Development of a cerebellar ataxia diagnosis model using conditional GAN-based synthetic data generation for visuomotor adaptation task
This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young health...
Saved in:
Published in | BMC medical informatics and decision making Vol. 24; no. 1; pp. 336 - 15 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
12.11.2024
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1472-6947 1472-6947 |
DOI | 10.1186/s12911-024-02720-y |
Cover
Abstract | This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools. |
---|---|
AbstractList | Abstract This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools. This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools. This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools. Keywords: Cerebellar ataxia diagnosis, Visuomotor adaptation task, Conditional generative adversarial network, Synthetic data, Digital healthcare This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools.This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools. |
ArticleNumber | 336 |
Audience | Academic |
Author | Lee, Jee-Young Ryu, Jeh-Kwang Kim, Jinah Kim, Taekyung Woo, Sung-Ho Shin, Jung Hwan Yoon, Won Tae |
Author_xml | – sequence: 1 givenname: Jinah surname: Kim fullname: Kim, Jinah organization: Coastal Disaster Research Center, Korea Institute of Ocean Science and Technology – sequence: 2 givenname: Sung-Ho surname: Woo fullname: Woo, Sung-Ho organization: Institute of Interdisciplinary Brain Science, Dongguk University College of Medicine – sequence: 3 givenname: Taekyung surname: Kim fullname: Kim, Taekyung organization: Coastal Disaster Research Center, Korea Institute of Ocean Science and Technology, School of Computer Science and Engineering, Kyungpook National University – sequence: 4 givenname: Won Tae surname: Yoon fullname: Yoon, Won Tae organization: Department of Neurology, Samsung Kangbuk Hospital, Sungkyunkwan University School of Medicine – sequence: 5 givenname: Jung Hwan surname: Shin fullname: Shin, Jung Hwan organization: Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine – sequence: 6 givenname: Jee-Young surname: Lee fullname: Lee, Jee-Young email: wieber04@snu.ac.kr organization: Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine – sequence: 7 givenname: Jeh-Kwang surname: Ryu fullname: Ryu, Jeh-Kwang email: ryujk@dgu.ac.kr organization: Laboratory for Natural and Artificial Kinästhese, Convergence Research Center for Artificial Intelligence, Dongguk University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39529148$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURH_gBVggS2zYpMR_cbJCowKlUgUbWFt34uvUQ2IPdjJinoDXxtMpbQchFEW5sr9znHt9TosjHzwWxUtanVPa1G8TZS2lZcVEfhWryu2T4oQKxcq6FeroUX1cnKa0qiqqGi6fFce8lVkqmpPi13vc4BDWI_qJBEuAdBhxicMAkcAEPx0Q46D3IblExmBwIHNyvidd8MZNLngYyOXic7mEhIakrZ9ucHIdMVlNevQYYUcRGyLZuDSHMUy5BAPrab8zQfr-vHhqYUj44u57Vnz7-OHrxafy-svl1cXiuuykbKfS1Eosa9W2DJVpVFdDvZTWCBSgGADjpra1Ncw2KIThubQcWYvYWG6hXfKz4mrvawKs9Dq6EeJWB3D6diHEXkPMvz-gNpVVVDIL0CnBRQembXjFOSgrpMI2e73be63n5YimyyOMMByYHu54d6P7sNGUSikbKrLDmzuHGH7MmCY9utTthu8xzElzyholW8nrjL7-C12FOebh7yjB8nXWtXigesgdOG9DPrjbmepFQ2Xd8nxyps7_QeXH4OjyvaJ1ef1A8Opxp_ct_slRBtge6GJIKaK9R2ild2HV-7DqHFZ9G1a9zSK-F6UM-x7jQ0v_Uf0GNHnu6A |
Cites_doi | 10.1016/j.neuropsychologia.2012.03.034 10.1038/s41598-017-02469-7 10.1109/ASSIC55218.2022.10088379 10.1007/s12311-013-0486-7 10.1016/j.neucom.2018.09.013 10.1016/S0022-510X(96)00231-6 10.1038/s41598-024-66874-5 10.1152/jn.00451.2017 10.1093/brain/awy334 10.1016/j.ifacol.2022.10.240 10.1145/3422622 10.1007/s12311-021-01281-4 10.3389/fpsyt.2022.963303 10.1109/CICT51604.2020.9312049 10.1007/978-3-642-01536-6_8 10.1007/978-3-319-10581-9_9 10.1212/01.wnl.0000219042.60538.92 10.1109/CVPR.2018.00165 10.3988/jcn.2021.17.2.187 10.1007/s12311-011-0331-9 10.1109/TNSRE.2021.3125023 10.1212/01.WNL.0000156802.15466.79 10.1109/ACCESS.2019.2943474 10.7554/eLife.76639 10.22452/mjcs.sp2022no1.10 10.1609/aaai.v33i01.3301557 10.1016/j.procs.2018.08.150 10.1186/s40537-019-0192-5 10.1016/j.neulet.2018.06.055 10.1038/s41746-022-00674-x |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12911-024-02720-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (ND) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1472-6947 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_d0f7152faac7434cad983033a7f457e9 PMC11555814 A815693555 39529148 10_1186_s12911_024_02720_y |
Genre | Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GrantInformation_xml | – fundername: Institute of Information & Communications Technology Planning & Evaluation(IITP), South Korea grantid: RS-2023-00223446; RS-2023-00223446; RS-2023-00223446; RS-2023-00223446 – fundername: Institute of Information & Communications Technology Planning & Evaluation(IITP), South Korea grantid: RS-2023-00223446 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0T M1P M48 M7P M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF M0N NPM PMFND 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c559t-d674b67992e7d87c6a6b5fd4e4a72aa23d6f6fd2f8e44d36fdf3e29ee8f3fa9b3 |
IEDL.DBID | M48 |
ISSN | 1472-6947 |
IngestDate | Wed Aug 27 01:21:40 EDT 2025 Thu Aug 21 18:30:21 EDT 2025 Fri Sep 05 14:00:13 EDT 2025 Fri Jul 25 19:13:48 EDT 2025 Tue Jun 17 22:01:57 EDT 2025 Tue Jun 10 21:02:26 EDT 2025 Thu Jan 02 22:23:45 EST 2025 Tue Jul 01 04:06:02 EDT 2025 Sat Sep 06 07:31:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Visuomotor adaptation task Conditional generative adversarial network Cerebellar ataxia diagnosis Synthetic data Digital healthcare |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-d674b67992e7d87c6a6b5fd4e4a72aa23d6f6fd2f8e44d36fdf3e29ee8f3fa9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12911-024-02720-y |
PMID | 39529148 |
PQID | 3142291664 |
PQPubID | 42572 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d0f7152faac7434cad983033a7f457e9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11555814 proquest_miscellaneous_3128759536 proquest_journals_3142291664 gale_infotracmisc_A815693555 gale_infotracacademiconefile_A815693555 pubmed_primary_39529148 crossref_primary_10_1186_s12911_024_02720_y springer_journals_10_1186_s12911_024_02720_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-12 |
PublicationDateYYYYMMDD | 2024-11-12 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC medical informatics and decision making |
PublicationTitleAbbrev | BMC Med Inform Decis Mak |
PublicationTitleAlternate | BMC Med Inform Decis Mak |
PublicationYear | 2024 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | T Martin (2720_CR23) 1996; 119 I Goodfellow (2720_CR8) 2020; 63 TW Cenggoro (2720_CR9) 2018; 135 H Block (2720_CR15) 2013; 12 V Ramesh (2720_CR6) 2022; 5 2720_CR29 JS Tsay (2720_CR19) 2022; 11 PC Wong (2720_CR36) 2024; 14 HJ Block (2720_CR24) 2012; 50 M Frid-Adar (2720_CR4) 2018; 321 AS Therrien (2720_CR17) 2019; 688 G Wu (2720_CR34) 2019; 7 P Trouillas (2720_CR20) 1997; 145 S Subramony (2720_CR21) 2005; 64 H Chang (2720_CR28) 2023; 13 PA Butcher (2720_CR16) 2017; 118 T Schmitz-Hübsch (2720_CR22) 2006; 66 AL Wong (2720_CR26) 2019; 142 E Dzotsenidze (2720_CR11) 2022; 55 MT Panouillères (2720_CR25) 2017; 7 DH Kim (2720_CR27) 2021; 17 JM Johnson (2720_CR7) 2019; 6 2720_CR30 2720_CR31 2720_CR1 2720_CR10 2720_CR32 2720_CR2 E Tzvi (2720_CR18) 2022; 21 2720_CR33 2720_CR12 2720_CR13 2720_CR35 2720_CR14 K Rasheed (2720_CR37) 2021; 29 2720_CR3 2720_CR5 |
References_xml | – ident: 2720_CR32 – volume: 50 start-page: 1766 issue: 8 year: 2012 ident: 2720_CR24 publication-title: Neuropsychologia. doi: 10.1016/j.neuropsychologia.2012.03.034 – volume: 7 start-page: 2366 issue: 1 year: 2017 ident: 2720_CR25 publication-title: Sci Rep. doi: 10.1038/s41598-017-02469-7 – ident: 2720_CR12 doi: 10.1109/ASSIC55218.2022.10088379 – volume: 12 start-page: 781 year: 2013 ident: 2720_CR15 publication-title: Cerebellum. doi: 10.1007/s12311-013-0486-7 – volume: 321 start-page: 321 year: 2018 ident: 2720_CR4 publication-title: Neurocomputing. doi: 10.1016/j.neucom.2018.09.013 – volume: 145 start-page: 205 issue: 2 year: 1997 ident: 2720_CR20 publication-title: J Neurol Sci. doi: 10.1016/S0022-510X(96)00231-6 – ident: 2720_CR30 – volume: 14 start-page: 17037 issue: 1 year: 2024 ident: 2720_CR36 publication-title: Sci Rep. doi: 10.1038/s41598-024-66874-5 – volume: 118 start-page: 1622 issue: 3 year: 2017 ident: 2720_CR16 publication-title: J Neurophys. doi: 10.1152/jn.00451.2017 – volume: 119 start-page: 1183 issue: 4 year: 1996 ident: 2720_CR23 publication-title: Focal olivocerebellar lesions impair adaptation. Brain. – volume: 142 start-page: 662 issue: 3 year: 2019 ident: 2720_CR26 publication-title: Brain. doi: 10.1093/brain/awy334 – ident: 2720_CR2 – volume: 55 start-page: 108 issue: 29 year: 2022 ident: 2720_CR11 publication-title: IFAC-PapersOnLine. doi: 10.1016/j.ifacol.2022.10.240 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 2720_CR8 publication-title: Commun ACM. doi: 10.1145/3422622 – volume: 21 start-page: 306 issue: 2 year: 2022 ident: 2720_CR18 publication-title: Cerebellum. doi: 10.1007/s12311-021-01281-4 – volume: 13 start-page: 963303 year: 2023 ident: 2720_CR28 publication-title: Front Psychiatry. doi: 10.3389/fpsyt.2022.963303 – ident: 2720_CR29 doi: 10.1109/CICT51604.2020.9312049 – ident: 2720_CR35 doi: 10.1007/978-3-642-01536-6_8 – ident: 2720_CR13 doi: 10.1007/978-3-319-10581-9_9 – volume: 66 start-page: 1717 issue: 11 year: 2006 ident: 2720_CR22 publication-title: Neurology. doi: 10.1212/01.wnl.0000219042.60538.92 – ident: 2720_CR33 doi: 10.1109/CVPR.2018.00165 – volume: 17 start-page: 187 issue: 2 year: 2021 ident: 2720_CR27 publication-title: J Clin Neurol (Seoul, Korea). doi: 10.3988/jcn.2021.17.2.187 – ident: 2720_CR14 doi: 10.1007/s12311-011-0331-9 – ident: 2720_CR31 – volume: 29 start-page: 2322 year: 2021 ident: 2720_CR37 publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2021.3125023 – volume: 64 start-page: 1261 issue: 7 year: 2005 ident: 2720_CR21 publication-title: Neurology. doi: 10.1212/01.WNL.0000156802.15466.79 – volume: 7 start-page: 139580 year: 2019 ident: 2720_CR34 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2943474 – volume: 11 start-page: e76639 year: 2022 ident: 2720_CR19 publication-title: Elife. doi: 10.7554/eLife.76639 – ident: 2720_CR1 – ident: 2720_CR3 – ident: 2720_CR10 doi: 10.22452/mjcs.sp2022no1.10 – ident: 2720_CR5 doi: 10.1609/aaai.v33i01.3301557 – volume: 135 start-page: 60 year: 2018 ident: 2720_CR9 publication-title: Procedia Comput Sci. doi: 10.1016/j.procs.2018.08.150 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 2720_CR7 publication-title: J Big Data. doi: 10.1186/s40537-019-0192-5 – volume: 688 start-page: 37 year: 2019 ident: 2720_CR17 publication-title: Neurosci Lett. doi: 10.1016/j.neulet.2018.06.055 – volume: 5 start-page: 138 issue: 1 year: 2022 ident: 2720_CR6 publication-title: NPJ Digit Med. doi: 10.1038/s41746-022-00674-x |
SSID | ssj0017835 |
Score | 2.3741639 |
Snippet | This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the... Abstract This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 336 |
SubjectTerms | Accuracy Adaptation Adaptation, Physiological Adult Age Ataxia Atrophy Brain Cerebellar ataxia Cerebellar Ataxia - diagnosis Cerebellum Classification Comparative analysis Conditional generative adversarial network Deep Learning Diagnosis Digital healthcare Female Health aspects Health Informatics Humans Information Systems and Communication Service Machine learning Male Management of Computing and Information Systems Medical diagnosis Medical research Medicine Medicine & Public Health Middle Aged Movement disorders Neural networks Neural Networks, Computer Patients Psychomotor Performance - physiology Random noise Risk factors Sensorimotor integration Synthetic data Virtual reality Visuomotor adaptation task Young adults |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ND) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLojwDBRkJiQNEzcPx47ggSoXUnqjUmzWO7bJCylabLGJ_Qf82M3ksmyLEhZsVO4rjmfF88_CYsTdGIabPBKRSO0hFjEWKoF6lLpcgZF0iRCWH_tm5PL0QXy6ry72rvignbCgPPCzcsc-iQh0TAWpUdqIGbzRuuyWoKCoV-qN7mckmY2qMH5A_Yzoio-Vxi1qNXIGFoJglGkzbmRrqq_X_uSfvKaXbCZO3oqa9Mjp5wO6PKJIvhtkfsjuhecjuno1x8kfsZi8XiK8iB16HdaAYA6w5dPBzCdwPSXbLlve34XDKgL_iaB775eAf5J8X5ylpOc_bbYNAET_GKaOUX_W1qmkUR8zLfyzbDSX1YRM8XA_Bfd5B-_0xuzj59PXjaTpeuZDWaFp0qZdKOKmMKYLyWtUSpKuiF0GAKgCK0ssooy-iDkL4EpuxDIUJQccygnHlE3bQrJrwjHHjcjC5ryJR3ajc1TGAE652mdRVFhL2bqKAvR4qa9jeItHSDvSySC_b08tuE_aBiLQbSVWx-wfIK3bkFfsvXknYWyKxJdlFOtYwHkHACVMVLLug0jlUcL5K2NFsJMpcPe-emMSOMt_aktxpiLalSNjrXTe9SdRtwmpDY9BCrShknrCnA0_tfqk0Fb4udML0jNtm_zzvaZbf-orgCOurSuf44fcTY_6e198X9fn_WNQX7F5BgkWpkcURO-jWm_ASgVrnXvUy-QuSPDy0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgkRAXxJvAgoyExAGibRLHsU-oILorpN0TK-3NGr9KtFJamhbRX8DfZiZJu5tFcItqR4n7zXi-eWTM2FtdIaefCEilspCKGPMUSX2V2kyCkK5AikoB_dMzeXIuvl6UF0PArR3KKnd7YrdR-4WjGPlRQcEK5DJSfFz-SOnUKMquDkdo3GZ3MrQ0JOdqdrzPIlBUY_ehjJJHLdo2CgjmgjKX6DZtR8ao69n_9858zTTdLJu8kTvtTNLsAbs_cEk-7cF_yG6F5hG7ezpkyx-z39cqgvgicuAurAJlGmDFYQ2_auC-L7WrW96dicOpDn7O0Un2dR8l5MfTs5RsnefttkG6iA_jVFfK513HaprFkfnyn3W7odI-vAQPyz7Fz9fQXj5h57Mv3z6fpMPBC6lDB2OdelkJKyut81B5VTkJ0pbRiyCgygHywssoo8-jCkL4Ai9jEXIdgopFBG2Lp-ygWTThOePaZqAzX0bCXleZdTGAFdbZiVTlJCTs_Q4Bs-z7a5jOL1HS9HgZxMt0eJltwj4RSPuZ1Bu7-2GxmptB1YyfxApZSQRwSI-EA68VGuoCqijKKuiEvSOIDWkw4uhg-BABX5h6YZkpNdChtvNlwg5HM1Hz3Hh4JyRm0PzWXMlpwt7sh-lOQrcJiw3NQT-1pMR5wp71MrVfUqFLvF2ohKmRtI3WPB5p6u9dX3Ak92WpMnzwh51gXr3Xv__UF_9fxkt2LyeVodLH_JAdrFeb8AqJ2Nq-7rTtDxqFNAw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG50BfEivo2u0oLgQYOTpJ_HcXFdhN2TC3trqtPd6yBklklGnF_g37YqyYyTVQ_eQrqaPL6q1Fdd1RXGXluNnH4mIFfGQy5SKnMk9Tr3hQKh6gopKi3on56pk3Px-UJejG1yaC_Mfv6-MOp9i_6IFvFKQdlGDHU2N9ktWVSqT8yqo13GgFYwtpti_jpv4nj6_vx_foX33ND1EslredLe_RzfY3dH3sjnA9D32Y3YPGC3T8fM-EP2c6_6hy8TB17HVaSsAqw4dPBjATwMZXWLlvf_v-FU837JMSAOi2FFkH-an-Xk1wJvNw1SQ7wYpxpSftl3pyYpjiyXf1-0ayrjw0MIcDWk83kH7bdH7Pz445ejk3z8yUJeYzDR5UFp4ZW2tow6GF0rUF6mIKIAXQKUVVBJpVAmE4UIFR6mKpY2RpOqBNZXj9lBs2ziU8atL8AWQSbC2erC1ymCF772M2XkLGbs7RYBdzX00nB9DGKUG_ByiJfr8XKbjH0gkHaS1Ae7P4Hq4UazcmGWNDKQBFAjFRI1BGvQKVegk5A62oy9IYgdWSviWMO46QBvmPpeuTk1y6EW8zJjhxNJtLJ6OrxVEjdaeesqWkBDfq1Exl7thmkmodvE5ZpkMCaVlCTP2JNBp3aPVFmJ04XJmJlo2-SZpyPN4mvfAxyJvJSmwAu_2yrm7_v690t99n_iz9mdkkyIyh7LQ3bQrdbxBZKwzr_sre8XwQUtaA priority: 102 providerName: Springer Nature |
Title | Development of a cerebellar ataxia diagnosis model using conditional GAN-based synthetic data generation for visuomotor adaptation task |
URI | https://link.springer.com/article/10.1186/s12911-024-02720-y https://www.ncbi.nlm.nih.gov/pubmed/39529148 https://www.proquest.com/docview/3142291664 https://www.proquest.com/docview/3128759536 https://pubmed.ncbi.nlm.nih.gov/PMC11555814 https://doaj.org/article/d0f7152faac7434cad983033a7f457e9 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA8QX8fuiZ1lB8EGjbbLZjweRtlzvEFrksFB8CZvsbi1KejatXP8C_21nNknvcp7gS0iym2STmcn85mNnCXmlBGD6LtMhl5kOmXNRCKBehFmPa8bzGCAqOvTHE342ZZ9myWyPNMsd1R-wvNW0w_Wkpqsf7y5_bj-CwH_wAi_5-xJ0Fjr6IoYRSTCHtvvkEDQTR2NszK6iCujl8LONRBRyxUQziebWe7QUla_n__df-5rauplSeSOu6tXV6D65V-NM2q8Y4wHZs8VDcmdcR9Ifkd_XsoXo0lFNc7uyGIXQK6rX-nKhqanS8BYl9evlUMyRn1MwoM2i8iDS0_4kRD1oaLktAErCwyjmnNK5r2aNvSigYvprUW4w7Q92tdEXVfifrnX5_TGZjk6-DM_CelGGMAfjYx0aLljGhVKRFUaKnGueJc4wy7SItI5iwx13JnLSMmZi2HWxjZS10sVOqyx-Qg6KZWGPCFVZT6ueSRzyhRK9LHdWZyzLsy6XSdcG5E1DgfSiqr2ReptF8rSiVwr0Sj290m1ABkikXU-sm-1PLFfztBbD1HSdAMTitM4BOrFcGyVBicdaOJYIqwLyGkmcIr8BHXNdT1KAAWOdrLSPxXWwJH0SkONWT5DKvN3cMEnaMHUao8MN8DhnAXm5a8YrkbqFXW6wD9iwCQbVA_K04qndK8UqgcuZDIhscVvrndstxeKbrxkOwD9JZA8e_LZhzKtx_fujPvuPcT4ndyOUG8yNjI7JwXq1sS8Aqa2zDtkXMwFbOTrtkMPByeTzORwN-bDjfR8dL56wPR98_QPCXEHB |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBtDgUUCcQCrsb3etQ8IhUdJaZNTK-W2jL27aVTJCXEC5Bfwb_iNzPiR1kVw683KrmOvZ2bnm8fOMPYiVYjpewJ8mWTgC-dCH0G98rNAgpB5hBCVHPrDkRwciy_jeLzFfrdnYSitst0Tq43azHLyke9G5KxALCPFu_k3n7pGUXS1baFRs8WBXf9Ak618u_8R6fsyDPc-HX0Y-E1XAT9H9Lz0jVQikypNQ6tMonIJMoudEVaACgHCyEgnnQldYoUwEV66yIaptYmLHKRZhP97hV0V5BlH-VHjjYEXkBelPZiTyN0SdSk5IENBkVI009Yd5Vf1CPhbE5xThRfTNC_EaisVuHeL3WywK-_XzHabbdniDrs2bKLzd9mvcxlIfOY48NwuLEU2YMFhCT-nwE2d2jctedWDh1Pe_YSjUW6mtVeSf-6PfNKthpfrAuEpPoxTHiufVBWyaRZHpM2_T8sVpRLiJRiY1ykFfAnl6T12fCkkuc-2i1lhHzKeZgGkgYkd8Vqqgix3FjKR5VlPJnHPeux1SwE9r-t56MoOSqSu6aWRXrqil1577D0RaTOTanFXP8wWE92ItjY9pxAFOYAc4ZjIwaQJAoMIlBOxsqnHXhGJNe0YSMccmoMP-MJUe0v3qWAPlbmPPbbTmYmSnneHWybRzU5T6jO58NjzzTDdSdQt7GxFc9AujilQ77EHNU9tlhSlMd4uEo8lHW7rrLk7UkxPqjrkaEzEcRLgg9-0jHn2Xv_-qI_-v4xn7PrgaHioD_dHB4_ZjZDEh9Iuwx22vVys7BMEgcvsaSV5nH29bFH_A-XEc1E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkVZcEG8CCxgJiQNE2yaO7RzLQlkeW3Fgpb1Z49guEVJaNSmiv4C_zUySlmaBA7coHstJPk_m88x4zNjzXCGnHwmIpbYQixCSGEm9iu1YgpBFihSVHPpnM3l6Lj5cZBd7u_jbbPdtSLLb00BVmqrmeOlCp-JaHtdopci1lwiKQeICaHOVXRNk-ihcK092cQTya2y3yvy138ActVX7__w37xmny4mTl6KnrVGa3mQ3ejbJJx38t9gVX91mh2d9vPwO-7mXE8QXgQMv_MpTrAFWHBr4UQJ3XbJdWfP2VBxOmfBzjt_DlZ2fkL-bzGKydo7XmwoJIw7GKbOUz9ua1STFkfvy72W9puQ-vAQHyy7Izxuov91l59O3X05O4_7ohbjAJUYTO6mElSrPE6-cVoUEabPghBegEoAkdTLI4JKgvRAuxcuQ-iT3Xoc0QG7Te-ygWlT-AeO5HUM-dlkg9HM1tkXwYIUt7EjqbOQj9nKLgFl2FTZMuzLR0nR4GcTLtHiZTcReE0g7SaqO3d5YrOamVzbjRkEhLwkABRIkUYDLNZrqFFQQmfJ5xF4QxIZ0GHEsoN-KgA9M1bDMhEroUOH5LGJHA0nUvWLYvJ0kptf92qTkVkPWLUXEnu2aqSehW_nFmmRwpZpR6Dxi97s5tXulNM-wu9AR04PZNnjnYUtVfm0rgyO9zzI9xoFfbSfm7-f690d9-H_iT9nh5zdT8-n97OMjdj0hbaK8yOSIHTSrtX-MLK2xT1pF_AWuIjic |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+cerebellar+ataxia+diagnosis+model+using+conditional+GAN-based+synthetic+data+generation+for+visuomotor+adaptation+task&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Kim%2C+Jinah&rft.au=Woo%2C+Sung-Ho&rft.au=Kim%2C+Taekyung&rft.au=Yoon%2C+Won+Tae&rft.date=2024-11-12&rft.issn=1472-6947&rft.eissn=1472-6947&rft.volume=24&rft.issue=1&rft.spage=336&rft_id=info:doi/10.1186%2Fs12911-024-02720-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |