A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives
Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 27; no. 4; p. 1372 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.02.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing. |
---|---|
AbstractList | Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing. Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing. |
Author | Liu, Peng Zhang, Jingchen Chen, Guiliang |
AuthorAffiliation | Shanghai Center for Drug Evaluation and Inspection, Haiqu Road 58, Shanghai 201210, China; chenguiliang@smda.sh.cn |
AuthorAffiliation_xml | – name: Shanghai Center for Drug Evaluation and Inspection, Haiqu Road 58, Shanghai 201210, China; chenguiliang@smda.sh.cn |
Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0003-4720-5639 surname: Liu fullname: Liu, Peng – sequence: 2 givenname: Guiliang surname: Chen fullname: Chen, Guiliang – sequence: 3 givenname: Jingchen surname: Zhang fullname: Zhang, Jingchen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35209162$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ktuKFDEQhhtZcQ_6AN5IwBsvHM2pJ91eCMPswYUBF1evQzqpHjN0d9ocWuYFfO7N7OzK7ooQSKj6_4-qVB0XB4MboCheE_yBsRp_7F0HOnUQqMCcMEGfFUeEUzxjmNcHD96HxXEIG4wp4aR8URyykuKazOlR8WeBvsFk4TdyLVrZ0QXXQ0AqH3Tq0xqdQmcn8Ft0vQ0R-k9ombyHIaLrqGIKO9tiHL2bwKAr70zSMbzPzHXqVHTZdzZM1ruhz56cUINB5ykmD-gKfBhBx4wPL4vnreoCvLq7T4of52ffl19mq68Xl8vFaqbLso4z3VKojFaaGVMr2jKOTdtUTUNZU1PORU0UxbRirMJ017iqBOFgOFOlFqRmJ8Xlnmuc2sjR2175rXTKytuA82upfLS6A9myxmAFIEQJHFe0YRRnhppjRhrAKrM-71ljanowOjfoVfcI-jgz2J9y7SZZVaLmgmXAuzuAd78ShCh7GzR0nRrApSDpPPdRVoLvpG-fSDcu-SF_1a2KMpJXIKvePKzobyn3484CsRdo70Lw0Ept8xit2xVoO0mw3C2W_GexspM8cd7D_--5AXHg1Q8 |
CitedBy_id | crossref_primary_10_3390_cancers15204944 crossref_primary_10_3390_pharmaceutics15112623 crossref_primary_10_1007_s12668_024_01647_y crossref_primary_10_1007_s12668_025_01818_5 crossref_primary_10_3390_pharmaceutics15112620 crossref_primary_10_1021_acsabm_3c00588 crossref_primary_10_1134_S1070363223070253 crossref_primary_10_3390_pr12091970 crossref_primary_10_1016_j_jpba_2023_115751 crossref_primary_10_3390_v15040972 crossref_primary_10_3389_fimmu_2023_1265751 crossref_primary_10_1007_s00210_025_04002_4 crossref_primary_10_1208_s12248_023_00855_w crossref_primary_10_26599_NBE_2024_9290095 crossref_primary_10_3390_pharmaceutics15122674 crossref_primary_10_3390_molecules29071537 crossref_primary_10_3390_pharmaceutics16091123 crossref_primary_10_3390_antibiotics13020121 crossref_primary_10_1088_1748_605X_ad2407 crossref_primary_10_1021_acs_nanolett_4c04022 crossref_primary_10_3390_pharmaceutics14102163 crossref_primary_10_3390_ph17030315 crossref_primary_10_2147_IJN_S462194 crossref_primary_10_1039_D4TB01107D crossref_primary_10_1039_D2CE01258H crossref_primary_10_3390_pharmaceutics16010024 crossref_primary_10_1016_j_colsurfb_2024_114043 crossref_primary_10_3390_micro5010011 crossref_primary_10_1016_j_bioactmat_2024_05_013 crossref_primary_10_18214_jend_2024_00066 crossref_primary_10_1002_adfm_202402521 crossref_primary_10_1002_slct_202401354 crossref_primary_10_1007_s11051_024_05978_5 crossref_primary_10_3390_pharmaceutics14102195 crossref_primary_10_1002_smll_202307111 crossref_primary_10_1021_acs_langmuir_4c04372 crossref_primary_10_1016_j_colsurfb_2024_114085 crossref_primary_10_3390_nano12081274 crossref_primary_10_3389_fmicb_2022_1023083 crossref_primary_10_3390_jfb14060296 crossref_primary_10_1021_acs_molpharmaceut_3c00610 crossref_primary_10_31857_S0233475523030052 crossref_primary_10_3390_nu17050930 crossref_primary_10_1039_D4TB01664E crossref_primary_10_26599_NBE_2024_9290076 crossref_primary_10_1088_1742_6596_2796_1_012017 crossref_primary_10_1016_j_jddst_2023_105224 crossref_primary_10_1007_s11094_024_03082_5 crossref_primary_10_1016_j_jddst_2023_105106 crossref_primary_10_1039_D3BM01451G crossref_primary_10_1080_17460913_2024_2423558 crossref_primary_10_3390_jnt4030010 crossref_primary_10_1134_S1990747823040062 crossref_primary_10_2147_IJN_S458907 crossref_primary_10_1016_j_ijpharm_2025_125510 crossref_primary_10_1080_08982104_2022_2139844 crossref_primary_10_1038_s41398_024_02935_7 crossref_primary_10_3390_molecules28237750 crossref_primary_10_3390_ijms26010392 crossref_primary_10_1039_D4PY01390E crossref_primary_10_1080_10610278_2024_2423637 crossref_primary_10_1016_j_ijpharm_2024_125106 crossref_primary_10_1038_s41598_024_83408_1 crossref_primary_10_1039_D4LC00184B crossref_primary_10_1007_s11095_025_03836_0 crossref_primary_10_1016_j_jconrel_2023_02_006 crossref_primary_10_1080_00914037_2024_2368896 crossref_primary_10_1007_s00289_024_05140_0 crossref_primary_10_3390_pr11061788 crossref_primary_10_1515_gps_2023_0136 crossref_primary_10_1016_j_jddst_2023_104366 crossref_primary_10_1016_j_jddst_2024_105874 crossref_primary_10_3390_ijms24021053 crossref_primary_10_5802_crchim_348 crossref_primary_10_1039_D2TB00605G crossref_primary_10_1016_j_jconrel_2024_03_027 crossref_primary_10_1080_08982104_2025_2480786 crossref_primary_10_3390_ijms241612541 crossref_primary_10_1016_j_ipha_2023_10_006 crossref_primary_10_1039_D4PM00176A crossref_primary_10_3390_cancers17061032 crossref_primary_10_1208_s12249_024_02940_5 crossref_primary_10_1016_j_microc_2025_113057 crossref_primary_10_2217_nnm_2023_0022 crossref_primary_10_3390_M1438 crossref_primary_10_1016_j_cis_2024_103156 crossref_primary_10_1007_s10811_023_02913_4 crossref_primary_10_1016_j_jddst_2023_105154 crossref_primary_10_1002_mabi_202400084 crossref_primary_10_1126_science_adf2341 crossref_primary_10_1039_D2CS00968D crossref_primary_10_1016_j_molliq_2022_120731 crossref_primary_10_1021_acsnano_4c06369 crossref_primary_10_1039_D4PM00141A crossref_primary_10_3390_cancers16020461 crossref_primary_10_1021_acsnano_3c02452 crossref_primary_10_3390_pharmaceutics14071438 crossref_primary_10_3390_pharmaceutics16111375 crossref_primary_10_1021_acsami_4c13302 crossref_primary_10_3390_antiox12061264 crossref_primary_10_1016_j_jddst_2025_106807 crossref_primary_10_3390_molecules29194689 crossref_primary_10_3390_ijms241512312 crossref_primary_10_1007_s12274_024_6889_6 crossref_primary_10_3390_ijms241713110 crossref_primary_10_1016_j_jconrel_2024_03_008 crossref_primary_10_1007_s12668_024_01646_z crossref_primary_10_1007_s40005_023_00637_8 crossref_primary_10_34133_bmr_0144 crossref_primary_10_1002_ejlt_202300218 crossref_primary_10_1080_14760584_2023_2274479 crossref_primary_10_3390_applbiosci4010016 crossref_primary_10_3390_cells12040659 crossref_primary_10_3390_ijms26031376 crossref_primary_10_1016_j_ijpharm_2024_124441 crossref_primary_10_1002_adhm_202302969 crossref_primary_10_1016_j_colsurfb_2023_113702 crossref_primary_10_3390_gels10110746 crossref_primary_10_3390_pharmaceutics15020421 crossref_primary_10_1080_1061186X_2024_2445051 crossref_primary_10_1016_j_jddst_2024_106513 crossref_primary_10_3390_jcm13216436 crossref_primary_10_1002_smtd_202402154 crossref_primary_10_3390_pharmaceutics14122706 crossref_primary_10_3390_pharmaceutics14122704 crossref_primary_10_1080_20415990_2025_2475737 crossref_primary_10_1016_j_rvsc_2023_05_005 crossref_primary_10_3390_nano13091557 crossref_primary_10_1039_D4NR01420K crossref_primary_10_3390_cells12151999 crossref_primary_10_1016_j_ijbiomac_2024_136464 crossref_primary_10_3390_pharmaceutics16091220 crossref_primary_10_3390_pharmaceutics17030307 crossref_primary_10_1016_j_jddst_2025_106705 crossref_primary_10_1021_acs_biomac_4c00847 crossref_primary_10_3390_molecules29061312 crossref_primary_10_3390_ijms23147854 crossref_primary_10_2174_0115672018282735240528072715 crossref_primary_10_3390_biomedicines11020435 crossref_primary_10_3390_molecules30040888 crossref_primary_10_1080_1061186X_2025_2484773 crossref_primary_10_1016_j_foodchem_2024_139437 crossref_primary_10_1038_s41574_024_00965_1 crossref_primary_10_1021_acs_biomac_3c00664 crossref_primary_10_1039_D3CC03599A crossref_primary_10_1002_adtp_202300275 crossref_primary_10_1002_anbr_202400008 crossref_primary_10_1016_j_colsurfa_2024_134073 crossref_primary_10_51435_turkjac_1433347 crossref_primary_10_1021_acsnano_4c11858 crossref_primary_10_1007_s12668_024_01786_2 crossref_primary_10_1016_j_colsurfb_2024_113926 crossref_primary_10_1038_s41570_024_00627_w crossref_primary_10_1016_j_jddst_2025_106840 crossref_primary_10_1016_j_bbamem_2024_184273 crossref_primary_10_3390_ijms241814251 crossref_primary_10_1007_s10853_022_07679_7 crossref_primary_10_1186_s40824_022_00286_2 crossref_primary_10_3390_molecules29081848 crossref_primary_10_3390_molecules28176201 crossref_primary_10_1080_10717544_2024_2445259 crossref_primary_10_1186_s12987_024_00573_1 crossref_primary_10_1002_cbic_202300455 crossref_primary_10_1002_advs_202404668 crossref_primary_10_2174_0113816128303645240429052835 crossref_primary_10_1016_j_nxnano_2024_100129 crossref_primary_10_1038_s41392_024_01745_z crossref_primary_10_1016_j_jddst_2023_105068 crossref_primary_10_1007_s00210_024_02945_8 crossref_primary_10_1038_s41598_023_43689_4 crossref_primary_10_1021_acsbiomaterials_4c02118 crossref_primary_10_3390_biomedicines11020453 crossref_primary_10_3390_pharmaceutics16111444 crossref_primary_10_1039_D3TB03004K crossref_primary_10_1021_acs_analchem_4c01413 crossref_primary_10_1080_17425247_2025_2474088 crossref_primary_10_3390_pharmaceutics16111441 crossref_primary_10_1016_j_colsurfa_2024_135014 crossref_primary_10_1038_s41598_025_91873_5 crossref_primary_10_1039_D3BM00951C crossref_primary_10_1016_j_ctarc_2024_100792 crossref_primary_10_3390_jnt6010003 crossref_primary_10_3390_pharmaceutics15122739 crossref_primary_10_1021_accountsmr_4c00116 crossref_primary_10_1080_08982104_2023_2285973 crossref_primary_10_3390_pharmaceutics16050637 crossref_primary_10_1002_jbm_b_35453 crossref_primary_10_3390_pharmaceutics15051457 crossref_primary_10_3390_ijms241310931 crossref_primary_10_1021_acsaenm_3c00395 crossref_primary_10_2147_IJN_S498208 crossref_primary_10_3390_gels9090718 crossref_primary_10_1016_j_biopha_2023_115049 crossref_primary_10_3390_jfb16010024 crossref_primary_10_1002_adhm_202301450 crossref_primary_10_1007_s12668_023_01215_w crossref_primary_10_1007_s13770_024_00698_2 crossref_primary_10_3390_antibiotics14010003 crossref_primary_10_1016_j_actbio_2025_02_035 crossref_primary_10_1039_D4NR02509A crossref_primary_10_30895_1991_2919_2023_508 crossref_primary_10_1016_j_jddst_2025_106628 crossref_primary_10_1186_s11671_024_04135_0 crossref_primary_10_3390_molecules27133988 crossref_primary_10_1208_s12249_024_02896_6 crossref_primary_10_2174_0113892010265344230919170611 crossref_primary_10_3390_molecules29010057 crossref_primary_10_1021_acsomega_3c09131 crossref_primary_10_1007_s13367_023_00082_x crossref_primary_10_2478_aoas_2024_0106 crossref_primary_10_3390_biom14091073 crossref_primary_10_3390_app14188137 crossref_primary_10_1016_j_ijpharm_2024_125117 crossref_primary_10_1007_s12668_024_01577_9 crossref_primary_10_3389_fmolb_2024_1382190 crossref_primary_10_1016_j_jddst_2025_106659 crossref_primary_10_3389_fmedt_2022_893056 crossref_primary_10_1016_j_cellsig_2025_111763 crossref_primary_10_1021_acs_chemmater_4c01127 crossref_primary_10_1166_jbt_2024_3365 crossref_primary_10_1016_j_eurpolymj_2024_113243 crossref_primary_10_1515_znc_2024_0144 crossref_primary_10_3390_ph15060761 crossref_primary_10_3390_pharmaceutics15030873 crossref_primary_10_1007_s00018_023_05022_0 crossref_primary_10_1016_j_ijporl_2024_111894 crossref_primary_10_1021_acs_chemrev_4c00422 crossref_primary_10_1039_D3NR03415A crossref_primary_10_1134_S1990747823030054 crossref_primary_10_3390_molecules28093798 crossref_primary_10_3390_gels10010045 crossref_primary_10_1080_08982104_2024_2415664 crossref_primary_10_1016_j_colsurfb_2023_113698 crossref_primary_10_3390_pharmaceutics16121525 crossref_primary_10_1515_ntrev_2023_0218 crossref_primary_10_3390_ijms241713542 crossref_primary_10_1021_acsomega_3c10346 crossref_primary_10_3390_biom14091090 crossref_primary_10_3389_fmicb_2024_1391345 crossref_primary_10_3390_ijms251910401 crossref_primary_10_1016_j_jconrel_2023_08_024 crossref_primary_10_1002_ame2_12518 crossref_primary_10_1016_j_ijpharm_2024_125017 crossref_primary_10_1016_j_nano_2023_102727 crossref_primary_10_1021_acsabm_4c00658 crossref_primary_10_3390_jcm12216867 crossref_primary_10_3390_pharmaceutics15061693 crossref_primary_10_7759_cureus_68063 crossref_primary_10_1016_j_fbio_2023_103426 crossref_primary_10_1016_j_jddst_2024_106236 crossref_primary_10_1021_acsnano_4c12963 crossref_primary_10_3390_gels10090598 crossref_primary_10_3390_pharmaceutics15082117 crossref_primary_10_31857_S0233475523040060 crossref_primary_10_3390_ncrna9060070 crossref_primary_10_3390_pharmaceutics14112501 crossref_primary_10_1016_j_nxnano_2023_100018 crossref_primary_10_3390_cells12111497 crossref_primary_10_3390_pharmaceutics15092288 crossref_primary_10_3390_pharmaceutics16050675 crossref_primary_10_60118_001c_117497 crossref_primary_10_3390_molecules28104045 crossref_primary_10_3390_pharmaceutics15122762 crossref_primary_10_2174_0109298673300897240602130258 crossref_primary_10_1002_adfm_202310881 crossref_primary_10_3390_molecules29235511 crossref_primary_10_1016_j_micpath_2025_107495 crossref_primary_10_1021_acsami_5c02103 crossref_primary_10_1080_17435889_2024_2446008 crossref_primary_10_1016_j_prmcm_2024_100363 crossref_primary_10_3390_gels10040284 crossref_primary_10_1016_j_jcis_2024_05_042 crossref_primary_10_1038_s41467_023_41013_2 crossref_primary_10_1002_EXP_20230008 crossref_primary_10_3390_ijms25010296 crossref_primary_10_1016_j_ijpharm_2023_123414 crossref_primary_10_1016_j_mtcomm_2024_109826 crossref_primary_10_1039_D4PM00201F crossref_primary_10_1007_s11274_023_03751_9 crossref_primary_10_3390_nano12224029 crossref_primary_10_1016_j_ijpharm_2022_122167 crossref_primary_10_1002_cmdc_202400130 crossref_primary_10_1021_acsabm_4c01409 crossref_primary_10_1016_j_bj_2023_100685 crossref_primary_10_1186_s12645_025_00314_5 crossref_primary_10_3389_fphar_2024_1402825 crossref_primary_10_1021_jacs_3c05574 crossref_primary_10_3390_foods13162478 crossref_primary_10_1080_08982104_2023_2226216 crossref_primary_10_1161_CIRCULATIONAHA_123_067373 crossref_primary_10_1016_j_jconrel_2025_02_032 crossref_primary_10_3390_pharmaceutics14112402 crossref_primary_10_34186_klujes_1520899 crossref_primary_10_3390_biomedicines10071547 crossref_primary_10_1039_D4NJ00768A crossref_primary_10_1007_s00289_023_04951_x crossref_primary_10_1016_j_colsurfa_2024_135691 crossref_primary_10_1007_s12672_024_01509_9 crossref_primary_10_3390_biology12091178 crossref_primary_10_1002_mco2_339 crossref_primary_10_3390_jof10040278 crossref_primary_10_1016_j_bioactmat_2024_09_037 crossref_primary_10_1039_D3CP00425B crossref_primary_10_3390_lipidology1020010 crossref_primary_10_3389_fonc_2024_1506588 crossref_primary_10_3389_fchem_2024_1379192 crossref_primary_10_1016_j_indcrop_2024_118362 crossref_primary_10_3390_ijms23168838 crossref_primary_10_1016_j_ajps_2024_100927 crossref_primary_10_2174_0113816128338560240923073357 crossref_primary_10_1002_adhm_202301163 crossref_primary_10_3390_pharmaceutics16040449 crossref_primary_10_1080_08982104_2023_2274428 crossref_primary_10_1002_pat_6406 crossref_primary_10_1016_j_heliyon_2024_e30503 crossref_primary_10_1002_adma_202312898 crossref_primary_10_3390_nano13121828 crossref_primary_10_3390_ph16111564 crossref_primary_10_1002_agt2_480 crossref_primary_10_1021_acs_chemmater_4c00947 crossref_primary_10_1016_j_jbiotec_2023_12_003 crossref_primary_10_3390_biomedicines10123158 crossref_primary_10_3390_pharmaceutics16121574 crossref_primary_10_1024_0301_1526_a001184 crossref_primary_10_32604_or_2024_045564 crossref_primary_10_3390_pharmaceutics17010122 crossref_primary_10_1016_j_phymed_2024_155902 crossref_primary_10_1002_agt2_369 crossref_primary_10_1016_j_ijbiomac_2024_134517 crossref_primary_10_3390_biophysica2040033 crossref_primary_10_3390_ijms24054349 crossref_primary_10_3390_ijms241713612 crossref_primary_10_3390_vaccines11111704 crossref_primary_10_1016_j_jddst_2024_106285 crossref_primary_10_1515_chem_2024_0122 crossref_primary_10_2147_DDDT_S469832 crossref_primary_10_3390_pharmaceutics17020276 crossref_primary_10_1007_s10924_023_02842_w crossref_primary_10_3390_cells12202448 crossref_primary_10_1080_10837450_2023_2267673 crossref_primary_10_1007_s00210_023_02865_z crossref_primary_10_1021_acs_molpharmaceut_3c00049 crossref_primary_10_1038_s12276_024_01310_2 crossref_primary_10_34133_bmef_0024 crossref_primary_10_1080_10837450_2024_2427186 crossref_primary_10_1007_s10989_024_10617_7 crossref_primary_10_1016_j_ijbiomac_2025_140138 crossref_primary_10_22159_ijcpr_2024v16i1_4020 crossref_primary_10_54097_jvw1cw28 crossref_primary_10_1186_s11671_024_04170_x crossref_primary_10_1002_jsfa_13612 crossref_primary_10_1016_j_cobme_2025_100576 crossref_primary_10_1080_17425247_2024_2311812 crossref_primary_10_3390_biomedicines12071519 crossref_primary_10_1016_j_jddst_2023_104991 crossref_primary_10_1038_s41573_023_00670_0 crossref_primary_10_1038_s41598_024_60145_z crossref_primary_10_1021_acsomega_3c09892 crossref_primary_10_3390_nano15020133 crossref_primary_10_1002_wnan_1863 crossref_primary_10_1002_cmdc_202400323 crossref_primary_10_1021_acsabm_3c00822 crossref_primary_10_1186_s12645_024_00299_7 crossref_primary_10_2174_011573398X264594231027110541 crossref_primary_10_1007_s13205_023_03901_8 crossref_primary_10_5937_scriptamed55_52024 crossref_primary_10_1002_INMD_20240010 crossref_primary_10_33380_2305_2066_2024_13_4_1867 crossref_primary_10_3390_ijms25105213 crossref_primary_10_1186_s13020_024_00936_8 crossref_primary_10_53730_ijhs_v7nS1_15291 crossref_primary_10_5812_jjnpp_145855 crossref_primary_10_1016_j_biopha_2023_116113 crossref_primary_10_1016_j_ijpx_2023_100193 crossref_primary_10_2147_IJN_S437733 crossref_primary_10_1002_wnan_1996 crossref_primary_10_4155_tde_2023_0116 crossref_primary_10_1371_journal_pone_0310492 crossref_primary_10_1016_j_jddst_2023_104749 crossref_primary_10_2174_0122103031304556240430161553 crossref_primary_10_1016_j_ijpharm_2023_122632 crossref_primary_10_1016_j_cej_2024_153369 crossref_primary_10_1038_s41467_025_56401_z crossref_primary_10_3389_fvets_2023_1236136 crossref_primary_10_15407_biotech16_05_022 crossref_primary_10_1016_j_eurpolymj_2023_112365 crossref_primary_10_1021_acsnano_2c00128 crossref_primary_10_1016_j_micpath_2024_107007 crossref_primary_10_1007_s12247_022_09643_z crossref_primary_10_1016_j_jddst_2024_106076 crossref_primary_10_1051_bioconf_20248601020 crossref_primary_10_1002_cssc_202300803 crossref_primary_10_1016_j_colsurfb_2023_113270 crossref_primary_10_1093_ijfood_vvae078 crossref_primary_10_1016_j_molliq_2024_126288 crossref_primary_10_1039_D3NA01097J crossref_primary_10_1186_s11671_023_03913_6 crossref_primary_10_3390_ma16124206 crossref_primary_10_3762_bjnano_15_2 crossref_primary_10_1002_admi_202400169 crossref_primary_10_1016_j_bioactmat_2024_03_014 crossref_primary_10_1002_adma_202309039 crossref_primary_10_1088_1748_605X_ad7e6f crossref_primary_10_1016_j_bioadv_2023_213606 crossref_primary_10_1016_j_jddst_2023_104854 crossref_primary_10_1007_s10967_024_09432_7 crossref_primary_10_1021_acsbiomaterials_3c01531 crossref_primary_10_1021_acsanm_4c05799 crossref_primary_10_1016_j_foodres_2025_116272 crossref_primary_10_1080_08982104_2022_2153139 crossref_primary_10_1002_wnan_1892 crossref_primary_10_1080_01913123_2024_2392728 crossref_primary_10_1021_acsabm_4c01579 crossref_primary_10_3390_ijms25010485 crossref_primary_10_1007_s00210_024_03082_y crossref_primary_10_1016_j_biopha_2024_117600 crossref_primary_10_1007_s00210_023_02885_9 crossref_primary_10_1021_acsnano_3c06233 crossref_primary_10_1146_annurev_chembioeng_100722_122348 crossref_primary_10_3390_pharmaceutics15010179 crossref_primary_10_2147_DDDT_S473178 crossref_primary_10_3390_pharmaceutics15061603 crossref_primary_10_3390_vaccines11030661 crossref_primary_10_3390_pharmaceutics16030431 crossref_primary_10_3390_pharmaceutics17010036 crossref_primary_10_1007_s12013_024_01428_0 crossref_primary_10_1080_03639045_2024_2437562 crossref_primary_10_1002_smll_202305591 crossref_primary_10_1021_acsomega_4c01387 crossref_primary_10_3390_app12168262 crossref_primary_10_1080_08982104_2023_2262025 crossref_primary_10_3390_pharmaceutics15041184 crossref_primary_10_3390_ph16101337 crossref_primary_10_1039_D3MD00334E crossref_primary_10_1016_j_biopha_2023_115875 crossref_primary_10_1186_s43094_024_00733_y crossref_primary_10_3390_pharmaceutics16020219 crossref_primary_10_1007_s13346_022_01281_9 crossref_primary_10_2174_1874471016666230621120453 crossref_primary_10_1007_s44372_025_00089_4 crossref_primary_10_1039_D3TB00598D crossref_primary_10_1093_brain_awae135 crossref_primary_10_3390_pharmaceutics16020223 crossref_primary_10_3390_pharmaceutics16070965 crossref_primary_10_1016_j_heliyon_2024_e28947 crossref_primary_10_1016_j_ccr_2024_215774 crossref_primary_10_1002_wnan_1955 crossref_primary_10_1016_j_molliq_2024_126114 crossref_primary_10_1016_j_ijpharm_2024_124876 crossref_primary_10_5812_jjnpp_153745 crossref_primary_10_1016_j_addr_2023_115005 crossref_primary_10_1007_s13346_024_01708_5 crossref_primary_10_3390_pharmaceutics14112484 crossref_primary_10_3390_biomedicines12092002 crossref_primary_10_1002_adfm_202314265 crossref_primary_10_1016_j_jddst_2024_105810 crossref_primary_10_1016_j_onano_2023_100196 crossref_primary_10_1016_j_ijfoodmicro_2023_110255 crossref_primary_10_1186_s43094_024_00756_5 crossref_primary_10_1002_ggn2_202300201 crossref_primary_10_1080_21691401_2024_2360634 crossref_primary_10_33320_maced_pharm_bull_2022_68_03_110 crossref_primary_10_1080_08982104_2024_2336549 crossref_primary_10_1088_1758_5090_ad9a01 crossref_primary_10_1016_j_ijpharm_2024_123798 crossref_primary_10_1016_j_ijbiomac_2024_139017 crossref_primary_10_1007_s13346_024_01662_2 crossref_primary_10_3390_app13106219 crossref_primary_10_1016_j_adcanc_2023_100103 crossref_primary_10_1016_j_jconrel_2023_04_006 crossref_primary_10_1016_j_onano_2024_100225 crossref_primary_10_1038_s41598_024_83715_7 crossref_primary_10_1039_D4MA00286E crossref_primary_10_1080_08982104_2024_2313452 crossref_primary_10_1016_j_jddst_2023_104880 crossref_primary_10_1021_acsphyschemau_4c00011 crossref_primary_10_1002_smll_202310913 crossref_primary_10_1021_acs_molpharmaceut_3c00562 crossref_primary_10_3390_ijms241310494 crossref_primary_10_1002_wnan_1979 crossref_primary_10_53941_ijddp_0201009 crossref_primary_10_14201_fj202492717 crossref_primary_10_3389_fbioe_2023_1229829 crossref_primary_10_1016_j_ipha_2024_01_011 crossref_primary_10_3390_pharmaceutics16030350 crossref_primary_10_1038_s41598_022_25587_3 crossref_primary_10_3390_cancers15082256 crossref_primary_10_3390_pharmaceutics15020695 crossref_primary_10_3390_polym15030782 crossref_primary_10_3390_bios12090683 crossref_primary_10_1016_j_molliq_2024_126545 crossref_primary_10_1021_acsfoodscitech_4c00493 crossref_primary_10_1007_s12668_024_01580_0 crossref_primary_10_1016_j_bioactmat_2024_06_008 crossref_primary_10_22159_ijap_2023v15i3_47459 crossref_primary_10_3390_ijms24129902 crossref_primary_10_1021_acsnano_3c04366 crossref_primary_10_1208_s12249_023_02670_0 crossref_primary_10_3390_molecules28020563 crossref_primary_10_1007_s12247_024_09808_y crossref_primary_10_1208_s12249_024_02957_w crossref_primary_10_1016_j_colsurfa_2024_133852 crossref_primary_10_3390_ijms25063454 crossref_primary_10_35516_jjps_v17i3_2359 crossref_primary_10_1002_advs_202306463 crossref_primary_10_1002_pat_70096 crossref_primary_10_3390_ijms252212170 crossref_primary_10_1016_j_jddst_2023_105326 crossref_primary_10_1002_adtp_202200199 crossref_primary_10_3389_fphar_2024_1510806 crossref_primary_10_52711_0974_360X_2024_00466 crossref_primary_10_1002_smll_202409353 crossref_primary_10_1007_s10856_022_06692_1 crossref_primary_10_3390_molecules29112415 crossref_primary_10_34172_jhp_2024_51491 crossref_primary_10_1016_j_imbio_2022_152317 crossref_primary_10_1039_D2NA00795A crossref_primary_10_1080_13543776_2024_2365407 crossref_primary_10_1186_s40824_023_00343_4 crossref_primary_10_22159_ijap_2024v16i3_50601 crossref_primary_10_1208_s12249_023_02682_w crossref_primary_10_1016_j_jddst_2023_104586 crossref_primary_10_1016_j_jconrel_2023_10_050 crossref_primary_10_1080_10837450_2024_2315457 crossref_primary_10_1007_s12668_024_01582_y crossref_primary_10_1111_ijfs_17529 crossref_primary_10_1371_journal_pone_0293115 crossref_primary_10_3390_pharmaceutics16020235 crossref_primary_10_1016_j_ccr_2023_215567 crossref_primary_10_1007_s13206_024_00147_1 crossref_primary_10_1021_acsaom_4c00503 crossref_primary_10_3389_fddev_2023_1265446 crossref_primary_10_3390_ijms24032643 crossref_primary_10_1016_j_nantod_2024_102301 crossref_primary_10_1016_j_ijpharm_2024_124608 crossref_primary_10_2147_IJN_S450534 crossref_primary_10_1002_aocs_12907 crossref_primary_10_1021_jacs_3c09918 crossref_primary_10_1016_j_addr_2024_115218 crossref_primary_10_1016_j_hybadv_2024_100215 crossref_primary_10_1021_acs_langmuir_2c03386 crossref_primary_10_1039_D3SM00363A crossref_primary_10_1016_j_jconrel_2023_10_042 crossref_primary_10_1021_acsomega_4c07512 crossref_primary_10_3389_fonc_2022_1070001 crossref_primary_10_3390_pharmaceutics15031026 crossref_primary_10_1016_j_ejpb_2024_114239 crossref_primary_10_1016_j_ijpharm_2024_123769 crossref_primary_10_1038_s41392_023_01651_w crossref_primary_10_1039_D2CS00998F crossref_primary_10_1016_j_addr_2023_115028 crossref_primary_10_1016_j_ejpb_2024_114233 crossref_primary_10_1016_j_ejpb_2024_114597 crossref_primary_10_1016_j_xphs_2024_04_005 crossref_primary_10_1186_s12951_025_03113_7 crossref_primary_10_1039_D3NR03267A crossref_primary_10_1111_php_13730 crossref_primary_10_3390_mi14091786 |
Cites_doi | 10.1016/0005-2736(76)90169-3 10.1016/j.jconrel.2014.04.047 10.1016/j.ijpharm.2021.120271 10.1016/j.ijpharm.2021.120571 10.1016/j.ajps.2018.07.006 10.1016/S0378-5173(01)00721-9 10.1016/j.cclet.2021.01.014 10.1111/j.1751-1097.1993.tb02962.x 10.1016/j.jconrel.2020.09.024 10.1016/j.tifs.2020.08.012 10.1016/j.jconrel.2019.12.023 10.1016/j.jconrel.2019.09.018 10.1016/j.ijpharm.2011.05.034 10.1021/acs.langmuir.6b00741 10.1016/j.ejpb.2021.05.021 10.1016/j.ejpb.2018.04.003 10.1016/S0168-3659(99)00146-7 10.1002/adhm.201800711 10.1016/S0939-6411(02)00130-3 10.1166/jbn.2019.2724 10.1016/j.apsb.2021.03.033 10.1186/s11671-019-3241-2 10.1016/j.chemphyslip.2020.104992 10.3390/pharmaceutics8040036 10.1016/j.bbamem.2009.10.010 10.1007/s00232-015-9803-z 10.1016/j.colsurfb.2015.09.034 10.1529/biophysj.103.036681 10.1517/17425247.2016.1151871 10.1016/S0960-9776(01)80001-1 10.1016/S0163-7827(02)00004-8 10.3390/pharmaceutics10020057 10.1016/j.tca.2014.03.020 10.1016/j.jconrel.2005.02.001 10.1016/j.cis.2017.05.020 10.1038/srep33702 10.1016/j.jddst.2021.102331 10.1186/2008-2231-21-32 10.1016/j.biomaterials.2014.01.082 10.1016/S0006-3495(98)78006-3 10.1016/j.apsb.2021.03.006 10.1016/j.ijpharm.2021.120413 10.1016/0031-6865(95)00010-7 10.1016/j.ijpharm.2019.06.013 10.1016/j.vaccine.2012.01.070 10.1016/j.msec.2019.01.066 10.1016/j.jddst.2020.101549 10.1016/j.chemphyslip.2005.02.003 10.1016/j.ijpharm.2017.09.011 10.1016/j.colsurfa.2020.125806 10.1016/j.jconrel.2012.03.020 10.1016/j.drudis.2013.04.003 10.1016/S0378-5173(99)00207-0 10.1016/j.ijpharm.2021.120418 10.1016/j.jconrel.2020.12.034 10.1016/j.supflu.2020.105048 10.1016/j.ijpharm.2019.06.026 10.1016/j.addr.2015.12.002 10.1016/S0378-5173(00)00661-X 10.1007/BF00686214 10.1016/0014-5793(79)80281-1 10.1016/S0939-6411(02)00062-0 10.1016/j.carbpol.2021.118192 10.1016/j.colsurfb.2008.11.033 10.1016/j.jpba.2020.113642 10.1016/j.ijpharm.2010.02.014 10.1016/j.drudis.2016.10.002 10.1016/j.drudis.2021.05.010 10.1016/j.nano.2021.102484 10.1016/j.fct.2018.01.017 10.1016/j.addr.2019.05.012 10.1007/BF00686017 10.1016/j.ijpharm.2021.120335 10.1016/j.colsurfb.2020.111270 10.1016/j.ejpb.2020.09.008 10.1016/j.chemphyslip.2011.12.011 10.1016/j.jsps.2013.07.003 10.1016/S0169-409X(96)00453-X 10.1016/j.jconrel.2019.04.025 10.1016/j.jconrel.2020.03.044 10.1016/j.bmc.2004.10.001 10.1016/j.jconrel.2014.04.017 10.1016/j.colsurfa.2014.03.095 10.1080/17476348.2021.1875821 10.1021/acs.chemrev.5b00046 10.1186/s11671-016-1520-8 10.1016/0005-2736(71)90273-2 10.1016/S0022-2836(64)80115-7 10.1007/BF00200032 10.1016/S0005-2736(99)00099-1 10.1016/j.jddst.2020.101509 10.1016/0003-2697(91)90545-5 10.1007/978-3-319-04843-7 10.1016/j.ijpharm.2007.01.004 10.1007/BF02174206 10.1016/S0169-409X(96)00496-6 10.1016/j.cherd.2014.09.008 10.1016/j.addr.2011.04.006 10.1016/j.colsurfa.2017.02.084 10.1016/j.steroids.2021.108878 10.1016/S0076-6879(05)91029-X 10.1016/j.abb.2020.108485 10.1016/j.colsurfb.2017.08.028 10.1016/j.ejpb.2012.02.009 10.1016/S0005-2736(01)00399-6 10.1016/j.ijpharm.2017.01.002 10.1016/j.ajps.2014.09.004 10.1016/j.apsb.2019.01.004 10.1016/j.cclet.2021.01.001 10.1016/j.addr.2019.05.009 10.1016/S0006-3495(01)76157-7 10.1208/s12248-017-0049-9 10.1021/mp3002733 10.1016/0024-3205(80)90388-4 10.1021/acs.molpharmaceut.6b01027 10.1039/C8NH00010G 10.1081/LPR-120014761 10.1016/j.jddst.2020.102174 10.1016/j.ijpharm.2017.11.002 10.1007/s00280-012-2042-4 10.1007/BF01756592 10.1016/j.addr.2021.113851 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules27041372 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_f3bd0aee775e4082b320c71a6031be0a PMC8879473 35209162 10_3390_molecules27041372 |
Genre | Journal Article Review |
GeographicLocations | United States Europe |
GeographicLocations_xml | – name: Europe – name: United States |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c559t-cf2e8dcac3dd9a2f340dfb8bb23b9244791a2028338023049a8714ed43a5c7193 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:31:25 EDT 2025 Thu Aug 21 14:08:47 EDT 2025 Fri Jul 11 04:58:56 EDT 2025 Fri Jul 25 20:01:59 EDT 2025 Mon Jul 21 05:48:02 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 Tue Jul 01 03:12:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | drug loading drug delivery liposomes lipid excipient marketed products |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-cf2e8dcac3dd9a2f340dfb8bb23b9244791a2028338023049a8714ed43a5c7193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4720-5639 |
OpenAccessLink | https://doaj.org/article/f3bd0aee775e4082b320c71a6031be0a |
PMID | 35209162 |
PQID | 2633231270 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f3bd0aee775e4082b320c71a6031be0a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8879473 proquest_miscellaneous_2633858743 proquest_journals_2633231270 pubmed_primary_35209162 crossref_citationtrail_10_3390_molecules27041372 crossref_primary_10_3390_molecules27041372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220217 |
PublicationDateYYYYMMDD | 2022-02-17 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220217 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Mantripragada (ref_63) 2002; 41 Boman (ref_115) 1994; 54 ref_93 Vemuri (ref_66) 1995; 70 Barenholz (ref_35) 2012; 160 ref_130 ref_133 Mirzavi (ref_5) 2021; 599 Mayer (ref_113) 1993; 33 ref_135 Irby (ref_119) 2017; 14 Tenchov (ref_140) 2001; 80 Wang (ref_6) 2021; 268 ref_16 Singh (ref_131) 2019; 566 Marsh (ref_136) 2010; 1798 (ref_105) 2001; 213 Delma (ref_141) 2021; 597 ref_128 Li (ref_20) 2021; 32 ref_129 Qi (ref_145) 2019; 143 Matsuoka (ref_52) 2020; 233 Richter (ref_43) 1993; 57 Kaddah (ref_71) 2018; 113 ref_122 ref_121 ref_123 Ye (ref_37) 2000; 64 Bi (ref_151) 2019; 14 Hunter (ref_99) 1998; 74 Antoniou (ref_152) 2021; 26 Beiranvand (ref_42) 2016; 11 Wagner (ref_87) 2002; 54 Xia (ref_146) 2021; 11 Frost (ref_91) 1992; 4 Sone (ref_92) 1986; 22 Trucillo (ref_132) 2021; 167 Zhang (ref_23) 2021; 11 Taha (ref_10) 2014; 22 Wang (ref_18) 2009; 69 ref_77 He (ref_40) 2020; 15 Lu (ref_81) 2021; 598 Au (ref_125) 2016; 97 Hashemi (ref_25) 2020; 691 Large (ref_38) 2021; 176 Regenold (ref_153) 2022; 40 Song (ref_59) 2002; 1558 He (ref_147) 2020; 327 Kalyane (ref_22) 2019; 98 Nichols (ref_114) 1976; 455 ref_83 ref_80 Luo (ref_54) 2017; 519 Wang (ref_34) 2019; 303 Li (ref_53) 2015; 10 Fernandes (ref_26) 2021; 611 ref_143 Yusuf (ref_14) 2017; 533 Dicko (ref_36) 2010; 391 He (ref_149) 2018; 7 Fan (ref_33) 2021; 192 Johnson (ref_97) 1971; 223 Kim (ref_32) 1993; 33 Mazur (ref_2) 2017; 249 Danhier (ref_27) 2012; 9 Zhang (ref_107) 2020; 15 Berger (ref_100) 2001; 233 Mehta (ref_13) 2020; 56 Abboud (ref_78) 2015; 248 Saraf (ref_57) 2020; 56 Piskorz (ref_55) 2013; 18 Li (ref_126) 2012; 64 Hillery (ref_41) 1997; 24 Kang (ref_28) 2014; 35 Catherine (ref_84) 2015; 94 Gouda (ref_88) 2021; 61 Kyun (ref_104) 2014; 454 He (ref_142) 2018; 3 ref_56 Pupo (ref_96) 2005; 104 Chen (ref_30) 2020; 323 ref_51 Huang (ref_138) 1999; 1422 Pattni (ref_31) 2015; 115 Dana (ref_24) 2020; 196 Laouini (ref_85) 2011; 415 Castile (ref_95) 1999; 188 Bangham (ref_4) 1964; 8 Watson (ref_7) 2012; 30 Banerjee (ref_9) 2019; 566 Borochov (ref_65) 1979; 1 Kirby (ref_75) 1980; 27 Leonenko (ref_137) 2004; 86 Nogueira (ref_48) 2015; 136 Sala (ref_82) 2017; 524 ref_61 Forssen (ref_21) 1997; 24 Pentak (ref_139) 2014; 584 Nogueira (ref_39) 2021; 601 Hu (ref_144) 2017; 22 ref_69 Schubert (ref_89) 2003; 55 Sadeghi (ref_73) 2018; 548 ref_64 ref_62 Crommelin (ref_127) 2020; 318 Kohli (ref_49) 2014; 190 Liu (ref_50) 2020; 157 Pajewski (ref_68) 2005; 13 Rabanel (ref_134) 2014; 185 Utsugil (ref_90) 1991; 33 Li (ref_148) 2019; 15 ref_117 ref_116 Mirtaleb (ref_12) 2021; 61 Bhattarai (ref_72) 2021; 173 Liang (ref_29) 2021; 599 ref_118 Abe (ref_67) 2016; 32 Lesieur (ref_98) 1991; 192 Alving (ref_44) 2016; 13 Gregoriadis (ref_3) 2005; Volume 391 ref_110 ref_112 Najafinobar (ref_76) 2016; 6 Signorell (ref_47) 2018; 128 Liu (ref_15) 2020; 104 Barenholzt (ref_94) 1979; 99 Zeng (ref_19) 2021; 32 Li (ref_45) 2021; 166 Aghdam (ref_150) 2019; 315 Man (ref_8) 2019; 143 Wang (ref_74) 2017; 159 Gadekar (ref_109) 2021; 330 Wagner (ref_86) 2002; 12 Kapoor (ref_79) 2017; 19 Varga (ref_60) 2012; 165 ref_103 ref_106 Swenson (ref_111) 2001; 10 ref_108 ref_46 Garbuzenko (ref_58) 2005; 135 Dicko (ref_124) 2007; 337 Silverman (ref_70) 2013; 71 ref_101 ref_1 Niu (ref_17) 2012; 81 Han (ref_11) 2019; 9 Mokhtarieh (ref_102) 2013; 21 Schroit (ref_120) 1982; 42 |
References_xml | – volume: 455 start-page: 269 year: 1976 ident: ref_114 article-title: Catecholamine uptake and concentration by liposomes maintaining pH gradients publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(76)90169-3 – ident: ref_117 – volume: 190 start-page: 274 year: 2014 ident: ref_49 article-title: Designer lipids for drug delivery: From heads to tails publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.04.047 – volume: 597 start-page: 120271 year: 2021 ident: ref_141 article-title: Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120271 – volume: 601 start-page: 120571 year: 2021 ident: ref_39 article-title: Design of liposomes as drug delivery system for therapeutic applications publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120571 – ident: ref_80 – volume: 14 start-page: 365 year: 2019 ident: ref_151 article-title: Current developments in drug delivery with thermosensitive liposomes publication-title: Asian J. Pharm. Sci. doi: 10.1016/j.ajps.2018.07.006 – ident: ref_51 – volume: 233 start-page: 55 year: 2001 ident: ref_100 article-title: Filter extrusion of liposomes using different devices: Comparison of liposome size, encapsulation efficiency, and process characteristics publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(01)00721-9 – volume: 32 start-page: 1857 year: 2021 ident: ref_19 article-title: Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.01.014 – volume: 57 start-page: 1000 year: 1993 ident: ref_43 article-title: Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1993.tb02962.x – volume: 327 start-page: 725 year: 2020 ident: ref_147 article-title: The biological fate of orally administered mPEG-PDLLA polymeric micelles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.09.024 – ident: ref_16 – volume: 104 start-page: 177 year: 2020 ident: ref_15 article-title: Research progress on liposomes: Application in food, digestion behavior and absorption mechanism publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2020.08.012 – volume: 318 start-page: 256 year: 2020 ident: ref_127 article-title: The role of liposomes in clinical nanomedicine development. What now? Now what? publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.12.023 – volume: 315 start-page: 1 year: 2019 ident: ref_150 article-title: Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.09.018 – volume: 415 start-page: 53 year: 2011 ident: ref_85 article-title: Liposome preparation using a hollow fiber membrane contactor—Application to spironolactone encapsulation publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.05.034 – ident: ref_108 – ident: ref_1 – volume: 32 start-page: 6074 year: 2016 ident: ref_67 article-title: Atomic Force Microscopic Analysis of the Effect of Lipid Composition on Liposome Membrane Rigidity publication-title: Langmuir doi: 10.1021/acs.langmuir.6b00741 – ident: ref_123 – volume: 166 start-page: 10 year: 2021 ident: ref_45 article-title: Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® Technology publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2021.05.021 – volume: 128 start-page: 188 year: 2018 ident: ref_47 article-title: Pharmacokinetics of lipid-drug conjugates loaded into liposomes publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.04.003 – volume: 54 start-page: 2830 year: 1994 ident: ref_115 article-title: Liposomal Vincristine Which Exhibits Increased Drug Retention and Increased Circulation Longevity Cures Mice Bearing P388 Tumors publication-title: Cancer Res. – volume: 64 start-page: 155 year: 2000 ident: ref_37 article-title: DepoFoam™ technology: A vehicle for controlled delivery of protein and peptide drugs publication-title: J. Control. Release doi: 10.1016/S0168-3659(99)00146-7 – volume: 7 start-page: e1800711 year: 2018 ident: ref_149 article-title: Bioimaging of Intact Polycaprolactone Nanoparticles Using Aggregation-Caused Quenching Probes: Size-Dependent Translocation via Oral Delivery publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201800711 – ident: ref_77 – ident: ref_56 – volume: 55 start-page: 125 year: 2003 ident: ref_89 article-title: Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(02)00130-3 – volume: 15 start-page: 686 year: 2019 ident: ref_148 article-title: The Trigeminal Pathway Dominates the Nose-to-Brain Transportation of Intact Polymeric Nanoparticles: Evidence from Aggregation-Caused Quenching Probes publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2019.2724 – volume: 11 start-page: 2265 year: 2021 ident: ref_23 article-title: Influencing factors and strategies of enhancing nanoparticles into tumors in vivo publication-title: Acta Pharm. Sin. B. doi: 10.1016/j.apsb.2021.03.033 – volume: 15 start-page: 13 year: 2020 ident: ref_40 article-title: Advances of Nano-Structured Extended-Release Local Anesthetics publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-019-3241-2 – volume: 233 start-page: 104992 year: 2020 ident: ref_52 article-title: Detection of material-derived differences in the stiffness of egg yolk phosphatidylcholine-containing liposomes using atomic force microscopy publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2020.104992 – ident: ref_135 – ident: ref_101 doi: 10.3390/pharmaceutics8040036 – volume: 1798 start-page: 40 year: 2010 ident: ref_136 article-title: Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2009.10.010 – ident: ref_83 – volume: 248 start-page: 811 year: 2015 ident: ref_78 article-title: Effect of Progesterone, Its Hydroxylated and Methylated Derivatives, and Dydrogesterone on Lipid Bilayer Membranes publication-title: J. Membrane Biol. doi: 10.1007/s00232-015-9803-z – volume: 136 start-page: 514 year: 2015 ident: ref_48 article-title: Design of liposomal formulations for cell targeting publication-title: Colloids Surf. B. doi: 10.1016/j.colsurfb.2015.09.034 – volume: 86 start-page: 3783 year: 2004 ident: ref_137 article-title: Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Biophysical Journal Force Microscopy publication-title: Biophys. J. doi: 10.1529/biophysj.103.036681 – volume: 13 start-page: 807 year: 2016 ident: ref_44 article-title: Liposomal adjuvants for human vaccines publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2016.1151871 – ident: ref_128 – ident: ref_62 – ident: ref_103 – volume: 10 start-page: 1 year: 2001 ident: ref_111 article-title: Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate) publication-title: Breast doi: 10.1016/S0960-9776(01)80001-1 – volume: 41 start-page: 392 year: 2002 ident: ref_63 article-title: A lipid based depot (DepoFoam® technology) for sustained release drug delivery publication-title: Prog. Lipid Res. doi: 10.1016/S0163-7827(02)00004-8 – ident: ref_130 doi: 10.3390/pharmaceutics10020057 – volume: 584 start-page: 36 year: 2014 ident: ref_139 article-title: Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC publication-title: Thermochim. Acta doi: 10.1016/j.tca.2014.03.020 – volume: 104 start-page: 379 year: 2005 ident: ref_96 article-title: Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique publication-title: J. Control. Release doi: 10.1016/j.jconrel.2005.02.001 – volume: 249 start-page: 88 year: 2017 ident: ref_2 article-title: Liposomes and lipid bilayers in biosensors publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2017.05.020 – volume: 6 start-page: 33702 year: 2016 ident: ref_76 article-title: Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis publication-title: Sci. Rep. doi: 10.1038/srep33702 – volume: 61 start-page: 102331 year: 2021 ident: ref_12 article-title: Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2021.102331 – volume: 21 start-page: 32 year: 2013 ident: ref_102 article-title: Ethanol treatment a Non-extrusion method for asymmetric liposome size optimization publication-title: DARU J. Pharm. Sci. doi: 10.1186/2008-2231-21-32 – volume: 35 start-page: 4319 year: 2014 ident: ref_28 article-title: iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.082 – volume: 74 start-page: 2996 year: 1998 ident: ref_99 article-title: Effect of Extrusion Pressure and Lipid Properties on the Size and Polydispersity of Lipid Vesicles publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)78006-3 – volume: 11 start-page: 1010 year: 2021 ident: ref_146 article-title: Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS via oral route publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2021.03.006 – volume: 599 start-page: 120413 year: 2021 ident: ref_5 article-title: A review on liposome-based therapeutic approaches against malignant melanoma publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120413 – volume: 70 start-page: 95 year: 1995 ident: ref_66 article-title: Preparation and characterization of liposomes as therapeutic delivery systems: A review publication-title: Pharm. Acta Helv. doi: 10.1016/0031-6865(95)00010-7 – volume: 566 start-page: 680 year: 2019 ident: ref_131 article-title: Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.06.013 – volume: 30 start-page: 2256 year: 2012 ident: ref_7 article-title: Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens publication-title: Vaccine doi: 10.1016/j.vaccine.2012.01.070 – volume: 98 start-page: 1252 year: 2019 ident: ref_22 article-title: Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer publication-title: Mater. Sci. Eng. C Mater. Biol Appl. doi: 10.1016/j.msec.2019.01.066 – volume: 56 start-page: 101549 year: 2020 ident: ref_57 article-title: Advances in liposomal drug delivery to cancer: An overview publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2020.101549 – volume: 135 start-page: 117 year: 2005 ident: ref_58 article-title: Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2005.02.003 – ident: ref_129 – volume: 533 start-page: 179 year: 2017 ident: ref_14 article-title: Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.09.011 – ident: ref_106 – volume: 611 start-page: 125806 year: 2021 ident: ref_26 article-title: Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2020.125806 – volume: 160 start-page: 117 year: 2012 ident: ref_35 article-title: Doxil®—The first FDA-approved nano-drug: Lessons learned publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.03.020 – volume: 18 start-page: 776 year: 2013 ident: ref_55 article-title: Current status of liposomal porphyrinoid photosensitizers publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2013.04.003 – volume: 188 start-page: 87 year: 1999 ident: ref_95 article-title: Factors affecting the size distribution of liposomes produced by freeze–thaw extrusion publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(99)00207-0 – volume: 599 start-page: 120418 year: 2021 ident: ref_29 article-title: Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120418 – volume: 330 start-page: 372 year: 2021 ident: ref_109 article-title: Nanomedicines accessible in the market for clinical interventions publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.12.034 – volume: 167 start-page: 105048 year: 2021 ident: ref_132 article-title: Production of PEG-coated liposomes using a continuous supercritical assisted process publication-title: J. Supercrit. Fluid. doi: 10.1016/j.supflu.2020.105048 – ident: ref_143 – volume: 566 start-page: 717 year: 2019 ident: ref_9 article-title: Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.06.026 – volume: 97 start-page: 280 year: 2016 ident: ref_125 article-title: Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.12.002 – ident: ref_112 – volume: 42 start-page: 161 year: 1982 ident: ref_120 article-title: Effects of liposome structure and lipid composition on the activation of the tumoricidal properties of macrophages by liposomes containing muramyl dipeptide publication-title: Cancer Res. – volume: 213 start-page: 175 year: 2001 ident: ref_105 article-title: Factors involved in the production of liposomes with a high-pressure homogenizer publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(00)00661-X – volume: 33 start-page: 187 year: 1993 ident: ref_32 article-title: Extended-release formulation of morphine for subcutaneous administration publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/BF00686214 – volume: 99 start-page: 210 year: 1979 ident: ref_94 article-title: A new method for preparation of phospholipid vesicles (liposomes)—french press publication-title: FEBS Lett. doi: 10.1016/0014-5793(79)80281-1 – volume: 54 start-page: 213 year: 2002 ident: ref_87 article-title: Liposomes produced in a pilot scale: Production, purification and efficiency aspects publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(02)00062-0 – volume: 268 start-page: 118192 year: 2021 ident: ref_6 article-title: Prospects and challenges of anticancer agents’ delivery via chitosan-based drug carriers to combat breast cancer: A review publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118192 – volume: 69 start-page: 232 year: 2009 ident: ref_18 article-title: Modulation of the physicochemical state of interior agents to prepare controlled release liposomes publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2008.11.033 – volume: 192 start-page: 113642 year: 2021 ident: ref_33 article-title: Analytical characterization of liposomes and other lipid nanoparticles for drug delivery publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2020.113642 – volume: 391 start-page: 248 year: 2010 ident: ref_36 article-title: Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2010.02.014 – ident: ref_64 – volume: 22 start-page: 382 year: 2017 ident: ref_144 article-title: Bioimaging of nanoparticles: The crucial role of discriminating nanoparticles from free probes publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.10.002 – volume: 26 start-page: 1794 year: 2021 ident: ref_152 article-title: Stimulus-responsive liposomes for biomedical applications publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2021.05.010 – volume: 40 start-page: 102484 year: 2022 ident: ref_153 article-title: Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes publication-title: Nanomedicine doi: 10.1016/j.nano.2021.102484 – volume: 113 start-page: 40 year: 2018 ident: ref_71 article-title: Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.01.017 – volume: 143 start-page: 134 year: 2019 ident: ref_8 article-title: Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2019.05.012 – volume: 33 start-page: 17 year: 1993 ident: ref_113 article-title: Identification of vesicle properties that enhance the antitumour activity of liposomal vincristine against murine L1210 leukemia publication-title: Cancer Chemoth. Pharm. doi: 10.1007/BF00686017 – volume: 598 start-page: 120335 year: 2021 ident: ref_81 article-title: Preparation and characterization of bupivacaine multivesicular liposome: A QbD study about the effects of formulation and process on critical quality attributes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120335 – volume: 196 start-page: 111270 year: 2020 ident: ref_24 article-title: Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.111270 – volume: 157 start-page: 241 year: 2020 ident: ref_50 article-title: Analytical method development and comparability study for AmBisome® and generic Amphotericin B liposomal products publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2020.09.008 – volume: 165 start-page: 387 year: 2012 ident: ref_60 article-title: Characterization of the PEG layer of sterically stabilized liposomes: A SAXS study publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2011.12.011 – volume: 22 start-page: 231 year: 2014 ident: ref_10 article-title: Design of liposomal colloidal systems for ocular delivery of ciprofloxacin publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2013.07.003 – volume: 24 start-page: 133 year: 1997 ident: ref_21 article-title: The design and development of DaunoXome® for solid tumor targeting in vivo publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(96)00453-X – volume: 303 start-page: 130 year: 2019 ident: ref_34 article-title: Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.04.025 – ident: ref_61 – volume: 323 start-page: 179 year: 2020 ident: ref_30 article-title: Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.03.044 – volume: 13 start-page: 29 year: 2005 ident: ref_68 article-title: Pore formation in and enlargement of phospholipid liposomes by synthetic models of ceramides and sphingomyelin publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2004.10.001 – volume: 185 start-page: 71 year: 2014 ident: ref_134 article-title: Assessment of PEG on polymeric particles surface, a key step in drug carrier translation publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.04.017 – volume: 454 start-page: 8 year: 2014 ident: ref_104 article-title: Factors influencing the physicochemical characteristics of cationic polymer-coated liposomes prepared by high-pressure homogenization publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2014.03.095 – volume: 15 start-page: 737 year: 2020 ident: ref_107 article-title: Amikacin liposome inhalation suspension as a treatment for patients with refractory mycobacterium avium complex lung infection publication-title: Expert Rev. Resp. Med. doi: 10.1080/17476348.2021.1875821 – volume: 115 start-page: 10938 year: 2015 ident: ref_31 article-title: New Developments in Liposomal Drug Delivery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00046 – volume: 11 start-page: 307 year: 2016 ident: ref_42 article-title: New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1520-8 – ident: ref_118 – volume: 223 start-page: 820 year: 1971 ident: ref_97 article-title: Single bilayer liposomes publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/0005-2736(71)90273-2 – volume: 8 start-page: 660 year: 1964 ident: ref_4 article-title: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(64)80115-7 – volume: 22 start-page: 191 year: 1986 ident: ref_92 article-title: A dried preparation of liposomes containing muramyl tripeptide phosphatidylethanolamine as a potent activator of human blood monocytes to the antitumor state publication-title: Cancer Immunol. Immunother. doi: 10.1007/BF00200032 – volume: 1422 start-page: 273 year: 1999 ident: ref_138 article-title: Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(99)00099-1 – ident: ref_69 – volume: 56 start-page: 101509 year: 2020 ident: ref_13 article-title: Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2020.101509 – volume: 192 start-page: 334 year: 1991 ident: ref_98 article-title: Size analysis and stability study of lipid vesicles by high-performance gel exclusion chromatography, turbidity, and dynamic light scattering publication-title: Anal. Biochem. doi: 10.1016/0003-2697(91)90545-5 – ident: ref_121 doi: 10.1007/978-3-319-04843-7 – volume: 337 start-page: 219 year: 2007 ident: ref_124 article-title: Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.01.004 – volume: 4 start-page: 199 year: 1992 ident: ref_91 article-title: MTP-PE in liposomes as a biological response modifier in the treatment of cancer: Current status publication-title: Biotherapy doi: 10.1007/BF02174206 – volume: 1 start-page: 219 year: 1979 ident: ref_65 article-title: Sphingomyelin phase transition in the sheep erythrocyte membrane publication-title: Cell Biochem. Biophys. – volume: 24 start-page: 345 year: 1997 ident: ref_41 article-title: Supramolecular lipidic drug delivery systems: From laboratory to clinic A review of the recently introduced commercial liposomal and lipid-based formulations of amphotericin B publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(96)00496-6 – volume: 94 start-page: 508 year: 2015 ident: ref_84 article-title: Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2014.09.008 – ident: ref_110 – ident: ref_93 – volume: 64 start-page: 29 year: 2012 ident: ref_126 article-title: Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.04.006 – volume: 524 start-page: 71 year: 2017 ident: ref_82 article-title: Preparation of liposomes: A comparative study between the double solvent displacement and the conventional ethanol injection—From laboratory scale to large scale publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2017.02.084 – volume: 173 start-page: 108878 year: 2021 ident: ref_72 article-title: Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective publication-title: Steroids doi: 10.1016/j.steroids.2021.108878 – volume: Volume 391 start-page: 1 year: 2005 ident: ref_3 article-title: Introduction: The Origins of Liposomes: Alec Bangham at Babraham publication-title: Methods in Enzymology doi: 10.1016/S0076-6879(05)91029-X – volume: 691 start-page: 108485 year: 2020 ident: ref_25 article-title: Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2020.108485 – volume: 159 start-page: 580 year: 2017 ident: ref_74 article-title: Chitosan-modified cholesterol-free liposomes for improving the oral bioavailability of progesterone publication-title: Colloids Surf. B. doi: 10.1016/j.colsurfb.2017.08.028 – volume: 81 start-page: 265 year: 2012 ident: ref_17 article-title: Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2012.02.009 – volume: 1558 start-page: 1 year: 2002 ident: ref_59 article-title: Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/S0005-2736(01)00399-6 – volume: 519 start-page: 1 year: 2017 ident: ref_54 article-title: Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.01.002 – volume: 10 start-page: 81 year: 2015 ident: ref_53 article-title: A review on phospholipids and their main applications in drug delivery systems publication-title: Asian J. Pharm. Sci. doi: 10.1016/j.ajps.2014.09.004 – volume: 9 start-page: 902 year: 2019 ident: ref_11 article-title: Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2019.01.004 – volume: 32 start-page: 1615 year: 2021 ident: ref_20 article-title: STING-activating drug delivery systems: Design strategies and biomedical applications publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.01.001 – volume: 143 start-page: 206 year: 2019 ident: ref_145 article-title: Towards more accurate bioimaging of drug nanocarriers: Turning aggregation-caused quenching into a useful tool publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2019.05.009 – volume: 80 start-page: 1873 year: 2001 ident: ref_140 article-title: New Ordered Metastable Phases between the Gel and Subgel Phases in Hydrated Phospholipids publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76157-7 – ident: ref_116 – volume: 19 start-page: 632 year: 2017 ident: ref_79 article-title: Liposomal Drug Product Development and Quality: Current US Experience and Perspective publication-title: AAPS J. doi: 10.1208/s12248-017-0049-9 – volume: 9 start-page: 2961 year: 2012 ident: ref_27 article-title: RGD-based strategies to target alphav beta3 integrin in cancer therapy and diagnosis publication-title: Mol. Pharm. doi: 10.1021/mp3002733 – volume: 27 start-page: 2223 year: 1980 ident: ref_75 article-title: The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vivo publication-title: Life Sci. doi: 10.1016/0024-3205(80)90388-4 – ident: ref_122 – volume: 14 start-page: 1325 year: 2017 ident: ref_119 article-title: Lipid–Drug Conjugate for Enhancing Drug Delivery publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.6b01027 – ident: ref_46 – volume: 3 start-page: 397 year: 2018 ident: ref_142 article-title: Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding publication-title: Nanoscale Horiz. doi: 10.1039/C8NH00010G – volume: 12 start-page: 259 year: 2002 ident: ref_86 article-title: The crossflow injection technique: An improvement of the ethanol injection method publication-title: J. Liposome Res. doi: 10.1081/LPR-120014761 – volume: 61 start-page: 102174 year: 2021 ident: ref_88 article-title: Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2020.102174 – volume: 548 start-page: 778 year: 2018 ident: ref_73 article-title: Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.11.002 – ident: ref_133 – volume: 71 start-page: 555 year: 2013 ident: ref_70 article-title: Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-012-2042-4 – volume: 33 start-page: 285 year: 1991 ident: ref_90 article-title: Comparative efficacy of liposomes containing synthetic bacterial cell wall analogues for tumoricidal activation of monocytes and macrophages publication-title: Cancer Immunol. Immunother. doi: 10.1007/BF01756592 – volume: 176 start-page: 113851 year: 2021 ident: ref_38 article-title: Liposome composition in drug delivery design, synthesis, characterization, and clinical application publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2021.113851 |
SSID | ssj0021415 |
Score | 2.7260246 |
SecondaryResourceType | review_article |
Snippet | Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1372 |
SubjectTerms | Cancer therapies Consumer Product Safety Drug and Narcotic Control Drug Approval Drug Carriers - chemistry drug delivery Drug Delivery Systems drug loading Europe Fatty acids FDA approval Growth factors Humans Ligands lipid excipient Lipids liposomes Liposomes - chemistry marketed products Molecular Structure Molecular weight Particle size Phase transitions Physiology Review United States United States Food and Drug Administration |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagHOBSsZNSkJE4oUZNbCeOuaCh7ahCgHqg0twibymV2mQ6manUP9DfzXuxZ6YDqFJO8SIn7_ktXr6PkI9GSNBaZdKS6yoVXuhU2ZyloqwyU5SuySXeHf7xszw-Fd8mxSQuuPXxWOXSJg6G2nUW18j3Wck5xCJMZl-mVymyRuHuaqTQeEgeIXQZarWcrBOuHLxT2MnkkNrvXwbCWd9DJ2C7JdvwRQNk___izL-PS97xP-OnZDsGjnQUJP2MPPDtc_L4YMnX9oLcjmhY6KddQ7-fT7u-u_Q91fDQw9nijB76CzyEcUMDSvlnGrGZKAacix6bjRBh_No7ehKAYPs96HMgq--g3dGdS3F7VLeOjgdEEnqyvrHZvySn46NfB8dpZFlILWQT89Q2zFfOasudU5o1XGSuMZUxjBtIzoRUuWYYhXDEioOEQkOOJbwTXBdWQvz3imy1XevfEFpqb5UWXulCC1VVGrIlJmXOjAIrWpqEZMv_XdsIQY5MGBc1pCIoovofESXk06rJNOBv3Ff5KwpxVRGhs4cX3eysjjOxbrhxmfZeysIj27bhLIPv0Ei3bXymE7K7VIE6zue-XmtfQj6sikHAuL2iW98tQp2qqCAkS8jroDGrkXA8bZSXMEK5oUsbQ90sac9_D2jf4AWUkHzn_mG9JU8YXsxAqhq5S7bms4V_B-HS3Lwf5sQfQrUZYQ priority: 102 providerName: ProQuest |
Title | A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35209162 https://www.proquest.com/docview/2633231270 https://www.proquest.com/docview/2633858743 https://pubmed.ncbi.nlm.nih.gov/PMC8879473 https://doaj.org/article/f3bd0aee775e4082b320c71a6031be0a |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOcAF8U2grIzECTVqYjuxzW3b7lIhqFaISnuL7MSBSm1SNbtI_QP93czE2WUXEFyQohxiO3E8E3tebL8H8MZJhV5rXJwLq2PppY1NmfJY5jpxWV7VqaK9w59O8uNT-WGezTekvmhNWKAHDg23XwtXJdZ7pTJP4shO8KRUqSV1ZOeTPjTCMW8FpgaoleK4FOYwBYL6_YsgNes7rhLstRXfGoV6sv4_RZi_LpTcGHmmD-D-EDKycajqQ7jlm0dw93Cl1PYYbsYs_OJnbc0-nl22XXvhO2bxYEdXy6_syJ_T8otrFvjJ37GBlYlRqLnsqNiYuMW_-4rNAgVst4f37GXqWyw32dgOt8dsU7Fpz0XCZj_3anZP4HQ6-XJ4HA_6CnGJOGIRlzX3uiptKarKWF4LmVS1085x4RCWSWVSyyn-EMQSh1DCIrqSvpLCZmgCI57CTtM2_jmw3PrSWOmNzaw0WlvESVyplDuD_WfuIkhW7V2UA_k4aWCcFwhCyETFbyaK4O26yGVg3vhb5gMy4jojkWb3F9CVisGVin-5UgS7Kxcohi-5K3guBMbA-KAIXq-T0cA0sWIb3y5DHp1pDMYieBY8Zl0TQeuM0hxrqLZ8aauq2ynN2bee5xv7fyOVePE_3u0l3OO0cYOkbNQu7Cyulv4VhlMLN4Lbaq7wrKfvR3DnYHIy-zzqv6YfaX4lnA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLam7WLcIMZvYICR4AYtWmI7cYKEUFlXOtZNu9ik3QU7drpJW1KaFrQX4HF4Rs6Jk24FtLtJvart6jTn-PzEPt9HyFstJFhtqv2Yq8QXVig_zUPmizgJdBSbIpTYO3xwGA9PxNfT6HSF_O56YfBaZecTG0dtqhzfkW-zmHPIRZgMPk2--8gahaerHYWGM4t9e_UTSrb6414f9PuOscHu8c7Qb1kF_Byy55mfF8wmJlc5NyZVrOAiMIVOtGZcQzEiZBoqhlGXIzYaJNAKagphjeAqymWI4Evg8tcEh0iOnemDL4sCL4Ro6E5OYTDYvnQEt7YGoSFWSLYU-xqKgP_ltX9fz7wR7wYPyP02UaU9Z1kbZMWWD8n6TscP94j86lF3sECrgo7OJ1VdXdqaKvjQ_nQ-pn17gZc-rqhDRf9AWywoignuvMZlPUQ0_2ENPXLAs_UW_OYYGcUqWLd7owlvi6rS0EGDgEKPrjtE68fk5E6e_xOyWlalfUZorGyeKmFTFSmRJomC6oxJGTKdgteOtUeC7nlneQt5jswbFxmUPqii7B8VeeT9YsnE4X3cNvkzKnExEaG6my-q6Thrd35WcG0CZa2UkUV2b81ZAP9DIb23toHyyGZnAlnrP-rs2to98mYxDArG4xxV2mru5iRRAimgR546i1lIwvF2UxiDhHLJlpZEXR4pz88adHGIOqmQ_PntYr0m68Pjg1E22jvcf0HuMWwKQZocuUlWZ9O5fQmp2ky_avYHJd_uekP-AY_UVZk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEHcCA4wEL2hRE9uJEySEurXVxkZVISbtLbNjp0zaktK0oP0BfhS_jnNy2wpob5Py1NiR03N8LvE530fIGy0kaG2s3ZCryBVWKDdOfeaKMPJ0EJrMl9g7_HkS7h2JT8fB8Qb53fbCYFllaxMrQ22KFL-R91nIOcQiTHr9rCmLmA7HH-ffXWSQwpPWlk6jVpEDe_ET0rfyw_4QZP2WsfHo6-6e2zAMuClE0ks3zZiNTKpSbkysWMaFZzIdac24hsREyNhXDD0wR5w0CKYV5BfCGsFVkEofgZjA_G9KzIp6ZHNnNJl-6dI9H3xjfY7Keez1z2u6W1vCK4DnkGzNE1aEAf-Lcv8u1rzi_cb3yN0mbKWDWs_ukw2bPyC3d1u2uIfk14DWxwy0yOjh6bwoi3NbUgUXHS5WMzq0Z1gCckFrjPT3tEGGohjurkqcNkB88x_W0GkNQ1tuwzNnyC9WwLzRlZa8bapyQ8cVHgqdXvaLlo_I0Y1I4DHp5UVunxIaKpvGSthYBUrEUaQgV2NS-kzHYMND7RCv_b-TtAFARx6OswQSIRRR8o-IHPKumzKv0T-uG7yDQuwGInB39UOxmCWNHUgyro2nrJUysMj1rTnz4D0Ukn1r6ymHbLUqkDTWpEwudd8hr7vbIGA83FG5LVb1mCiIICB0yJNaY7qVcKx18kNYoVzTpbWlrt_JT79VWOPgg2Ih-bPrl_WK3ILNmBzuTw6ekzsMO0SQM0dukd5ysbIvIG5b6pfNBqHk5Kb35B_ZlFsr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Liposomes+as+a+Drug+Delivery+System%3A+Current+Status+of+Approved+Products%2C+Regulatory+Environments%2C+and+Future+Perspectives&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Peng&rft.au=Chen%2C+Guiliang&rft.au=Zhang%2C+Jingchen&rft.date=2022-02-17&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=27&rft.issue=4&rft_id=info:doi/10.3390%2Fmolecules27041372&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |