Hydrogels: Properties and Applications in Biomedicine
Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydroge...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 27; no. 9; p. 2902 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
02.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering. |
---|---|
AbstractList | Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering. Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering. |
Author | Ho, Tzu-Chuan Chuang, Kuo-Pin Chang, Chin-Chuan Chung, Tze-Wen Shu, Chih-Wen Duh, Tsai-Hui Chan, Hung-Pin Tyan, Yu-Chang Yang, Ming-Hui |
AuthorAffiliation | 9 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; tshudu@kmu.edu.tw 3 School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan 2 Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; chinuan@kmu.edu.tw 10 Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan 11 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan 1 Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; r090340@kmu.edu.tw (T.-C.H.); t0987295916@gmail.com (C.-W.S.) 15 Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan 5 Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan 14 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan 8 Graduate Institute of Animal Vaccine Technology, College |
AuthorAffiliation_xml | – name: 8 Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; kpchuang@g4e.npust.edu.tw – name: 5 Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan – name: 15 Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan – name: 11 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan – name: 3 School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan – name: 6 Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; hpchan@vghks.gov.tw – name: 13 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan – name: 9 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; tshudu@kmu.edu.tw – name: 7 Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; twchung@nycu.edu.tw – name: 14 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan – name: 1 Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; r090340@kmu.edu.tw (T.-C.H.); t0987295916@gmail.com (C.-W.S.) – name: 2 Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; chinuan@kmu.edu.tw – name: 4 Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan – name: 10 Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan – name: 12 Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan |
Author_xml | – sequence: 1 givenname: Tzu-Chuan surname: Ho fullname: Ho, Tzu-Chuan – sequence: 2 givenname: Chin-Chuan surname: Chang fullname: Chang, Chin-Chuan – sequence: 3 givenname: Hung-Pin orcidid: 0000-0001-9741-5824 surname: Chan fullname: Chan, Hung-Pin – sequence: 4 givenname: Tze-Wen orcidid: 0000-0002-7469-9913 surname: Chung fullname: Chung, Tze-Wen – sequence: 5 givenname: Chih-Wen surname: Shu fullname: Shu, Chih-Wen – sequence: 6 givenname: Kuo-Pin orcidid: 0000-0002-3973-8390 surname: Chuang fullname: Chuang, Kuo-Pin – sequence: 7 givenname: Tsai-Hui surname: Duh fullname: Duh, Tsai-Hui – sequence: 8 givenname: Ming-Hui orcidid: 0000-0001-5856-0498 surname: Yang fullname: Yang, Ming-Hui – sequence: 9 givenname: Yu-Chang orcidid: 0000-0002-1917-5893 surname: Tyan fullname: Tyan, Yu-Chang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35566251$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk9rFTEUxYNUbPv0A7iRATdunuZ_Ji6EWlpbKCjoPmQyN8888pIxmRH67U37WmkrrhJufudwcu89RgcpJ0DoNcHvGdP4wy5HcEuEShXWVGP6DB0RTvGaYa4PHtwP0XGtW4wp4US8QIdMCCmpIEdIXFyPJW8g1o_dt5InKHOA2tk0difTFIOzc8ipdiF1n0PewRhcSPASPfc2Vnh1d67Q9_OzH6cX66uvXy5PT67WTgg9r50j1g-cW7BcYUWEAE1AaO8ZYdZZjS3jmnrfi2GgSjJLnRzIKHuHBbAVuty7jtluzVTCzpZrk20wt4VcNsa2uC6CIUxwSeQ4ekm56qFXvhVGr6TGnAncvD7tvaZlaL9wkOZi4yPTxy8p_DSb_NtogrlqcVfo3Z1Byb8WqLPZheogRpsgL9VQKbnSfetvQ98-Qbd5Kak16oZiWPCe6Ua9eZjob5T72TRA7QFXcq0FvHFhvh1HCxiiIdjcbIH5ZwuakjxR3pv_X_MHkFC2ug |
CitedBy_id | crossref_primary_10_3390_nanomanufacturing2040015 crossref_primary_10_1016_j_eurpolymj_2024_112983 crossref_primary_10_1186_s13567_024_01411_w crossref_primary_10_3390_su16156321 crossref_primary_10_1007_s00289_023_05133_5 crossref_primary_10_1007_s10876_024_02638_5 crossref_primary_10_1016_j_ijbiomac_2023_127612 crossref_primary_10_1002_pol_20230349 crossref_primary_10_3390_polym15030589 crossref_primary_10_1002_adma_202414897 crossref_primary_10_1007_s11696_024_03785_9 crossref_primary_10_1002_app_56630 crossref_primary_10_31083_j_fbl2908309 crossref_primary_10_3390_nano14060531 crossref_primary_10_1002_adhm_202304572 crossref_primary_10_3390_ma16176037 crossref_primary_10_3390_polym14224825 crossref_primary_10_3390_polym16131932 crossref_primary_10_3390_gels10120842 crossref_primary_10_1002_hlca_202200164 crossref_primary_10_1016_j_ijpharm_2023_123535 crossref_primary_10_3390_gels11030207 crossref_primary_10_3390_ph17010139 crossref_primary_10_1088_1742_6596_2837_1_012047 crossref_primary_10_1080_10408398_2023_2168619 crossref_primary_10_3390_biology13010021 crossref_primary_10_3390_biomedicines12092095 crossref_primary_10_1007_s10856_024_06800_3 crossref_primary_10_1016_j_seppur_2024_129915 crossref_primary_10_22159_ijap_2025v17i1_51987 crossref_primary_10_3389_fmats_2024_1443514 crossref_primary_10_1016_j_heliyon_2024_e37952 crossref_primary_10_1017_plc_2024_2 crossref_primary_10_1021_acsomega_3c08877 crossref_primary_10_1016_j_jconrel_2023_11_057 crossref_primary_10_1186_s12967_024_05490_3 crossref_primary_10_3390_polym16111513 crossref_primary_10_2147_IJN_S448667 crossref_primary_10_3389_fmats_2023_1328904 crossref_primary_10_3390_gels10100663 crossref_primary_10_1002_chem_202403282 crossref_primary_10_1016_j_carpta_2025_100722 crossref_primary_10_1016_j_colsurfb_2025_114591 crossref_primary_10_1016_j_ijbiomac_2024_135749 crossref_primary_10_3390_gels10100662 crossref_primary_10_1021_acsami_4c16333 crossref_primary_10_1016_j_chemosphere_2024_143459 crossref_primary_10_3390_ph17101260 crossref_primary_10_1016_j_colsurfb_2023_113380 crossref_primary_10_1016_j_carbpol_2024_122311 crossref_primary_10_3390_gels10100669 crossref_primary_10_1016_j_jot_2024_11_004 crossref_primary_10_1016_j_cej_2024_156554 crossref_primary_10_1016_j_ijbiomac_2024_137127 crossref_primary_10_1038_s41392_024_01852_x crossref_primary_10_31083_FBL25281 crossref_primary_10_3390_md21070375 crossref_primary_10_3390_app14072926 crossref_primary_10_1021_acsabm_4c00669 crossref_primary_10_1016_j_bioactmat_2025_03_002 crossref_primary_10_1002_VIW_20230110 crossref_primary_10_1088_1402_4896_ad547a crossref_primary_10_3390_gels10040262 crossref_primary_10_1016_j_jddst_2024_106394 crossref_primary_10_1089_ten_teb_2023_0218 crossref_primary_10_1016_j_ijbiomac_2024_129858 crossref_primary_10_1016_j_jddst_2024_106395 crossref_primary_10_3390_gels11040231 crossref_primary_10_3390_molecules29163732 crossref_primary_10_3390_bioengineering12020205 crossref_primary_10_3390_polym16223135 crossref_primary_10_1016_j_ijbiomac_2024_136394 crossref_primary_10_3390_gels10080513 crossref_primary_10_1021_acsomega_3c08785 crossref_primary_10_1039_D4SM00135D crossref_primary_10_1016_j_giant_2024_100323 crossref_primary_10_1007_s00289_025_05712_8 crossref_primary_10_3390_ijms25084534 crossref_primary_10_3390_jcs9030133 crossref_primary_10_1007_s11051_024_06178_x crossref_primary_10_3390_gels10050312 crossref_primary_10_3390_molecules29112633 crossref_primary_10_1002_mame_202300195 crossref_primary_10_1073_pnas_2401480121 crossref_primary_10_1016_j_jddst_2023_105330 crossref_primary_10_3390_gels10050316 crossref_primary_10_3390_gels11010052 crossref_primary_10_1016_j_ijbiomac_2024_135723 crossref_primary_10_1016_j_carbpol_2024_122455 crossref_primary_10_1016_j_cej_2024_153382 crossref_primary_10_1016_j_ijbiomac_2024_138565 crossref_primary_10_1515_bmt_2024_0391 crossref_primary_10_3389_fendo_2024_1430543 crossref_primary_10_3390_molecules30030686 crossref_primary_10_3390_ijms242316970 crossref_primary_10_3390_ijms26052309 crossref_primary_10_1016_j_mtbio_2025_101623 crossref_primary_10_3390_gels10090547 crossref_primary_10_3390_gels10110713 crossref_primary_10_5483_BMBRep_2023_0160 crossref_primary_10_1590_1809_6891v25e_77593e crossref_primary_10_3390_gels8080495 crossref_primary_10_31665_JFB_2023_18346 crossref_primary_10_3390_biomimetics8030279 crossref_primary_10_3390_ijms241311037 crossref_primary_10_3390_gels9110885 crossref_primary_10_1088_1361_6439_ad104b crossref_primary_10_1007_s42823_023_00592_2 crossref_primary_10_3390_ma17235862 crossref_primary_10_3389_fbioe_2025_1550553 crossref_primary_10_3390_ijms25031861 crossref_primary_10_3390_jfb15030077 crossref_primary_10_1016_j_ijbiomac_2024_136126 crossref_primary_10_1016_j_sbsr_2025_100742 crossref_primary_10_1016_j_emcon_2024_100336 crossref_primary_10_1021_acsomega_4c08540 crossref_primary_10_1590_1809_6891v25e_77593p crossref_primary_10_1002_adfm_202314757 crossref_primary_10_1016_j_colsurfb_2024_114099 crossref_primary_10_3390_gels9100834 crossref_primary_10_1002_macp_202300310 crossref_primary_10_1002_chem_202404572 crossref_primary_10_3390_gels10050295 crossref_primary_10_3390_ijms241813811 crossref_primary_10_1007_s11914_023_00839_x crossref_primary_10_1016_j_jics_2024_101272 crossref_primary_10_1002_gch2_202400120 crossref_primary_10_1016_j_jddst_2023_105273 crossref_primary_10_4028_p_a2LLpB crossref_primary_10_3390_gels11010072 crossref_primary_10_1007_s10965_024_04081_6 crossref_primary_10_1002_adhm_202402926 crossref_primary_10_1016_j_ejpb_2022_11_007 crossref_primary_10_3390_gels10070448 crossref_primary_10_1016_j_ijbiomac_2024_133526 crossref_primary_10_1016_j_jddst_2024_105571 crossref_primary_10_3390_coatings13111907 crossref_primary_10_4103_mgmj_mgmj_340_24 crossref_primary_10_3390_gels10030156 crossref_primary_10_1016_j_ijbiomac_2024_133093 crossref_primary_10_1186_s12951_024_02547_9 crossref_primary_10_1186_s13036_024_00435_2 crossref_primary_10_1016_j_colsurfa_2024_135641 crossref_primary_10_1039_D4NA00172A crossref_primary_10_1002_EXP_20230171 crossref_primary_10_1016_j_cej_2024_153803 crossref_primary_10_1002_jev2_12386 crossref_primary_10_1002_mame_202400359 crossref_primary_10_1016_j_jfca_2024_107096 crossref_primary_10_1016_j_mtbio_2024_101146 crossref_primary_10_1002_smll_202309454 crossref_primary_10_3390_gels10070479 crossref_primary_10_1016_j_actbio_2024_08_038 crossref_primary_10_1016_j_carpta_2024_100536 crossref_primary_10_1088_1748_605X_ad08e2 crossref_primary_10_1016_j_ijbiomac_2024_138098 crossref_primary_10_3390_polym16131878 crossref_primary_10_34133_bmr_0143 crossref_primary_10_1016_j_ijbiomac_2024_138893 crossref_primary_10_3390_polym15143085 crossref_primary_10_3389_fchem_2024_1325204 crossref_primary_10_1016_j_ijbiomac_2024_138643 crossref_primary_10_3390_ijms25147839 crossref_primary_10_1016_j_ceja_2024_100678 crossref_primary_10_3389_fcell_2024_1514595 crossref_primary_10_3390_ma17010086 crossref_primary_10_2478_amb_2024_0061 crossref_primary_10_31466_kfbd_1496088 crossref_primary_10_1016_j_bioactmat_2024_03_014 crossref_primary_10_1016_j_jddst_2023_104973 crossref_primary_10_1016_j_cis_2025_103456 crossref_primary_10_1007_s11706_024_0691_y crossref_primary_10_1016_j_inoche_2025_114139 crossref_primary_10_3390_pharmaceutics15102405 crossref_primary_10_3390_gels9080600 crossref_primary_10_1016_j_mtbio_2025_101531 crossref_primary_10_1016_j_ccr_2024_216207 crossref_primary_10_3390_polym16030344 crossref_primary_10_1039_D3BM02137H crossref_primary_10_1039_D4MD00828F crossref_primary_10_1515_ntrev_2024_0057 crossref_primary_10_1016_j_apmt_2024_102278 crossref_primary_10_3390_gels10120795 crossref_primary_10_3390_gels9070594 crossref_primary_10_1016_j_heliyon_2023_e22520 crossref_primary_10_1016_j_ijbiomac_2024_136221 crossref_primary_10_1016_j_bbcan_2024_189177 crossref_primary_10_1016_j_jmbbm_2023_106316 crossref_primary_10_1039_D4TB02394C crossref_primary_10_3390_polym14214755 crossref_primary_10_1016_j_bioadv_2023_213615 crossref_primary_10_1039_D4MA00398E crossref_primary_10_3390_gels10110753 crossref_primary_10_1021_acsomega_4c00037 crossref_primary_10_2174_0115672018279105240226050253 crossref_primary_10_3390_gels10070476 crossref_primary_10_1016_j_agwat_2024_109145 crossref_primary_10_1080_00914037_2024_2356603 crossref_primary_10_1002_app_56471 crossref_primary_10_3390_polym15112482 crossref_primary_10_1002_adfm_202422755 crossref_primary_10_1016_j_carbpol_2024_122845 crossref_primary_10_1111_wrr_13251 crossref_primary_10_1016_j_molliq_2024_126592 crossref_primary_10_1039_D4BM00155A crossref_primary_10_1016_j_bioactmat_2024_07_013 crossref_primary_10_1016_j_colsurfb_2025_114617 crossref_primary_10_3389_fbioe_2024_1380528 crossref_primary_10_1039_D4TB00887A crossref_primary_10_3389_fcell_2024_1391259 crossref_primary_10_1016_j_cis_2024_103358 crossref_primary_10_3390_jfb16020043 crossref_primary_10_1016_j_jddst_2024_106466 crossref_primary_10_1088_1758_5090_adb999 crossref_primary_10_1016_j_jtos_2025_03_004 crossref_primary_10_1016_j_mtchem_2024_102295 crossref_primary_10_1039_D4TB01341G crossref_primary_10_1039_D4NJ01677G crossref_primary_10_1039_D3TB01921G crossref_primary_10_3390_ph18030344 crossref_primary_10_3390_bioengineering10010053 crossref_primary_10_1016_j_colsurfa_2024_134078 crossref_primary_10_1016_j_heliyon_2024_e24584 crossref_primary_10_1016_j_cej_2024_153565 crossref_primary_10_1186_s12931_023_02548_6 crossref_primary_10_1186_s13287_023_03351_2 crossref_primary_10_3390_bioengineering11020198 crossref_primary_10_3390_gels10030191 crossref_primary_10_3390_gels10030190 crossref_primary_10_1186_s10020_025_01131_7 crossref_primary_10_1186_s40164_024_00591_7 crossref_primary_10_1016_j_ijpharm_2024_125162 crossref_primary_10_1007_s00403_024_03781_9 crossref_primary_10_3390_biom14070858 crossref_primary_10_1007_s11010_024_05145_3 crossref_primary_10_3390_ph16060841 crossref_primary_10_1080_14686996_2025_2469490 crossref_primary_10_1007_s11664_025_11744_7 crossref_primary_10_3390_gels11020109 crossref_primary_10_1016_j_ijbiomac_2024_132623 crossref_primary_10_1016_j_ymthe_2024_09_019 crossref_primary_10_3389_fvets_2024_1391872 crossref_primary_10_1016_j_biopha_2024_117637 crossref_primary_10_1007_s10924_024_03239_z crossref_primary_10_1016_j_cej_2024_158567 crossref_primary_10_1080_09205063_2024_2422213 crossref_primary_10_3390_molecules28207035 crossref_primary_10_1080_10717544_2024_2446552 crossref_primary_10_3390_app14031093 crossref_primary_10_1016_j_jddst_2025_106758 crossref_primary_10_3390_md22040188 crossref_primary_10_3390_bioengineering10080964 crossref_primary_10_35556_idr_2024_2_107_18_27 crossref_primary_10_1016_j_mtcomm_2024_111417 crossref_primary_10_3390_jfb14110545 crossref_primary_10_1016_j_compscitech_2025_111059 crossref_primary_10_1039_D4BM00317A crossref_primary_10_3390_coatings14121519 crossref_primary_10_1063_5_0226665 crossref_primary_10_17816_vto632032 crossref_primary_10_1039_D2BM01862D crossref_primary_10_1002_adhm_202401895 crossref_primary_10_1208_s12249_024_02923_6 crossref_primary_10_1002_adfm_202422869 crossref_primary_10_3390_gels9090711 crossref_primary_10_1208_s12249_024_02731_y crossref_primary_10_1016_j_colsurfb_2024_114346 crossref_primary_10_1016_j_ijbiomac_2024_136532 crossref_primary_10_1021_acsmaterialslett_4c02108 crossref_primary_10_1016_j_foodhyd_2023_109421 crossref_primary_10_3390_gels11020123 crossref_primary_10_3390_gels8090563 crossref_primary_10_1002_mabi_202400228 crossref_primary_10_1039_D4TB00024B crossref_primary_10_1021_acsami_4c02317 crossref_primary_10_3389_fbioe_2023_1167012 crossref_primary_10_3390_pharmaceutics16050628 crossref_primary_10_1002_adhm_202401307 crossref_primary_10_3390_gels9050371 crossref_primary_10_1016_j_biomaterials_2024_123065 crossref_primary_10_1016_j_ijbiomac_2023_124383 crossref_primary_10_1021_acsbiomaterials_4c00910 crossref_primary_10_1002_anbr_202300035 crossref_primary_10_1007_s42247_024_00930_8 crossref_primary_10_3390_foods12244405 crossref_primary_10_3390_gels9120960 crossref_primary_10_1016_j_engreg_2024_04_006 crossref_primary_10_1021_acsami_4c18945 crossref_primary_10_3389_fcell_2023_1286223 crossref_primary_10_1016_j_carres_2025_109384 crossref_primary_10_1016_j_ijpharm_2024_124701 crossref_primary_10_3390_gels10010039 crossref_primary_10_1016_j_onano_2023_100160 crossref_primary_10_3390_app13148261 crossref_primary_10_4252_wjsc_v16_i4_334 crossref_primary_10_1021_acsomega_3c08280 crossref_primary_10_1016_j_ijbiomac_2025_140082 crossref_primary_10_1016_j_procbio_2025_03_008 crossref_primary_10_4103_jioh_jioh_134_24 crossref_primary_10_1016_j_ijbiomac_2023_126854 crossref_primary_10_1002_bip_23638 crossref_primary_10_1016_j_matpr_2023_05_668 crossref_primary_10_3389_fimmu_2024_1387945 crossref_primary_10_3390_gels10040234 crossref_primary_10_3390_ijms242116014 crossref_primary_10_1002_bip_23631 crossref_primary_10_1016_j_cej_2024_158773 crossref_primary_10_2174_0115734129344438240927100440 crossref_primary_10_3390_polym16152148 crossref_primary_10_1038_s41467_025_57016_0 crossref_primary_10_1080_25740881_2023_2260885 crossref_primary_10_1093_rb_rbae024 crossref_primary_10_3390_gels10110693 crossref_primary_10_3390_gels10010043 crossref_primary_10_1002_macp_202300266 crossref_primary_10_1016_j_jddst_2025_106648 crossref_primary_10_1016_j_cis_2024_103304 crossref_primary_10_3390_polysaccharides5030024 crossref_primary_10_3390_molecules29235654 crossref_primary_10_1016_j_ijbiomac_2024_129311 crossref_primary_10_1016_j_carpta_2024_100495 crossref_primary_10_1021_acsbiomaterials_4c00019 crossref_primary_10_3390_cells13181549 crossref_primary_10_2174_1574888X17666220831105257 crossref_primary_10_1007_s11043_024_09676_6 crossref_primary_10_1016_j_ijbiomac_2024_130764 crossref_primary_10_1016_j_ijbiomac_2024_132700 crossref_primary_10_1177_20417314231190288 crossref_primary_10_1002_adhm_202403743 crossref_primary_10_1007_s42250_025_01255_7 crossref_primary_10_3390_ijms25031687 crossref_primary_10_1016_j_foostr_2023_100361 crossref_primary_10_1038_s41598_024_81533_5 crossref_primary_10_3390_gels11010029 crossref_primary_10_1016_j_ijbiomac_2024_133595 crossref_primary_10_1016_j_jmps_2024_105710 crossref_primary_10_1038_s41598_024_54912_1 crossref_primary_10_1089_cbr_2024_0177 crossref_primary_10_2147_IJN_S478313 crossref_primary_10_1080_00914037_2024_2335163 crossref_primary_10_1039_D4RA01370K crossref_primary_10_3390_gels10040216 crossref_primary_10_3390_gels11030194 crossref_primary_10_33647_2713_0428_20_3E_211_215 crossref_primary_10_1002_pat_6607 crossref_primary_10_1016_j_molliq_2024_125926 crossref_primary_10_3390_ph17060749 crossref_primary_10_1021_acsomega_4c03157 crossref_primary_10_1088_2058_8585_ace4da crossref_primary_10_1002_anbr_202300169 crossref_primary_10_1002_adbi_202200332 crossref_primary_10_3390_polym16081159 crossref_primary_10_1002_smll_202407195 crossref_primary_10_1002_smll_202500426 crossref_primary_10_3390_ijms25147676 crossref_primary_10_1002_pen_26510 crossref_primary_10_1002_ijgo_15422 crossref_primary_10_1021_acsapm_4c02727 crossref_primary_10_1021_acsami_4c11855 crossref_primary_10_32604_jrm_2024_054905 crossref_primary_10_1002_adfm_202300293 crossref_primary_10_3390_cells13030210 crossref_primary_10_1016_j_ccr_2025_216581 crossref_primary_10_3390_molecules27238494 crossref_primary_10_3390_gels8070410 crossref_primary_10_1039_D2BM01486F crossref_primary_10_3390_gels9070519 crossref_primary_10_1021_acsbiomaterials_4c01475 crossref_primary_10_1039_D4NJ02752C crossref_primary_10_3390_gels10090589 crossref_primary_10_1016_j_mtcomm_2024_108563 crossref_primary_10_3390_pharmaceutics17030389 |
Cites_doi | 10.1038/s41551-021-00812-y 10.1186/s13287-021-02638-6 10.1016/j.msec.2018.07.016 10.1021/acsabm.1c00620 10.3390/gels7040182 10.1002/adma.201906615 10.3390/polym12091994 10.1021/acsabm.0c01458 10.3390/polym8010023 10.1039/D1TB01163D 10.1016/0014-3057(94)90003-5 10.4103/1673-5374.306097 10.1155/2021/2225426 10.1002/mame.201500399 10.1111/ijd.15487 10.2478/msp-2020-0054 10.1038/nmat4401 10.1016/j.indcrop.2011.06.002 10.1016/S0376-7388(00)80265-3 10.1063/5.0038364 10.1002/mabi.200390039 10.1016/S0142-9612(98)00233-6 10.1016/j.bjps.2007.03.005 10.1111/j.1742-4801.2006.00212.x 10.1016/j.ijpharm.2016.11.032 10.1016/j.ijbiomac.2020.10.095 10.1002/app.25605 10.3390/ijms21176367 10.1016/j.colsurfb.2021.111850 10.1111/gtc.12843 10.3389/fbioe.2021.810155 10.1111/jocd.13894 10.3390/pharmaceutics13020127 10.3390/antibiotics10010049 10.3390/polym12102372 10.1016/j.msec.2021.112538 10.1016/j.ijbiomac.2006.09.019 10.1038/s41598-017-06457-9 10.1155/2021/9968602 10.1089/ten.2006.0320 10.1016/j.jconrel.2021.10.007 10.1186/s12951-020-00764-6 10.3389/fbioe.2021.718377 10.1080/19396368.2020.1725927 10.1016/j.ijpharm.2019.118803 10.1016/j.biomaterials.2021.120818 10.1163/156856208786140373 10.1016/j.ijbiomac.2021.11.184 10.3389/fchem.2020.615665 10.1021/acs.bioconjchem.5b00483 10.3390/polym12112702 10.2174/0929867326666190903113004 10.1039/D0TB02442B 10.1016/j.ijbiomac.2021.12.100 10.1021/ie100257s 10.3389/fcell.2021.729670 10.1021/acs.molpharmaceut.0c00910 10.1016/j.carbpol.2013.08.048 10.1016/j.actbio.2019.02.046 10.1016/j.biomaterials.2019.02.004 10.1007/s10971-008-1750-z 10.3390/polym12112506 10.1046/j.1524-475X.1994.20305.x 10.3390/mi12030293 10.1016/S0168-3659(99)00027-9 10.1002/pola.23607 10.1016/j.ijbiomac.2021.07.111 10.1073/pnas.1607350114 10.1021/la0631769 10.1016/j.biomaterials.2006.08.027 10.1007/s13770-017-0060-3 10.1007/BF01412597 10.1016/j.progpolymsci.2011.06.003 10.1021/acsabm.0c00858 10.1021/acsabm.1c00548 10.1039/D1SM00780G 10.1007/s40843-018-9347-5 10.1021/acsabm.1c00870 10.1039/D1BM00442E 10.1016/j.msec.2018.10.048 10.1039/D0BM00425A 10.1016/S0140-6736(94)90067-1 10.7603/s40681-015-0022-9 10.1021/ma00104a027 10.3389/fbioe.2020.00373 10.1016/j.colsurfb.2020.111200 10.1186/s12967-016-1028-0 10.1016/B978-0-12-816421-1.00001-X 10.1002/app.50376 10.1016/j.ijbiomac.2021.06.084 10.3390/ma13122750 10.1016/j.ijpharm.2009.01.008 10.1021/ma400494n 10.1016/j.pdpdt.2021.102521 10.1002/(SICI)1097-4628(19991128)74:9<2170::AID-APP7>3.0.CO;2-Q 10.1007/s10561-019-09790-7 10.3390/gels7040225 10.1002/adhm.201500005 10.1016/S0378-5173(02)00004-2 10.1021/acsbiomaterials.0c01751 10.1016/j.carbpol.2013.06.074 10.3390/bioengineering8020027 10.1021/acs.biomac.1c01180 10.1002/jbm.820190405 10.1038/srep43519 10.1016/j.msec.2019.109904 10.1016/j.carbpol.2019.01.115 10.1016/j.biomaterials.2010.02.044 10.1016/j.carbpol.2015.11.001 10.1038/s41586-019-1244-x 10.1055/s-0041-1731584 10.1371/journal.pone.0259052 10.1016/0168-3659(88)90079-X 10.3390/ijms222212200 10.1021/acsnano.1c04206 10.3390/ijms22052491 10.1016/j.biomaterials.2022.121455 10.1021/acsami.1c09889 10.1038/s41598-018-37788-w 10.1016/j.eurpolymj.2016.05.019 10.1155/2016/1917394 10.1039/C7TB00721C 10.3390/ma14092344 10.1039/C8MH00586A 10.1016/j.polymertesting.2017.10.018 10.1186/1477-3163-5-2 10.1097/00000658-198905000-00006 10.1007/978-3-319-76735-2_7 10.1002/(SICI)1097-4636(199621)33:1<35::AID-JBM6>3.0.CO;2-N 10.3390/polym13162772 10.1111/cea.14028 10.1016/j.carbpol.2021.117777 10.1016/j.actbio.2017.12.026 10.1016/S0142-9612(98)00107-0 10.1039/C7RA00372B 10.1016/j.carbpol.2018.02.088 10.2217/nnm-2016-0261 10.17795/jjnpp-20126 10.1039/C9SM01619H 10.1016/j.biomaterials.2021.121270 10.1016/j.heliyon.2020.e03719 10.1016/0168-583X(95)00550-1 10.1126/sciadv.aav6090 10.1002/jbm.b.34832 10.1002/smll.202102219 10.20944/preprints201608.0036.v1 10.1021/bm990017d 10.2147/IJN.S249129 10.1166/jbn.2021.3165 10.1039/C7CC03482B 10.1016/j.actbio.2016.11.016 10.3390/gels8010027 10.3389/fmats.2018.00039 10.1080/03602559.2011.639830 10.1088/1758-5090/ac42de 10.1038/21619 10.1016/j.seppur.2018.11.067 10.1016/j.biomaterials.2010.01.125 10.1016/j.biomaterials.2010.08.103 10.1016/j.ijpharm.2009.07.033 10.1002/jbm.a.36272 10.1002/jbm.a.35671 10.3390/biom10081169 10.1093/rb/rbaa052 10.1021/acsami.7b15843 10.2106/JBJS.CC.21.00753 10.1021/acs.chemrev.1c00815 10.1002/pi.4980040603 10.1016/j.snb.2016.01.110 10.1021/acs.analchem.0c03968 10.1021/acsabm.0c01591 10.1021/acsmacrolett.7b00275 10.1371/journal.pone.0239242 10.1016/j.biomaterials.2017.11.004 10.1002/jbm.820110309 10.1073/pnas.1621350114 10.3390/gels7040247 10.1211/00223570281 10.1007/BF00655475 10.1126/sciadv.1700348 10.1088/1758-5090/aaf657 10.1002/jbm.a.36603 10.1021/acsbiomaterials.9b01939 10.1002/jbm.a.36675 10.1002/jbm.820290514 10.1039/C4TA02463J 10.1016/j.actbio.2015.01.012 10.1038/s41598-018-21174-7 10.1038/s41598-019-41985-6 10.1016/j.biomaterials.2006.03.025 10.1016/j.carbpol.2021.117875 10.1023/A:1015949330425 10.1002/adhm.202002249 10.1021/ja064569x 10.1002/macp.1990.021910514 10.1021/bm501148y 10.1007/s13239-020-00515-6 10.1021/acsbiomaterials.0c00588 10.1016/j.ijbiomac.2018.04.032 10.1016/j.tibtech.2016.03.002 10.1002/jps.2600700226 10.1016/j.ijbiomac.2017.11.137 10.1039/C9TB00669A 10.1073/pnas.1907855116 10.3389/fbioe.2020.00665 10.1590/abd1806-4841.20164741 10.1021/acs.biomac.7b00781 10.2147/IJN.S339500 10.1016/j.msec.2019.03.093 10.1002/bit.25553 10.1007/s00289-021-03875-8 10.1039/C4RA11946K 10.1016/j.carbpol.2016.09.023 10.1021/ma00033a019 10.3109/10731197909119370 10.1016/j.msec.2019.110168 10.1038/376219a0 10.1038/nature06931 10.1002/jbm.10333 10.1088/1758-5090/ac1e78 10.1016/j.heliyon.2019.e01416 10.1007/s10853-019-04230-z 10.1016/j.anai.2022.03.014 10.1038/185117a0 10.1089/ten.tea.2014.0375 10.1016/j.carbpol.2015.07.037 10.1007/s10856-005-4722-7 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/molecules27092902 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_1354616ddf62478e87f546df76904350 PMC9104731 35566251 10_3390_molecules27092902 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministry of Science and Technology grantid: MOST 109-2221-E-037-001-MY3 – fundername: Kaohsiung Medical University grantid: KMUH110-0T02 – fundername: Research Center for Environmental Medicine – fundername: NPUST-KMU JOINT RESEARCH PROJECT grantid: NPUST-KMU-111-P002 – fundername: Kaohsiung Veterans General Hospital grantid: KSVGH111-153 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c559t-cc1afb44aea4707155e91e59ff313aca90a3492ff85bb2763a2c6b1d68c05e3 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:31:45 EDT 2025 Thu Aug 21 14:07:06 EDT 2025 Fri Jul 11 11:46:39 EDT 2025 Fri Jul 25 20:00:37 EDT 2025 Mon Jul 21 05:46:35 EDT 2025 Tue Jul 01 03:12:20 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | 3D cell culture tissue engineering medical application wound dressing drug delivery hydrogel |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-cc1afb44aea4707155e91e59ff313aca90a3492ff85bb2763a2c6b1d68c05e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally as the first author to this work. |
ORCID | 0000-0002-7469-9913 0000-0001-5856-0498 0000-0001-9741-5824 0000-0002-3973-8390 0000-0002-1917-5893 |
OpenAccessLink | https://doaj.org/article/1354616ddf62478e87f546df76904350 |
PMID | 35566251 |
PQID | 2663054839 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1354616ddf62478e87f546df76904350 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9104731 proquest_miscellaneous_2664798415 proquest_journals_2663054839 pubmed_primary_35566251 crossref_citationtrail_10_3390_molecules27092902 crossref_primary_10_3390_molecules27092902 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220502 |
PublicationDateYYYYMMDD | 2022-05-02 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220502 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhao (ref_221) 2022; 122 Wei (ref_82) 2018; 10 Stanton (ref_116) 2018; 108 Pan (ref_204) 2021; 5 ref_98 Migliorini (ref_41) 2016; 228 Timaeva (ref_88) 2020; 55 ref_97 ref_96 Heo (ref_154) 2019; 95 Nam (ref_179) 2019; 200 Khaliq (ref_211) 2022; 197 Madihally (ref_100) 2021; 138 Wichterle (ref_24) 1960; 185 Loh (ref_225) 2018; 8 ref_121 Eyrich (ref_151) 2007; 28 Lee (ref_56) 1999; 74 Rop (ref_8) 2019; 5 Romero (ref_134) 2016; 104 Price (ref_137) 2007; 60 Chen (ref_144) 2018; 5 ref_158 Yuqi (ref_18) 2017; 7 Hiratani (ref_59) 2018; 5 Karvinen (ref_90) 2019; 94 Hu (ref_230) 2022; 6 Okita (ref_169) 2021; 26 Zapp (ref_178) 2021; 9 Rowley (ref_30) 1999; 20 ref_74 ref_157 Shimojo (ref_68) 2022; 52 Sharma (ref_62) 2013; 98 Ono (ref_112) 2022; 5 Jose (ref_120) 2020; 27 Lei (ref_138) 2011; 32 Sun (ref_223) 2019; 107 Coury (ref_67) 2022; 12 Hahn (ref_19) 2007; 40 Park (ref_161) 2019; 212 Xu (ref_217) 2021; 4 Percival (ref_199) 2002; 20 Korsmeyer (ref_26) 1981; 9 Rosiak (ref_99) 1995; 105 ref_84 Geuss (ref_153) 2015; 112 You (ref_103) 2006; 128 Wei (ref_186) 2009; 381 Wang (ref_164) 2021; 2021 Zhao (ref_191) 2016; 5 Smeriglio (ref_125) 2015; 21 Lazarus (ref_197) 1994; 2 Yan (ref_102) 2020; 8 ref_210 ref_212 Eswaramma (ref_48) 2017; 156 Zhu (ref_77) 2015; 133 Rosellini (ref_115) 2018; 106 Nong (ref_135) 2019; 20 Gorczyca (ref_155) 2020; 161 Zoratto (ref_75) 2018; 1059 Wang (ref_214) 2021; 13 Huang (ref_215) 2021; 17 Wang (ref_220) 2021; 4 Bogdanov (ref_71) 2000; 1 Zhang (ref_91) 2017; 6 Cui (ref_78) 2014; 99 Nugent (ref_106) 2005; 16 Wang (ref_190) 2017; 114 ref_205 Seidlits (ref_139) 2010; 31 Yean (ref_28) 1990; 191 Mittal (ref_42) 2016; 301 Ichanti (ref_133) 2019; 9 Timaeva (ref_87) 2020; 16 Gao (ref_101) 2020; 106 Eagland (ref_21) 1994; 30 Wilkinson (ref_166) 2019; 571 Kilmer (ref_129) 2020; 6 Chung (ref_152) 2015; 17 Yan (ref_233) 2021; 12 Lee (ref_159) 2012; 37 Afewerki (ref_175) 2021; 205 Yang (ref_140) 2016; 2016 Christoffersson (ref_177) 2018; 11 Liang (ref_207) 2021; 15 Ghani (ref_192) 2021; 4 Zhang (ref_219) 2021; 131 Finklea (ref_228) 2021; 274 Sathish (ref_232) 2022; 195 Lin (ref_35) 2021; 22 Shuai (ref_108) 2021; 260 Dror (ref_11) 1979; 7 ref_117 ref_119 Li (ref_187) 2021; 7 Dienes (ref_72) 2021; 7 ref_110 ref_231 Liu (ref_122) 2021; 9 Tirino (ref_148) 2021; 8 Tabata (ref_33) 1998; 19 Senol (ref_173) 2020; 38 ref_227 Suo (ref_146) 2019; 211 Zhao (ref_182) 2021; 339 Chung (ref_180) 2021; 185 Huglin (ref_55) 1992; 270 Yan (ref_109) 2020; 32 Peppas (ref_10) 1977; 11 Bagher (ref_167) 2020; 66 Ding (ref_209) 2020; 6 Yu (ref_40) 2019; 116 Bachmann (ref_156) 2020; 8 Wan (ref_105) 2002; 63 Baker (ref_54) 1992; 25 Heintz (ref_31) 1994; 343 Lin (ref_189) 2020; 195 Nair (ref_15) 2019; 9 Zain (ref_9) 2018; 115 Ranjha (ref_20) 2008; 47 Suo (ref_79) 2018; 92 Hawes (ref_58) 2017; 53 Gander (ref_13) 1989; 6 Kouchak (ref_39) 2014; 9 Kim (ref_229) 2021; 13 Gbenebor (ref_3) 2017; 20 Zhang (ref_51) 2014; 2 Huang (ref_196) 2021; 9 Velmurugan (ref_1) 2009; 18 Cui (ref_124) 2021; 16 Zhang (ref_83) 2019; 62 Wang (ref_57) 2017; 3 Higginbotham (ref_107) 2009; 372 Song (ref_27) 1981; 70 Zhang (ref_213) 2021; 9 Xing (ref_183) 2021; 2021 Bordini (ref_235) 2021; 4 Xu (ref_111) 2022; 283 Hunt (ref_162) 2017; 49 Yang (ref_216) 2020; 15 Moore (ref_201) 2006; 3 Liu (ref_76) 2008; 19 Abedi (ref_194) 2021; 19 Jansen (ref_176) 2022; 280 Zhang (ref_43) 2021; 8 Aswathy (ref_237) 2020; 6 Tsurusawa (ref_17) 2019; 5 Molyneaux (ref_168) 2021; 109 Wu (ref_141) 2017; 5 Olad (ref_7) 2018; 190 Chen (ref_174) 2017; 2017 Nuhn (ref_85) 2014; 15 Zhu (ref_165) 2010; 31 Rouwkema (ref_130) 2016; 34 Jiao (ref_2) 2011; 20 Meleties (ref_60) 2021; 17 Liu (ref_236) 2021; 16 Sidhu (ref_171) 2021; 9 Roorda (ref_29) 1988; 7 Cerchiara (ref_23) 2002; 54 Qing (ref_118) 2021; 261 (ref_65) 2021; 15 Ning (ref_224) 2019; 7 Osada (ref_50) 1995; 376 Li (ref_226) 2021; 187 Li (ref_92) 2006; 27 Li (ref_64) 2015; 5 Golinko (ref_200) 2009; 55 Peppas (ref_89) 1999; 62 Xu (ref_142) 2021; 17 Douglas (ref_14) 2017; 114 Liu (ref_36) 2021; 9 Alawami (ref_69) 2021; 20 ref_53 ref_52 Aronsson (ref_61) 2017; 7 Peppas (ref_12) 1985; 19 Haldon (ref_25) 1972; 4 ref_181 Peng (ref_4) 2012; 51 Miyata (ref_63) 1999; 399 Qing (ref_188) 2021; 36 Yang (ref_47) 2002; 235 Eshraghi (ref_70) 2021; 60 Herndon (ref_202) 1989; 209 Berkovitch (ref_73) 2017; 523 Dong (ref_218) 2011; 34 Bellamkonda (ref_32) 1995; 29 Fan (ref_206) 2021; 9 Fan (ref_193) 2021; 10 ref_66 Wu (ref_104) 2007; 23 Bucatariu (ref_147) 2020; 165 Shi (ref_234) 2021; 14 Cascone (ref_222) 2020; 573 Lu (ref_16) 2008; 453 Wei (ref_114) 2021; 93 ref_170 Ren (ref_143) 2021; 4 Faraj (ref_123) 2007; 13 Kopecek (ref_38) 2009; 47 Buitrago (ref_136) 2018; 69 Sylvester (ref_172) 2021; 12 Lou (ref_150) 2018; 154 Kurt (ref_81) 2016; 81 Lu (ref_113) 2013; 3 Moxon (ref_163) 2019; 104 Najafipour (ref_195) 2021; 18 Gonzalez (ref_198) 2016; 91 Jin (ref_127) 2017; 14 Adair (ref_6) 2017; 64 Rehmann (ref_95) 2017; 18 Bieback (ref_132) 2018; 35 Rodell (ref_94) 2015; 26 Zamani (ref_5) 2010; 49 Bilici (ref_80) 2013; 46 Dhivya (ref_203) 2015; 5 Neves (ref_160) 2020; 8 Miao (ref_34) 2016; 137 ref_37 Ying (ref_208) 2019; 101 Iizawa (ref_46) 2007; 104 Seidlits (ref_149) 2019; 107 ref_184 ref_45 Tamaddon (ref_128) 2017; 7 ref_44 ref_185 Gao (ref_86) 2016; 11 Grindy (ref_93) 2015; 14 Pachence (ref_126) 1996; 33 Matsuda (ref_49) 1994; 27 Li (ref_131) 2016; 14 Yokoyama (ref_22) 1986; 264 Boregowda (ref_145) 2006; 5 |
References_xml | – volume: 6 start-page: 421 year: 2022 ident: ref_230 article-title: Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00812-y – volume: 12 start-page: 572 year: 2021 ident: ref_233 article-title: Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-021-02638-6 – volume: 92 start-page: 612 year: 2018 ident: ref_79 article-title: Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2018.07.016 – volume: 4 start-page: 6993 year: 2021 ident: ref_235 article-title: Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.1c00620 – ident: ref_53 doi: 10.3390/gels7040182 – volume: 32 start-page: e1906615 year: 2020 ident: ref_109 article-title: An Ion-Crosslinked Supramolecular Hydrogel for Ultrahigh and Fast Uranium Recovery from Seawater publication-title: Adv. Mater. doi: 10.1002/adma.201906615 – ident: ref_52 doi: 10.3390/polym12091994 – volume: 4 start-page: 1624 year: 2021 ident: ref_192 article-title: Molecular-Gated Drug Delivery Systems Using Light-Triggered Hydrophobic-to-Hydrophilic Switches publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c01458 – ident: ref_74 doi: 10.3390/polym8010023 – volume: 9 start-page: 5887 year: 2021 ident: ref_213 article-title: Injectable, self-healing and pH responsive stem cell factor loaded collagen hydrogel as a dynamic bioadhesive dressing for diabetic wound repair publication-title: J. Mater. Chem. B doi: 10.1039/D1TB01163D – volume: 30 start-page: 767 year: 1994 ident: ref_21 article-title: Complexation between polyoxyethyl and polymethacrylic acid- the importance of the molar-mass of polyoxyethylene publication-title: Eur. Polym. J. doi: 10.1016/0014-3057(94)90003-5 – volume: 16 start-page: 1856 year: 2021 ident: ref_124 article-title: Characteristics of neural growth and cryopreservation of the dorsal root ganglion using three-dimensional collagen hydrogel culture versus conventional culture publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.306097 – volume: 2021 start-page: 2225426 year: 2021 ident: ref_164 article-title: Poly(vinyl alcohol) Hydrogels: The Old and New Functional Materials publication-title: Int. J. Polym. Sci. doi: 10.1155/2021/2225426 – volume: 301 start-page: 496 year: 2016 ident: ref_42 article-title: Recent Progress on the Design and Applications of Polysaccharide-Based Graft Copolymer Hydrogels as Adsorbents for Wastewater Purification publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201500399 – volume: 60 start-page: e285 year: 2021 ident: ref_70 article-title: Nicolau syndrome, a rare though important complication of hyaluronic acid injection publication-title: Int. J. Dermatol. doi: 10.1111/ijd.15487 – volume: 38 start-page: 443 year: 2020 ident: ref_173 article-title: Preparation and characterization of pH-sensitive hydrogels from photo-crosslinked poly(ethylene glycol) diacrylate incorporating titanium dioxide publication-title: Mater. Sci. Pol. doi: 10.2478/msp-2020-0054 – volume: 18 start-page: 383 year: 2009 ident: ref_1 article-title: Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles publication-title: Iran. Polym. J. – volume: 14 start-page: 1210 year: 2015 ident: ref_93 article-title: Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics publication-title: Nat. Mater. doi: 10.1038/nmat4401 – volume: 34 start-page: 1629 year: 2011 ident: ref_218 article-title: Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2011.06.002 – volume: 9 start-page: 211 year: 1981 ident: ref_26 article-title: Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)80265-3 – volume: 5 start-page: 011504 year: 2021 ident: ref_204 article-title: Recent advances on polymeric hydrogels as wound dressings publication-title: APL Bioeng. doi: 10.1063/5.0038364 – volume: 3 start-page: 296 year: 2013 ident: ref_113 article-title: Antigen Responsive Hydrogels Based on Polymerizable Antibody Fab’ Fragment publication-title: Macromol. Biosci. doi: 10.1002/mabi.200390039 – volume: 19 start-page: 807 year: 1998 ident: ref_33 article-title: Bone regeneration by basic fibroblast growth factor complexed with biodegradble hydrogels publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00233-6 – volume: 60 start-page: 1110 year: 2007 ident: ref_137 article-title: Hyaluronic acid: The scientific and clinical evidence publication-title: J. Plast. Reconstr. Aesthet. Surg. doi: 10.1016/j.bjps.2007.03.005 – volume: 3 start-page: 89 year: 2006 ident: ref_201 article-title: Prediction and monitoring the therapeutic response of chronic dermal wounds publication-title: Int. Wound J. doi: 10.1111/j.1742-4801.2006.00212.x – volume: 523 start-page: 545 year: 2017 ident: ref_73 article-title: Semi-synthetic hydrogel composition and stiffness regulate neuronal morphogenesis publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.11.032 – volume: 165 start-page: 2528 year: 2020 ident: ref_147 article-title: A new sponge-type hydrogel based on hyaluronic acid and poly(methylvinylether-alt-maleic acid) as a 3D platform for tumor cell growth publication-title: Int. J. Biol Macromol. doi: 10.1016/j.ijbiomac.2020.10.095 – volume: 104 start-page: 842 year: 2007 ident: ref_46 article-title: Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.25605 – ident: ref_157 doi: 10.3390/ijms21176367 – volume: 205 start-page: 111850 year: 2021 ident: ref_175 article-title: Oxygen-generating microparticles in chondrocytes-laden hydrogels by facile and versatile click chemistry strategy publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2021.111850 – volume: 26 start-page: 336 year: 2021 ident: ref_169 article-title: Polyvinyl alcohol scaffolds and supplementation support 3D and sphere culturing of human cancer cell lines by reducing apoptosis and promoting cellular proliferation publication-title: Genes Cells doi: 10.1111/gtc.12843 – volume: 9 start-page: 810155 year: 2021 ident: ref_36 article-title: Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.810155 – volume: 20 start-page: 1483 year: 2021 ident: ref_69 article-title: Late onset hypersensitivity reaction to hyaluronic acid dermal fillers manifesting as cutaneous and visceral angioedema publication-title: J. Cosmet. Dermatol. doi: 10.1111/jocd.13894 – ident: ref_184 doi: 10.3390/pharmaceutics13020127 – ident: ref_212 doi: 10.3390/antibiotics10010049 – ident: ref_98 doi: 10.3390/polym12102372 – volume: 131 start-page: 112538 year: 2021 ident: ref_219 article-title: A balanced charged hydrogel with anti-biofouling and antioxidant properties for treatment of irradiation-induced skin injury publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2021.112538 – volume: 40 start-page: 374 year: 2007 ident: ref_19 article-title: Synthesis and degradation test of hyaluronic acid hydrogels publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2006.09.019 – volume: 7 start-page: 7013 year: 2017 ident: ref_61 article-title: Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel publication-title: Sci. Rep. doi: 10.1038/s41598-017-06457-9 – volume: 2021 start-page: 9968602 year: 2021 ident: ref_183 article-title: Development, Characterization, and Evaluation of SLN-Loaded Thermoresponsive Hydrogel System of Topotecan as Biological Macromolecule for Colorectal Delivery publication-title: Biomed. Res. Int. doi: 10.1155/2021/9968602 – volume: 20 start-page: 1155 year: 2017 ident: ref_3 article-title: Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton publication-title: Eng. Sci. Technol. – volume: 13 start-page: 2387 year: 2007 ident: ref_123 article-title: Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues publication-title: Tissue Eng. doi: 10.1089/ten.2006.0320 – volume: 339 start-page: 484 year: 2021 ident: ref_182 article-title: Thermoresponsive polymeric dexamethasone prodrug for arthritis pain publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.10.007 – volume: 19 start-page: 18 year: 2021 ident: ref_194 article-title: An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells publication-title: J. Nanobiotechnology doi: 10.1186/s12951-020-00764-6 – volume: 9 start-page: 718377 year: 2021 ident: ref_206 article-title: Biomimetic Hydrogels to Promote Wound Healing publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.718377 – volume: 66 start-page: 202 year: 2020 ident: ref_167 article-title: Differentiation of neonate mouse spermatgonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold publication-title: Syst. Biol. Reprod. Med. doi: 10.1080/19396368.2020.1725927 – volume: 573 start-page: 118803 year: 2020 ident: ref_222 article-title: Hydrogel-based commercial products for biomedical applications: A review publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118803 – volume: 274 start-page: 120818 year: 2021 ident: ref_228 article-title: Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120818 – volume: 19 start-page: 1503 year: 2008 ident: ref_76 article-title: P(AAm-co-MAA) semi-IPN hybrid hydrogels in the presence of PANI and MWNTs-COOH: Improved swelling behavior and mechanical properties publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/156856208786140373 – volume: 195 start-page: 179 year: 2022 ident: ref_232 article-title: Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.11.184 – volume: 8 start-page: 615665 year: 2021 ident: ref_43 article-title: Rational Design of Smart Hydrogels for Biomedical Applications publication-title: Front. Chem. doi: 10.3389/fchem.2020.615665 – volume: 26 start-page: 2279 year: 2015 ident: ref_94 article-title: Supramolecular guest-host interactions for the preparation of biomedical materials publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.5b00483 – ident: ref_45 doi: 10.3390/polym12112702 – volume: 27 start-page: 2734 year: 2020 ident: ref_120 article-title: Natural Polymers Based Hydrogels for Cell Culture Applications publication-title: Curr. Med. Chem. doi: 10.2174/0929867326666190903113004 – volume: 9 start-page: 1888 year: 2021 ident: ref_196 article-title: A pH/redox-dual responsive, nanoemulsion-embedded hydrogel for efficient oral delivery and controlled intestinal release of magnesium ions publication-title: J. Mater. Chem. B doi: 10.1039/D0TB02442B – volume: 197 start-page: 157 year: 2022 ident: ref_211 article-title: Self-crosslinked chitosan/κ-carrageenan-based biomimetic membranes to combat diabetic burn wound infections publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.12.100 – volume: 49 start-page: 8094 year: 2010 ident: ref_5 article-title: Effects of partial dehydration and freezing temperature on the morphology and water binding capacity of carboxymehty chitosan-based superabsorbents publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100257s – volume: 9 start-page: 729670 year: 2021 ident: ref_178 article-title: Natural Presentation of Glycosaminoglycans in Synthetic Matrices for 3D Angiogenesis Models publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.729670 – volume: 18 start-page: 275 year: 2021 ident: ref_195 article-title: MTX-Loaded Dual Thermoresponsive and pH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.0c00910 – volume: 99 start-page: 31 year: 2014 ident: ref_78 article-title: Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.08.048 – volume: 95 start-page: 348 year: 2019 ident: ref_154 article-title: Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.02.046 – volume: 200 start-page: 15 year: 2019 ident: ref_179 article-title: Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.02.004 – volume: 47 start-page: 23 year: 2008 ident: ref_20 article-title: Methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels for controlled drug delivery publication-title: J. Sol-Gel Sci. Technol doi: 10.1007/s10971-008-1750-z – ident: ref_170 doi: 10.3390/polym12112506 – volume: 2 start-page: 165 year: 1994 ident: ref_197 article-title: Definitions and guidelines for assessment of wounds and evaluation of healing publication-title: Wound Repair Regen. doi: 10.1046/j.1524-475X.1994.20305.x – ident: ref_96 doi: 10.3390/mi12030293 – volume: 62 start-page: 81 year: 1999 ident: ref_89 article-title: Poly(ethylene glycol)-containing hydrogels in drug delivery publication-title: J. Control. Release doi: 10.1016/S0168-3659(99)00027-9 – volume: 47 start-page: 5929 year: 2009 ident: ref_38 article-title: Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials publication-title: J. Polym. Sci. Part A Polym. Chem. doi: 10.1002/pola.23607 – volume: 187 start-page: 200 year: 2021 ident: ref_226 article-title: Dual-enzymatically cross-linked gelatin hydrogel promotes neural differentiation and neurotrophin secretion of bone marrow-derived mesenchymal stem cells for treatment of moderate traumatic brain injury publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.07.111 – volume: 114 start-page: 885 year: 2017 ident: ref_14 article-title: Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1607350114 – volume: 23 start-page: 2805 year: 2007 ident: ref_104 article-title: Theoretical and experimental studies on the surface structures of conjugated rod-coil block copolymer brushes publication-title: Langmuir doi: 10.1021/la0631769 – volume: 28 start-page: 55 year: 2007 ident: ref_151 article-title: Long-term stable fibrin gels for cartilage engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.08.027 – volume: 14 start-page: 383 year: 2017 ident: ref_127 article-title: Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes publication-title: Tissue Eng. Regen. Med. doi: 10.1007/s13770-017-0060-3 – volume: 264 start-page: 595 year: 1986 ident: ref_22 article-title: Morphology and structure of highy elastic polyvinyl-aclohol hydrogel prepared by repeated freezing-and-melting publication-title: Colloid Polym. Sci. doi: 10.1007/BF01412597 – volume: 37 start-page: 106 year: 2012 ident: ref_159 article-title: Alginate: Properties and biomedical applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.06.003 – volume: 4 start-page: 3 year: 2021 ident: ref_217 article-title: Lignin-Incorporated Nanogel Serving as an Antioxidant Biomaterial for Wound Healing publication-title: ACS Appl. Bio. Mater. doi: 10.1021/acsabm.0c00858 – volume: 4 start-page: 5797 year: 2021 ident: ref_220 article-title: Functionalization of an Electroactive Self-Healing Polypyrrole-Grafted Gelatin-Based Hydrogel by Incorporating a Polydopamine@AgNP Nanocomposite publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.1c00548 – volume: 17 start-page: 6470 year: 2021 ident: ref_60 article-title: Self-assembly of stimuli-responsive coiled-coil fibrous hydrogels publication-title: Soft Matter doi: 10.1039/D1SM00780G – volume: 62 start-page: 586 year: 2019 ident: ref_83 article-title: Self-recoverable semi-crystalline hydrogels with thermomechanics and shape memory performance publication-title: Sci. China Mater. doi: 10.1007/s40843-018-9347-5 – volume: 5 start-page: 471 year: 2022 ident: ref_112 article-title: Angiogenesis Promotion by Combined Administration of DFO and Vein Endothelial Cells Using Injectable, Biodegradable, Nanocomposite Hydrogel Scaffolds publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.1c00870 – volume: 9 start-page: 6266 year: 2021 ident: ref_171 article-title: A 3-D hydrogel based system for hematopoietic differentiation and its use in modeling down syndrome associated transient myeloproliferative disorder publication-title: Biomater. Sci. doi: 10.1039/D1BM00442E – volume: 20 start-page: 114 year: 2002 ident: ref_199 article-title: Classification of Wounds and their Management publication-title: Surgery – volume: 94 start-page: 1056 year: 2019 ident: ref_90 article-title: Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2018.10.048 – volume: 8 start-page: 3193 year: 2020 ident: ref_102 article-title: A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties publication-title: Biomater. Sci. doi: 10.1039/D0BM00425A – volume: 343 start-page: 950 year: 1994 ident: ref_31 article-title: Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation publication-title: Lancet doi: 10.1016/S0140-6736(94)90067-1 – volume: 5 start-page: 22 year: 2015 ident: ref_203 article-title: Wound dressings—A review publication-title: Biomedicine doi: 10.7603/s40681-015-0022-9 – volume: 27 start-page: 7695 year: 1994 ident: ref_49 article-title: Order-Disorder Transition of a Hydrogel Containing an n-Alkyl Acrylate publication-title: Macromolecules doi: 10.1021/ma00104a027 – volume: 8 start-page: 373 year: 2020 ident: ref_156 article-title: Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00373 – volume: 195 start-page: 111200 year: 2020 ident: ref_189 article-title: Design and evaluation of pH-responsive hydrogel for oral delivery of amifostine and study on its radioprotective effects publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2020.111200 – volume: 14 start-page: 271 year: 2016 ident: ref_131 article-title: Recent advances in bioprinting techniques: Approaches, applications and future prospects publication-title: J. Transl. Med. doi: 10.1186/s12967-016-1028-0 – ident: ref_84 doi: 10.1016/B978-0-12-816421-1.00001-X – volume: 138 start-page: 50376 year: 2021 ident: ref_100 article-title: Synthetic hydrogels: Synthesis, novel trends, and applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.50376 – volume: 185 start-page: 122 year: 2021 ident: ref_180 article-title: Developing photothermal-responsive and anti-oxidative silk/dopamine nanoparticles decorated with drugs which were incorporated into silk films as a depot-based drug delivery publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.06.084 – ident: ref_227 doi: 10.3390/ma13122750 – volume: 372 start-page: 154 year: 2009 ident: ref_107 article-title: The synthesis of novel pH-sensitive poly(vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2009.01.008 – volume: 46 start-page: 3125 year: 2013 ident: ref_80 article-title: Shape Memory Hydrogels via Micellar Copolymerization of Acrylic Acid and n-Octadecyl Acrylate in Aqueous Media publication-title: Macromolecules doi: 10.1021/ma400494n – volume: 36 start-page: 102521 year: 2021 ident: ref_188 article-title: Indocyanine green loaded pH-responsive bortezomib supramolecular hydrogel for synergistic chemo-photothermal/photodynamic colorectal cancer therapy publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2021.102521 – volume: 74 start-page: 2170 year: 1999 ident: ref_56 article-title: Thermoreversible hydrogels. VIII. Effect of a zwitterionic monomer on swelling behaviors of thermosensitive hydrogels copolymerized by N-isopropylacrylamide with N,N’-dimethyl (acrylamidopropyl) ammonium propane sulfonate publication-title: J. Appl. Polym. Sci doi: 10.1002/(SICI)1097-4628(19991128)74:9<2170::AID-APP7>3.0.CO;2-Q – volume: 20 start-page: 557 year: 2019 ident: ref_135 article-title: The effect of different cross-linking conditions of EDC/NHS on type II collagen scaffolds: An in vitro evaluation publication-title: Cell Tissue Bank. doi: 10.1007/s10561-019-09790-7 – ident: ref_37 doi: 10.3390/gels7040225 – volume: 5 start-page: 108 year: 2016 ident: ref_191 article-title: Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500005 – volume: 235 start-page: 1 year: 2002 ident: ref_47 article-title: Colon-specific drug delivery: New approaches and in vitro/in vivo evaluation publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(02)00004-2 – volume: 7 start-page: 1587 year: 2021 ident: ref_72 article-title: Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c01751 – volume: 98 start-page: 1025 year: 2013 ident: ref_62 article-title: Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.06.074 – ident: ref_44 doi: 10.3390/bioengineering8020027 – volume: 22 start-page: 5270 year: 2021 ident: ref_35 article-title: Redox-Responsive Hydrogels with Decoupled Initial Stiffness and Degradation publication-title: Biomacromolecules doi: 10.1021/acs.biomac.1c01180 – volume: 7 start-page: 377 year: 2021 ident: ref_187 article-title: Tumor acid microenvironment-activated self-targeting & splitting gold nanoassembly for tumor chemo-radiotherapy publication-title: Bioact. Mater. – volume: 19 start-page: 397 year: 1985 ident: ref_12 article-title: The structure of highly crosslinked poly(2-hydroxyethyl methacrylate) hydrogels publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820190405 – volume: 7 start-page: 43519 year: 2017 ident: ref_128 article-title: Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro publication-title: Sci. Rep. doi: 10.1038/srep43519 – volume: 104 start-page: 109904 year: 2019 ident: ref_163 article-title: Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2019.109904 – volume: 211 start-page: 336 year: 2019 ident: ref_146 article-title: Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.01.115 – volume: 31 start-page: 4639 year: 2010 ident: ref_165 article-title: Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.044 – volume: 137 start-page: 433 year: 2016 ident: ref_34 article-title: Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm-co-HEMAPCL) publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.11.001 – volume: 571 start-page: 117 year: 2019 ident: ref_166 article-title: Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation publication-title: Nature doi: 10.1038/s41586-019-1244-x – volume: 15 start-page: 798 year: 2021 ident: ref_65 article-title: A Rare Case of Contact Allergy towards Impression Compound Material publication-title: Eur. J. Dent. doi: 10.1055/s-0041-1731584 – ident: ref_110 doi: 10.1371/journal.pone.0259052 – volume: 7 start-page: 45 year: 1988 ident: ref_29 article-title: Zero-order release of oxprenolol-HCl, a new approach publication-title: J. Control. Release doi: 10.1016/0168-3659(88)90079-X – ident: ref_121 doi: 10.3390/ijms222212200 – volume: 15 start-page: 12687 year: 2021 ident: ref_207 article-title: Functional Hydrogels as Wound Dressing to Enhance Wound Healing publication-title: ACS Nano doi: 10.1021/acsnano.1c04206 – ident: ref_117 doi: 10.3390/ijms22052491 – volume: 283 start-page: 121455 year: 2022 ident: ref_111 article-title: Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121455 – volume: 13 start-page: 33584 year: 2021 ident: ref_214 article-title: Inflammation-Responsive Drug-Loaded Hydrogels with Sequential Hemostasis, Antibacterial, and Anti-Inflammatory Behavior for Chronically Infected Diabetic Wound Treatment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09889 – volume: 9 start-page: 1072 year: 2019 ident: ref_15 article-title: Colloidal gels with tunable mechanomorphology regulate endothelial morphogenesis publication-title: Sci. Rep. doi: 10.1038/s41598-018-37788-w – volume: 81 start-page: 12 year: 2016 ident: ref_81 article-title: High-strength semi-crystalline hydrogels with self-healing and shape memory functions publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.05.019 – volume: 2016 start-page: 1917394 year: 2016 ident: ref_140 article-title: Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering publication-title: Biomed. Res. Int. doi: 10.1155/2016/1917394 – volume: 5 start-page: 3870 year: 2017 ident: ref_141 article-title: Three-Dimensional Hyaluronic Acid Hydrogel-Based Models for In Vitro Human iPSC-Derived NPC Culture and Differentiation publication-title: J. Mater. Chem. B doi: 10.1039/C7TB00721C – ident: ref_119 doi: 10.3390/ma14092344 – volume: 5 start-page: 1076 year: 2018 ident: ref_59 article-title: Stable and sensitive stimuli-responsive anisotropic hydrogels for sensing ionic strength and pressure publication-title: Mater. Horiz. doi: 10.1039/C8MH00586A – volume: 64 start-page: 321 year: 2017 ident: ref_6 article-title: Superabsorbent materials derived fromhydroxyethyl cellulose and bentonite: Preparation, Characterization and swelling capacities publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.10.018 – volume: 5 start-page: 2 year: 2006 ident: ref_145 article-title: Expression of hyaluronan in human tumor progression publication-title: J. Carcinog. doi: 10.1186/1477-3163-5-2 – volume: 209 start-page: 547 year: 1989 ident: ref_202 article-title: A comparison of conservative versus early excision. Therapies in severely burned patients publication-title: Ann. Surg. doi: 10.1097/00000658-198905000-00006 – volume: 1059 start-page: 155 year: 2018 ident: ref_75 article-title: Semi-IPN- and IPN-Based Hydrogels publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-76735-2_7 – volume: 33 start-page: 35 year: 1996 ident: ref_126 article-title: Collagen-based devices for soft tissue repair publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(199621)33:1<35::AID-JBM6>3.0.CO;2-N – ident: ref_185 doi: 10.3390/polym13162772 – volume: 52 start-page: 183 year: 2022 ident: ref_68 article-title: Fish collagen as a potential indicator of severe allergic reactions among patients with fish allergies publication-title: Clin. Exp. Allergy doi: 10.1111/cea.14028 – volume: 260 start-page: 117777 year: 2021 ident: ref_108 article-title: Fabrication of an injectable iron (III) crosslinked alginate-hyaluronic acid hydrogel with shear-thinning and antimicrobial activities publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.117777 – volume: 69 start-page: 218 year: 2018 ident: ref_136 article-title: Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.12.026 – volume: 20 start-page: 45 year: 1999 ident: ref_30 article-title: Alginate hydrogels as synthetic extracellular matrix materials publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00107-0 – volume: 7 start-page: 14504 year: 2017 ident: ref_18 article-title: Super water absorbecy OMMT/PAA hydrogel matrials with excellent mechanical properties publication-title: RSC Adv. doi: 10.1039/C7RA00372B – volume: 190 start-page: 95 year: 2018 ident: ref_7 article-title: Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: Reaction parameters and swelling characteristics publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.02.088 – volume: 11 start-page: 3261 year: 2016 ident: ref_86 article-title: Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells publication-title: Nanomedicine doi: 10.2217/nnm-2016-0261 – volume: 9 start-page: e20126 year: 2014 ident: ref_39 article-title: In situ gelling systems for drug delivery publication-title: Jundishapur J. Nat. Pharm. Prod. doi: 10.17795/jjnpp-20126 – volume: 16 start-page: 219 year: 2020 ident: ref_87 article-title: Structure and dynamics of titania—poly(N-vinyl caprolactam) composite hydrogels publication-title: Soft Matter doi: 10.1039/C9SM01619H – volume: 280 start-page: 121270 year: 2022 ident: ref_176 article-title: A poly(ethylene glycol) three-dimensional bone marrow hydrogel publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121270 – volume: 6 start-page: e03719 year: 2020 ident: ref_237 article-title: Commercial hydrogels for biomedical applications publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e03719 – volume: 9 start-page: 316 year: 2021 ident: ref_122 article-title: Cell-matrix reciprocity in 3D culture models with nonlinear elasticity publication-title: Bioact. Mater. – volume: 105 start-page: 335 year: 1995 ident: ref_99 article-title: Hydrogels for biomedical purposes publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms doi: 10.1016/0168-583X(95)00550-1 – volume: 5 start-page: 1 year: 2019 ident: ref_17 article-title: Direct link between mechanical stability in gels and percolation of isostatic particles publication-title: Sci. Adv. doi: 10.1126/sciadv.aav6090 – volume: 109 start-page: 1744 year: 2021 ident: ref_168 article-title: Physically-cross-linked poly(vinyl alcohol) cell culture plate coatings facilitate preservation of cell-cell interactions, spheroid formation, and stemness publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.34832 – volume: 17 start-page: e2102219 year: 2021 ident: ref_142 article-title: Bioinspired 3D Culture in Nanoliter Hyaluronic Acid-Rich Core-Shell Hydrogel Microcapsules Isolates Highly Pluripotent Human iPSCs publication-title: Small doi: 10.1002/smll.202102219 – ident: ref_181 doi: 10.20944/preprints201608.0036.v1 – volume: 1 start-page: 31 year: 2000 ident: ref_71 article-title: Structural and rheological properties of methacrylamide modified gelatin hydrogels publication-title: Biomacromolecules doi: 10.1021/bm990017d – volume: 15 start-page: 5911 year: 2020 ident: ref_216 article-title: Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S249129 – volume: 17 start-page: 2021 year: 2021 ident: ref_215 article-title: Plasma Exosomes Loaded pH-Responsive Carboxymethylcellulose Hydrogel Promotes Wound Repair by Activating the Vascular Endothelial Growth Factor Signaling Pathway in Type 1 Diabetic Mice publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2021.3165 – volume: 53 start-page: 5989 year: 2017 ident: ref_58 article-title: A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand publication-title: Chem. Commun. doi: 10.1039/C7CC03482B – volume: 49 start-page: 329 year: 2017 ident: ref_162 article-title: 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.11.016 – ident: ref_97 doi: 10.3390/gels8010027 – volume: 5 start-page: 39 year: 2018 ident: ref_144 article-title: Influence of Hyaluronic Acid Transitions in Tumor Microenvironment on Glioblastoma Malignancy and Invasive Behavior publication-title: Front. Mater. doi: 10.3389/fmats.2018.00039 – volume: 51 start-page: 381 year: 2012 ident: ref_4 article-title: Influence of Chemical Cross-Linking on Properties of Gelatin/Chitosan Micropheres publication-title: Polym. Plast Technol. doi: 10.1080/03602559.2011.639830 – volume: 14 start-page: 014107 year: 2021 ident: ref_234 article-title: Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering publication-title: Biofabrication doi: 10.1088/1758-5090/ac42de – volume: 399 start-page: 766 year: 1999 ident: ref_63 article-title: A reversibly antigen-responsive hydrogel publication-title: Nature doi: 10.1038/21619 – volume: 212 start-page: 611 year: 2019 ident: ref_161 article-title: Selective lithium and magnesium adsorption by phosphonate metal-organic framework-incorporated alginate hydrogel inspired from lithium adsorption characteristics of brown algae publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.11.067 – volume: 31 start-page: 3930 year: 2010 ident: ref_139 article-title: The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.125 – volume: 32 start-page: 39 year: 2011 ident: ref_138 article-title: The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.103 – volume: 381 start-page: 1 year: 2009 ident: ref_186 article-title: Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2009.07.033 – volume: 106 start-page: 769 year: 2018 ident: ref_115 article-title: Protein/polysaccharide-based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36272 – volume: 104 start-page: 1462 year: 2016 ident: ref_134 article-title: Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.35671 – ident: ref_205 doi: 10.3390/biom10081169 – volume: 8 start-page: rbaa052 year: 2021 ident: ref_148 article-title: Gelatin-biofermentative unsulfated glycosaminoglycans semi-interpenetrating hydrogels via microbial-transglutaminase crosslinking enhance osteogenic potential of dental pulp stem cells publication-title: Regen. Biomater. doi: 10.1093/rb/rbaa052 – volume: 10 start-page: 2946 year: 2018 ident: ref_82 article-title: Semicrystalline Hydrophobically Associated Hydrogels with Integrated High Performances publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15843 – volume: 12 start-page: e21 year: 2022 ident: ref_67 article-title: Intraoperative Anaphylaxis to the Bovine Flowable Gelatin Matrix: A Report of 2 Cases publication-title: JBJS Case Connect. doi: 10.2106/JBJS.CC.21.00753 – volume: 122 start-page: 5604 year: 2022 ident: ref_221 article-title: Supramolecular Adhesive Hydrogels for Tissue Engineering Applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00815 – volume: 161 start-page: 61325 year: 2020 ident: ref_155 article-title: Proteolytically Degraded Alginate Hydrogels and Hydrophobic Microbioreactors for Porcine Oocyte Encapsulation publication-title: J. Vis. Exp. – volume: 4 start-page: 491 year: 1972 ident: ref_25 article-title: Structure and permeability of porous films of poly (hydroxy ethyl methacrylate) publication-title: Br. Polym. J. doi: 10.1002/pi.4980040603 – volume: 228 start-page: 758 year: 2016 ident: ref_41 article-title: Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.01.110 – volume: 93 start-page: 6613 year: 2021 ident: ref_114 article-title: Direct Transverse Relaxation Time Biosensing Strategy for Detecting Foodborne Pathogens through Enzyme-Mediated Sol-Gel Transition of Hydrogels publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03968 – volume: 4 start-page: 2601 year: 2021 ident: ref_143 article-title: Hyaluronic Acid Hydrogel with Adjustable Stiffness for Mesenchymal Stem Cell 3D Culture via Related Molecular Mechanisms to Maintain Stemness and Induce Cartilage Differentiation publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c01591 – volume: 6 start-page: 641 year: 2017 ident: ref_91 article-title: Dynamic Supramolecular Hydrogels: Regulating Hydrogel Properties through Self-Complementary Quadruple Hydrogen Bonds and Thermo-Switch publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.7b00275 – ident: ref_158 doi: 10.1371/journal.pone.0239242 – volume: 154 start-page: 213 year: 2018 ident: ref_150 article-title: Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.004 – volume: 11 start-page: 423 year: 1977 ident: ref_10 article-title: Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820110309 – volume: 114 start-page: 5912 year: 2017 ident: ref_190 article-title: B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release publication-title: Proc. Natl. Acad. Sci USA doi: 10.1073/pnas.1621350114 – ident: ref_231 doi: 10.3390/gels7040247 – volume: 54 start-page: 1453 year: 2002 ident: ref_23 article-title: Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs publication-title: J. Pharm. Pharmacol. doi: 10.1211/00223570281 – volume: 270 start-page: 234 year: 1992 ident: ref_55 article-title: Thermodynamic Properties of Copolymeric Hydrogels Based on 2-Hydroxyethyl Methacrylate and a Zwitterionic Methacrylate publication-title: Colloid Polym. Sci. doi: 10.1007/BF00655475 – volume: 35 start-page: 99 year: 2018 ident: ref_132 article-title: Fetal Bovine Serum (FBS): Past-Present-Future publication-title: ALTEX – volume: 3 start-page: e1700348 year: 2017 ident: ref_57 article-title: Cooperative deformations of periodically patterned hydrogels publication-title: Sci. Adv. doi: 10.1126/sciadv.1700348 – volume: 11 start-page: 015013 year: 2018 ident: ref_177 article-title: Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device publication-title: Biofabrication doi: 10.1088/1758-5090/aaf657 – volume: 107 start-page: 704 year: 2019 ident: ref_149 article-title: Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.36603 – volume: 6 start-page: 3464 year: 2020 ident: ref_129 article-title: Collagen Type I and II Blend Hydrogel with Autologous Mesenchymal Stem Cells as a Scaffold for Articular Cartilage Defect Repair publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b01939 – volume: 2017 start-page: 4051763 year: 2017 ident: ref_174 article-title: Preparation and Characterization of Hyaluronic Acid-Polycaprolactone Copolymer Micelles for the Drug Delivery of Radioactive Iodine-131 Labeled Lipiodol publication-title: Biomed. Res. Int. – volume: 107 start-page: 1898 year: 2019 ident: ref_223 article-title: 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.36675 – volume: 29 start-page: 663 year: 1995 ident: ref_32 article-title: Hydrogel-based three-dimensional matrix for neural cells publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.820290514 – volume: 2 start-page: 13373 year: 2014 ident: ref_51 article-title: Light-healable hard hydrogels through photothermally induced melting–crystallization phase transition publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02463J – volume: 17 start-page: 78 year: 2015 ident: ref_152 article-title: Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.01.012 – volume: 8 start-page: 2875 year: 2018 ident: ref_225 article-title: Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing publication-title: Sci. Rep. doi: 10.1038/s41598-018-21174-7 – volume: 9 start-page: 5437 year: 2019 ident: ref_133 article-title: Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels publication-title: Sci. Rep. doi: 10.1038/s41598-019-41985-6 – volume: 27 start-page: 4132 year: 2006 ident: ref_92 article-title: Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and α-cyclodextrin for controlled drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.03.025 – volume: 261 start-page: 117875 year: 2021 ident: ref_118 article-title: Preparation and propeties of polyvinyl alcohol/N–succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.117875 – volume: 6 start-page: 578 year: 1989 ident: ref_13 article-title: Effect of polymeric network structure on drug release from cross-linked poly(vinyl alcohol) micromatrices publication-title: Pharm. Res. doi: 10.1023/A:1015949330425 – volume: 20 start-page: 123 year: 2011 ident: ref_2 article-title: Synthesis and characterization of chitosan-based schiff base compounds with aromatic substituent groups publication-title: Iran. Polym. J. – volume: 10 start-page: e2002249 year: 2021 ident: ref_193 article-title: Responsive Hydrogel Microcarrier-Integrated Microneedles for Versatile and Controllable Drug Delivery publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202002249 – volume: 128 start-page: 13336 year: 2006 ident: ref_103 article-title: An easy way to sugar-containing polymer vesicles or glycosomes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja064569x – volume: 191 start-page: 1119 year: 1990 ident: ref_28 article-title: Reversible immobilization of drugs on a hydrogel matrix, 2. Diffusion of free chloramphenicol from poly (2-hydroxyethyl methacrylate) hydrogels publication-title: Makromol. Chem. doi: 10.1002/macp.1990.021910514 – volume: 15 start-page: 4111 year: 2014 ident: ref_85 article-title: Size-dependent knockdown potential of siRNA-loaded cationic nanohydrogel particles publication-title: Biomacromolecules doi: 10.1021/bm501148y – volume: 12 start-page: 183 year: 2021 ident: ref_172 article-title: Cell-Laden Bioactive Poly(ethylene glycol) Hydrogels for Studying Mesenchymal Stem Cell Behavior in Myocardial Infarct-Stiffness Microenvironments publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-020-00515-6 – volume: 6 start-page: 3855 year: 2020 ident: ref_209 article-title: Novel Self-Healing Hydrogel with Injectable, pH-Responsive, Strain-Sensitive, Promoting Wound-Healing, and Hemostatic Properties Based on Collagen and Chitosan publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c00588 – volume: 115 start-page: 61 year: 2018 ident: ref_9 article-title: Superabsorbent hydrogel based on sulfonated-starch for improving water and saline absorbency publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.04.032 – volume: 34 start-page: 733 year: 2016 ident: ref_130 article-title: Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.03.002 – volume: 70 start-page: 216 year: 1981 ident: ref_27 article-title: Progestin permeation through polymer membranes V: Progesterone release from monolithic hydrogel devices publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600700226 – volume: 108 start-page: 333 year: 2018 ident: ref_116 article-title: Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.11.137 – volume: 7 start-page: 4538 year: 2019 ident: ref_224 article-title: Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions publication-title: J. Mater. Chem. B doi: 10.1039/C9TB00669A – volume: 116 start-page: 20820 year: 2019 ident: ref_40 article-title: Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1907855116 – volume: 8 start-page: 665 year: 2020 ident: ref_160 article-title: Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00665 – volume: 91 start-page: 614 year: 2016 ident: ref_198 article-title: Wound healing—A literature review publication-title: An. Bras. Dermatol. doi: 10.1590/abd1806-4841.20164741 – volume: 18 start-page: 3131 year: 2017 ident: ref_95 article-title: Tuning and Predicting Mesh Size and Protein Release from Step Growth Hydrogels publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00781 – volume: 55 start-page: 54 year: 2009 ident: ref_200 article-title: Wound emergencies: The importance of assessment, documentation, and early treatment using a wound electronic medical record publication-title: Ostomy Wound Manag. – volume: 16 start-page: 8417 year: 2021 ident: ref_236 article-title: 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S339500 – volume: 101 start-page: 487 year: 2019 ident: ref_208 article-title: In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2019.03.093 – volume: 112 start-page: 1446 year: 2015 ident: ref_153 article-title: Maintenance of HL-1 cardiomyocyte functional activity in PEGylated fibrin gels publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25553 – ident: ref_210 doi: 10.1007/s00289-021-03875-8 – volume: 5 start-page: 18242 year: 2015 ident: ref_64 article-title: Stimuli-responsive hydrogels prepared by simultaneous “click chemistry” and metal–ligand coordination publication-title: RSC Adv. doi: 10.1039/C4RA11946K – volume: 156 start-page: 125 year: 2017 ident: ref_48 article-title: Synthesis of dual responsive carbohydrate polymer based IPN microbeads for controlled release of anti-HIV drug publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.09.023 – volume: 25 start-page: 1955 year: 1992 ident: ref_54 article-title: Swelling Equilibria for Acrylamide-Based Polyampholyte Hydrogels publication-title: Macromolecules doi: 10.1021/ma00033a019 – volume: 7 start-page: 31 year: 1979 ident: ref_11 article-title: Interpenetrating polymer networks for biological applications publication-title: Biomater. Med. Devices Artif. Organs doi: 10.3109/10731197909119370 – volume: 106 start-page: 110168 year: 2020 ident: ref_101 article-title: Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2019.110168 – volume: 376 start-page: 219 year: 1995 ident: ref_50 article-title: Shape memory in hydrogels publication-title: Nature doi: 10.1038/376219a0 – volume: 453 start-page: 449 year: 2008 ident: ref_16 article-title: Gelation of particles with short-range attration publication-title: Nature doi: 10.1038/nature06931 – volume: 63 start-page: 854 year: 2002 ident: ref_105 article-title: Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.10333 – volume: 13 start-page: 045014 year: 2021 ident: ref_229 article-title: Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction publication-title: Biofabrication doi: 10.1088/1758-5090/ac1e78 – volume: 5 start-page: e01416 year: 2019 ident: ref_8 article-title: Biodegradable water hyacinth cellulose-graft-poly(ammunium acrylate-co-acrylic acid)polymer hydrogel for potential agricultural application publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01416 – volume: 55 start-page: 3005 year: 2020 ident: ref_88 article-title: Synthesis and physico-chemical properties of poly(N-vinyl pyrrolidone)-based hydrogels with titania nanoparticles publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-04230-z – ident: ref_66 doi: 10.1016/j.anai.2022.03.014 – volume: 185 start-page: 117 year: 1960 ident: ref_24 article-title: Hydrophilic Gels for Biological Use publication-title: Nature doi: 10.1038/185117a0 – volume: 21 start-page: 840 year: 2015 ident: ref_125 article-title: Collagen VI enhances cartilage tissue generation by stimulating chondrocyte proliferation publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2014.0375 – volume: 133 start-page: 448 year: 2015 ident: ref_77 article-title: Structure and properties of semi-interpenetrating network hydrogel based on starch publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.07.037 – volume: 16 start-page: 1149 year: 2005 ident: ref_106 article-title: Investigation of a novel freeze-thaw process for the production of drug delivery hydrogels publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-005-4722-7 |
SSID | ssj0021415 |
Score | 2.7180524 |
SecondaryResourceType | review_article |
Snippet | Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2902 |
SubjectTerms | 3D cell culture Biological activity drug delivery Enzymes Hyaluronic acid hydrogel Hydrogels medical application Physical properties Polyethylene glycol Polymerization Polymers Polyvinyl alcohol Regenerative medicine Review Tissue engineering wound dressing |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEB-0HvQi1apdrbJCT8LSzffGS2mL5SEogi2825LNRy3obvve68H_3kk2-9qn0usmC2FmkvnNTPIbgH1CLEc_o6pgNa04r13VGUIrzSRzVItOpJzul69yds4_z8U8J9yW-VrldCamg9oNNubID9CRoGly9OeHV9dV7BoVq6u5hcZDeBSpy-KVLjW_DbgIeqexkskwtD_4NTac9UuqakQFOZMy-aJE2f8_nPn3dck7_ud0G55m4FgejZp-Bg98_xwen0z92nZAzH67xXCBvu5j-S2m2BeRK7U0vSuP7lSpy8u-PE5v7lNN_QV8P_10djKrclOEyiL4X1XWEhM6zo03XCE-EMJr4oUOgRFmrNG1iYSDITSi6yieHoZa2REnG1sLz17CVj_0fhfKoBrNnWPOcsklNcYEL6yjnkuLwmwKqCfhtDbzhce2FT9bjBuiPNt_5FnAh_UvVyNZxn2Tj6PE1xMjz3X6MCwu2rxtWsIEl0Q6FyTlqvGNCvjBBYVBPQK9uoC9SV9t3nzL9tZUCni_HkZtxFqI6f1wk-ZwpRs0kAJejepdrwQhmMSwkBSgNhS_sdTNkf7yR6Lm1pH5gpHX9y_rDTyh8RVFvDdJ92BrtbjxbxHbrLp3yYD_AIiv-tA priority: 102 providerName: ProQuest |
Title | Hydrogels: Properties and Applications in Biomedicine |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35566251 https://www.proquest.com/docview/2663054839 https://www.proquest.com/docview/2664798415 https://pubmed.ncbi.nlm.nih.gov/PMC9104731 https://doaj.org/article/1354616ddf62478e87f546df76904350 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RcmgviEILoe0qSJyQosbvuLdu1WWFRFUBlfYWOX60lSCLttsD_56xk6x2oYILlxxsR3JmHM83M_Y3AO8IsRztjCqC1bTgvHRFYwgtNJPMUS0akWK6ny7l9Jp_nInZWqmveCasowfuBHdCmOCSSOeCpFxVvlIBG1xQ6NahqU_eOtq8wZnqXS2CdqnLYTJ06k--d6Vm_T1VJeKBPoYyWKFE1v8Ywvz9oOSa5Zk8h2c9ZMzPuqnuwRPfvoCd86FS20sQ059uMb9BK3eaX8Xg-iKypOamdfnZWn46v2vzcbptn7Lp-_BlcvH1fFr05RAKi7B_WVhLTGg4N95whchACK-JFzoERpixRpcmUg2GUImmobhvGGplQ5ysbCk8O4Dtdt7615AHVWnuHHOWSy6pMSZ4YR31XFpCdJVBOQintj1TeCxY8a1GjyHKs_5Dnhm8X73yo6PJ-NvgcZT4amBkuE4NqPe613v9L71ncDToq-5_u_sa0QbuXxxBXwZvV92ojZgFMa2fP6QxXOkKF0gGrzr1rmaC4EuiQ0gyUBuK35jqZk97d5tIuXXkvGDkzf_4tkPYpfGWRTxXSY9ge7l48MeIfZbNCLbUTOGzmnwYwdPxxeXV51Fa-r8A2b0FHw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9VAFD5BfMAX404RtSb6YtLQWdshMQTQ60WWmIgJTzbTWZBEW7j3EsJ_8kdypptcNbzxOjNtJmeZ7ywz5wC8IcRwxJks8UbRhPPUJqUmNFFMMkuVKEUT090_kONv_POROFqA3_1bmHCtsj8Tm4Pa1ibEyNcQSFA0OeL5xulZErpGhexq30KjFYtdd3mBLtv0_c4H5O9bSkcfD7fHSddVIDFoPc8SY4j2JefaaZ4hwArhFHFCec8I00arVIeKfd7noiwpqp-mRpbEytykwjH86x24yxlTQZ_y0afBvSOIhW3eFCfTtV9te1s3pVmKNkgXt-mRr2kQ8D-r9u_LmdfQbvQA7ndmarzZytVDWHDVI1ja7rvDPQYxvrST-hiRdT3-EgL6k1CZNdaVjTev5cTjkyreal74Nxn8J_D1Foj1FBarunLLEPssV9xaZg2XXFKttXfCWOq4NISoPIK0J05huurkoUnGzwK9lEDP4h96RvBu-OS0Lc1x0-KtQPFhYaiq3QzUk-OiU9KCMMElkdZ6SXmWuzzzOGB9JlWKZmUawWrPr6JT9WnxRzAjeD1MIzdC5kVXrj5v1vBM5SggETxr2TvsBA0-iU4oiSCbY_zcVudnqpMfTSFwFepsMLJy87ZewdL4cH-v2Ns52H0O92h4vxFubNJVWJxNzt0LtKpm5ctGmGP4fru6cwWpJjdl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBPVFvB2NOoK-CMNO39OCSA6XjdEQUGGfHHr6iAGdibsbJP_Mn2f1HJusSt7y2t0zNHX0V9VVXQXwghDLEWdUFqymGee5yypDaKaZZI5qUYn2Tvfjvpx84e-nYroGv4e3MDGtcjgT24PaNTbekY8QSFA0OeL5KPRpEQc747fHP7PYQSpGWod2Gp2I7PnTX-i-zd_s7iCvX1I6fvd5e5L1HQYyi5b0IrOWmFBxbrzhCsFWCK-JFzoERpixRucmVu8LoRBVRVEVDbWyIk4WNhee4V-vwFXFBIkapqZnrh5BXOxiqIzpfPSja3Xr51TlaI_0dzgDCrbNAv5n4f6dqHkO-ca34GZvsqabnYzdhjVf34Hr20OnuLsgJqdu1hwiyr5OD-Ll_ixWaU1N7dLNc_Hx9KhOt9rX_m00_x58ugRi3Yf1uqn9Q0iDKjR3jjnLJZfUGBO8sI56Li0hukggH4hT2r5SeWyY8b1EjyXSs_yHngm8Wn5y3JXpuGjxVqT4cmGssN0ONLPDslfYkjDBJZHOBUm5KnyhAg64oKTO0cTME9gY-FX2aj8vz4Q0gefLaeRGjMKY2jcn7RqudIECksCDjr3LnaDxJ9EhJQmoFcavbHV1pj761hYF17HmBiOPLt7WM7iGWlN-2N3feww3aHzKEZM36QasL2Yn_gkaWIvqaSvLKXy9XNX5A7fgO5I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogels%3A+Properties+and+Applications+in+Biomedicine&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Tzu-Chuan+Ho&rft.au=Chin-Chuan+Chang&rft.au=Hung-Pin+Chan&rft.au=Tze-Wen+Chung&rft.date=2022-05-02&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=27&rft.issue=9&rft.spage=2902&rft_id=info:doi/10.3390%2Fmolecules27092902&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1354616ddf62478e87f546df76904350 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |