 1946 ident: 10.1016/j.matdes.2022.110430_b0130 article-title: The elastic constants of anisotropic materials publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.18.409 – volume: 3 start-page: 4100 year: 1971 ident: 10.1016/j.matdes.2022.110430_b0305 article-title: Elastic properties of vanadium. I. Temperature dependence of the elastic constants and the thermal expansion publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.3.4100 – ident: 10.1016/j.matdes.2022.110430_b0180 doi: 10.1144/SP360.10 – ident: 10.1016/j.matdes.2022.110430_b0095 – volume: 5 start-page: 2382 year: 1972 ident: 10.1016/j.matdes.2022.110430_b0200 article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.5.2382 – volume: 173 start-page: 107771 year: 2019 ident: 10.1016/j.matdes.2022.110430_b0235 article-title: Additive manufacturing of dense components in beta-titanium alloys with crystallographic texture from a mixture of pure metallic element powders publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107771 – volume: 39 start-page: 1 year: 2014 ident: 10.1016/j.matdes.2022.110430_b0290 article-title: Error estimates for solid-state density-functional theory predictions: An overview by means of the ground-state elemental crystals publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408436.2013.772503 – volume: 3 start-page: 1233 year: 2020 ident: 10.1016/j.matdes.2022.110430_b0080 article-title: Enhanced biocorrosion resistance and cellular response of a dualphase high entropy alloy through reduced elemental heterogeneity publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.9b01127 – volume: 136 start-page: 286 year: 2018 ident: 10.1016/j.matdes.2022.110430_b0265 article-title: Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy publication-title: Mater. Charact. doi: 10.1016/j.matchar.2017.12.034 – volume: 68 start-page: 2802 year: 1992 ident: 10.1016/j.matdes.2022.110430_b0270 article-title: Trends in the elastic constants of cubic transition metals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.2802 – volume: 86 start-page: 014105 year: 2012 ident: 10.1016/j.matdes.2022.110430_b0170 article-title: Elastic properties of vanadium-based alloys from first-principles theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.014105 – volume: 32 start-page: 1303 issue: 13 year: 2016 ident: 10.1016/j.matdes.2022.110430_b0255 article-title: Texture formation in metal alloys with cubic crystal structures publication-title: Mater. Sci. Technol. doi: 10.1080/02670836.2016.1231746 – volume: 4 start-page: 445 year: 2003 ident: 10.1016/j.matdes.2022.110430_b0030 article-title: Recent research and development in titanium alloys for biomedical applications and healthcare goods publication-title: Sci. Tech. Adv. Mater. doi: 10.1016/j.stam.2003.09.002 – ident: 10.1016/j.matdes.2022.110430_b0100 – volume: 45 start-page: 13244 year: 1992 ident: 10.1016/j.matdes.2022.110430_b0195 article-title: Accurate and simple analytic representation of the electron-gas correlation energy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 159 start-page: 273 year: 2019 ident: 10.1016/j.matdes.2022.110430_b0280 article-title: Elastic properties of 4d transition metal alloys: Values and trends publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2018.12.027 – volume: 132 start-page: 34 year: 2017 ident: 10.1016/j.matdes.2022.110430_b0230 article-title: Crystallographic texture control of beta-type Ti-15Mo-5Zr-3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2016.12.038 – volume: 54 start-page: 397 year: 2009 ident: 10.1016/j.matdes.2022.110430_b0010 article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants-a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2008.06.004 – year: 2008 ident: 10.1016/j.matdes.2022.110430_b0175 article-title: A novel pole figure inversion method: specification of the MTEX algorithm publication-title: J. Appl. Cryst. doi: 10.1107/S0021889808030112 – ident: 10.1016/j.matdes.2022.110430_b0145 doi: 10.1016/B978-0-408-10642-9.50010-6 – volume: 37 start-page: 790 year: 1988 ident: 10.1016/j.matdes.2022.110430_b0165 article-title: Local density theory of metallic cohesion publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.790 – volume: 62 start-page: 567 year: 1991 ident: 10.1016/j.matdes.2022.110430_b0320 article-title: Rolling and recrystallization textures of bcc steels publication-title: Steel Res. doi: 10.1002/srin.199100451 – volume: 4 start-page: 264 year: 1971 ident: 10.1016/j.matdes.2022.110430_b0155 article-title: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/4/2/312 – volume: 19 start-page: 1621 year: 2006 ident: 10.1016/j.matdes.2022.110430_b0005 article-title: Review: Titanium alloys in total joint replacement: a materials science publication-title: Biomaterials doi: 10.1016/S0142-9612(97)00146-4 – volume: 202 start-page: 109548 year: 2021 ident: 10.1016/j.matdes.2022.110430_b0090 article-title: Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys for metallic biomaterials publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109548 – volume: 41 start-page: 323 issue: 2 year: 1993 ident: 10.1016/j.matdes.2022.110430_b0150 article-title: The influence of crystallographic texture on diffraction measurements of residual stress publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(93)90063-X – volume: 274 start-page: 124 year: 1992 ident: 10.1016/j.matdes.2022.110430_b0025 article-title: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-199201000-00014 – volume: 48 start-page: 5844 year: 1993 ident: 10.1016/j.matdes.2022.110430_b0275 article-title: Theory of elastic constants of cubic transition metals and alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.5844 – volume: 9 start-page: 1252 year: 2019 ident: 10.1016/j.matdes.2022.110430_b0310 article-title: Quantifying the contribution of crystallographic texture and grain morphology on the elastic and plastic anisotropy of bcc steel publication-title: Metals doi: 10.3390/met9121252 – volume: 20 start-page: 119 year: 2018 ident: 10.1016/j.matdes.2022.110430_b0040 article-title: Bone mechanical properties in healthy and diseased states publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-062117-121139 – volume: 120 start-page: 87 year: 2015 ident: 10.1016/j.matdes.2022.110430_b0135 article-title: The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials publication-title: J. Elast. doi: 10.1007/s10659-014-9506-1 – volume: 3 start-page: 52 year: 2009 ident: 10.1016/j.matdes.2022.110430_b0015 article-title: Implant biomaterials: a comprehensive review publication-title: World J. Clin. Cases. doi: 10.12998/wjcc.v3.i1.52 – volume: 67 start-page: 1367 year: 2004 ident: 10.1016/j.matdes.2022.110430_b0120 article-title: Texture and anisotropy publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/67/8/R02 – volume: 93 start-page: 196 year: 2016 ident: 10.1016/j.matdes.2022.110430_b0035 article-title: Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly publication-title: Bone doi: 10.1016/j.bone.2015.11.018 – volume: 87 start-page: 156401 year: 2001 ident: 10.1016/j.matdes.2022.110430_b0205 article-title: Anisotropic lattice distortions in random alloys from first-principles theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.156401 – ident: 10.1016/j.matdes.2022.110430_b0185 doi: 10.1142/9789814503778_0003 – volume: 8 start-page: 3888 year: 2012 ident: 10.1016/j.matdes.2022.110430_b0020 article-title: Development of new metallic alloys for biomedical applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.06.037 – volume: 400 start-page: 022049 year: 2018 ident: 10.1016/j.matdes.2022.110430_b0055 article-title: New TiZrNbTaFe high entropy alloy used for medical applications publication-title: IOP Conf. Series doi: 10.1088/1757-899X/400/2/022049 – volume: 14 start-page: 48 year: 2012 ident: 10.1016/j.matdes.2022.110430_b0110 article-title: Biocompatible low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2012.05.005 – volume: 56 start-page: 2856 year: 2008 ident: 10.1016/j.matdes.2022.110430_b0105 article-title: Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.02.017 – ident: 10.1016/j.matdes.2022.110430_b0250 doi: 10.1098/rsta.1999.0385 – volume: 8 start-page: 393 year: 1975 ident: 10.1016/j.matdes.2022.110430_b0340 article-title: The elastic and ultimate properties of compact bone tissue publication-title: J. Biomech. doi: 10.1016/0021-9290(75)90075-5 – volume: 753 start-page: 412 year: 2018 ident: 10.1016/j.matdes.2022.110430_b0050 article-title: Microstructure of equiatomic and nonequiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.04.082 – year: 2007 ident: 10.1016/j.matdes.2022.110430_b0210 – volume: 113 start-page: 106572 year: 2019 ident: 10.1016/j.matdes.2022.110430_b0065 article-title: Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications publication-title: Intermetallics doi: 10.1016/j.intermet.2019.106572 – volume: 9 start-page: e94525 year: 2014 ident: 10.1016/j.matdes.2022.110430_b0335 article-title: Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running publication-title: PLoS ONE doi: 10.1371/journal.pone.0094525 – year: 2000 ident: 10.1016/j.matdes.2022.110430_b0115 – volume: 65 start-page: 349 year: 1952 ident: 10.1016/j.matdes.2022.110430_b0160 article-title: The elastic behaviour of a crystalline aggregate publication-title: Proc. phy. Soc. A doi: 10.1088/0370-1298/65/5/307 – volume: 18 start-page: 24 year: 2000 ident: 10.1016/j.matdes.2022.110430_b0190 article-title: Application of the exact muffin-tin orbitals theory: the spherical cell approximation publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(99)00098-1 – volume: 7 start-page: 225 year: 2019 ident: 10.1016/j.matdes.2022.110430_b0070 article-title: Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2019.1584592 – volume: 649 start-page: 1110 year: 2015 ident: 10.1016/j.matdes.2022.110430_b0260 article-title: Microstructure and properties of a refractory high-entropy alloy after cold working publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.07.209 – volume: 140 start-page: 307 year: 2018 ident: 10.1016/j.matdes.2022.110430_b0240 article-title: Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.060 – year: 1960 ident: 10.1016/j.matdes.2022.110430_b0125 – volume: 18 start-page: 265 year: 1970 ident: 10.1016/j.matdes.2022.110430_b0325 article-title: Relation of the cprime elastic modulus to stability of b.c.c. transition metals publication-title: Acta Metall. doi: 10.1016/0001-6160(70)90033-7 – volume: 54 start-page: 423 issue: 2 year: 2006 ident: 10.1016/j.matdes.2022.110430_b0215 article-title: Texture and shape memory behavior of Ti-22Nb-6Ta alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.09.014 – volume: 129 start-page: 65 year: 2017 ident: 10.1016/j.matdes.2022.110430_b0045 article-title: Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.10.028 – volume: 101 start-page: 055504 year: 2008 ident: 10.1016/j.matdes.2022.110430_b0140 article-title: Universal elastic anisotropy index publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.055504 – volume: 37 start-page: 3239 year: 2006 ident: 10.1016/j.matdes.2022.110430_b0330 article-title: Composition dependence of Young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02586159 – volume: 124 start-page: 106845 year: 2020 ident: 10.1016/j.matdes.2022.110430_b0075 article-title: Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2020.106845 – volume: 107 start-page: 110322 year: 2020 ident: 10.1016/j.matdes.2022.110430_b0085 article-title: Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110322 – volume: 1 start-page: 52 year: 2018 ident: 10.1016/j.matdes.2022.110430_b0225 article-title: Development of 〈001〉 -fiber texture in cold-groove-rolled Ti-Mo-Al-Zr biomedical alloy publication-title: Materialia doi: 10.1016/j.mtla.2018.07.008 – volume: 157–162 start-page: 597 year: 1994 ident: 10.1016/j.matdes.2022.110430_b0245 article-title: Rolling and annealing textures of bcc metals publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.157-162.597 – volume: 27 start-page: 133 year: 1977 ident: 10.1016/j.matdes.2022.110430_b0285 article-title: Ratio of the shear and Young’s moduli for polycrystalline metallic elements publication-title: Mater. Sci. Engin. doi: 10.1016/0025-5416(77)90165-3 – volume: 172 start-page: 83 year: 2019 ident: 10.1016/j.matdes.2022.110430_b0060 article-title: Development of nonequiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2019.07.011 |
SSID | ssj0022734 |
Score | 2.5002291 |
Snippet | [Display omitted]
•Systematic calculation of elastic properties in Ti-containing, biocompatible refractory high-entropy alloys.•Modeling of non-random texture... A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young's modulus approximating that of... A high-priority target in the design of new metallic materials for load-bearing implant applications is the reduction of Young’s modulus approximating that of... |
SourceID | doaj swepub crossref elsevier |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 110430 |
SubjectTerms | Crystallographic texture Density-functional theory Elastic anisotropy Refractory high-entropy alloy Young's modulus |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW3QscEE9RXvIBuFltEr9yLAurAmIvsKg3y0lsyFKaKk1A_ffM2EnVXliJU-Rokow8k_E39vgzIa88lw4SZcUKbh3j2cyz3HvB7MwmpVPCi8DT_flSLq74x6VYnpDzcS8MllUOsT_G9BCthzvToTenm7qefoHsgSM9eZoGILK8Rc7SLJfg2mfzD58Wl_u8Cxlc4lQLUvQpMe6gC2VegAsrh7zdaYol8RzLoQ9GqEDkfzxQHTKKhlHo4h65O8BHOo8a3icnbv2A3DkgFXxImoVtMX5BgzrAxiBJ7breNl3bbHa0ayjWT7rfjq6aP-xXU_WrfktBjTYcvbOjyGDMcNIXxXFdfrelAG1p3KmPRqWHy96PyNXF-6_nCzYcq8BKSB865kWelMryMk0qUVjlAaPNtFVWFUlZOG8lJDmykLLiXrhMF7zSsyyrLECtCi7ZY3K6btbuCaFIV6d9JriCPDN1SW615l5xUbocgEA-IdnYlaYcOMfx6IuVGYvLrk00gEEDmGiACWH7pzaRc-MG-bdopb0sMmaHG0373QwuY1TuVeIhPAnIw70GYCyt4k4DQpK6UqCqGm1sjhwQXlXf8Pk30SWOFHhXf5sHBX52Pwyuosh0Ql7_S7DvDUc6NPH0v1V5Rm5jK9bIPSenXdu7FwCauuLl8FP8BRCtFxs priority: 102 providerName: Elsevier |
Title | Harnessing elastic anisotropy to achieve low-modulus refractory high-entropy alloys for biomedical applications |
URI | https://dx.doi.org/10.1016/j.matdes.2022.110430 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310062 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-470365 https://doaj.org/article/79f71f7875274f80996a74e878268d79 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQXNpD1dJW3ZYiH6A3q5vErxyXlxYQnKDiZjmJrW67bNBuUrT_nhk7QeHCXnqKEk2SSWaS-cYef0PIgefSQaKsWMGtYzwbe5Z7L5gd26R0SngReLqvruX0ll_cibtBqy-sCYv0wPHF_VS5V4kHtxKQP3kNgEZaxZ2GyCZ1pcLSPYh5fTLVpVpI2hJHV5CVT4l-0Vyo7AIoWDmk6k5TrILnWAE9CEqBu_9lbBqSiIbAc_aevOsQI51ETT-QLbfYJW8HPIIfST21S_xlwQ51AIdBktrFbFU3y_phTZuaYsmk--fovH5k93XVztsVBTWWodvOmiJpMcNxXhTHqfj1igKapXFxPtqRDme6P5Hbs9Ob4ynrOimwEjKGhnmRJ6WyvEyTShRWeYBlY22VVUVSFs5bCXmNLKSsuBcu0wWv9DjLKgvoqoJN9plsL-qF-0IoMtRpnwmuILVMXZJbrblXXJQuh9ifj0jWv0pTdjTj2O1ibvp6sj8mGsCgAUw0wIiw57MeIs3GBvkjtNKzLJJkhwPgOqZzHbPJdUZE9TY2Hd6IOAIuNdtw-x_RJV4ocDL7NQkK_G1-G5w4kemIHL4m2LaGIwOa-Po_nucbeYM6xgq5PbLdLFv3HSBTU-yTncn55fR6P3wlT2B2FI4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gE4IJ6iPH0AblabxI_kWBZWWXa3F3ZRb5aT2EugNFWagPrvmYmTqr2wEqcoziQeeZzxN_b4MyHvHJcWAmXFMm4s49HUscQ5wczUBLlVwomOp_tyLtNr_mUhFkfkZNgLg2mVve_3Pr3z1n3JpG_NybosJ18heuBITx6GHRBZ3CHHyE4lRuR4dnaezndxFzK4-KkWpOhTYthB16V5AS4sLPJ2hyGmxHNMh94boToi_8OBap9RtBuFTh-SBz18pDOv4SNyZFePyf09UsEnpEpNjf4LbqgFbAyS1KzKTdXU1XpLm4pi_qT9bemy-sN-VUW7bDcU1Ki7o3e2FBmMGU76ojiuy283FKAt9Tv10ah0f9n7Kbk-_Xx1krL-WAWWQ_jQMCeSIFeG52FQiMwoBxhtGhtlVBbkmXVGQpAjMykL7oSN4owX8TSKCgNQq4BL9IyMVtXKPicU6epiF0GrQ5wZ2iAxccyd4iK3CQCBZEyioSl13nOO49EXSz0kl_3Q3gAaDaC9AcaE7d5ae86NW-Q_opV2ssiY3RVU9Y3uu4xWiVOBA_ckIA53MQBjaRS3MSAkGRcKVFWDjfVBB4RPlbdU_8F3iQMFPpXfZp0CP5vvGldRZDgm7_8l2LaaIx2aePHfqrwld9Orywt9cTY_f0nu4ROfL_eKjJq6ta8BQDXZm_4H-Qs5fxoB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+elastic+anisotropy+to+achieve+low-modulus+refractory+high-entropy+alloys+for+biomedical+applications&rft.jtitle=Materials+%26+design&rft.au=Stephan+Sch%C3%B6necker&rft.au=Xiaojie+Li&rft.au=Daixiu+Wei&rft.au=Shogo+Nozaki&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=215&rft.spage=110430&rft_id=info:doi/10.1016%2Fj.matdes.2022.110430&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79f71f7875274f80996a74e878268d79 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |