Development of a cerebellar ataxia diagnosis model using conditional GAN-based synthetic data generation for visuomotor adaptation task

This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young health...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 24; no. 1; pp. 336 - 15
Main Authors Kim, Jinah, Woo, Sung-Ho, Kim, Taekyung, Yoon, Won Tae, Shin, Jung Hwan, Lee, Jee-Young, Ryu, Jeh-Kwang
Format Journal Article
LanguageEnglish
Published London BioMed Central 12.11.2024
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-024-02720-y

Cover

Abstract This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools.
AbstractList Abstract This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools.
This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools.
This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools. Keywords: Cerebellar ataxia diagnosis, Visuomotor adaptation task, Conditional generative adversarial network, Synthetic data, Digital healthcare
This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools.This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the visuomotor adaptation task. The classification objectives include patients with cerebellar ataxia, age-matched normal individuals, and young healthy subjects. Synthetic data for the three classes is generated based on class conditions and random noise by leveraging a combination of conditional adversarial generative neural networks and reconstruction networks. This synthetic data, alongside real data, is utilized as training data for the patient classification model to enhance classification accuracy. The fidelity of the synthetic data is assessed visually to measure the validity and diversity of the generated data qualitatively while quantitatively evaluating distribution similarity to real data. Furthermore, the clinical efficacy of the patient classification model employing synthetic data is demonstrated by showcasing improved classification accuracy through a comparative analysis between results obtained using solely real data and those obtained when both real and synthetic data are utilized. This methodological approach holds promise in addressing data insufficiency in the digital healthcare domain, employing deep learning methodologies, and developing early disease diagnosis tools.
ArticleNumber 336
Audience Academic
Author Lee, Jee-Young
Ryu, Jeh-Kwang
Kim, Jinah
Kim, Taekyung
Woo, Sung-Ho
Shin, Jung Hwan
Yoon, Won Tae
Author_xml – sequence: 1
  givenname: Jinah
  surname: Kim
  fullname: Kim, Jinah
  organization: Coastal Disaster Research Center, Korea Institute of Ocean Science and Technology
– sequence: 2
  givenname: Sung-Ho
  surname: Woo
  fullname: Woo, Sung-Ho
  organization: Institute of Interdisciplinary Brain Science, Dongguk University College of Medicine
– sequence: 3
  givenname: Taekyung
  surname: Kim
  fullname: Kim, Taekyung
  organization: Coastal Disaster Research Center, Korea Institute of Ocean Science and Technology, School of Computer Science and Engineering, Kyungpook National University
– sequence: 4
  givenname: Won Tae
  surname: Yoon
  fullname: Yoon, Won Tae
  organization: Department of Neurology, Samsung Kangbuk Hospital, Sungkyunkwan University School of Medicine
– sequence: 5
  givenname: Jung Hwan
  surname: Shin
  fullname: Shin, Jung Hwan
  organization: Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine
– sequence: 6
  givenname: Jee-Young
  surname: Lee
  fullname: Lee, Jee-Young
  email: wieber04@snu.ac.kr
  organization: Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine
– sequence: 7
  givenname: Jeh-Kwang
  surname: Ryu
  fullname: Ryu, Jeh-Kwang
  email: ryujk@dgu.ac.kr
  organization: Laboratory for Natural and Artificial Kinästhese, Convergence Research Center for Artificial Intelligence, Dongguk University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39529148$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURH_gBVggS2zYpMR_cbJCowKlUgUbWFt34uvUQ2IPdjJinoDXxtMpbQchFEW5sr9znHt9TosjHzwWxUtanVPa1G8TZS2lZcVEfhWryu2T4oQKxcq6FeroUX1cnKa0qiqqGi6fFce8lVkqmpPi13vc4BDWI_qJBEuAdBhxicMAkcAEPx0Q46D3IblExmBwIHNyvidd8MZNLngYyOXic7mEhIakrZ9ucHIdMVlNevQYYUcRGyLZuDSHMUy5BAPrab8zQfr-vHhqYUj44u57Vnz7-OHrxafy-svl1cXiuuykbKfS1Eosa9W2DJVpVFdDvZTWCBSgGADjpra1Ncw2KIThubQcWYvYWG6hXfKz4mrvawKs9Dq6EeJWB3D6diHEXkPMvz-gNpVVVDIL0CnBRQembXjFOSgrpMI2e73be63n5YimyyOMMByYHu54d6P7sNGUSikbKrLDmzuHGH7MmCY9utTthu8xzElzyholW8nrjL7-C12FOebh7yjB8nXWtXigesgdOG9DPrjbmepFQ2Xd8nxyps7_QeXH4OjyvaJ1ef1A8Opxp_ct_slRBtge6GJIKaK9R2ild2HV-7DqHFZ9G1a9zSK-F6UM-x7jQ0v_Uf0GNHnu6A
Cites_doi 10.1016/j.neuropsychologia.2012.03.034
10.1038/s41598-017-02469-7
10.1109/ASSIC55218.2022.10088379
10.1007/s12311-013-0486-7
10.1016/j.neucom.2018.09.013
10.1016/S0022-510X(96)00231-6
10.1038/s41598-024-66874-5
10.1152/jn.00451.2017
10.1093/brain/awy334
10.1016/j.ifacol.2022.10.240
10.1145/3422622
10.1007/s12311-021-01281-4
10.3389/fpsyt.2022.963303
10.1109/CICT51604.2020.9312049
10.1007/978-3-642-01536-6_8
10.1007/978-3-319-10581-9_9
10.1212/01.wnl.0000219042.60538.92
10.1109/CVPR.2018.00165
10.3988/jcn.2021.17.2.187
10.1007/s12311-011-0331-9
10.1109/TNSRE.2021.3125023
10.1212/01.WNL.0000156802.15466.79
10.1109/ACCESS.2019.2943474
10.7554/eLife.76639
10.22452/mjcs.sp2022no1.10
10.1609/aaai.v33i01.3301557
10.1016/j.procs.2018.08.150
10.1186/s40537-019-0192-5
10.1016/j.neulet.2018.06.055
10.1038/s41746-022-00674-x
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12911-024-02720-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ND)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 15
ExternalDocumentID oai_doaj_org_article_d0f7152faac7434cad983033a7f457e9
PMC11555814
A815693555
39529148
10_1186_s12911_024_02720_y
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Institute of Information & Communications Technology Planning & Evaluation(IITP), South Korea
  grantid: RS-2023-00223446; RS-2023-00223446; RS-2023-00223446; RS-2023-00223446
– fundername: Institute of Information & Communications Technology Planning & Evaluation(IITP), South Korea
  grantid: RS-2023-00223446
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
PMFND
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c559t-d674b67992e7d87c6a6b5fd4e4a72aa23d6f6fd2f8e44d36fdf3e29ee8f3fa9b3
IEDL.DBID M48
ISSN 1472-6947
IngestDate Wed Aug 27 01:21:40 EDT 2025
Thu Aug 21 18:30:21 EDT 2025
Fri Sep 05 14:00:13 EDT 2025
Fri Jul 25 19:13:48 EDT 2025
Tue Jun 17 22:01:57 EDT 2025
Tue Jun 10 21:02:26 EDT 2025
Thu Jan 02 22:23:45 EST 2025
Tue Jul 01 04:06:02 EDT 2025
Sat Sep 06 07:31:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Visuomotor adaptation task
Conditional generative adversarial network
Cerebellar ataxia diagnosis
Synthetic data
Digital healthcare
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-d674b67992e7d87c6a6b5fd4e4a72aa23d6f6fd2f8e44d36fdf3e29ee8f3fa9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12911-024-02720-y
PMID 39529148
PQID 3142291664
PQPubID 42572
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_d0f7152faac7434cad983033a7f457e9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11555814
proquest_miscellaneous_3128759536
proquest_journals_3142291664
gale_infotracmisc_A815693555
gale_infotracacademiconefile_A815693555
pubmed_primary_39529148
crossref_primary_10_1186_s12911_024_02720_y
springer_journals_10_1186_s12911_024_02720_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-12
PublicationDateYYYYMMDD 2024-11-12
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References T Martin (2720_CR23) 1996; 119
I Goodfellow (2720_CR8) 2020; 63
TW Cenggoro (2720_CR9) 2018; 135
H Block (2720_CR15) 2013; 12
V Ramesh (2720_CR6) 2022; 5
2720_CR29
JS Tsay (2720_CR19) 2022; 11
PC Wong (2720_CR36) 2024; 14
HJ Block (2720_CR24) 2012; 50
M Frid-Adar (2720_CR4) 2018; 321
AS Therrien (2720_CR17) 2019; 688
G Wu (2720_CR34) 2019; 7
P Trouillas (2720_CR20) 1997; 145
S Subramony (2720_CR21) 2005; 64
H Chang (2720_CR28) 2023; 13
PA Butcher (2720_CR16) 2017; 118
T Schmitz-Hübsch (2720_CR22) 2006; 66
AL Wong (2720_CR26) 2019; 142
E Dzotsenidze (2720_CR11) 2022; 55
MT Panouillères (2720_CR25) 2017; 7
DH Kim (2720_CR27) 2021; 17
JM Johnson (2720_CR7) 2019; 6
2720_CR30
2720_CR31
2720_CR1
2720_CR10
2720_CR32
2720_CR2
E Tzvi (2720_CR18) 2022; 21
2720_CR33
2720_CR12
2720_CR13
2720_CR35
2720_CR14
K Rasheed (2720_CR37) 2021; 29
2720_CR3
2720_CR5
References_xml – ident: 2720_CR32
– volume: 50
  start-page: 1766
  issue: 8
  year: 2012
  ident: 2720_CR24
  publication-title: Neuropsychologia.
  doi: 10.1016/j.neuropsychologia.2012.03.034
– volume: 7
  start-page: 2366
  issue: 1
  year: 2017
  ident: 2720_CR25
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-02469-7
– ident: 2720_CR12
  doi: 10.1109/ASSIC55218.2022.10088379
– volume: 12
  start-page: 781
  year: 2013
  ident: 2720_CR15
  publication-title: Cerebellum.
  doi: 10.1007/s12311-013-0486-7
– volume: 321
  start-page: 321
  year: 2018
  ident: 2720_CR4
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2018.09.013
– volume: 145
  start-page: 205
  issue: 2
  year: 1997
  ident: 2720_CR20
  publication-title: J Neurol Sci.
  doi: 10.1016/S0022-510X(96)00231-6
– ident: 2720_CR30
– volume: 14
  start-page: 17037
  issue: 1
  year: 2024
  ident: 2720_CR36
  publication-title: Sci Rep.
  doi: 10.1038/s41598-024-66874-5
– volume: 118
  start-page: 1622
  issue: 3
  year: 2017
  ident: 2720_CR16
  publication-title: J Neurophys.
  doi: 10.1152/jn.00451.2017
– volume: 119
  start-page: 1183
  issue: 4
  year: 1996
  ident: 2720_CR23
  publication-title: Focal olivocerebellar lesions impair adaptation. Brain.
– volume: 142
  start-page: 662
  issue: 3
  year: 2019
  ident: 2720_CR26
  publication-title: Brain.
  doi: 10.1093/brain/awy334
– ident: 2720_CR2
– volume: 55
  start-page: 108
  issue: 29
  year: 2022
  ident: 2720_CR11
  publication-title: IFAC-PapersOnLine.
  doi: 10.1016/j.ifacol.2022.10.240
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 2720_CR8
  publication-title: Commun ACM.
  doi: 10.1145/3422622
– volume: 21
  start-page: 306
  issue: 2
  year: 2022
  ident: 2720_CR18
  publication-title: Cerebellum.
  doi: 10.1007/s12311-021-01281-4
– volume: 13
  start-page: 963303
  year: 2023
  ident: 2720_CR28
  publication-title: Front Psychiatry.
  doi: 10.3389/fpsyt.2022.963303
– ident: 2720_CR29
  doi: 10.1109/CICT51604.2020.9312049
– ident: 2720_CR35
  doi: 10.1007/978-3-642-01536-6_8
– ident: 2720_CR13
  doi: 10.1007/978-3-319-10581-9_9
– volume: 66
  start-page: 1717
  issue: 11
  year: 2006
  ident: 2720_CR22
  publication-title: Neurology.
  doi: 10.1212/01.wnl.0000219042.60538.92
– ident: 2720_CR33
  doi: 10.1109/CVPR.2018.00165
– volume: 17
  start-page: 187
  issue: 2
  year: 2021
  ident: 2720_CR27
  publication-title: J Clin Neurol (Seoul, Korea).
  doi: 10.3988/jcn.2021.17.2.187
– ident: 2720_CR14
  doi: 10.1007/s12311-011-0331-9
– ident: 2720_CR31
– volume: 29
  start-page: 2322
  year: 2021
  ident: 2720_CR37
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2021.3125023
– volume: 64
  start-page: 1261
  issue: 7
  year: 2005
  ident: 2720_CR21
  publication-title: Neurology.
  doi: 10.1212/01.WNL.0000156802.15466.79
– volume: 7
  start-page: 139580
  year: 2019
  ident: 2720_CR34
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2943474
– volume: 11
  start-page: e76639
  year: 2022
  ident: 2720_CR19
  publication-title: Elife.
  doi: 10.7554/eLife.76639
– ident: 2720_CR1
– ident: 2720_CR3
– ident: 2720_CR10
  doi: 10.22452/mjcs.sp2022no1.10
– ident: 2720_CR5
  doi: 10.1609/aaai.v33i01.3301557
– volume: 135
  start-page: 60
  year: 2018
  ident: 2720_CR9
  publication-title: Procedia Comput Sci.
  doi: 10.1016/j.procs.2018.08.150
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 2720_CR7
  publication-title: J Big Data.
  doi: 10.1186/s40537-019-0192-5
– volume: 688
  start-page: 37
  year: 2019
  ident: 2720_CR17
  publication-title: Neurosci Lett.
  doi: 10.1016/j.neulet.2018.06.055
– volume: 5
  start-page: 138
  issue: 1
  year: 2022
  ident: 2720_CR6
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-022-00674-x
SSID ssj0017835
Score 2.3741639
Snippet This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from the...
Abstract This study proposes a synthetic data generation model to create a classification framework for cerebellar ataxia patients using trajectory data from...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 336
SubjectTerms Accuracy
Adaptation
Adaptation, Physiological
Adult
Age
Ataxia
Atrophy
Brain
Cerebellar ataxia
Cerebellar Ataxia - diagnosis
Cerebellum
Classification
Comparative analysis
Conditional generative adversarial network
Deep Learning
Diagnosis
Digital healthcare
Female
Health aspects
Health Informatics
Humans
Information Systems and Communication Service
Machine learning
Male
Management of Computing and Information Systems
Medical diagnosis
Medical research
Medicine
Medicine & Public Health
Middle Aged
Movement disorders
Neural networks
Neural Networks, Computer
Patients
Psychomotor Performance - physiology
Random noise
Risk factors
Sensorimotor integration
Synthetic data
Virtual reality
Visuomotor adaptation task
Young adults
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ND)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLojwDBRkJiQNEzcPx47ggSoXUnqjUmzWO7bJCylabLGJ_Qf82M3ksmyLEhZsVO4rjmfF88_CYsTdGIabPBKRSO0hFjEWKoF6lLpcgZF0iRCWH_tm5PL0QXy6ry72rvignbCgPPCzcsc-iQh0TAWpUdqIGbzRuuyWoKCoV-qN7mckmY2qMH5A_Yzoio-Vxi1qNXIGFoJglGkzbmRrqq_X_uSfvKaXbCZO3oqa9Mjp5wO6PKJIvhtkfsjuhecjuno1x8kfsZi8XiK8iB16HdaAYA6w5dPBzCdwPSXbLlve34XDKgL_iaB775eAf5J8X5ylpOc_bbYNAET_GKaOUX_W1qmkUR8zLfyzbDSX1YRM8XA_Bfd5B-_0xuzj59PXjaTpeuZDWaFp0qZdKOKmMKYLyWtUSpKuiF0GAKgCK0ssooy-iDkL4EpuxDIUJQccygnHlE3bQrJrwjHHjcjC5ryJR3ajc1TGAE652mdRVFhL2bqKAvR4qa9jeItHSDvSySC_b08tuE_aBiLQbSVWx-wfIK3bkFfsvXknYWyKxJdlFOtYwHkHACVMVLLug0jlUcL5K2NFsJMpcPe-emMSOMt_aktxpiLalSNjrXTe9SdRtwmpDY9BCrShknrCnA0_tfqk0Fb4udML0jNtm_zzvaZbf-orgCOurSuf44fcTY_6e198X9fn_WNQX7F5BgkWpkcURO-jWm_ASgVrnXvUy-QuSPDy0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgkRAXxJvAgoyExAGibRLHsU-oILorpN0TK-3NGr9KtFJamhbRX8DfZiZJu5tFcItqR4n7zXi-eWTM2FtdIaefCEilspCKGPMUSX2V2kyCkK5AikoB_dMzeXIuvl6UF0PArR3KKnd7YrdR-4WjGPlRQcEK5DJSfFz-SOnUKMquDkdo3GZ3MrQ0JOdqdrzPIlBUY_ehjJJHLdo2CgjmgjKX6DZtR8ao69n_9858zTTdLJu8kTvtTNLsAbs_cEk-7cF_yG6F5hG7ezpkyx-z39cqgvgicuAurAJlGmDFYQ2_auC-L7WrW96dicOpDn7O0Un2dR8l5MfTs5RsnefttkG6iA_jVFfK513HaprFkfnyn3W7odI-vAQPyz7Fz9fQXj5h57Mv3z6fpMPBC6lDB2OdelkJKyut81B5VTkJ0pbRiyCgygHywssoo8-jCkL4Ai9jEXIdgopFBG2Lp-ygWTThOePaZqAzX0bCXleZdTGAFdbZiVTlJCTs_Q4Bs-z7a5jOL1HS9HgZxMt0eJltwj4RSPuZ1Bu7-2GxmptB1YyfxApZSQRwSI-EA68VGuoCqijKKuiEvSOIDWkw4uhg-BABX5h6YZkpNdChtvNlwg5HM1Hz3Hh4JyRm0PzWXMlpwt7sh-lOQrcJiw3NQT-1pMR5wp71MrVfUqFLvF2ohKmRtI3WPB5p6u9dX3Ak92WpMnzwh51gXr3Xv__UF_9fxkt2LyeVodLH_JAdrFeb8AqJ2Nq-7rTtDxqFNAw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG50BfEivo2u0oLgQYOTpJ_HcXFdhN2TC3trqtPd6yBklklGnF_g37YqyYyTVQ_eQrqaPL6q1Fdd1RXGXluNnH4mIFfGQy5SKnMk9Tr3hQKh6gopKi3on56pk3Px-UJejG1yaC_Mfv6-MOp9i_6IFvFKQdlGDHU2N9ktWVSqT8yqo13GgFYwtpti_jpv4nj6_vx_foX33ND1EslredLe_RzfY3dH3sjnA9D32Y3YPGC3T8fM-EP2c6_6hy8TB17HVaSsAqw4dPBjATwMZXWLlvf_v-FU837JMSAOi2FFkH-an-Xk1wJvNw1SQ7wYpxpSftl3pyYpjiyXf1-0ayrjw0MIcDWk83kH7bdH7Pz445ejk3z8yUJeYzDR5UFp4ZW2tow6GF0rUF6mIKIAXQKUVVBJpVAmE4UIFR6mKpY2RpOqBNZXj9lBs2ziU8atL8AWQSbC2erC1ymCF772M2XkLGbs7RYBdzX00nB9DGKUG_ByiJfr8XKbjH0gkHaS1Ae7P4Hq4UazcmGWNDKQBFAjFRI1BGvQKVegk5A62oy9IYgdWSviWMO46QBvmPpeuTk1y6EW8zJjhxNJtLJ6OrxVEjdaeesqWkBDfq1Exl7thmkmodvE5ZpkMCaVlCTP2JNBp3aPVFmJ04XJmJlo2-SZpyPN4mvfAxyJvJSmwAu_2yrm7_v690t99n_iz9mdkkyIyh7LQ3bQrdbxBZKwzr_sre8XwQUtaA
  priority: 102
  providerName: Springer Nature
Title Development of a cerebellar ataxia diagnosis model using conditional GAN-based synthetic data generation for visuomotor adaptation task
URI https://link.springer.com/article/10.1186/s12911-024-02720-y
https://www.ncbi.nlm.nih.gov/pubmed/39529148
https://www.proquest.com/docview/3142291664
https://www.proquest.com/docview/3128759536
https://pubmed.ncbi.nlm.nih.gov/PMC11555814
https://doaj.org/article/d0f7152faac7434cad983033a7f457e9
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA8QX8fuiZ1lB8EGjbbLZjweRtlzvEFrksFB8CZvsbi1KejatXP8C_21nNknvcp7gS0iym2STmcn85mNnCXmlBGD6LtMhl5kOmXNRCKBehFmPa8bzGCAqOvTHE342ZZ9myWyPNMsd1R-wvNW0w_Wkpqsf7y5_bj-CwH_wAi_5-xJ0Fjr6IoYRSTCHtvvkEDQTR2NszK6iCujl8LONRBRyxUQziebWe7QUla_n__df-5rauplSeSOu6tXV6D65V-NM2q8Y4wHZs8VDcmdcR9Ifkd_XsoXo0lFNc7uyGIXQK6rX-nKhqanS8BYl9evlUMyRn1MwoM2i8iDS0_4kRD1oaLktAErCwyjmnNK5r2aNvSigYvprUW4w7Q92tdEXVfifrnX5_TGZjk6-DM_CelGGMAfjYx0aLljGhVKRFUaKnGueJc4wy7SItI5iwx13JnLSMmZi2HWxjZS10sVOqyx-Qg6KZWGPCFVZT6ueSRzyhRK9LHdWZyzLsy6XSdcG5E1DgfSiqr2ReptF8rSiVwr0Sj290m1ABkikXU-sm-1PLFfztBbD1HSdAMTitM4BOrFcGyVBicdaOJYIqwLyGkmcIr8BHXNdT1KAAWOdrLSPxXWwJH0SkONWT5DKvN3cMEnaMHUao8MN8DhnAXm5a8YrkbqFXW6wD9iwCQbVA_K04qndK8UqgcuZDIhscVvrndstxeKbrxkOwD9JZA8e_LZhzKtx_fujPvuPcT4ndyOUG8yNjI7JwXq1sS8Aqa2zDtkXMwFbOTrtkMPByeTzORwN-bDjfR8dL56wPR98_QPCXEHB
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBtDgUUCcQCrsb3etQ8IhUdJaZNTK-W2jL27aVTJCXEC5Bfwb_iNzPiR1kVw683KrmOvZ2bnm8fOMPYiVYjpewJ8mWTgC-dCH0G98rNAgpB5hBCVHPrDkRwciy_jeLzFfrdnYSitst0Tq43azHLyke9G5KxALCPFu_k3n7pGUXS1baFRs8WBXf9Ak618u_8R6fsyDPc-HX0Y-E1XAT9H9Lz0jVQikypNQ6tMonIJMoudEVaACgHCyEgnnQldYoUwEV66yIaptYmLHKRZhP97hV0V5BlH-VHjjYEXkBelPZiTyN0SdSk5IENBkVI009Yd5Vf1CPhbE5xThRfTNC_EaisVuHeL3WywK-_XzHabbdniDrs2bKLzd9mvcxlIfOY48NwuLEU2YMFhCT-nwE2d2jctedWDh1Pe_YSjUW6mtVeSf-6PfNKthpfrAuEpPoxTHiufVBWyaRZHpM2_T8sVpRLiJRiY1ykFfAnl6T12fCkkuc-2i1lhHzKeZgGkgYkd8Vqqgix3FjKR5VlPJnHPeux1SwE9r-t56MoOSqSu6aWRXrqil1577D0RaTOTanFXP8wWE92ItjY9pxAFOYAc4ZjIwaQJAoMIlBOxsqnHXhGJNe0YSMccmoMP-MJUe0v3qWAPlbmPPbbTmYmSnneHWybRzU5T6jO58NjzzTDdSdQt7GxFc9AujilQ77EHNU9tlhSlMd4uEo8lHW7rrLk7UkxPqjrkaEzEcRLgg9-0jHn2Xv_-qI_-v4xn7PrgaHioD_dHB4_ZjZDEh9Iuwx22vVys7BMEgcvsaSV5nH29bFH_A-XEc1E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkVZcEG8CCxgJiQNE2yaO7RzLQlkeW3Fgpb1Z49guEVJaNSmiv4C_zUySlmaBA7coHstJPk_m88x4zNjzXCGnHwmIpbYQixCSGEm9iu1YgpBFihSVHPpnM3l6Lj5cZBd7u_jbbPdtSLLb00BVmqrmeOlCp-JaHtdopci1lwiKQeICaHOVXRNk-ihcK092cQTya2y3yvy138ActVX7__w37xmny4mTl6KnrVGa3mQ3ejbJJx38t9gVX91mh2d9vPwO-7mXE8QXgQMv_MpTrAFWHBr4UQJ3XbJdWfP2VBxOmfBzjt_DlZ2fkL-bzGKydo7XmwoJIw7GKbOUz9ua1STFkfvy72W9puQ-vAQHyy7Izxuov91l59O3X05O4_7ohbjAJUYTO6mElSrPE6-cVoUEabPghBegEoAkdTLI4JKgvRAuxcuQ-iT3Xoc0QG7Te-ygWlT-AeO5HUM-dlkg9HM1tkXwYIUt7EjqbOQj9nKLgFl2FTZMuzLR0nR4GcTLtHiZTcReE0g7SaqO3d5YrOamVzbjRkEhLwkABRIkUYDLNZrqFFQQmfJ5xF4QxIZ0GHEsoN-KgA9M1bDMhEroUOH5LGJHA0nUvWLYvJ0kptf92qTkVkPWLUXEnu2aqSehW_nFmmRwpZpR6Dxi97s5tXulNM-wu9AR04PZNnjnYUtVfm0rgyO9zzI9xoFfbSfm7-f690d9-H_iT9nh5zdT8-n97OMjdj0hbaK8yOSIHTSrtX-MLK2xT1pF_AWuIjic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+cerebellar+ataxia+diagnosis+model+using+conditional+GAN-based+synthetic+data+generation+for+visuomotor+adaptation+task&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Kim%2C+Jinah&rft.au=Woo%2C+Sung-Ho&rft.au=Kim%2C+Taekyung&rft.au=Yoon%2C+Won+Tae&rft.date=2024-11-12&rft.issn=1472-6947&rft.eissn=1472-6947&rft.volume=24&rft.issue=1&rft.spage=336&rft_id=info:doi/10.1186%2Fs12911-024-02720-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon