A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives

Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 4; p. 1372
Main Authors Liu, Peng, Chen, Guiliang, Zhang, Jingchen
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.02.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.
AbstractList Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.
Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.
Author Liu, Peng
Zhang, Jingchen
Chen, Guiliang
AuthorAffiliation Shanghai Center for Drug Evaluation and Inspection, Haiqu Road 58, Shanghai 201210, China; chenguiliang@smda.sh.cn
AuthorAffiliation_xml – name: Shanghai Center for Drug Evaluation and Inspection, Haiqu Road 58, Shanghai 201210, China; chenguiliang@smda.sh.cn
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0003-4720-5639
  surname: Liu
  fullname: Liu, Peng
– sequence: 2
  givenname: Guiliang
  surname: Chen
  fullname: Chen, Guiliang
– sequence: 3
  givenname: Jingchen
  surname: Zhang
  fullname: Zhang, Jingchen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35209162$$D View this record in MEDLINE/PubMed
BookMark eNp1ktuKFDEQhhtZcQ_6AN5IwBsvHM2pJ91eCMPswYUBF1evQzqpHjN0d9ocWuYFfO7N7OzK7ooQSKj6_4-qVB0XB4MboCheE_yBsRp_7F0HOnUQqMCcMEGfFUeEUzxjmNcHD96HxXEIG4wp4aR8URyykuKazOlR8WeBvsFk4TdyLVrZ0QXXQ0AqH3Tq0xqdQmcn8Ft0vQ0R-k9ombyHIaLrqGIKO9tiHL2bwKAr70zSMbzPzHXqVHTZdzZM1ruhz56cUINB5ykmD-gKfBhBx4wPL4vnreoCvLq7T4of52ffl19mq68Xl8vFaqbLso4z3VKojFaaGVMr2jKOTdtUTUNZU1PORU0UxbRirMJ017iqBOFgOFOlFqRmJ8Xlnmuc2sjR2175rXTKytuA82upfLS6A9myxmAFIEQJHFe0YRRnhppjRhrAKrM-71ljanowOjfoVfcI-jgz2J9y7SZZVaLmgmXAuzuAd78ShCh7GzR0nRrApSDpPPdRVoLvpG-fSDcu-SF_1a2KMpJXIKvePKzobyn3484CsRdo70Lw0Ept8xit2xVoO0mw3C2W_GexspM8cd7D_--5AXHg1Q8
CitedBy_id crossref_primary_10_3390_cancers15204944
crossref_primary_10_3390_pharmaceutics15112623
crossref_primary_10_1007_s12668_024_01647_y
crossref_primary_10_1007_s12668_025_01818_5
crossref_primary_10_3390_pharmaceutics15112620
crossref_primary_10_1021_acsabm_3c00588
crossref_primary_10_1134_S1070363223070253
crossref_primary_10_3390_pr12091970
crossref_primary_10_1016_j_jpba_2023_115751
crossref_primary_10_3390_v15040972
crossref_primary_10_3389_fimmu_2023_1265751
crossref_primary_10_1007_s00210_025_04002_4
crossref_primary_10_1208_s12248_023_00855_w
crossref_primary_10_26599_NBE_2024_9290095
crossref_primary_10_3390_pharmaceutics15122674
crossref_primary_10_3390_molecules29071537
crossref_primary_10_3390_pharmaceutics16091123
crossref_primary_10_3390_antibiotics13020121
crossref_primary_10_1088_1748_605X_ad2407
crossref_primary_10_1021_acs_nanolett_4c04022
crossref_primary_10_3390_pharmaceutics14102163
crossref_primary_10_3390_ph17030315
crossref_primary_10_2147_IJN_S462194
crossref_primary_10_1039_D4TB01107D
crossref_primary_10_1039_D2CE01258H
crossref_primary_10_3390_pharmaceutics16010024
crossref_primary_10_1016_j_colsurfb_2024_114043
crossref_primary_10_3390_micro5010011
crossref_primary_10_1016_j_bioactmat_2024_05_013
crossref_primary_10_18214_jend_2024_00066
crossref_primary_10_1002_adfm_202402521
crossref_primary_10_1002_slct_202401354
crossref_primary_10_1007_s11051_024_05978_5
crossref_primary_10_3390_pharmaceutics14102195
crossref_primary_10_1002_smll_202307111
crossref_primary_10_1021_acs_langmuir_4c04372
crossref_primary_10_1016_j_colsurfb_2024_114085
crossref_primary_10_3390_nano12081274
crossref_primary_10_3389_fmicb_2022_1023083
crossref_primary_10_3390_jfb14060296
crossref_primary_10_1021_acs_molpharmaceut_3c00610
crossref_primary_10_31857_S0233475523030052
crossref_primary_10_3390_nu17050930
crossref_primary_10_1039_D4TB01664E
crossref_primary_10_26599_NBE_2024_9290076
crossref_primary_10_1088_1742_6596_2796_1_012017
crossref_primary_10_1016_j_jddst_2023_105224
crossref_primary_10_1007_s11094_024_03082_5
crossref_primary_10_1016_j_jddst_2023_105106
crossref_primary_10_1039_D3BM01451G
crossref_primary_10_1080_17460913_2024_2423558
crossref_primary_10_3390_jnt4030010
crossref_primary_10_1134_S1990747823040062
crossref_primary_10_2147_IJN_S458907
crossref_primary_10_1016_j_ijpharm_2025_125510
crossref_primary_10_1080_08982104_2022_2139844
crossref_primary_10_1038_s41398_024_02935_7
crossref_primary_10_3390_molecules28237750
crossref_primary_10_3390_ijms26010392
crossref_primary_10_1039_D4PY01390E
crossref_primary_10_1080_10610278_2024_2423637
crossref_primary_10_1016_j_ijpharm_2024_125106
crossref_primary_10_1038_s41598_024_83408_1
crossref_primary_10_1039_D4LC00184B
crossref_primary_10_1007_s11095_025_03836_0
crossref_primary_10_1016_j_jconrel_2023_02_006
crossref_primary_10_1080_00914037_2024_2368896
crossref_primary_10_1007_s00289_024_05140_0
crossref_primary_10_3390_pr11061788
crossref_primary_10_1515_gps_2023_0136
crossref_primary_10_1016_j_jddst_2023_104366
crossref_primary_10_1016_j_jddst_2024_105874
crossref_primary_10_3390_ijms24021053
crossref_primary_10_5802_crchim_348
crossref_primary_10_1039_D2TB00605G
crossref_primary_10_1016_j_jconrel_2024_03_027
crossref_primary_10_1080_08982104_2025_2480786
crossref_primary_10_3390_ijms241612541
crossref_primary_10_1016_j_ipha_2023_10_006
crossref_primary_10_1039_D4PM00176A
crossref_primary_10_3390_cancers17061032
crossref_primary_10_1208_s12249_024_02940_5
crossref_primary_10_1016_j_microc_2025_113057
crossref_primary_10_2217_nnm_2023_0022
crossref_primary_10_3390_M1438
crossref_primary_10_1016_j_cis_2024_103156
crossref_primary_10_1007_s10811_023_02913_4
crossref_primary_10_1016_j_jddst_2023_105154
crossref_primary_10_1002_mabi_202400084
crossref_primary_10_1126_science_adf2341
crossref_primary_10_1039_D2CS00968D
crossref_primary_10_1016_j_molliq_2022_120731
crossref_primary_10_1021_acsnano_4c06369
crossref_primary_10_1039_D4PM00141A
crossref_primary_10_3390_cancers16020461
crossref_primary_10_1021_acsnano_3c02452
crossref_primary_10_3390_pharmaceutics14071438
crossref_primary_10_3390_pharmaceutics16111375
crossref_primary_10_1021_acsami_4c13302
crossref_primary_10_3390_antiox12061264
crossref_primary_10_1016_j_jddst_2025_106807
crossref_primary_10_3390_molecules29194689
crossref_primary_10_3390_ijms241512312
crossref_primary_10_1007_s12274_024_6889_6
crossref_primary_10_3390_ijms241713110
crossref_primary_10_1016_j_jconrel_2024_03_008
crossref_primary_10_1007_s12668_024_01646_z
crossref_primary_10_1007_s40005_023_00637_8
crossref_primary_10_34133_bmr_0144
crossref_primary_10_1002_ejlt_202300218
crossref_primary_10_1080_14760584_2023_2274479
crossref_primary_10_3390_applbiosci4010016
crossref_primary_10_3390_cells12040659
crossref_primary_10_3390_ijms26031376
crossref_primary_10_1016_j_ijpharm_2024_124441
crossref_primary_10_1002_adhm_202302969
crossref_primary_10_1016_j_colsurfb_2023_113702
crossref_primary_10_3390_gels10110746
crossref_primary_10_3390_pharmaceutics15020421
crossref_primary_10_1080_1061186X_2024_2445051
crossref_primary_10_1016_j_jddst_2024_106513
crossref_primary_10_3390_jcm13216436
crossref_primary_10_1002_smtd_202402154
crossref_primary_10_3390_pharmaceutics14122706
crossref_primary_10_3390_pharmaceutics14122704
crossref_primary_10_1080_20415990_2025_2475737
crossref_primary_10_1016_j_rvsc_2023_05_005
crossref_primary_10_3390_nano13091557
crossref_primary_10_1039_D4NR01420K
crossref_primary_10_3390_cells12151999
crossref_primary_10_1016_j_ijbiomac_2024_136464
crossref_primary_10_3390_pharmaceutics16091220
crossref_primary_10_3390_pharmaceutics17030307
crossref_primary_10_1016_j_jddst_2025_106705
crossref_primary_10_1021_acs_biomac_4c00847
crossref_primary_10_3390_molecules29061312
crossref_primary_10_3390_ijms23147854
crossref_primary_10_2174_0115672018282735240528072715
crossref_primary_10_3390_biomedicines11020435
crossref_primary_10_3390_molecules30040888
crossref_primary_10_1080_1061186X_2025_2484773
crossref_primary_10_1016_j_foodchem_2024_139437
crossref_primary_10_1038_s41574_024_00965_1
crossref_primary_10_1021_acs_biomac_3c00664
crossref_primary_10_1039_D3CC03599A
crossref_primary_10_1002_adtp_202300275
crossref_primary_10_1002_anbr_202400008
crossref_primary_10_1016_j_colsurfa_2024_134073
crossref_primary_10_51435_turkjac_1433347
crossref_primary_10_1021_acsnano_4c11858
crossref_primary_10_1007_s12668_024_01786_2
crossref_primary_10_1016_j_colsurfb_2024_113926
crossref_primary_10_1038_s41570_024_00627_w
crossref_primary_10_1016_j_jddst_2025_106840
crossref_primary_10_1016_j_bbamem_2024_184273
crossref_primary_10_3390_ijms241814251
crossref_primary_10_1007_s10853_022_07679_7
crossref_primary_10_1186_s40824_022_00286_2
crossref_primary_10_3390_molecules29081848
crossref_primary_10_3390_molecules28176201
crossref_primary_10_1080_10717544_2024_2445259
crossref_primary_10_1186_s12987_024_00573_1
crossref_primary_10_1002_cbic_202300455
crossref_primary_10_1002_advs_202404668
crossref_primary_10_2174_0113816128303645240429052835
crossref_primary_10_1016_j_nxnano_2024_100129
crossref_primary_10_1038_s41392_024_01745_z
crossref_primary_10_1016_j_jddst_2023_105068
crossref_primary_10_1007_s00210_024_02945_8
crossref_primary_10_1038_s41598_023_43689_4
crossref_primary_10_1021_acsbiomaterials_4c02118
crossref_primary_10_3390_biomedicines11020453
crossref_primary_10_3390_pharmaceutics16111444
crossref_primary_10_1039_D3TB03004K
crossref_primary_10_1021_acs_analchem_4c01413
crossref_primary_10_1080_17425247_2025_2474088
crossref_primary_10_3390_pharmaceutics16111441
crossref_primary_10_1016_j_colsurfa_2024_135014
crossref_primary_10_1038_s41598_025_91873_5
crossref_primary_10_1039_D3BM00951C
crossref_primary_10_1016_j_ctarc_2024_100792
crossref_primary_10_3390_jnt6010003
crossref_primary_10_3390_pharmaceutics15122739
crossref_primary_10_1021_accountsmr_4c00116
crossref_primary_10_1080_08982104_2023_2285973
crossref_primary_10_3390_pharmaceutics16050637
crossref_primary_10_1002_jbm_b_35453
crossref_primary_10_3390_pharmaceutics15051457
crossref_primary_10_3390_ijms241310931
crossref_primary_10_1021_acsaenm_3c00395
crossref_primary_10_2147_IJN_S498208
crossref_primary_10_3390_gels9090718
crossref_primary_10_1016_j_biopha_2023_115049
crossref_primary_10_3390_jfb16010024
crossref_primary_10_1002_adhm_202301450
crossref_primary_10_1007_s12668_023_01215_w
crossref_primary_10_1007_s13770_024_00698_2
crossref_primary_10_3390_antibiotics14010003
crossref_primary_10_1016_j_actbio_2025_02_035
crossref_primary_10_1039_D4NR02509A
crossref_primary_10_30895_1991_2919_2023_508
crossref_primary_10_1016_j_jddst_2025_106628
crossref_primary_10_1186_s11671_024_04135_0
crossref_primary_10_3390_molecules27133988
crossref_primary_10_1208_s12249_024_02896_6
crossref_primary_10_2174_0113892010265344230919170611
crossref_primary_10_3390_molecules29010057
crossref_primary_10_1021_acsomega_3c09131
crossref_primary_10_1007_s13367_023_00082_x
crossref_primary_10_2478_aoas_2024_0106
crossref_primary_10_3390_biom14091073
crossref_primary_10_3390_app14188137
crossref_primary_10_1016_j_ijpharm_2024_125117
crossref_primary_10_1007_s12668_024_01577_9
crossref_primary_10_3389_fmolb_2024_1382190
crossref_primary_10_1016_j_jddst_2025_106659
crossref_primary_10_3389_fmedt_2022_893056
crossref_primary_10_1016_j_cellsig_2025_111763
crossref_primary_10_1021_acs_chemmater_4c01127
crossref_primary_10_1166_jbt_2024_3365
crossref_primary_10_1016_j_eurpolymj_2024_113243
crossref_primary_10_1515_znc_2024_0144
crossref_primary_10_3390_ph15060761
crossref_primary_10_3390_pharmaceutics15030873
crossref_primary_10_1007_s00018_023_05022_0
crossref_primary_10_1016_j_ijporl_2024_111894
crossref_primary_10_1021_acs_chemrev_4c00422
crossref_primary_10_1039_D3NR03415A
crossref_primary_10_1134_S1990747823030054
crossref_primary_10_3390_molecules28093798
crossref_primary_10_3390_gels10010045
crossref_primary_10_1080_08982104_2024_2415664
crossref_primary_10_1016_j_colsurfb_2023_113698
crossref_primary_10_3390_pharmaceutics16121525
crossref_primary_10_1515_ntrev_2023_0218
crossref_primary_10_3390_ijms241713542
crossref_primary_10_1021_acsomega_3c10346
crossref_primary_10_3390_biom14091090
crossref_primary_10_3389_fmicb_2024_1391345
crossref_primary_10_3390_ijms251910401
crossref_primary_10_1016_j_jconrel_2023_08_024
crossref_primary_10_1002_ame2_12518
crossref_primary_10_1016_j_ijpharm_2024_125017
crossref_primary_10_1016_j_nano_2023_102727
crossref_primary_10_1021_acsabm_4c00658
crossref_primary_10_3390_jcm12216867
crossref_primary_10_3390_pharmaceutics15061693
crossref_primary_10_7759_cureus_68063
crossref_primary_10_1016_j_fbio_2023_103426
crossref_primary_10_1016_j_jddst_2024_106236
crossref_primary_10_1021_acsnano_4c12963
crossref_primary_10_3390_gels10090598
crossref_primary_10_3390_pharmaceutics15082117
crossref_primary_10_31857_S0233475523040060
crossref_primary_10_3390_ncrna9060070
crossref_primary_10_3390_pharmaceutics14112501
crossref_primary_10_1016_j_nxnano_2023_100018
crossref_primary_10_3390_cells12111497
crossref_primary_10_3390_pharmaceutics15092288
crossref_primary_10_3390_pharmaceutics16050675
crossref_primary_10_60118_001c_117497
crossref_primary_10_3390_molecules28104045
crossref_primary_10_3390_pharmaceutics15122762
crossref_primary_10_2174_0109298673300897240602130258
crossref_primary_10_1002_adfm_202310881
crossref_primary_10_3390_molecules29235511
crossref_primary_10_1016_j_micpath_2025_107495
crossref_primary_10_1021_acsami_5c02103
crossref_primary_10_1080_17435889_2024_2446008
crossref_primary_10_1016_j_prmcm_2024_100363
crossref_primary_10_3390_gels10040284
crossref_primary_10_1016_j_jcis_2024_05_042
crossref_primary_10_1038_s41467_023_41013_2
crossref_primary_10_1002_EXP_20230008
crossref_primary_10_3390_ijms25010296
crossref_primary_10_1016_j_ijpharm_2023_123414
crossref_primary_10_1016_j_mtcomm_2024_109826
crossref_primary_10_1039_D4PM00201F
crossref_primary_10_1007_s11274_023_03751_9
crossref_primary_10_3390_nano12224029
crossref_primary_10_1016_j_ijpharm_2022_122167
crossref_primary_10_1002_cmdc_202400130
crossref_primary_10_1021_acsabm_4c01409
crossref_primary_10_1016_j_bj_2023_100685
crossref_primary_10_1186_s12645_025_00314_5
crossref_primary_10_3389_fphar_2024_1402825
crossref_primary_10_1021_jacs_3c05574
crossref_primary_10_3390_foods13162478
crossref_primary_10_1080_08982104_2023_2226216
crossref_primary_10_1161_CIRCULATIONAHA_123_067373
crossref_primary_10_1016_j_jconrel_2025_02_032
crossref_primary_10_3390_pharmaceutics14112402
crossref_primary_10_34186_klujes_1520899
crossref_primary_10_3390_biomedicines10071547
crossref_primary_10_1039_D4NJ00768A
crossref_primary_10_1007_s00289_023_04951_x
crossref_primary_10_1016_j_colsurfa_2024_135691
crossref_primary_10_1007_s12672_024_01509_9
crossref_primary_10_3390_biology12091178
crossref_primary_10_1002_mco2_339
crossref_primary_10_3390_jof10040278
crossref_primary_10_1016_j_bioactmat_2024_09_037
crossref_primary_10_1039_D3CP00425B
crossref_primary_10_3390_lipidology1020010
crossref_primary_10_3389_fonc_2024_1506588
crossref_primary_10_3389_fchem_2024_1379192
crossref_primary_10_1016_j_indcrop_2024_118362
crossref_primary_10_3390_ijms23168838
crossref_primary_10_1016_j_ajps_2024_100927
crossref_primary_10_2174_0113816128338560240923073357
crossref_primary_10_1002_adhm_202301163
crossref_primary_10_3390_pharmaceutics16040449
crossref_primary_10_1080_08982104_2023_2274428
crossref_primary_10_1002_pat_6406
crossref_primary_10_1016_j_heliyon_2024_e30503
crossref_primary_10_1002_adma_202312898
crossref_primary_10_3390_nano13121828
crossref_primary_10_3390_ph16111564
crossref_primary_10_1002_agt2_480
crossref_primary_10_1021_acs_chemmater_4c00947
crossref_primary_10_1016_j_jbiotec_2023_12_003
crossref_primary_10_3390_biomedicines10123158
crossref_primary_10_3390_pharmaceutics16121574
crossref_primary_10_1024_0301_1526_a001184
crossref_primary_10_32604_or_2024_045564
crossref_primary_10_3390_pharmaceutics17010122
crossref_primary_10_1016_j_phymed_2024_155902
crossref_primary_10_1002_agt2_369
crossref_primary_10_1016_j_ijbiomac_2024_134517
crossref_primary_10_3390_biophysica2040033
crossref_primary_10_3390_ijms24054349
crossref_primary_10_3390_ijms241713612
crossref_primary_10_3390_vaccines11111704
crossref_primary_10_1016_j_jddst_2024_106285
crossref_primary_10_1515_chem_2024_0122
crossref_primary_10_2147_DDDT_S469832
crossref_primary_10_3390_pharmaceutics17020276
crossref_primary_10_1007_s10924_023_02842_w
crossref_primary_10_3390_cells12202448
crossref_primary_10_1080_10837450_2023_2267673
crossref_primary_10_1007_s00210_023_02865_z
crossref_primary_10_1021_acs_molpharmaceut_3c00049
crossref_primary_10_1038_s12276_024_01310_2
crossref_primary_10_34133_bmef_0024
crossref_primary_10_1080_10837450_2024_2427186
crossref_primary_10_1007_s10989_024_10617_7
crossref_primary_10_1016_j_ijbiomac_2025_140138
crossref_primary_10_22159_ijcpr_2024v16i1_4020
crossref_primary_10_54097_jvw1cw28
crossref_primary_10_1186_s11671_024_04170_x
crossref_primary_10_1002_jsfa_13612
crossref_primary_10_1016_j_cobme_2025_100576
crossref_primary_10_1080_17425247_2024_2311812
crossref_primary_10_3390_biomedicines12071519
crossref_primary_10_1016_j_jddst_2023_104991
crossref_primary_10_1038_s41573_023_00670_0
crossref_primary_10_1038_s41598_024_60145_z
crossref_primary_10_1021_acsomega_3c09892
crossref_primary_10_3390_nano15020133
crossref_primary_10_1002_wnan_1863
crossref_primary_10_1002_cmdc_202400323
crossref_primary_10_1021_acsabm_3c00822
crossref_primary_10_1186_s12645_024_00299_7
crossref_primary_10_2174_011573398X264594231027110541
crossref_primary_10_1007_s13205_023_03901_8
crossref_primary_10_5937_scriptamed55_52024
crossref_primary_10_1002_INMD_20240010
crossref_primary_10_33380_2305_2066_2024_13_4_1867
crossref_primary_10_3390_ijms25105213
crossref_primary_10_1186_s13020_024_00936_8
crossref_primary_10_53730_ijhs_v7nS1_15291
crossref_primary_10_5812_jjnpp_145855
crossref_primary_10_1016_j_biopha_2023_116113
crossref_primary_10_1016_j_ijpx_2023_100193
crossref_primary_10_2147_IJN_S437733
crossref_primary_10_1002_wnan_1996
crossref_primary_10_4155_tde_2023_0116
crossref_primary_10_1371_journal_pone_0310492
crossref_primary_10_1016_j_jddst_2023_104749
crossref_primary_10_2174_0122103031304556240430161553
crossref_primary_10_1016_j_ijpharm_2023_122632
crossref_primary_10_1016_j_cej_2024_153369
crossref_primary_10_1038_s41467_025_56401_z
crossref_primary_10_3389_fvets_2023_1236136
crossref_primary_10_15407_biotech16_05_022
crossref_primary_10_1016_j_eurpolymj_2023_112365
crossref_primary_10_1021_acsnano_2c00128
crossref_primary_10_1016_j_micpath_2024_107007
crossref_primary_10_1007_s12247_022_09643_z
crossref_primary_10_1016_j_jddst_2024_106076
crossref_primary_10_1051_bioconf_20248601020
crossref_primary_10_1002_cssc_202300803
crossref_primary_10_1016_j_colsurfb_2023_113270
crossref_primary_10_1093_ijfood_vvae078
crossref_primary_10_1016_j_molliq_2024_126288
crossref_primary_10_1039_D3NA01097J
crossref_primary_10_1186_s11671_023_03913_6
crossref_primary_10_3390_ma16124206
crossref_primary_10_3762_bjnano_15_2
crossref_primary_10_1002_admi_202400169
crossref_primary_10_1016_j_bioactmat_2024_03_014
crossref_primary_10_1002_adma_202309039
crossref_primary_10_1088_1748_605X_ad7e6f
crossref_primary_10_1016_j_bioadv_2023_213606
crossref_primary_10_1016_j_jddst_2023_104854
crossref_primary_10_1007_s10967_024_09432_7
crossref_primary_10_1021_acsbiomaterials_3c01531
crossref_primary_10_1021_acsanm_4c05799
crossref_primary_10_1016_j_foodres_2025_116272
crossref_primary_10_1080_08982104_2022_2153139
crossref_primary_10_1002_wnan_1892
crossref_primary_10_1080_01913123_2024_2392728
crossref_primary_10_1021_acsabm_4c01579
crossref_primary_10_3390_ijms25010485
crossref_primary_10_1007_s00210_024_03082_y
crossref_primary_10_1016_j_biopha_2024_117600
crossref_primary_10_1007_s00210_023_02885_9
crossref_primary_10_1021_acsnano_3c06233
crossref_primary_10_1146_annurev_chembioeng_100722_122348
crossref_primary_10_3390_pharmaceutics15010179
crossref_primary_10_2147_DDDT_S473178
crossref_primary_10_3390_pharmaceutics15061603
crossref_primary_10_3390_vaccines11030661
crossref_primary_10_3390_pharmaceutics16030431
crossref_primary_10_3390_pharmaceutics17010036
crossref_primary_10_1007_s12013_024_01428_0
crossref_primary_10_1080_03639045_2024_2437562
crossref_primary_10_1002_smll_202305591
crossref_primary_10_1021_acsomega_4c01387
crossref_primary_10_3390_app12168262
crossref_primary_10_1080_08982104_2023_2262025
crossref_primary_10_3390_pharmaceutics15041184
crossref_primary_10_3390_ph16101337
crossref_primary_10_1039_D3MD00334E
crossref_primary_10_1016_j_biopha_2023_115875
crossref_primary_10_1186_s43094_024_00733_y
crossref_primary_10_3390_pharmaceutics16020219
crossref_primary_10_1007_s13346_022_01281_9
crossref_primary_10_2174_1874471016666230621120453
crossref_primary_10_1007_s44372_025_00089_4
crossref_primary_10_1039_D3TB00598D
crossref_primary_10_1093_brain_awae135
crossref_primary_10_3390_pharmaceutics16020223
crossref_primary_10_3390_pharmaceutics16070965
crossref_primary_10_1016_j_heliyon_2024_e28947
crossref_primary_10_1016_j_ccr_2024_215774
crossref_primary_10_1002_wnan_1955
crossref_primary_10_1016_j_molliq_2024_126114
crossref_primary_10_1016_j_ijpharm_2024_124876
crossref_primary_10_5812_jjnpp_153745
crossref_primary_10_1016_j_addr_2023_115005
crossref_primary_10_1007_s13346_024_01708_5
crossref_primary_10_3390_pharmaceutics14112484
crossref_primary_10_3390_biomedicines12092002
crossref_primary_10_1002_adfm_202314265
crossref_primary_10_1016_j_jddst_2024_105810
crossref_primary_10_1016_j_onano_2023_100196
crossref_primary_10_1016_j_ijfoodmicro_2023_110255
crossref_primary_10_1186_s43094_024_00756_5
crossref_primary_10_1002_ggn2_202300201
crossref_primary_10_1080_21691401_2024_2360634
crossref_primary_10_33320_maced_pharm_bull_2022_68_03_110
crossref_primary_10_1080_08982104_2024_2336549
crossref_primary_10_1088_1758_5090_ad9a01
crossref_primary_10_1016_j_ijpharm_2024_123798
crossref_primary_10_1016_j_ijbiomac_2024_139017
crossref_primary_10_1007_s13346_024_01662_2
crossref_primary_10_3390_app13106219
crossref_primary_10_1016_j_adcanc_2023_100103
crossref_primary_10_1016_j_jconrel_2023_04_006
crossref_primary_10_1016_j_onano_2024_100225
crossref_primary_10_1038_s41598_024_83715_7
crossref_primary_10_1039_D4MA00286E
crossref_primary_10_1080_08982104_2024_2313452
crossref_primary_10_1016_j_jddst_2023_104880
crossref_primary_10_1021_acsphyschemau_4c00011
crossref_primary_10_1002_smll_202310913
crossref_primary_10_1021_acs_molpharmaceut_3c00562
crossref_primary_10_3390_ijms241310494
crossref_primary_10_1002_wnan_1979
crossref_primary_10_53941_ijddp_0201009
crossref_primary_10_14201_fj202492717
crossref_primary_10_3389_fbioe_2023_1229829
crossref_primary_10_1016_j_ipha_2024_01_011
crossref_primary_10_3390_pharmaceutics16030350
crossref_primary_10_1038_s41598_022_25587_3
crossref_primary_10_3390_cancers15082256
crossref_primary_10_3390_pharmaceutics15020695
crossref_primary_10_3390_polym15030782
crossref_primary_10_3390_bios12090683
crossref_primary_10_1016_j_molliq_2024_126545
crossref_primary_10_1021_acsfoodscitech_4c00493
crossref_primary_10_1007_s12668_024_01580_0
crossref_primary_10_1016_j_bioactmat_2024_06_008
crossref_primary_10_22159_ijap_2023v15i3_47459
crossref_primary_10_3390_ijms24129902
crossref_primary_10_1021_acsnano_3c04366
crossref_primary_10_1208_s12249_023_02670_0
crossref_primary_10_3390_molecules28020563
crossref_primary_10_1007_s12247_024_09808_y
crossref_primary_10_1208_s12249_024_02957_w
crossref_primary_10_1016_j_colsurfa_2024_133852
crossref_primary_10_3390_ijms25063454
crossref_primary_10_35516_jjps_v17i3_2359
crossref_primary_10_1002_advs_202306463
crossref_primary_10_1002_pat_70096
crossref_primary_10_3390_ijms252212170
crossref_primary_10_1016_j_jddst_2023_105326
crossref_primary_10_1002_adtp_202200199
crossref_primary_10_3389_fphar_2024_1510806
crossref_primary_10_52711_0974_360X_2024_00466
crossref_primary_10_1002_smll_202409353
crossref_primary_10_1007_s10856_022_06692_1
crossref_primary_10_3390_molecules29112415
crossref_primary_10_34172_jhp_2024_51491
crossref_primary_10_1016_j_imbio_2022_152317
crossref_primary_10_1039_D2NA00795A
crossref_primary_10_1080_13543776_2024_2365407
crossref_primary_10_1186_s40824_023_00343_4
crossref_primary_10_22159_ijap_2024v16i3_50601
crossref_primary_10_1208_s12249_023_02682_w
crossref_primary_10_1016_j_jddst_2023_104586
crossref_primary_10_1016_j_jconrel_2023_10_050
crossref_primary_10_1080_10837450_2024_2315457
crossref_primary_10_1007_s12668_024_01582_y
crossref_primary_10_1111_ijfs_17529
crossref_primary_10_1371_journal_pone_0293115
crossref_primary_10_3390_pharmaceutics16020235
crossref_primary_10_1016_j_ccr_2023_215567
crossref_primary_10_1007_s13206_024_00147_1
crossref_primary_10_1021_acsaom_4c00503
crossref_primary_10_3389_fddev_2023_1265446
crossref_primary_10_3390_ijms24032643
crossref_primary_10_1016_j_nantod_2024_102301
crossref_primary_10_1016_j_ijpharm_2024_124608
crossref_primary_10_2147_IJN_S450534
crossref_primary_10_1002_aocs_12907
crossref_primary_10_1021_jacs_3c09918
crossref_primary_10_1016_j_addr_2024_115218
crossref_primary_10_1016_j_hybadv_2024_100215
crossref_primary_10_1021_acs_langmuir_2c03386
crossref_primary_10_1039_D3SM00363A
crossref_primary_10_1016_j_jconrel_2023_10_042
crossref_primary_10_1021_acsomega_4c07512
crossref_primary_10_3389_fonc_2022_1070001
crossref_primary_10_3390_pharmaceutics15031026
crossref_primary_10_1016_j_ejpb_2024_114239
crossref_primary_10_1016_j_ijpharm_2024_123769
crossref_primary_10_1038_s41392_023_01651_w
crossref_primary_10_1039_D2CS00998F
crossref_primary_10_1016_j_addr_2023_115028
crossref_primary_10_1016_j_ejpb_2024_114233
crossref_primary_10_1016_j_ejpb_2024_114597
crossref_primary_10_1016_j_xphs_2024_04_005
crossref_primary_10_1186_s12951_025_03113_7
crossref_primary_10_1039_D3NR03267A
crossref_primary_10_1111_php_13730
crossref_primary_10_3390_mi14091786
Cites_doi 10.1016/0005-2736(76)90169-3
10.1016/j.jconrel.2014.04.047
10.1016/j.ijpharm.2021.120271
10.1016/j.ijpharm.2021.120571
10.1016/j.ajps.2018.07.006
10.1016/S0378-5173(01)00721-9
10.1016/j.cclet.2021.01.014
10.1111/j.1751-1097.1993.tb02962.x
10.1016/j.jconrel.2020.09.024
10.1016/j.tifs.2020.08.012
10.1016/j.jconrel.2019.12.023
10.1016/j.jconrel.2019.09.018
10.1016/j.ijpharm.2011.05.034
10.1021/acs.langmuir.6b00741
10.1016/j.ejpb.2021.05.021
10.1016/j.ejpb.2018.04.003
10.1016/S0168-3659(99)00146-7
10.1002/adhm.201800711
10.1016/S0939-6411(02)00130-3
10.1166/jbn.2019.2724
10.1016/j.apsb.2021.03.033
10.1186/s11671-019-3241-2
10.1016/j.chemphyslip.2020.104992
10.3390/pharmaceutics8040036
10.1016/j.bbamem.2009.10.010
10.1007/s00232-015-9803-z
10.1016/j.colsurfb.2015.09.034
10.1529/biophysj.103.036681
10.1517/17425247.2016.1151871
10.1016/S0960-9776(01)80001-1
10.1016/S0163-7827(02)00004-8
10.3390/pharmaceutics10020057
10.1016/j.tca.2014.03.020
10.1016/j.jconrel.2005.02.001
10.1016/j.cis.2017.05.020
10.1038/srep33702
10.1016/j.jddst.2021.102331
10.1186/2008-2231-21-32
10.1016/j.biomaterials.2014.01.082
10.1016/S0006-3495(98)78006-3
10.1016/j.apsb.2021.03.006
10.1016/j.ijpharm.2021.120413
10.1016/0031-6865(95)00010-7
10.1016/j.ijpharm.2019.06.013
10.1016/j.vaccine.2012.01.070
10.1016/j.msec.2019.01.066
10.1016/j.jddst.2020.101549
10.1016/j.chemphyslip.2005.02.003
10.1016/j.ijpharm.2017.09.011
10.1016/j.colsurfa.2020.125806
10.1016/j.jconrel.2012.03.020
10.1016/j.drudis.2013.04.003
10.1016/S0378-5173(99)00207-0
10.1016/j.ijpharm.2021.120418
10.1016/j.jconrel.2020.12.034
10.1016/j.supflu.2020.105048
10.1016/j.ijpharm.2019.06.026
10.1016/j.addr.2015.12.002
10.1016/S0378-5173(00)00661-X
10.1007/BF00686214
10.1016/0014-5793(79)80281-1
10.1016/S0939-6411(02)00062-0
10.1016/j.carbpol.2021.118192
10.1016/j.colsurfb.2008.11.033
10.1016/j.jpba.2020.113642
10.1016/j.ijpharm.2010.02.014
10.1016/j.drudis.2016.10.002
10.1016/j.drudis.2021.05.010
10.1016/j.nano.2021.102484
10.1016/j.fct.2018.01.017
10.1016/j.addr.2019.05.012
10.1007/BF00686017
10.1016/j.ijpharm.2021.120335
10.1016/j.colsurfb.2020.111270
10.1016/j.ejpb.2020.09.008
10.1016/j.chemphyslip.2011.12.011
10.1016/j.jsps.2013.07.003
10.1016/S0169-409X(96)00453-X
10.1016/j.jconrel.2019.04.025
10.1016/j.jconrel.2020.03.044
10.1016/j.bmc.2004.10.001
10.1016/j.jconrel.2014.04.017
10.1016/j.colsurfa.2014.03.095
10.1080/17476348.2021.1875821
10.1021/acs.chemrev.5b00046
10.1186/s11671-016-1520-8
10.1016/0005-2736(71)90273-2
10.1016/S0022-2836(64)80115-7
10.1007/BF00200032
10.1016/S0005-2736(99)00099-1
10.1016/j.jddst.2020.101509
10.1016/0003-2697(91)90545-5
10.1007/978-3-319-04843-7
10.1016/j.ijpharm.2007.01.004
10.1007/BF02174206
10.1016/S0169-409X(96)00496-6
10.1016/j.cherd.2014.09.008
10.1016/j.addr.2011.04.006
10.1016/j.colsurfa.2017.02.084
10.1016/j.steroids.2021.108878
10.1016/S0076-6879(05)91029-X
10.1016/j.abb.2020.108485
10.1016/j.colsurfb.2017.08.028
10.1016/j.ejpb.2012.02.009
10.1016/S0005-2736(01)00399-6
10.1016/j.ijpharm.2017.01.002
10.1016/j.ajps.2014.09.004
10.1016/j.apsb.2019.01.004
10.1016/j.cclet.2021.01.001
10.1016/j.addr.2019.05.009
10.1016/S0006-3495(01)76157-7
10.1208/s12248-017-0049-9
10.1021/mp3002733
10.1016/0024-3205(80)90388-4
10.1021/acs.molpharmaceut.6b01027
10.1039/C8NH00010G
10.1081/LPR-120014761
10.1016/j.jddst.2020.102174
10.1016/j.ijpharm.2017.11.002
10.1007/s00280-012-2042-4
10.1007/BF01756592
10.1016/j.addr.2021.113851
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules27041372
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_f3bd0aee775e4082b320c71a6031be0a
PMC8879473
35209162
10_3390_molecules27041372
Genre Journal Article
Review
GeographicLocations United States
Europe
GeographicLocations_xml – name: Europe
– name: United States
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c559t-cf2e8dcac3dd9a2f340dfb8bb23b9244791a2028338023049a8714ed43a5c7193
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:31:25 EDT 2025
Thu Aug 21 14:08:47 EDT 2025
Fri Jul 11 04:58:56 EDT 2025
Fri Jul 25 20:01:59 EDT 2025
Mon Jul 21 05:48:02 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Tue Jul 01 03:12:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords drug loading
drug delivery
liposomes
lipid excipient
marketed products
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-cf2e8dcac3dd9a2f340dfb8bb23b9244791a2028338023049a8714ed43a5c7193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4720-5639
OpenAccessLink https://doaj.org/article/f3bd0aee775e4082b320c71a6031be0a
PMID 35209162
PQID 2633231270
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_f3bd0aee775e4082b320c71a6031be0a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8879473
proquest_miscellaneous_2633858743
proquest_journals_2633231270
pubmed_primary_35209162
crossref_citationtrail_10_3390_molecules27041372
crossref_primary_10_3390_molecules27041372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220217
PublicationDateYYYYMMDD 2022-02-17
PublicationDate_xml – month: 2
  year: 2022
  text: 20220217
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mantripragada (ref_63) 2002; 41
Boman (ref_115) 1994; 54
ref_93
Vemuri (ref_66) 1995; 70
Barenholz (ref_35) 2012; 160
ref_130
ref_133
Mirzavi (ref_5) 2021; 599
Mayer (ref_113) 1993; 33
ref_135
Irby (ref_119) 2017; 14
Tenchov (ref_140) 2001; 80
Wang (ref_6) 2021; 268
ref_16
Singh (ref_131) 2019; 566
Marsh (ref_136) 2010; 1798
(ref_105) 2001; 213
Delma (ref_141) 2021; 597
ref_128
Li (ref_20) 2021; 32
ref_129
Qi (ref_145) 2019; 143
Matsuoka (ref_52) 2020; 233
Richter (ref_43) 1993; 57
Kaddah (ref_71) 2018; 113
ref_122
ref_121
ref_123
Ye (ref_37) 2000; 64
Bi (ref_151) 2019; 14
Hunter (ref_99) 1998; 74
Antoniou (ref_152) 2021; 26
Beiranvand (ref_42) 2016; 11
Wagner (ref_87) 2002; 54
Xia (ref_146) 2021; 11
Frost (ref_91) 1992; 4
Sone (ref_92) 1986; 22
Trucillo (ref_132) 2021; 167
Zhang (ref_23) 2021; 11
Taha (ref_10) 2014; 22
Wang (ref_18) 2009; 69
ref_77
He (ref_40) 2020; 15
Lu (ref_81) 2021; 598
Au (ref_125) 2016; 97
Hashemi (ref_25) 2020; 691
Large (ref_38) 2021; 176
Regenold (ref_153) 2022; 40
Song (ref_59) 2002; 1558
He (ref_147) 2020; 327
Kalyane (ref_22) 2019; 98
Nichols (ref_114) 1976; 455
ref_83
ref_80
Luo (ref_54) 2017; 519
Wang (ref_34) 2019; 303
Li (ref_53) 2015; 10
Fernandes (ref_26) 2021; 611
ref_143
Yusuf (ref_14) 2017; 533
Dicko (ref_36) 2010; 391
He (ref_149) 2018; 7
Fan (ref_33) 2021; 192
Johnson (ref_97) 1971; 223
Kim (ref_32) 1993; 33
Mazur (ref_2) 2017; 249
Danhier (ref_27) 2012; 9
Zhang (ref_107) 2020; 15
Berger (ref_100) 2001; 233
Mehta (ref_13) 2020; 56
Abboud (ref_78) 2015; 248
Saraf (ref_57) 2020; 56
Piskorz (ref_55) 2013; 18
Li (ref_126) 2012; 64
Hillery (ref_41) 1997; 24
Kang (ref_28) 2014; 35
Catherine (ref_84) 2015; 94
Gouda (ref_88) 2021; 61
Kyun (ref_104) 2014; 454
He (ref_142) 2018; 3
ref_56
Pupo (ref_96) 2005; 104
Chen (ref_30) 2020; 323
ref_51
Huang (ref_138) 1999; 1422
Pattni (ref_31) 2015; 115
Dana (ref_24) 2020; 196
Laouini (ref_85) 2011; 415
Castile (ref_95) 1999; 188
Bangham (ref_4) 1964; 8
Watson (ref_7) 2012; 30
Banerjee (ref_9) 2019; 566
Borochov (ref_65) 1979; 1
Kirby (ref_75) 1980; 27
Leonenko (ref_137) 2004; 86
Nogueira (ref_48) 2015; 136
Sala (ref_82) 2017; 524
ref_61
Forssen (ref_21) 1997; 24
Pentak (ref_139) 2014; 584
Nogueira (ref_39) 2021; 601
Hu (ref_144) 2017; 22
ref_69
Schubert (ref_89) 2003; 55
Sadeghi (ref_73) 2018; 548
ref_64
ref_62
Crommelin (ref_127) 2020; 318
Kohli (ref_49) 2014; 190
Liu (ref_50) 2020; 157
Pajewski (ref_68) 2005; 13
Rabanel (ref_134) 2014; 185
Utsugil (ref_90) 1991; 33
Li (ref_148) 2019; 15
ref_117
ref_116
Mirtaleb (ref_12) 2021; 61
Bhattarai (ref_72) 2021; 173
Liang (ref_29) 2021; 599
ref_118
Abe (ref_67) 2016; 32
Lesieur (ref_98) 1991; 192
Alving (ref_44) 2016; 13
Gregoriadis (ref_3) 2005; Volume 391
ref_110
ref_112
Najafinobar (ref_76) 2016; 6
Signorell (ref_47) 2018; 128
Liu (ref_15) 2020; 104
Barenholzt (ref_94) 1979; 99
Zeng (ref_19) 2021; 32
Li (ref_45) 2021; 166
Aghdam (ref_150) 2019; 315
Man (ref_8) 2019; 143
Wang (ref_74) 2017; 159
Gadekar (ref_109) 2021; 330
Wagner (ref_86) 2002; 12
Kapoor (ref_79) 2017; 19
Varga (ref_60) 2012; 165
ref_103
ref_106
Swenson (ref_111) 2001; 10
ref_108
ref_46
Garbuzenko (ref_58) 2005; 135
Dicko (ref_124) 2007; 337
Silverman (ref_70) 2013; 71
ref_101
ref_1
Niu (ref_17) 2012; 81
Han (ref_11) 2019; 9
Mokhtarieh (ref_102) 2013; 21
Schroit (ref_120) 1982; 42
References_xml – volume: 455
  start-page: 269
  year: 1976
  ident: ref_114
  article-title: Catecholamine uptake and concentration by liposomes maintaining pH gradients
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(76)90169-3
– ident: ref_117
– volume: 190
  start-page: 274
  year: 2014
  ident: ref_49
  article-title: Designer lipids for drug delivery: From heads to tails
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.04.047
– volume: 597
  start-page: 120271
  year: 2021
  ident: ref_141
  article-title: Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120271
– volume: 601
  start-page: 120571
  year: 2021
  ident: ref_39
  article-title: Design of liposomes as drug delivery system for therapeutic applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120571
– ident: ref_80
– volume: 14
  start-page: 365
  year: 2019
  ident: ref_151
  article-title: Current developments in drug delivery with thermosensitive liposomes
  publication-title: Asian J. Pharm. Sci.
  doi: 10.1016/j.ajps.2018.07.006
– ident: ref_51
– volume: 233
  start-page: 55
  year: 2001
  ident: ref_100
  article-title: Filter extrusion of liposomes using different devices: Comparison of liposome size, encapsulation efficiency, and process characteristics
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(01)00721-9
– volume: 32
  start-page: 1857
  year: 2021
  ident: ref_19
  article-title: Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.01.014
– volume: 57
  start-page: 1000
  year: 1993
  ident: ref_43
  article-title: Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1993.tb02962.x
– volume: 327
  start-page: 725
  year: 2020
  ident: ref_147
  article-title: The biological fate of orally administered mPEG-PDLLA polymeric micelles
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.09.024
– ident: ref_16
– volume: 104
  start-page: 177
  year: 2020
  ident: ref_15
  article-title: Research progress on liposomes: Application in food, digestion behavior and absorption mechanism
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2020.08.012
– volume: 318
  start-page: 256
  year: 2020
  ident: ref_127
  article-title: The role of liposomes in clinical nanomedicine development. What now? Now what?
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.12.023
– volume: 315
  start-page: 1
  year: 2019
  ident: ref_150
  article-title: Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.09.018
– volume: 415
  start-page: 53
  year: 2011
  ident: ref_85
  article-title: Liposome preparation using a hollow fiber membrane contactor—Application to spironolactone encapsulation
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2011.05.034
– ident: ref_108
– ident: ref_1
– volume: 32
  start-page: 6074
  year: 2016
  ident: ref_67
  article-title: Atomic Force Microscopic Analysis of the Effect of Lipid Composition on Liposome Membrane Rigidity
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b00741
– ident: ref_123
– volume: 166
  start-page: 10
  year: 2021
  ident: ref_45
  article-title: Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® Technology
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2021.05.021
– volume: 128
  start-page: 188
  year: 2018
  ident: ref_47
  article-title: Pharmacokinetics of lipid-drug conjugates loaded into liposomes
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.04.003
– volume: 54
  start-page: 2830
  year: 1994
  ident: ref_115
  article-title: Liposomal Vincristine Which Exhibits Increased Drug Retention and Increased Circulation Longevity Cures Mice Bearing P388 Tumors
  publication-title: Cancer Res.
– volume: 64
  start-page: 155
  year: 2000
  ident: ref_37
  article-title: DepoFoam™ technology: A vehicle for controlled delivery of protein and peptide drugs
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(99)00146-7
– volume: 7
  start-page: e1800711
  year: 2018
  ident: ref_149
  article-title: Bioimaging of Intact Polycaprolactone Nanoparticles Using Aggregation-Caused Quenching Probes: Size-Dependent Translocation via Oral Delivery
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201800711
– ident: ref_77
– ident: ref_56
– volume: 55
  start-page: 125
  year: 2003
  ident: ref_89
  article-title: Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(02)00130-3
– volume: 15
  start-page: 686
  year: 2019
  ident: ref_148
  article-title: The Trigeminal Pathway Dominates the Nose-to-Brain Transportation of Intact Polymeric Nanoparticles: Evidence from Aggregation-Caused Quenching Probes
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2019.2724
– volume: 11
  start-page: 2265
  year: 2021
  ident: ref_23
  article-title: Influencing factors and strategies of enhancing nanoparticles into tumors in vivo
  publication-title: Acta Pharm. Sin. B.
  doi: 10.1016/j.apsb.2021.03.033
– volume: 15
  start-page: 13
  year: 2020
  ident: ref_40
  article-title: Advances of Nano-Structured Extended-Release Local Anesthetics
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-3241-2
– volume: 233
  start-page: 104992
  year: 2020
  ident: ref_52
  article-title: Detection of material-derived differences in the stiffness of egg yolk phosphatidylcholine-containing liposomes using atomic force microscopy
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2020.104992
– ident: ref_135
– ident: ref_101
  doi: 10.3390/pharmaceutics8040036
– volume: 1798
  start-page: 40
  year: 2010
  ident: ref_136
  article-title: Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2009.10.010
– ident: ref_83
– volume: 248
  start-page: 811
  year: 2015
  ident: ref_78
  article-title: Effect of Progesterone, Its Hydroxylated and Methylated Derivatives, and Dydrogesterone on Lipid Bilayer Membranes
  publication-title: J. Membrane Biol.
  doi: 10.1007/s00232-015-9803-z
– volume: 136
  start-page: 514
  year: 2015
  ident: ref_48
  article-title: Design of liposomal formulations for cell targeting
  publication-title: Colloids Surf. B.
  doi: 10.1016/j.colsurfb.2015.09.034
– volume: 86
  start-page: 3783
  year: 2004
  ident: ref_137
  article-title: Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Biophysical Journal Force Microscopy
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.036681
– volume: 13
  start-page: 807
  year: 2016
  ident: ref_44
  article-title: Liposomal adjuvants for human vaccines
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2016.1151871
– ident: ref_128
– ident: ref_62
– ident: ref_103
– volume: 10
  start-page: 1
  year: 2001
  ident: ref_111
  article-title: Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate)
  publication-title: Breast
  doi: 10.1016/S0960-9776(01)80001-1
– volume: 41
  start-page: 392
  year: 2002
  ident: ref_63
  article-title: A lipid based depot (DepoFoam® technology) for sustained release drug delivery
  publication-title: Prog. Lipid Res.
  doi: 10.1016/S0163-7827(02)00004-8
– ident: ref_130
  doi: 10.3390/pharmaceutics10020057
– volume: 584
  start-page: 36
  year: 2014
  ident: ref_139
  article-title: Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2014.03.020
– volume: 104
  start-page: 379
  year: 2005
  ident: ref_96
  article-title: Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2005.02.001
– volume: 249
  start-page: 88
  year: 2017
  ident: ref_2
  article-title: Liposomes and lipid bilayers in biosensors
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2017.05.020
– volume: 6
  start-page: 33702
  year: 2016
  ident: ref_76
  article-title: Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep33702
– volume: 61
  start-page: 102331
  year: 2021
  ident: ref_12
  article-title: Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2021.102331
– volume: 21
  start-page: 32
  year: 2013
  ident: ref_102
  article-title: Ethanol treatment a Non-extrusion method for asymmetric liposome size optimization
  publication-title: DARU J. Pharm. Sci.
  doi: 10.1186/2008-2231-21-32
– volume: 35
  start-page: 4319
  year: 2014
  ident: ref_28
  article-title: iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.01.082
– volume: 74
  start-page: 2996
  year: 1998
  ident: ref_99
  article-title: Effect of Extrusion Pressure and Lipid Properties on the Size and Polydispersity of Lipid Vesicles
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)78006-3
– volume: 11
  start-page: 1010
  year: 2021
  ident: ref_146
  article-title: Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS via oral route
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2021.03.006
– volume: 599
  start-page: 120413
  year: 2021
  ident: ref_5
  article-title: A review on liposome-based therapeutic approaches against malignant melanoma
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120413
– volume: 70
  start-page: 95
  year: 1995
  ident: ref_66
  article-title: Preparation and characterization of liposomes as therapeutic delivery systems: A review
  publication-title: Pharm. Acta Helv.
  doi: 10.1016/0031-6865(95)00010-7
– volume: 566
  start-page: 680
  year: 2019
  ident: ref_131
  article-title: Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.06.013
– volume: 30
  start-page: 2256
  year: 2012
  ident: ref_7
  article-title: Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2012.01.070
– volume: 98
  start-page: 1252
  year: 2019
  ident: ref_22
  article-title: Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer
  publication-title: Mater. Sci. Eng. C Mater. Biol Appl.
  doi: 10.1016/j.msec.2019.01.066
– volume: 56
  start-page: 101549
  year: 2020
  ident: ref_57
  article-title: Advances in liposomal drug delivery to cancer: An overview
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2020.101549
– volume: 135
  start-page: 117
  year: 2005
  ident: ref_58
  article-title: Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2005.02.003
– ident: ref_129
– volume: 533
  start-page: 179
  year: 2017
  ident: ref_14
  article-title: Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.09.011
– ident: ref_106
– volume: 611
  start-page: 125806
  year: 2021
  ident: ref_26
  article-title: Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2020.125806
– volume: 160
  start-page: 117
  year: 2012
  ident: ref_35
  article-title: Doxil®—The first FDA-approved nano-drug: Lessons learned
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.03.020
– volume: 18
  start-page: 776
  year: 2013
  ident: ref_55
  article-title: Current status of liposomal porphyrinoid photosensitizers
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2013.04.003
– volume: 188
  start-page: 87
  year: 1999
  ident: ref_95
  article-title: Factors affecting the size distribution of liposomes produced by freeze–thaw extrusion
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(99)00207-0
– volume: 599
  start-page: 120418
  year: 2021
  ident: ref_29
  article-title: Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120418
– volume: 330
  start-page: 372
  year: 2021
  ident: ref_109
  article-title: Nanomedicines accessible in the market for clinical interventions
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.12.034
– volume: 167
  start-page: 105048
  year: 2021
  ident: ref_132
  article-title: Production of PEG-coated liposomes using a continuous supercritical assisted process
  publication-title: J. Supercrit. Fluid.
  doi: 10.1016/j.supflu.2020.105048
– ident: ref_143
– volume: 566
  start-page: 717
  year: 2019
  ident: ref_9
  article-title: Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.06.026
– volume: 97
  start-page: 280
  year: 2016
  ident: ref_125
  article-title: Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.12.002
– ident: ref_112
– volume: 42
  start-page: 161
  year: 1982
  ident: ref_120
  article-title: Effects of liposome structure and lipid composition on the activation of the tumoricidal properties of macrophages by liposomes containing muramyl dipeptide
  publication-title: Cancer Res.
– volume: 213
  start-page: 175
  year: 2001
  ident: ref_105
  article-title: Factors involved in the production of liposomes with a high-pressure homogenizer
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(00)00661-X
– volume: 33
  start-page: 187
  year: 1993
  ident: ref_32
  article-title: Extended-release formulation of morphine for subcutaneous administration
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/BF00686214
– volume: 99
  start-page: 210
  year: 1979
  ident: ref_94
  article-title: A new method for preparation of phospholipid vesicles (liposomes)—french press
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(79)80281-1
– volume: 54
  start-page: 213
  year: 2002
  ident: ref_87
  article-title: Liposomes produced in a pilot scale: Production, purification and efficiency aspects
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/S0939-6411(02)00062-0
– volume: 268
  start-page: 118192
  year: 2021
  ident: ref_6
  article-title: Prospects and challenges of anticancer agents’ delivery via chitosan-based drug carriers to combat breast cancer: A review
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118192
– volume: 69
  start-page: 232
  year: 2009
  ident: ref_18
  article-title: Modulation of the physicochemical state of interior agents to prepare controlled release liposomes
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2008.11.033
– volume: 192
  start-page: 113642
  year: 2021
  ident: ref_33
  article-title: Analytical characterization of liposomes and other lipid nanoparticles for drug delivery
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2020.113642
– volume: 391
  start-page: 248
  year: 2010
  ident: ref_36
  article-title: Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2010.02.014
– ident: ref_64
– volume: 22
  start-page: 382
  year: 2017
  ident: ref_144
  article-title: Bioimaging of nanoparticles: The crucial role of discriminating nanoparticles from free probes
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.10.002
– volume: 26
  start-page: 1794
  year: 2021
  ident: ref_152
  article-title: Stimulus-responsive liposomes for biomedical applications
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2021.05.010
– volume: 40
  start-page: 102484
  year: 2022
  ident: ref_153
  article-title: Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2021.102484
– volume: 113
  start-page: 40
  year: 2018
  ident: ref_71
  article-title: Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2018.01.017
– volume: 143
  start-page: 134
  year: 2019
  ident: ref_8
  article-title: Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2019.05.012
– volume: 33
  start-page: 17
  year: 1993
  ident: ref_113
  article-title: Identification of vesicle properties that enhance the antitumour activity of liposomal vincristine against murine L1210 leukemia
  publication-title: Cancer Chemoth. Pharm.
  doi: 10.1007/BF00686017
– volume: 598
  start-page: 120335
  year: 2021
  ident: ref_81
  article-title: Preparation and characterization of bupivacaine multivesicular liposome: A QbD study about the effects of formulation and process on critical quality attributes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120335
– volume: 196
  start-page: 111270
  year: 2020
  ident: ref_24
  article-title: Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.111270
– volume: 157
  start-page: 241
  year: 2020
  ident: ref_50
  article-title: Analytical method development and comparability study for AmBisome® and generic Amphotericin B liposomal products
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2020.09.008
– volume: 165
  start-page: 387
  year: 2012
  ident: ref_60
  article-title: Characterization of the PEG layer of sterically stabilized liposomes: A SAXS study
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2011.12.011
– volume: 22
  start-page: 231
  year: 2014
  ident: ref_10
  article-title: Design of liposomal colloidal systems for ocular delivery of ciprofloxacin
  publication-title: Saudi Pharm. J.
  doi: 10.1016/j.jsps.2013.07.003
– volume: 24
  start-page: 133
  year: 1997
  ident: ref_21
  article-title: The design and development of DaunoXome® for solid tumor targeting in vivo
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(96)00453-X
– volume: 303
  start-page: 130
  year: 2019
  ident: ref_34
  article-title: Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.04.025
– ident: ref_61
– volume: 323
  start-page: 179
  year: 2020
  ident: ref_30
  article-title: Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.03.044
– volume: 13
  start-page: 29
  year: 2005
  ident: ref_68
  article-title: Pore formation in and enlargement of phospholipid liposomes by synthetic models of ceramides and sphingomyelin
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2004.10.001
– volume: 185
  start-page: 71
  year: 2014
  ident: ref_134
  article-title: Assessment of PEG on polymeric particles surface, a key step in drug carrier translation
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2014.04.017
– volume: 454
  start-page: 8
  year: 2014
  ident: ref_104
  article-title: Factors influencing the physicochemical characteristics of cationic polymer-coated liposomes prepared by high-pressure homogenization
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2014.03.095
– volume: 15
  start-page: 737
  year: 2020
  ident: ref_107
  article-title: Amikacin liposome inhalation suspension as a treatment for patients with refractory mycobacterium avium complex lung infection
  publication-title: Expert Rev. Resp. Med.
  doi: 10.1080/17476348.2021.1875821
– volume: 115
  start-page: 10938
  year: 2015
  ident: ref_31
  article-title: New Developments in Liposomal Drug Delivery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00046
– volume: 11
  start-page: 307
  year: 2016
  ident: ref_42
  article-title: New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1520-8
– ident: ref_118
– volume: 223
  start-page: 820
  year: 1971
  ident: ref_97
  article-title: Single bilayer liposomes
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/0005-2736(71)90273-2
– volume: 8
  start-page: 660
  year: 1964
  ident: ref_4
  article-title: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(64)80115-7
– volume: 22
  start-page: 191
  year: 1986
  ident: ref_92
  article-title: A dried preparation of liposomes containing muramyl tripeptide phosphatidylethanolamine as a potent activator of human blood monocytes to the antitumor state
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/BF00200032
– volume: 1422
  start-page: 273
  year: 1999
  ident: ref_138
  article-title: Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(99)00099-1
– ident: ref_69
– volume: 56
  start-page: 101509
  year: 2020
  ident: ref_13
  article-title: Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2020.101509
– volume: 192
  start-page: 334
  year: 1991
  ident: ref_98
  article-title: Size analysis and stability study of lipid vesicles by high-performance gel exclusion chromatography, turbidity, and dynamic light scattering
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(91)90545-5
– ident: ref_121
  doi: 10.1007/978-3-319-04843-7
– volume: 337
  start-page: 219
  year: 2007
  ident: ref_124
  article-title: Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.01.004
– volume: 4
  start-page: 199
  year: 1992
  ident: ref_91
  article-title: MTP-PE in liposomes as a biological response modifier in the treatment of cancer: Current status
  publication-title: Biotherapy
  doi: 10.1007/BF02174206
– volume: 1
  start-page: 219
  year: 1979
  ident: ref_65
  article-title: Sphingomyelin phase transition in the sheep erythrocyte membrane
  publication-title: Cell Biochem. Biophys.
– volume: 24
  start-page: 345
  year: 1997
  ident: ref_41
  article-title: Supramolecular lipidic drug delivery systems: From laboratory to clinic A review of the recently introduced commercial liposomal and lipid-based formulations of amphotericin B
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(96)00496-6
– volume: 94
  start-page: 508
  year: 2015
  ident: ref_84
  article-title: Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2014.09.008
– ident: ref_110
– ident: ref_93
– volume: 64
  start-page: 29
  year: 2012
  ident: ref_126
  article-title: Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.04.006
– volume: 524
  start-page: 71
  year: 2017
  ident: ref_82
  article-title: Preparation of liposomes: A comparative study between the double solvent displacement and the conventional ethanol injection—From laboratory scale to large scale
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2017.02.084
– volume: 173
  start-page: 108878
  year: 2021
  ident: ref_72
  article-title: Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective
  publication-title: Steroids
  doi: 10.1016/j.steroids.2021.108878
– volume: Volume 391
  start-page: 1
  year: 2005
  ident: ref_3
  article-title: Introduction: The Origins of Liposomes: Alec Bangham at Babraham
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(05)91029-X
– volume: 691
  start-page: 108485
  year: 2020
  ident: ref_25
  article-title: Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2020.108485
– volume: 159
  start-page: 580
  year: 2017
  ident: ref_74
  article-title: Chitosan-modified cholesterol-free liposomes for improving the oral bioavailability of progesterone
  publication-title: Colloids Surf. B.
  doi: 10.1016/j.colsurfb.2017.08.028
– volume: 81
  start-page: 265
  year: 2012
  ident: ref_17
  article-title: Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2012.02.009
– volume: 1558
  start-page: 1
  year: 2002
  ident: ref_59
  article-title: Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/S0005-2736(01)00399-6
– volume: 519
  start-page: 1
  year: 2017
  ident: ref_54
  article-title: Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.01.002
– volume: 10
  start-page: 81
  year: 2015
  ident: ref_53
  article-title: A review on phospholipids and their main applications in drug delivery systems
  publication-title: Asian J. Pharm. Sci.
  doi: 10.1016/j.ajps.2014.09.004
– volume: 9
  start-page: 902
  year: 2019
  ident: ref_11
  article-title: Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2019.01.004
– volume: 32
  start-page: 1615
  year: 2021
  ident: ref_20
  article-title: STING-activating drug delivery systems: Design strategies and biomedical applications
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.01.001
– volume: 143
  start-page: 206
  year: 2019
  ident: ref_145
  article-title: Towards more accurate bioimaging of drug nanocarriers: Turning aggregation-caused quenching into a useful tool
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2019.05.009
– volume: 80
  start-page: 1873
  year: 2001
  ident: ref_140
  article-title: New Ordered Metastable Phases between the Gel and Subgel Phases in Hydrated Phospholipids
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76157-7
– ident: ref_116
– volume: 19
  start-page: 632
  year: 2017
  ident: ref_79
  article-title: Liposomal Drug Product Development and Quality: Current US Experience and Perspective
  publication-title: AAPS J.
  doi: 10.1208/s12248-017-0049-9
– volume: 9
  start-page: 2961
  year: 2012
  ident: ref_27
  article-title: RGD-based strategies to target alphav beta3 integrin in cancer therapy and diagnosis
  publication-title: Mol. Pharm.
  doi: 10.1021/mp3002733
– volume: 27
  start-page: 2223
  year: 1980
  ident: ref_75
  article-title: The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vivo
  publication-title: Life Sci.
  doi: 10.1016/0024-3205(80)90388-4
– ident: ref_122
– volume: 14
  start-page: 1325
  year: 2017
  ident: ref_119
  article-title: Lipid–Drug Conjugate for Enhancing Drug Delivery
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.6b01027
– ident: ref_46
– volume: 3
  start-page: 397
  year: 2018
  ident: ref_142
  article-title: Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C8NH00010G
– volume: 12
  start-page: 259
  year: 2002
  ident: ref_86
  article-title: The crossflow injection technique: An improvement of the ethanol injection method
  publication-title: J. Liposome Res.
  doi: 10.1081/LPR-120014761
– volume: 61
  start-page: 102174
  year: 2021
  ident: ref_88
  article-title: Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications
  publication-title: J. Drug Delivery Sci. Technol.
  doi: 10.1016/j.jddst.2020.102174
– volume: 548
  start-page: 778
  year: 2018
  ident: ref_73
  article-title: Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.11.002
– ident: ref_133
– volume: 71
  start-page: 555
  year: 2013
  ident: ref_70
  article-title: Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-012-2042-4
– volume: 33
  start-page: 285
  year: 1991
  ident: ref_90
  article-title: Comparative efficacy of liposomes containing synthetic bacterial cell wall analogues for tumoricidal activation of monocytes and macrophages
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/BF01756592
– volume: 176
  start-page: 113851
  year: 2021
  ident: ref_38
  article-title: Liposome composition in drug delivery design, synthesis, characterization, and clinical application
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2021.113851
SSID ssj0021415
Score 2.7260246
SecondaryResourceType review_article
Snippet Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1372
SubjectTerms Cancer therapies
Consumer Product Safety
Drug and Narcotic Control
Drug Approval
Drug Carriers - chemistry
drug delivery
Drug Delivery Systems
drug loading
Europe
Fatty acids
FDA approval
Growth factors
Humans
Ligands
lipid excipient
Lipids
liposomes
Liposomes - chemistry
marketed products
Molecular Structure
Molecular weight
Particle size
Phase transitions
Physiology
Review
United States
United States Food and Drug Administration
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagHOBSsZNSkJE4oUZNbCeOuaCh7ahCgHqg0twibymV2mQ6manUP9DfzXuxZ6YDqFJO8SIn7_ktXr6PkI9GSNBaZdKS6yoVXuhU2ZyloqwyU5SuySXeHf7xszw-Fd8mxSQuuPXxWOXSJg6G2nUW18j3Wck5xCJMZl-mVymyRuHuaqTQeEgeIXQZarWcrBOuHLxT2MnkkNrvXwbCWd9DJ2C7JdvwRQNk___izL-PS97xP-OnZDsGjnQUJP2MPPDtc_L4YMnX9oLcjmhY6KddQ7-fT7u-u_Q91fDQw9nijB76CzyEcUMDSvlnGrGZKAacix6bjRBh_No7ehKAYPs96HMgq--g3dGdS3F7VLeOjgdEEnqyvrHZvySn46NfB8dpZFlILWQT89Q2zFfOasudU5o1XGSuMZUxjBtIzoRUuWYYhXDEioOEQkOOJbwTXBdWQvz3imy1XevfEFpqb5UWXulCC1VVGrIlJmXOjAIrWpqEZMv_XdsIQY5MGBc1pCIoovofESXk06rJNOBv3Ff5KwpxVRGhs4cX3eysjjOxbrhxmfZeysIj27bhLIPv0Ei3bXymE7K7VIE6zue-XmtfQj6sikHAuL2iW98tQp2qqCAkS8jroDGrkXA8bZSXMEK5oUsbQ90sac9_D2jf4AWUkHzn_mG9JU8YXsxAqhq5S7bms4V_B-HS3Lwf5sQfQrUZYQ
  priority: 102
  providerName: ProQuest
Title A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives
URI https://www.ncbi.nlm.nih.gov/pubmed/35209162
https://www.proquest.com/docview/2633231270
https://www.proquest.com/docview/2633858743
https://pubmed.ncbi.nlm.nih.gov/PMC8879473
https://doaj.org/article/f3bd0aee775e4082b320c71a6031be0a
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOcAF8U2grIzECTVqYjuxzW3b7lIhqFaISnuL7MSBSm1SNbtI_QP93czE2WUXEFyQohxiO3E8E3tebL8H8MZJhV5rXJwLq2PppY1NmfJY5jpxWV7VqaK9w59O8uNT-WGezTekvmhNWKAHDg23XwtXJdZ7pTJP4shO8KRUqSV1ZOeTPjTCMW8FpgaoleK4FOYwBYL6_YsgNes7rhLstRXfGoV6sv4_RZi_LpTcGHmmD-D-EDKycajqQ7jlm0dw93Cl1PYYbsYs_OJnbc0-nl22XXvhO2bxYEdXy6_syJ_T8otrFvjJ37GBlYlRqLnsqNiYuMW_-4rNAgVst4f37GXqWyw32dgOt8dsU7Fpz0XCZj_3anZP4HQ6-XJ4HA_6CnGJOGIRlzX3uiptKarKWF4LmVS1085x4RCWSWVSyyn-EMQSh1DCIrqSvpLCZmgCI57CTtM2_jmw3PrSWOmNzaw0WlvESVyplDuD_WfuIkhW7V2UA_k4aWCcFwhCyETFbyaK4O26yGVg3vhb5gMy4jojkWb3F9CVisGVin-5UgS7Kxcohi-5K3guBMbA-KAIXq-T0cA0sWIb3y5DHp1pDMYieBY8Zl0TQeuM0hxrqLZ8aauq2ynN2bee5xv7fyOVePE_3u0l3OO0cYOkbNQu7Cyulv4VhlMLN4Lbaq7wrKfvR3DnYHIy-zzqv6YfaX4lnA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLam7WLcIMZvYICR4AYtWmI7cYKEUFlXOtZNu9ik3QU7drpJW1KaFrQX4HF4Rs6Jk24FtLtJvart6jTn-PzEPt9HyFstJFhtqv2Yq8QXVig_zUPmizgJdBSbIpTYO3xwGA9PxNfT6HSF_O56YfBaZecTG0dtqhzfkW-zmHPIRZgMPk2--8gahaerHYWGM4t9e_UTSrb6414f9PuOscHu8c7Qb1kF_Byy55mfF8wmJlc5NyZVrOAiMIVOtGZcQzEiZBoqhlGXIzYaJNAKagphjeAqymWI4Evg8tcEh0iOnemDL4sCL4Ro6E5OYTDYvnQEt7YGoSFWSLYU-xqKgP_ltX9fz7wR7wYPyP02UaU9Z1kbZMWWD8n6TscP94j86lF3sECrgo7OJ1VdXdqaKvjQ_nQ-pn17gZc-rqhDRf9AWywoignuvMZlPUQ0_2ENPXLAs_UW_OYYGcUqWLd7owlvi6rS0EGDgEKPrjtE68fk5E6e_xOyWlalfUZorGyeKmFTFSmRJomC6oxJGTKdgteOtUeC7nlneQt5jswbFxmUPqii7B8VeeT9YsnE4X3cNvkzKnExEaG6my-q6Thrd35WcG0CZa2UkUV2b81ZAP9DIb23toHyyGZnAlnrP-rs2to98mYxDArG4xxV2mru5iRRAimgR546i1lIwvF2UxiDhHLJlpZEXR4pz88adHGIOqmQ_PntYr0m68Pjg1E22jvcf0HuMWwKQZocuUlWZ9O5fQmp2ky_avYHJd_uekP-AY_UVZk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEHcCA4wEL2hRE9uJEySEurXVxkZVISbtLbNjp0zaktK0oP0BfhS_jnNy2wpob5Py1NiR03N8LvE530fIGy0kaG2s3ZCryBVWKDdOfeaKMPJ0EJrMl9g7_HkS7h2JT8fB8Qb53fbCYFllaxMrQ22KFL-R91nIOcQiTHr9rCmLmA7HH-ffXWSQwpPWlk6jVpEDe_ET0rfyw_4QZP2WsfHo6-6e2zAMuClE0ks3zZiNTKpSbkysWMaFZzIdac24hsREyNhXDD0wR5w0CKYV5BfCGsFVkEofgZjA_G9KzIp6ZHNnNJl-6dI9H3xjfY7Keez1z2u6W1vCK4DnkGzNE1aEAf-Lcv8u1rzi_cb3yN0mbKWDWs_ukw2bPyC3d1u2uIfk14DWxwy0yOjh6bwoi3NbUgUXHS5WMzq0Z1gCckFrjPT3tEGGohjurkqcNkB88x_W0GkNQ1tuwzNnyC9WwLzRlZa8bapyQ8cVHgqdXvaLlo_I0Y1I4DHp5UVunxIaKpvGSthYBUrEUaQgV2NS-kzHYMND7RCv_b-TtAFARx6OswQSIRRR8o-IHPKumzKv0T-uG7yDQuwGInB39UOxmCWNHUgyro2nrJUysMj1rTnz4D0Ukn1r6ymHbLUqkDTWpEwudd8hr7vbIGA83FG5LVb1mCiIICB0yJNaY7qVcKx18kNYoVzTpbWlrt_JT79VWOPgg2Ih-bPrl_WK3ILNmBzuTw6ekzsMO0SQM0dukd5ysbIvIG5b6pfNBqHk5Kb35B_ZlFsr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Liposomes+as+a+Drug+Delivery+System%3A+Current+Status+of+Approved+Products%2C+Regulatory+Environments%2C+and+Future+Perspectives&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Peng&rft.au=Chen%2C+Guiliang&rft.au=Zhang%2C+Jingchen&rft.date=2022-02-17&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=27&rft.issue=4&rft_id=info:doi/10.3390%2Fmolecules27041372&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon