Molecular Dissection of Variation in Carbohydrate Metabolism Related to Water-Soluble Carbohydrate Accumulation in Stems of Wheat

Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencin...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 146; no. 2; pp. 441 - 454
Main Authors Xue, Gang-Ping, McIntyre, C. Lynne, Jenkins, Colin L.D, Glassop, Donna, van Herwaarden, Anthony F, Shorter, Ray
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.02.2008
American Society of Plant Physiologists
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fructosyltransferase and Suc:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Suc hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.
AbstractList Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fructosyltransferase and Suc:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Suc hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.
Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Sue], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fruetosyltransf erase and Sucfructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Sue hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.
Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat ( Triticum aestivum ) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fructosyltransferase and Suc:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Suc hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.
Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fructosyltransferase and Suc:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Suc hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fructosyltransferase and Suc:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Suc hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.
Author McIntyre, C. Lynne
Shorter, Ray
van Herwaarden, Anthony F
Jenkins, Colin L.D
Glassop, Donna
Xue, Gang-Ping
AuthorAffiliation CSIRO Plant Industry, St Lucia, Brisbane, Queensland 4067, Australia (G.-P.X., C.L.M., D.G., A.F.v.H., R.S.); and CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia (C.L.D.J.)
AuthorAffiliation_xml – name: CSIRO Plant Industry, St Lucia, Brisbane, Queensland 4067, Australia (G.-P.X., C.L.M., D.G., A.F.v.H., R.S.); and CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia (C.L.D.J.)
Author_xml – sequence: 1
  fullname: Xue, Gang-Ping
– sequence: 2
  fullname: McIntyre, C. Lynne
– sequence: 3
  fullname: Jenkins, Colin L.D
– sequence: 4
  fullname: Glassop, Donna
– sequence: 5
  fullname: van Herwaarden, Anthony F
– sequence: 6
  fullname: Shorter, Ray
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20080490$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18083795$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURLeFI0cgF7ilTGwndi6VquVTaoXEUnq0HH90XTlxsB2kHvnnuN3tQpFQTx57nnlnPDMHxd7oR10Uz2s4qmsgb6fpqAaabQy0fVQs6gajCjWE7RULgGwDY91-cRDjFQDUuCZPiv2aAcO0axbFrzPvtJydCOU7G6OWyfqx9Kb8LoIVtxc7lksRer--VkEkXZ7pJHrvbBzKr9rlF1UmX15kI1Qr7-be6fsBJ1LOQ05xp7ZKeog3OS7WWqSnxWMjXNTPtudhcf7h_bflp-r0y8fPy5PTSjZNlyqtjMJGK9mpnhEkEcFdZzAVbYdkLySRSPW6phQpYhD02CjFmGkBd6zVSuPD4nijO839kHX0mIJwfAp2EOGae2H5fc9o1_zS_-QIkYY1KAu82QoE_2PWMfHBRqmdE6P2c-QUEEUYPwwS2mRFTB8EETDS5PQZfPl37bui7-aYgddbQEQpnAlilDbuOATAgHSQuWrDyeBjDNr8kQJ-s098mrJJ-WafMo__4aVNt4PMLbLuv1EvNlFXMfmwS0EA2txJnP2vNn4jPBeXIVd6vkJ5OXOZTcvyf34DX6Tj3A
CODEN PPHYA5
CitedBy_id crossref_primary_10_1093_pcp_pcw126
crossref_primary_10_1042_ETLS20180105
crossref_primary_10_1016_j_jplph_2024_154325
crossref_primary_10_1071_CP08460
crossref_primary_10_1016_j_plaphy_2020_07_024
crossref_primary_10_1371_journal_pone_0102917
crossref_primary_10_1002_jsfa_8271
crossref_primary_10_1111_ppl_14089
crossref_primary_10_1071_CP10141
crossref_primary_10_1371_journal_pone_0164293
crossref_primary_10_1007_s12284_008_9012_9
crossref_primary_10_3389_fpls_2015_00624
crossref_primary_10_7124_visnyk_utgis_14_2_689
crossref_primary_10_1093_pcp_pcw117
crossref_primary_10_2135_cropsci2011_05_0246
crossref_primary_10_1016_j_fcr_2011_06_008
crossref_primary_10_1007_s00425_022_03837_y
crossref_primary_10_1371_journal_pone_0140928
crossref_primary_10_1007_s10142_010_0166_3
crossref_primary_10_1007_s42976_024_00541_3
crossref_primary_10_1071_CP08073
crossref_primary_10_1093_jxb_eraa380
crossref_primary_10_1111_j_1438_8677_2011_00540_x
crossref_primary_10_1021_acs_jafc_3c05985
crossref_primary_10_1093_jxb_ers317
crossref_primary_10_1093_jxb_erp208
crossref_primary_10_3389_fpls_2018_01128
crossref_primary_10_1186_1471_2199_10_11
crossref_primary_10_3390_agronomy3020419
crossref_primary_10_1016_j_eja_2019_04_003
crossref_primary_10_1111_j_1365_313X_2008_03560_x
crossref_primary_10_1007_s10725_014_9908_x
crossref_primary_10_1016_j_jplph_2012_01_005
crossref_primary_10_1007_s10725_016_0164_0
crossref_primary_10_1007_s10142_010_0158_3
crossref_primary_10_3390_agriculture10110563
crossref_primary_10_1007_s00344_018_9822_y
crossref_primary_10_1093_jxb_ers124
crossref_primary_10_3390_ijms241612845
crossref_primary_10_1007_s11104_018_03901_1
crossref_primary_10_3390_agronomy11081516
crossref_primary_10_1186_s12870_024_05049_w
crossref_primary_10_1016_j_stress_2024_100654
crossref_primary_10_1071_FP13232
crossref_primary_10_1007_s40502_014_0083_x
crossref_primary_10_1186_s12870_018_1533_9
crossref_primary_10_1007_s10142_011_0212_9
crossref_primary_10_1016_j_agwat_2024_109076
crossref_primary_10_1007_s00299_015_1897_3
crossref_primary_10_1007_s40626_020_00174_x
crossref_primary_10_1016_j_jplph_2018_09_017
crossref_primary_10_1016_j_fcr_2024_109272
crossref_primary_10_1007_s00018_009_0002_x
crossref_primary_10_1007_s11105_017_1050_2
crossref_primary_10_1111_j_1365_3040_2010_02130_x
crossref_primary_10_1007_s00299_010_0868_y
crossref_primary_10_1186_s12864_021_07851_4
crossref_primary_10_1111_j_1742_4658_2009_07316_x
crossref_primary_10_1111_pce_13211
crossref_primary_10_1093_pcp_pcx072
crossref_primary_10_2134_agronj2015_0173
crossref_primary_10_1016_j_rsci_2016_08_003
crossref_primary_10_1016_j_envexpbot_2011_12_032
crossref_primary_10_1007_s00299_017_2224_y
crossref_primary_10_1080_17429145_2021_1912840
crossref_primary_10_1111_ppl_14157
crossref_primary_10_1016_j_plaphy_2014_03_025
crossref_primary_10_1093_jxb_erac415
crossref_primary_10_1093_jxb_ert399
crossref_primary_10_3389_fpls_2022_1066421
crossref_primary_10_29252_pgr_4_1_39
crossref_primary_10_1007_s12155_015_9631_0
crossref_primary_10_1007_s10681_019_2357_x
crossref_primary_10_3389_fpls_2017_01369
crossref_primary_10_1007_s11103_012_9983_1
crossref_primary_10_1016_j_ecoleng_2017_04_003
crossref_primary_10_1371_journal_pone_0120669
crossref_primary_10_1016_j_compbiolchem_2019_107144
crossref_primary_10_1016_j_fcr_2009_02_006
crossref_primary_10_1111_ppl_12786
crossref_primary_10_1007_s10142_011_0232_5
crossref_primary_10_1071_FP16047
crossref_primary_10_1007_s12298_015_0283_5
crossref_primary_10_1111_j_1365_313X_2011_04737_x
crossref_primary_10_1016_j_apenergy_2011_09_042
crossref_primary_10_1071_FP12362
crossref_primary_10_1017_S0021859616000551
crossref_primary_10_1104_pp_112_207753
crossref_primary_10_1016_j_copbio_2011_12_002
crossref_primary_10_1038_srep23173
crossref_primary_10_3390_agronomy14081853
crossref_primary_10_1002_wwp2_12250
crossref_primary_10_1007_s00299_009_0780_5
crossref_primary_10_3389_fpls_2022_825687
crossref_primary_10_1016_j_jplph_2014_02_007
crossref_primary_10_1016_j_plaphy_2020_04_018
crossref_primary_10_1093_jxb_ert205
crossref_primary_10_1111_pbr_12004
crossref_primary_10_1093_mp_ssr013
crossref_primary_10_1071_FP09174
crossref_primary_10_1371_journal_pone_0177667
crossref_primary_10_1002_fes3_539
crossref_primary_10_1007_s00122_020_03640_x
crossref_primary_10_1111_j_1399_3054_2010_01441_x
crossref_primary_10_1007_s11103_012_9949_3
crossref_primary_10_1016_j_jprot_2011_05_015
crossref_primary_10_1093_jxb_eru462
crossref_primary_10_1080_00032719_2011_551859
crossref_primary_10_1007_s42976_024_00495_6
crossref_primary_10_1016_S2095_3119_16_61471_5
crossref_primary_10_3390_ijms242115892
crossref_primary_10_1371_journal_pone_0199774
crossref_primary_10_1007_s10725_017_0359_z
crossref_primary_10_1007_s11032_015_0266_9
crossref_primary_10_1007_s11032_008_9179_1
crossref_primary_10_1007_s00122_016_2683_5
crossref_primary_10_2135_cropsci2013_11_0793
crossref_primary_10_3389_fpls_2015_01251
crossref_primary_10_1017_S0960258522000058
crossref_primary_10_1016_j_envexpbot_2018_07_029
crossref_primary_10_1111_pbi_12843
crossref_primary_10_1111_nph_13030
crossref_primary_10_1016_j_agwat_2023_108160
crossref_primary_10_1111_jac_12508
crossref_primary_10_1186_s12870_020_02557_3
crossref_primary_10_1093_jxb_ern164
crossref_primary_10_1007_s00425_016_2497_3
crossref_primary_10_1111_j_1469_8137_2008_02603_x
crossref_primary_10_4236_ajps_2011_21010
crossref_primary_10_1071_FP12193
crossref_primary_10_1111_j_1399_3054_2011_01517_x
crossref_primary_10_1186_s12870_019_1796_9
crossref_primary_10_1007_s10142_009_0130_2
crossref_primary_10_3390_ijms20112691
crossref_primary_10_1007_s12892_015_0014_z
crossref_primary_10_1111_j_1469_8137_2008_02713_x
crossref_primary_10_29252_jcb_10_26_146
crossref_primary_10_1186_s12864_024_10054_2
crossref_primary_10_3390_ijms20133137
Cites_doi 10.1111/j.1469-8137.1991.tb01043.x
10.1071/A97040
10.1007/BF00145637
10.1093/oxfordjournals.aob.a086697
10.1139/g06-066
10.1073/pnas.0503392102
10.1016/0003-2697(72)90301-6
10.1023/A:1026231904221
10.1104/pp.123.1.265
10.1016/S0014-5793(98)00289-0
10.1104/pp.107.105049
10.1016/j.gene.2005.05.029
10.1104/pp.116.1.403
10.2134/agronj1993.00021962008500040013x
10.1071/FP05161
10.1104/pp.009654
10.1126/science.279.5351.717
10.1023/B:CELL.0000046408.84510.06
10.1046/j.1432-1033.2003.03469.x
10.1006/jcrs.1996.0090
10.2135/cropsci1982.0011183X002200050016x
10.1007/s11103-005-6504-5
10.1016/S0176-1617(86)80227-9
10.1073/pnas.0337628100
10.1093/jxb/erj065
10.1093/jxb/erj031
10.1071/FP06148
10.1016/S1369-5266(03)00034-7
10.2135/cropsci2006.01.0013
10.1111/j.1365-3040.2004.01281.x
10.1104/pp.106.079533
10.1016/j.fcr.2006.11.005
10.1111/j.1469-8137.2005.01394.x
10.1007/s00239-004-0242-1
10.1016/0304-4211(84)90171-8
10.1078/0176-1617-01107
10.1111/j.1467-7652.2005.00148.x
10.1007/s11103-007-9200-9
10.1046/j.1469-8137.2000.00777.x
10.1111/j.1469-8137.2006.01896.x
10.1016/S0003-2697(69)80009-6
10.1111/j.1469-8137.1993.tb03732.x
10.1007/s00425-005-0054-6
10.1046/j.1469-8137.1998.00217.x
10.1007/s11103-006-0055-2
10.1093/oxfordjournals.aob.a088333
10.1017/S0021859602002095
10.1042/bj0570508
10.1104/pp.120.2.351
10.1111/j.1365-313X.2006.02862.x
10.1046/j.1365-3040.2002.00865.x
10.1104/pp.015305
10.1023/A:1018303922482
10.1071/FP06062
10.1071/A97041
10.1093/jxb/erm053
10.1093/aob/mcf105
10.1111/j.1469-8137.2007.01988.x
10.1046/j.1469-8137.2003.00799.x
10.1046/j.1365-313X.2003.01963.x
10.1104/pp.104.055087
10.1016/j.jchromb.2006.08.001
10.3168/jds.S0022-0302(75)84716-3
10.1016/0377-8401(95)00796-P
10.1007/s11103-007-9249-5
10.2135/cropsci2005.0175a
10.1146/annurev.pp.42.060191.000453
10.1017/S0021859607006740
10.1093/jxb/erl034
10.1104/pp.81.2.444
10.1093/biostatistics/4.2.249
10.1111/j.1469-8137.1993.tb03731.x
10.1016/S0176-1617(89)80063-X
10.1017/S0021859601001836
ContentType Journal Article
Copyright Copyright 2008 American Society of Plant Biologists
2008 INIST-CNRS
Copyright © 2008, American Society of Plant Biologists
Copyright_xml – notice: Copyright 2008 American Society of Plant Biologists
– notice: 2008 INIST-CNRS
– notice: Copyright © 2008, American Society of Plant Biologists
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1104/pp.107.113076
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts


CrossRef
MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1532-2548
EndPage 454
ExternalDocumentID PMC2245852
18083795
20080490
10_1104_pp_107_113076
40065853
US201300856895
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
IQODW
LU7
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c559t-edfd3fedc9db842c24399f37a692cbac4c2dbe1772d4f20b3fdd88f603986ede3
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 13:56:03 EDT 2025
Tue Aug 05 09:52:32 EDT 2025
Mon Jul 21 10:21:33 EDT 2025
Thu Jul 10 17:44:13 EDT 2025
Mon Jul 21 06:02:33 EDT 2025
Mon Jul 21 09:13:36 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 02:53:53 EDT 2025
Fri Jun 20 02:19:32 EDT 2025
Wed Dec 27 19:16:57 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Metabolism
Carbohydrate
Stem
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c559t-edfd3fedc9db842c24399f37a692cbac4c2dbe1772d4f20b3fdd88f603986ede3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The online version of this article contains Web-only data.
This work was supported by the Australian Grains Research & Development Corporation.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Gang-Ping Xue (gang-ping.xue@csiro.au).
www.plantphysiol.org/cgi/doi/10.1104/pp.107.113076
Corresponding author; e-mail gang-ping.xue@csiro.au.
OpenAccessLink https://academic.oup.com/plphys/article-pdf/146/2/323/37072302/plphys_v146_2_441.pdf
PMID 18083795
PQID 20845224
PQPubID 23462
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2245852
proquest_miscellaneous_70272332
proquest_miscellaneous_47545837
proquest_miscellaneous_20845224
pubmed_primary_18083795
pascalfrancis_primary_20080490
crossref_primary_10_1104_pp_107_113076
crossref_citationtrail_10_1104_pp_107_113076
jstor_primary_40065853
fao_agris_US201300856895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2008
Publisher American Society of Plant Biologists
American Society of Plant Physiologists
Publisher_xml – name: American Society of Plant Biologists
– name: American Society of Plant Physiologists
References (2021041513455170000_b62) 2005; 166
(2021041513455170000_b8) 1984; 36
(2021041513455170000_b33) 1989; 134
(2021041513455170000_b40) 2007; 58
(2021041513455170000_b68) 2007; 174
(2021041513455170000_b18) 2004; 11
(2021041513455170000_b25) 1995; 55
(2021041513455170000_b5) 2003; 256
(2021041513455170000_b72) 1994; 21
(2021041513455170000_b2) 2007; 845
(2021041513455170000_b56) 2007; 65
(2021041513455170000_b32) 2005; 358
(2021041513455170000_b42) 2000; 123
(2021041513455170000_b58) 2003; 270
(2021041513455170000_b36) 1997; 25
(2021041513455170000_b6) 1993; 123
(2021041513455170000_b24) 2003; 159
(2021041513455170000_b75) 2006; 33
(2021041513455170000_b46) 1998; 425
(2021041513455170000_b44) 2005; 102
(2021041513455170000_b26) 2002; 130
(2021041513455170000_b28) 2003; 4
(2021041513455170000_b61) 2003; 131
(2021041513455170000_b15) 2002; 89
(2021041513455170000_b22) 2007; 145
(2021041513455170000_b3) 1998; 279
(2021041513455170000_b60) 2006; 57
(2021041513455170000_b49) 2005; 58
(2021041513455170000_b20) 2006; 141
(2021041513455170000_b38) 1972; 47
(2021041513455170000_b67) 2006; 57
(2021041513455170000_b43) 2007; 34
(2021041513455170000_b35) 2006; 57
(2021041513455170000_b57) 2003; 100
(2021041513455170000_b76) 2004; 37
(2021041513455170000_b70) 1986; 123
(2021041513455170000_b23) 2006; 49
(2021041513455170000_b41) 1982; 22
(2021041513455170000_b59) 1969; 32
(2021041513455170000_b34) 1993; 85
(2021041513455170000_b17) 2005; 28
(2021041513455170000_b54) 2002; 138
(2021041513455170000_b21) 2002; 138
(2021041513455170000_b50) 2008; 66
(2021041513455170000_b39) 1998; 116
(2021041513455170000_b4) 2005; 137
(2021041513455170000_b63) 1998; 49
(2021041513455170000_b1) 1984; 53
(2021041513455170000_b69) 1999; 120
(2021041513455170000_b7) 2007; 101
(2021041513455170000_b64) 2002
(2021041513455170000_b16) 1975; 58
(2021041513455170000_b77) 2006; 61
(2021041513455170000_b53) 2005; 45
(2021041513455170000_b10) 1991; 54
(2021041513455170000_b14) 2005; 3
(2021041513455170000_b13) 2003; 160
(2021041513455170000_b74) 1998; 139
(2021041513455170000_b12) 1982; 9
(2021041513455170000_b31) 2005; 223
(2021041513455170000_b73) 2000; 148
(2021041513455170000_b11) 1992; 69
(2021041513455170000_b78) 1954; 57
(2021041513455170000_b45) 1991; 42
(2021041513455170000_b55) 1991; 119
(2021041513455170000_b66) 2002; 25
(2021041513455170000_b19) 2006; 46
(2021041513455170000_b9) 1998; 100
(2021041513455170000_b52) 1993; 123
(2021041513455170000_b47) 2006; 48
(2021041513455170000_b71) 1986; 81
(2021041513455170000_b27) 2000
(2021041513455170000_b29) 2007; 173
(2021041513455170000_b48) 2003; 6
(2021041513455170000_b30) 2005; 60
(2021041513455170000_b65) 1998; 49
(2021041513455170000_b37) 2007; 145
(2021041513455170000_b51) 2006; 33
References_xml – volume: 119
  start-page: 517
  year: 1991
  ident: 2021041513455170000_b55
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1991.tb01043.x
– volume: 49
  start-page: 1083
  year: 1998
  ident: 2021041513455170000_b63
  publication-title: Aust J Agric Res
  doi: 10.1071/A97040
– volume: 54
  start-page: 111
  year: 1991
  ident: 2021041513455170000_b10
  publication-title: Euphytica
  doi: 10.1007/BF00145637
– volume: 53
  start-page: 329
  year: 1984
  ident: 2021041513455170000_b1
  publication-title: Ann Bot (Lond)
  doi: 10.1093/oxfordjournals.aob.a086697
– volume: 49
  start-page: 1081
  year: 2006
  ident: 2021041513455170000_b23
  publication-title: Genome
  doi: 10.1139/g06-066
– volume: 102
  start-page: 8633
  year: 2005
  ident: 2021041513455170000_b44
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0503392102
– volume: 47
  start-page: 273
  year: 1972
  ident: 2021041513455170000_b38
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(72)90301-6
– volume: 9
  start-page: 423
  year: 1982
  ident: 2021041513455170000_b12
  publication-title: Aust J Plant Physiol
– volume: 256
  start-page: 217
  year: 2003
  ident: 2021041513455170000_b5
  publication-title: Plant Soil
  doi: 10.1023/A:1026231904221
– volume: 123
  start-page: 265
  year: 2000
  ident: 2021041513455170000_b42
  publication-title: Plant Physiol
  doi: 10.1104/pp.123.1.265
– volume: 425
  start-page: 475
  year: 1998
  ident: 2021041513455170000_b46
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(98)00289-0
– volume: 21
  start-page: 255
  year: 1994
  ident: 2021041513455170000_b72
  publication-title: Aust J Plant Physiol
– volume: 145
  start-page: 616
  year: 2007
  ident: 2021041513455170000_b37
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.105049
– year: 2002
  ident: 2021041513455170000_b64
– volume: 358
  start-page: 93
  year: 2005
  ident: 2021041513455170000_b32
  publication-title: Gene
  doi: 10.1016/j.gene.2005.05.029
– volume: 116
  start-page: 403
  year: 1998
  ident: 2021041513455170000_b39
  publication-title: Plant Physiol
  doi: 10.1104/pp.116.1.403
– volume: 85
  start-page: 844
  year: 1993
  ident: 2021041513455170000_b34
  publication-title: Agron J
  doi: 10.2134/agronj1993.00021962008500040013x
– volume: 33
  start-page: 43
  year: 2006
  ident: 2021041513455170000_b75
  publication-title: Funct Plant Biol
  doi: 10.1071/FP05161
– volume: 130
  start-page: 2188
  year: 2002
  ident: 2021041513455170000_b26
  publication-title: Plant Physiol
  doi: 10.1104/pp.009654
– volume: 279
  start-page: 717
  year: 1998
  ident: 2021041513455170000_b3
  publication-title: Science
  doi: 10.1126/science.279.5351.717
– volume: 11
  start-page: 301
  year: 2004
  ident: 2021041513455170000_b18
  publication-title: Cellulose
  doi: 10.1023/B:CELL.0000046408.84510.06
– volume: 270
  start-page: 1043
  year: 2003
  ident: 2021041513455170000_b58
  publication-title: Eur J Biochem
  doi: 10.1046/j.1432-1033.2003.03469.x
– volume: 25
  start-page: 103
  year: 1997
  ident: 2021041513455170000_b36
  publication-title: J Cereal Sci
  doi: 10.1006/jcrs.1996.0090
– volume: 22
  start-page: 963
  year: 1982
  ident: 2021041513455170000_b41
  publication-title: Crop Sci
  doi: 10.2135/cropsci1982.0011183X002200050016x
– volume: 58
  start-page: 597
  year: 2005
  ident: 2021041513455170000_b49
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-005-6504-5
– volume: 123
  start-page: 429
  year: 1986
  ident: 2021041513455170000_b70
  publication-title: J Plant Physiol
  doi: 10.1016/S0176-1617(86)80227-9
– volume: 100
  start-page: 1450
  year: 2003
  ident: 2021041513455170000_b57
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0337628100
– volume: 57
  start-page: 775
  year: 2006
  ident: 2021041513455170000_b60
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erj065
– volume: 57
  start-page: 213
  year: 2006
  ident: 2021041513455170000_b67
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erj031
– volume: 34
  start-page: 189
  year: 2007
  ident: 2021041513455170000_b43
  publication-title: Funct Plant Biol
  doi: 10.1071/FP06148
– volume: 6
  start-page: 223
  year: 2003
  ident: 2021041513455170000_b48
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/S1369-5266(03)00034-7
– volume: 46
  start-page: 2093
  year: 2006
  ident: 2021041513455170000_b19
  publication-title: Crop Sci
  doi: 10.2135/cropsci2006.01.0013
– volume: 28
  start-page: 432
  year: 2005
  ident: 2021041513455170000_b17
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2004.01281.x
– volume: 141
  start-page: 196
  year: 2006
  ident: 2021041513455170000_b20
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.079533
– volume: 101
  start-page: 198
  year: 2007
  ident: 2021041513455170000_b7
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2006.11.005
– volume: 166
  start-page: 917
  year: 2005
  ident: 2021041513455170000_b62
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2005.01394.x
– volume: 60
  start-page: 615
  year: 2005
  ident: 2021041513455170000_b30
  publication-title: J Mol Evol
  doi: 10.1007/s00239-004-0242-1
– volume: 36
  start-page: 213
  year: 1984
  ident: 2021041513455170000_b8
  publication-title: Plant Sci Lett
  doi: 10.1016/0304-4211(84)90171-8
– volume: 160
  start-page: 1385
  year: 2003
  ident: 2021041513455170000_b13
  publication-title: J Plant Physiol
  doi: 10.1078/0176-1617-01107
– volume: 3
  start-page: 459
  year: 2005
  ident: 2021041513455170000_b14
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2005.00148.x
– volume: 65
  start-page: 77
  year: 2007
  ident: 2021041513455170000_b56
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-007-9200-9
– volume: 148
  start-page: 413
  year: 2000
  ident: 2021041513455170000_b73
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2000.00777.x
– volume: 173
  start-page: 50
  year: 2007
  ident: 2021041513455170000_b29
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2006.01896.x
– volume: 32
  start-page: 420
  year: 1969
  ident: 2021041513455170000_b59
  publication-title: Anal Biochem
  doi: 10.1016/S0003-2697(69)80009-6
– volume: 123
  start-page: 247
  year: 1993
  ident: 2021041513455170000_b6
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1993.tb03732.x
– volume: 223
  start-page: 90
  year: 2005
  ident: 2021041513455170000_b31
  publication-title: Planta
  doi: 10.1007/s00425-005-0054-6
– volume: 139
  start-page: 471
  year: 1998
  ident: 2021041513455170000_b74
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.1998.00217.x
– volume: 61
  start-page: 863
  year: 2006
  ident: 2021041513455170000_b77
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-006-0055-2
– volume: 69
  start-page: 219
  year: 1992
  ident: 2021041513455170000_b11
  publication-title: Ann Bot (Lond)
  doi: 10.1093/oxfordjournals.aob.a088333
– volume: 138
  start-page: 375
  year: 2002
  ident: 2021041513455170000_b54
  publication-title: J Agric Sci
  doi: 10.1017/S0021859602002095
– volume: 57
  start-page: 508
  year: 1954
  ident: 2021041513455170000_b78
  publication-title: Biochem J
  doi: 10.1042/bj0570508
– volume: 120
  start-page: 351
  year: 1999
  ident: 2021041513455170000_b69
  publication-title: Plant Physiol
  doi: 10.1104/pp.120.2.351
– volume: 48
  start-page: 228
  year: 2006
  ident: 2021041513455170000_b47
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02862.x
– volume: 25
  start-page: 803
  year: 2002
  ident: 2021041513455170000_b66
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2002.00865.x
– volume: 131
  start-page: 621
  year: 2003
  ident: 2021041513455170000_b61
  publication-title: Plant Physiol
  doi: 10.1104/pp.015305
– volume: 100
  start-page: 77
  year: 1998
  ident: 2021041513455170000_b9
  publication-title: Euphytica
  doi: 10.1023/A:1018303922482
– volume: 33
  start-page: 799
  year: 2006
  ident: 2021041513455170000_b51
  publication-title: Funct Plant Biol
  doi: 10.1071/FP06062
– volume: 49
  start-page: 1095
  year: 1998
  ident: 2021041513455170000_b65
  publication-title: Aust J Agric Res
  doi: 10.1071/A97041
– volume: 58
  start-page: 1969
  year: 2007
  ident: 2021041513455170000_b40
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm053
– volume: 89
  start-page: 907
  year: 2002
  ident: 2021041513455170000_b15
  publication-title: Ann Bot (Lond)
  doi: 10.1093/aob/mcf105
– volume: 174
  start-page: 90
  year: 2007
  ident: 2021041513455170000_b68
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.01988.x
– volume: 159
  start-page: 245
  year: 2003
  ident: 2021041513455170000_b24
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00799.x
– volume: 37
  start-page: 326
  year: 2004
  ident: 2021041513455170000_b76
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01963.x
– volume: 137
  start-page: 983
  year: 2005
  ident: 2021041513455170000_b4
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.055087
– volume: 845
  start-page: 151
  year: 2007
  ident: 2021041513455170000_b2
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2006.08.001
– volume: 58
  start-page: 1347
  year: 1975
  ident: 2021041513455170000_b16
  publication-title: J Dairy Sci
  doi: 10.3168/jds.S0022-0302(75)84716-3
– volume: 55
  start-page: 263
  year: 1995
  ident: 2021041513455170000_b25
  publication-title: Anim Feed Sci Technol
  doi: 10.1016/0377-8401(95)00796-P
– volume: 66
  start-page: 15
  year: 2008
  ident: 2021041513455170000_b50
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-007-9249-5
– volume: 45
  start-page: 175
  year: 2005
  ident: 2021041513455170000_b53
  publication-title: Crop Sci
  doi: 10.2135/cropsci2005.0175a
– volume: 42
  start-page: 77
  year: 1991
  ident: 2021041513455170000_b45
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.42.060191.000453
– volume: 145
  start-page: 17
  year: 2007
  ident: 2021041513455170000_b22
  publication-title: J Agric Sci
  doi: 10.1017/S0021859607006740
– volume: 57
  start-page: 2719
  year: 2006
  ident: 2021041513455170000_b35
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl034
– volume: 81
  start-page: 444
  year: 1986
  ident: 2021041513455170000_b71
  publication-title: Plant Physiol
  doi: 10.1104/pp.81.2.444
– volume: 4
  start-page: 249
  year: 2003
  ident: 2021041513455170000_b28
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 123
  start-page: 233
  year: 1993
  ident: 2021041513455170000_b52
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1993.tb03731.x
– year: 2000
  ident: 2021041513455170000_b27
– volume: 134
  start-page: 243
  year: 1989
  ident: 2021041513455170000_b33
  publication-title: J Plant Physiol
  doi: 10.1016/S0176-1617(89)80063-X
– volume: 138
  start-page: 153
  year: 2002
  ident: 2021041513455170000_b21
  publication-title: J Agric Sci
  doi: 10.1017/S0021859601001836
SSID ssj0001314
Score 2.3201418
Snippet Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are...
Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Sue], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are...
Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat ( Triticum aestivum ) stems are...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 441
SubjectTerms Agronomy. Soil science and plant productions
beta-fructofuranosidase
beta-Fructofuranosidase - genetics
beta-Fructofuranosidase - metabolism
Biochemical Processes and Macromolecular Structures
Biological and medical sciences
Carbohydrate metabolism
Carbohydrate Metabolism - physiology
Carbohydrates
Carbohydrates - chemistry
carbon
Cell walls
cellulose synthase
chemistry
correlation
Economic plant physiology
enzyme activity
Enzymes
filling period
Fructans
fructose
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Gene Expression Regulation, Plant - physiology
Genes
Genes, Plant
genetics
Genotype
glucose
Glucosyltransferases
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
grain yield
Grains
hydrolysis
Messenger RNA
metabolism
Multigene Family
physiology
Plant Proteins
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Stems
Plant Stems - metabolism
Plants
Protein Array Analysis
RNA, Messenger
RNA, Messenger - metabolism
RNA, Plant
RNA, Plant - genetics
RNA, Plant - metabolism
Seeds
Seeds - metabolism
Seri
Stems
sucrose
Triticum
Triticum - genetics
Triticum - metabolism
Triticum aestivum
Water
Water - chemistry
Water - metabolism
Water relations, transpiration, stomata
Wheat
Title Molecular Dissection of Variation in Carbohydrate Metabolism Related to Water-Soluble Carbohydrate Accumulation in Stems of Wheat
URI https://www.jstor.org/stable/40065853
https://www.ncbi.nlm.nih.gov/pubmed/18083795
https://www.proquest.com/docview/20845224
https://www.proquest.com/docview/47545837
https://www.proquest.com/docview/70272332
https://pubmed.ncbi.nlm.nih.gov/PMC2245852
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ49NAL6ouyfWxzqHqh2SaO89gjbGkpZREq0O4tcmIbkCBZsdkDvfXP9nd0xo6zCQWp5RJFWT-Snc_2fOPxDCFvgSGoWLHM9UIuXTbMIjcJuO9mVCrKqVIhxdPI44No94TtTcLJ0tLvltfSvMoG-c9bz5XcR6rwDOSKp2T_Q7JNo_AA7kG-cAUJw_WfZDy2uW0xiOZM5lb7-w4EmFsvxhG_ysqza4ExITbHsgKpX2BmDO0GB-omKJ8_4ObKRQsZnqPqVNjK8_llneILWzvC-ObYh57F26otpj-qjKXExHUC3XUbjxPPBG_ZGyZzbUL9zItT99Cum9owuLCIjwab-9fFYsN_T2KCBxMMAZMMbe4PPg4azyHU_8upYQOFSQbe2DES6_pskWc3qKy3KroA6hc3STkB9G3rpRdA7cRkHxpIO3dTF_hu0pncawPneYtkm6mamYBb9arPTCjrvxcUj2EW5OnAR0scLPgmW00LXNNLjS4_AWU2NglDb0TwPhyPQFECXgaqwioFOqOp_5evjcbgByYGvf2oJhYs-9DpGSPc1t101KhlxUvrT4vOvXwG41uZxCy3MaebDsAtjer4EVmrqZCzZXD9mCzJ4gl5sF0CXbl-Sn414HYW4HZK5TTgds4Lp41VZwFupwa3U5VOB9zdCm1wY2sa3NiHBvczcvJp53i069b5QtwceHHlSqFEoOCrhiJLGM0pcm0VxDwa0jzjOcupyKQPAhBMUS8LlBBJoiIvGCaRFDJYJytFWcgN4tAkDAPhK1DsIhZlMU9k5gWCSV9wARpwj7y3f3-a18H0MafLRapJtcfS6RRu49QIrkfeNcWnJorMXQU3QJYpP4UVPj05ouhXAKQoSoZhj6xrATcNME0fQniXfkfiTQEcZbix3yNvLARSWDxwR5AXspzPoESCGRXY3SVYjDvrQXx3idijgOiA9shzA6rFF9ZY7ZG4A7emAIa27_5SnJ_pEPf1eHlx75ovycPFJPOKrFRXc_ka6EOV9clyPIn7ZHV75-DwW1-PxD8-GSGg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Dissection+of+Variation+in+Carbohydrate+Metabolism+Related+to+Water-Soluble+Carbohydrate+Accumulation+in+Stems+of+Wheat&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Xue%2C+Gang-Ping&rft.au=McIntyre%2C+C.+Lynne&rft.au=Jenkins%2C+Colin+L.D.&rft.au=Glassop%2C+Donna&rft.date=2008-02-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=146&rft.issue=2&rft.spage=441&rft.epage=454&rft_id=info:doi/10.1104%2Fpp.107.113076&rft_id=info%3Apmid%2F18083795&rft.externalDocID=PMC2245852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon