Hydrogels: Properties and Applications in Biomedicine

Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydroge...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 9; p. 2902
Main Authors Ho, Tzu-Chuan, Chang, Chin-Chuan, Chan, Hung-Pin, Chung, Tze-Wen, Shu, Chih-Wen, Chuang, Kuo-Pin, Duh, Tsai-Hui, Yang, Ming-Hui, Tyan, Yu-Chang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.05.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.
AbstractList Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.
Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.
Author Ho, Tzu-Chuan
Chuang, Kuo-Pin
Chang, Chin-Chuan
Chung, Tze-Wen
Shu, Chih-Wen
Duh, Tsai-Hui
Chan, Hung-Pin
Tyan, Yu-Chang
Yang, Ming-Hui
AuthorAffiliation 9 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; tshudu@kmu.edu.tw
3 School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
2 Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; chinuan@kmu.edu.tw
10 Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
11 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
1 Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; r090340@kmu.edu.tw (T.-C.H.); t0987295916@gmail.com (C.-W.S.)
15 Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
5 Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan
14 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
8 Graduate Institute of Animal Vaccine Technology, College
AuthorAffiliation_xml – name: 8 Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; kpchuang@g4e.npust.edu.tw
– name: 5 Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan
– name: 15 Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
– name: 11 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
– name: 3 School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
– name: 6 Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; hpchan@vghks.gov.tw
– name: 13 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
– name: 9 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; tshudu@kmu.edu.tw
– name: 7 Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; twchung@nycu.edu.tw
– name: 14 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
– name: 1 Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; r090340@kmu.edu.tw (T.-C.H.); t0987295916@gmail.com (C.-W.S.)
– name: 2 Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; chinuan@kmu.edu.tw
– name: 4 Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
– name: 10 Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
– name: 12 Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
Author_xml – sequence: 1
  givenname: Tzu-Chuan
  surname: Ho
  fullname: Ho, Tzu-Chuan
– sequence: 2
  givenname: Chin-Chuan
  surname: Chang
  fullname: Chang, Chin-Chuan
– sequence: 3
  givenname: Hung-Pin
  orcidid: 0000-0001-9741-5824
  surname: Chan
  fullname: Chan, Hung-Pin
– sequence: 4
  givenname: Tze-Wen
  orcidid: 0000-0002-7469-9913
  surname: Chung
  fullname: Chung, Tze-Wen
– sequence: 5
  givenname: Chih-Wen
  surname: Shu
  fullname: Shu, Chih-Wen
– sequence: 6
  givenname: Kuo-Pin
  orcidid: 0000-0002-3973-8390
  surname: Chuang
  fullname: Chuang, Kuo-Pin
– sequence: 7
  givenname: Tsai-Hui
  surname: Duh
  fullname: Duh, Tsai-Hui
– sequence: 8
  givenname: Ming-Hui
  orcidid: 0000-0001-5856-0498
  surname: Yang
  fullname: Yang, Ming-Hui
– sequence: 9
  givenname: Yu-Chang
  orcidid: 0000-0002-1917-5893
  surname: Tyan
  fullname: Tyan, Yu-Chang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35566251$$D View this record in MEDLINE/PubMed
BookMark eNp1kk9rFTEUxYNUbPv0A7iRATdunuZ_Ji6EWlpbKCjoPmQyN8888pIxmRH67U37WmkrrhJufudwcu89RgcpJ0DoNcHvGdP4wy5HcEuEShXWVGP6DB0RTvGaYa4PHtwP0XGtW4wp4US8QIdMCCmpIEdIXFyPJW8g1o_dt5InKHOA2tk0difTFIOzc8ipdiF1n0PewRhcSPASPfc2Vnh1d67Q9_OzH6cX66uvXy5PT67WTgg9r50j1g-cW7BcYUWEAE1AaO8ZYdZZjS3jmnrfi2GgSjJLnRzIKHuHBbAVuty7jtluzVTCzpZrk20wt4VcNsa2uC6CIUxwSeQ4ekm56qFXvhVGr6TGnAncvD7tvaZlaL9wkOZi4yPTxy8p_DSb_NtogrlqcVfo3Z1Byb8WqLPZheogRpsgL9VQKbnSfetvQ98-Qbd5Kak16oZiWPCe6Ua9eZjob5T72TRA7QFXcq0FvHFhvh1HCxiiIdjcbIH5ZwuakjxR3pv_X_MHkFC2ug
CitedBy_id crossref_primary_10_3390_nanomanufacturing2040015
crossref_primary_10_1016_j_eurpolymj_2024_112983
crossref_primary_10_1186_s13567_024_01411_w
crossref_primary_10_3390_su16156321
crossref_primary_10_1007_s00289_023_05133_5
crossref_primary_10_1007_s10876_024_02638_5
crossref_primary_10_1016_j_ijbiomac_2023_127612
crossref_primary_10_1002_pol_20230349
crossref_primary_10_3390_polym15030589
crossref_primary_10_1002_adma_202414897
crossref_primary_10_1007_s11696_024_03785_9
crossref_primary_10_1002_app_56630
crossref_primary_10_31083_j_fbl2908309
crossref_primary_10_3390_nano14060531
crossref_primary_10_1002_adhm_202304572
crossref_primary_10_3390_ma16176037
crossref_primary_10_3390_polym14224825
crossref_primary_10_3390_polym16131932
crossref_primary_10_3390_gels10120842
crossref_primary_10_1002_hlca_202200164
crossref_primary_10_1016_j_ijpharm_2023_123535
crossref_primary_10_3390_gels11030207
crossref_primary_10_3390_ph17010139
crossref_primary_10_1088_1742_6596_2837_1_012047
crossref_primary_10_1080_10408398_2023_2168619
crossref_primary_10_3390_biology13010021
crossref_primary_10_3390_biomedicines12092095
crossref_primary_10_1007_s10856_024_06800_3
crossref_primary_10_1016_j_seppur_2024_129915
crossref_primary_10_22159_ijap_2025v17i1_51987
crossref_primary_10_3389_fmats_2024_1443514
crossref_primary_10_1016_j_heliyon_2024_e37952
crossref_primary_10_1017_plc_2024_2
crossref_primary_10_1021_acsomega_3c08877
crossref_primary_10_1016_j_jconrel_2023_11_057
crossref_primary_10_1186_s12967_024_05490_3
crossref_primary_10_3390_polym16111513
crossref_primary_10_2147_IJN_S448667
crossref_primary_10_3389_fmats_2023_1328904
crossref_primary_10_3390_gels10100663
crossref_primary_10_1002_chem_202403282
crossref_primary_10_1016_j_carpta_2025_100722
crossref_primary_10_1016_j_colsurfb_2025_114591
crossref_primary_10_1016_j_ijbiomac_2024_135749
crossref_primary_10_3390_gels10100662
crossref_primary_10_1021_acsami_4c16333
crossref_primary_10_1016_j_chemosphere_2024_143459
crossref_primary_10_3390_ph17101260
crossref_primary_10_1016_j_colsurfb_2023_113380
crossref_primary_10_1016_j_carbpol_2024_122311
crossref_primary_10_3390_gels10100669
crossref_primary_10_1016_j_jot_2024_11_004
crossref_primary_10_1016_j_cej_2024_156554
crossref_primary_10_1016_j_ijbiomac_2024_137127
crossref_primary_10_1038_s41392_024_01852_x
crossref_primary_10_31083_FBL25281
crossref_primary_10_3390_md21070375
crossref_primary_10_3390_app14072926
crossref_primary_10_1021_acsabm_4c00669
crossref_primary_10_1016_j_bioactmat_2025_03_002
crossref_primary_10_1002_VIW_20230110
crossref_primary_10_1088_1402_4896_ad547a
crossref_primary_10_3390_gels10040262
crossref_primary_10_1016_j_jddst_2024_106394
crossref_primary_10_1089_ten_teb_2023_0218
crossref_primary_10_1016_j_ijbiomac_2024_129858
crossref_primary_10_1016_j_jddst_2024_106395
crossref_primary_10_3390_gels11040231
crossref_primary_10_3390_molecules29163732
crossref_primary_10_3390_bioengineering12020205
crossref_primary_10_3390_polym16223135
crossref_primary_10_1016_j_ijbiomac_2024_136394
crossref_primary_10_3390_gels10080513
crossref_primary_10_1021_acsomega_3c08785
crossref_primary_10_1039_D4SM00135D
crossref_primary_10_1016_j_giant_2024_100323
crossref_primary_10_1007_s00289_025_05712_8
crossref_primary_10_3390_ijms25084534
crossref_primary_10_3390_jcs9030133
crossref_primary_10_1007_s11051_024_06178_x
crossref_primary_10_3390_gels10050312
crossref_primary_10_3390_molecules29112633
crossref_primary_10_1002_mame_202300195
crossref_primary_10_1073_pnas_2401480121
crossref_primary_10_1016_j_jddst_2023_105330
crossref_primary_10_3390_gels10050316
crossref_primary_10_3390_gels11010052
crossref_primary_10_1016_j_ijbiomac_2024_135723
crossref_primary_10_1016_j_carbpol_2024_122455
crossref_primary_10_1016_j_cej_2024_153382
crossref_primary_10_1016_j_ijbiomac_2024_138565
crossref_primary_10_1515_bmt_2024_0391
crossref_primary_10_3389_fendo_2024_1430543
crossref_primary_10_3390_molecules30030686
crossref_primary_10_3390_ijms242316970
crossref_primary_10_3390_ijms26052309
crossref_primary_10_1016_j_mtbio_2025_101623
crossref_primary_10_3390_gels10090547
crossref_primary_10_3390_gels10110713
crossref_primary_10_5483_BMBRep_2023_0160
crossref_primary_10_1590_1809_6891v25e_77593e
crossref_primary_10_3390_gels8080495
crossref_primary_10_31665_JFB_2023_18346
crossref_primary_10_3390_biomimetics8030279
crossref_primary_10_3390_ijms241311037
crossref_primary_10_3390_gels9110885
crossref_primary_10_1088_1361_6439_ad104b
crossref_primary_10_1007_s42823_023_00592_2
crossref_primary_10_3390_ma17235862
crossref_primary_10_3389_fbioe_2025_1550553
crossref_primary_10_3390_ijms25031861
crossref_primary_10_3390_jfb15030077
crossref_primary_10_1016_j_ijbiomac_2024_136126
crossref_primary_10_1016_j_sbsr_2025_100742
crossref_primary_10_1016_j_emcon_2024_100336
crossref_primary_10_1021_acsomega_4c08540
crossref_primary_10_1590_1809_6891v25e_77593p
crossref_primary_10_1002_adfm_202314757
crossref_primary_10_1016_j_colsurfb_2024_114099
crossref_primary_10_3390_gels9100834
crossref_primary_10_1002_macp_202300310
crossref_primary_10_1002_chem_202404572
crossref_primary_10_3390_gels10050295
crossref_primary_10_3390_ijms241813811
crossref_primary_10_1007_s11914_023_00839_x
crossref_primary_10_1016_j_jics_2024_101272
crossref_primary_10_1002_gch2_202400120
crossref_primary_10_1016_j_jddst_2023_105273
crossref_primary_10_4028_p_a2LLpB
crossref_primary_10_3390_gels11010072
crossref_primary_10_1007_s10965_024_04081_6
crossref_primary_10_1002_adhm_202402926
crossref_primary_10_1016_j_ejpb_2022_11_007
crossref_primary_10_3390_gels10070448
crossref_primary_10_1016_j_ijbiomac_2024_133526
crossref_primary_10_1016_j_jddst_2024_105571
crossref_primary_10_3390_coatings13111907
crossref_primary_10_4103_mgmj_mgmj_340_24
crossref_primary_10_3390_gels10030156
crossref_primary_10_1016_j_ijbiomac_2024_133093
crossref_primary_10_1186_s12951_024_02547_9
crossref_primary_10_1186_s13036_024_00435_2
crossref_primary_10_1016_j_colsurfa_2024_135641
crossref_primary_10_1039_D4NA00172A
crossref_primary_10_1002_EXP_20230171
crossref_primary_10_1016_j_cej_2024_153803
crossref_primary_10_1002_jev2_12386
crossref_primary_10_1002_mame_202400359
crossref_primary_10_1016_j_jfca_2024_107096
crossref_primary_10_1016_j_mtbio_2024_101146
crossref_primary_10_1002_smll_202309454
crossref_primary_10_3390_gels10070479
crossref_primary_10_1016_j_actbio_2024_08_038
crossref_primary_10_1016_j_carpta_2024_100536
crossref_primary_10_1088_1748_605X_ad08e2
crossref_primary_10_1016_j_ijbiomac_2024_138098
crossref_primary_10_3390_polym16131878
crossref_primary_10_34133_bmr_0143
crossref_primary_10_1016_j_ijbiomac_2024_138893
crossref_primary_10_3390_polym15143085
crossref_primary_10_3389_fchem_2024_1325204
crossref_primary_10_1016_j_ijbiomac_2024_138643
crossref_primary_10_3390_ijms25147839
crossref_primary_10_1016_j_ceja_2024_100678
crossref_primary_10_3389_fcell_2024_1514595
crossref_primary_10_3390_ma17010086
crossref_primary_10_2478_amb_2024_0061
crossref_primary_10_31466_kfbd_1496088
crossref_primary_10_1016_j_bioactmat_2024_03_014
crossref_primary_10_1016_j_jddst_2023_104973
crossref_primary_10_1016_j_cis_2025_103456
crossref_primary_10_1007_s11706_024_0691_y
crossref_primary_10_1016_j_inoche_2025_114139
crossref_primary_10_3390_pharmaceutics15102405
crossref_primary_10_3390_gels9080600
crossref_primary_10_1016_j_mtbio_2025_101531
crossref_primary_10_1016_j_ccr_2024_216207
crossref_primary_10_3390_polym16030344
crossref_primary_10_1039_D3BM02137H
crossref_primary_10_1039_D4MD00828F
crossref_primary_10_1515_ntrev_2024_0057
crossref_primary_10_1016_j_apmt_2024_102278
crossref_primary_10_3390_gels10120795
crossref_primary_10_3390_gels9070594
crossref_primary_10_1016_j_heliyon_2023_e22520
crossref_primary_10_1016_j_ijbiomac_2024_136221
crossref_primary_10_1016_j_bbcan_2024_189177
crossref_primary_10_1016_j_jmbbm_2023_106316
crossref_primary_10_1039_D4TB02394C
crossref_primary_10_3390_polym14214755
crossref_primary_10_1016_j_bioadv_2023_213615
crossref_primary_10_1039_D4MA00398E
crossref_primary_10_3390_gels10110753
crossref_primary_10_1021_acsomega_4c00037
crossref_primary_10_2174_0115672018279105240226050253
crossref_primary_10_3390_gels10070476
crossref_primary_10_1016_j_agwat_2024_109145
crossref_primary_10_1080_00914037_2024_2356603
crossref_primary_10_1002_app_56471
crossref_primary_10_3390_polym15112482
crossref_primary_10_1002_adfm_202422755
crossref_primary_10_1016_j_carbpol_2024_122845
crossref_primary_10_1111_wrr_13251
crossref_primary_10_1016_j_molliq_2024_126592
crossref_primary_10_1039_D4BM00155A
crossref_primary_10_1016_j_bioactmat_2024_07_013
crossref_primary_10_1016_j_colsurfb_2025_114617
crossref_primary_10_3389_fbioe_2024_1380528
crossref_primary_10_1039_D4TB00887A
crossref_primary_10_3389_fcell_2024_1391259
crossref_primary_10_1016_j_cis_2024_103358
crossref_primary_10_3390_jfb16020043
crossref_primary_10_1016_j_jddst_2024_106466
crossref_primary_10_1088_1758_5090_adb999
crossref_primary_10_1016_j_jtos_2025_03_004
crossref_primary_10_1016_j_mtchem_2024_102295
crossref_primary_10_1039_D4TB01341G
crossref_primary_10_1039_D4NJ01677G
crossref_primary_10_1039_D3TB01921G
crossref_primary_10_3390_ph18030344
crossref_primary_10_3390_bioengineering10010053
crossref_primary_10_1016_j_colsurfa_2024_134078
crossref_primary_10_1016_j_heliyon_2024_e24584
crossref_primary_10_1016_j_cej_2024_153565
crossref_primary_10_1186_s12931_023_02548_6
crossref_primary_10_1186_s13287_023_03351_2
crossref_primary_10_3390_bioengineering11020198
crossref_primary_10_3390_gels10030191
crossref_primary_10_3390_gels10030190
crossref_primary_10_1186_s10020_025_01131_7
crossref_primary_10_1186_s40164_024_00591_7
crossref_primary_10_1016_j_ijpharm_2024_125162
crossref_primary_10_1007_s00403_024_03781_9
crossref_primary_10_3390_biom14070858
crossref_primary_10_1007_s11010_024_05145_3
crossref_primary_10_3390_ph16060841
crossref_primary_10_1080_14686996_2025_2469490
crossref_primary_10_1007_s11664_025_11744_7
crossref_primary_10_3390_gels11020109
crossref_primary_10_1016_j_ijbiomac_2024_132623
crossref_primary_10_1016_j_ymthe_2024_09_019
crossref_primary_10_3389_fvets_2024_1391872
crossref_primary_10_1016_j_biopha_2024_117637
crossref_primary_10_1007_s10924_024_03239_z
crossref_primary_10_1016_j_cej_2024_158567
crossref_primary_10_1080_09205063_2024_2422213
crossref_primary_10_3390_molecules28207035
crossref_primary_10_1080_10717544_2024_2446552
crossref_primary_10_3390_app14031093
crossref_primary_10_1016_j_jddst_2025_106758
crossref_primary_10_3390_md22040188
crossref_primary_10_3390_bioengineering10080964
crossref_primary_10_35556_idr_2024_2_107_18_27
crossref_primary_10_1016_j_mtcomm_2024_111417
crossref_primary_10_3390_jfb14110545
crossref_primary_10_1016_j_compscitech_2025_111059
crossref_primary_10_1039_D4BM00317A
crossref_primary_10_3390_coatings14121519
crossref_primary_10_1063_5_0226665
crossref_primary_10_17816_vto632032
crossref_primary_10_1039_D2BM01862D
crossref_primary_10_1002_adhm_202401895
crossref_primary_10_1208_s12249_024_02923_6
crossref_primary_10_1002_adfm_202422869
crossref_primary_10_3390_gels9090711
crossref_primary_10_1208_s12249_024_02731_y
crossref_primary_10_1016_j_colsurfb_2024_114346
crossref_primary_10_1016_j_ijbiomac_2024_136532
crossref_primary_10_1021_acsmaterialslett_4c02108
crossref_primary_10_1016_j_foodhyd_2023_109421
crossref_primary_10_3390_gels11020123
crossref_primary_10_3390_gels8090563
crossref_primary_10_1002_mabi_202400228
crossref_primary_10_1039_D4TB00024B
crossref_primary_10_1021_acsami_4c02317
crossref_primary_10_3389_fbioe_2023_1167012
crossref_primary_10_3390_pharmaceutics16050628
crossref_primary_10_1002_adhm_202401307
crossref_primary_10_3390_gels9050371
crossref_primary_10_1016_j_biomaterials_2024_123065
crossref_primary_10_1016_j_ijbiomac_2023_124383
crossref_primary_10_1021_acsbiomaterials_4c00910
crossref_primary_10_1002_anbr_202300035
crossref_primary_10_1007_s42247_024_00930_8
crossref_primary_10_3390_foods12244405
crossref_primary_10_3390_gels9120960
crossref_primary_10_1016_j_engreg_2024_04_006
crossref_primary_10_1021_acsami_4c18945
crossref_primary_10_3389_fcell_2023_1286223
crossref_primary_10_1016_j_carres_2025_109384
crossref_primary_10_1016_j_ijpharm_2024_124701
crossref_primary_10_3390_gels10010039
crossref_primary_10_1016_j_onano_2023_100160
crossref_primary_10_3390_app13148261
crossref_primary_10_4252_wjsc_v16_i4_334
crossref_primary_10_1021_acsomega_3c08280
crossref_primary_10_1016_j_ijbiomac_2025_140082
crossref_primary_10_1016_j_procbio_2025_03_008
crossref_primary_10_4103_jioh_jioh_134_24
crossref_primary_10_1016_j_ijbiomac_2023_126854
crossref_primary_10_1002_bip_23638
crossref_primary_10_1016_j_matpr_2023_05_668
crossref_primary_10_3389_fimmu_2024_1387945
crossref_primary_10_3390_gels10040234
crossref_primary_10_3390_ijms242116014
crossref_primary_10_1002_bip_23631
crossref_primary_10_1016_j_cej_2024_158773
crossref_primary_10_2174_0115734129344438240927100440
crossref_primary_10_3390_polym16152148
crossref_primary_10_1038_s41467_025_57016_0
crossref_primary_10_1080_25740881_2023_2260885
crossref_primary_10_1093_rb_rbae024
crossref_primary_10_3390_gels10110693
crossref_primary_10_3390_gels10010043
crossref_primary_10_1002_macp_202300266
crossref_primary_10_1016_j_jddst_2025_106648
crossref_primary_10_1016_j_cis_2024_103304
crossref_primary_10_3390_polysaccharides5030024
crossref_primary_10_3390_molecules29235654
crossref_primary_10_1016_j_ijbiomac_2024_129311
crossref_primary_10_1016_j_carpta_2024_100495
crossref_primary_10_1021_acsbiomaterials_4c00019
crossref_primary_10_3390_cells13181549
crossref_primary_10_2174_1574888X17666220831105257
crossref_primary_10_1007_s11043_024_09676_6
crossref_primary_10_1016_j_ijbiomac_2024_130764
crossref_primary_10_1016_j_ijbiomac_2024_132700
crossref_primary_10_1177_20417314231190288
crossref_primary_10_1002_adhm_202403743
crossref_primary_10_1007_s42250_025_01255_7
crossref_primary_10_3390_ijms25031687
crossref_primary_10_1016_j_foostr_2023_100361
crossref_primary_10_1038_s41598_024_81533_5
crossref_primary_10_3390_gels11010029
crossref_primary_10_1016_j_ijbiomac_2024_133595
crossref_primary_10_1016_j_jmps_2024_105710
crossref_primary_10_1038_s41598_024_54912_1
crossref_primary_10_1089_cbr_2024_0177
crossref_primary_10_2147_IJN_S478313
crossref_primary_10_1080_00914037_2024_2335163
crossref_primary_10_1039_D4RA01370K
crossref_primary_10_3390_gels10040216
crossref_primary_10_3390_gels11030194
crossref_primary_10_33647_2713_0428_20_3E_211_215
crossref_primary_10_1002_pat_6607
crossref_primary_10_1016_j_molliq_2024_125926
crossref_primary_10_3390_ph17060749
crossref_primary_10_1021_acsomega_4c03157
crossref_primary_10_1088_2058_8585_ace4da
crossref_primary_10_1002_anbr_202300169
crossref_primary_10_1002_adbi_202200332
crossref_primary_10_3390_polym16081159
crossref_primary_10_1002_smll_202407195
crossref_primary_10_1002_smll_202500426
crossref_primary_10_3390_ijms25147676
crossref_primary_10_1002_pen_26510
crossref_primary_10_1002_ijgo_15422
crossref_primary_10_1021_acsapm_4c02727
crossref_primary_10_1021_acsami_4c11855
crossref_primary_10_32604_jrm_2024_054905
crossref_primary_10_1002_adfm_202300293
crossref_primary_10_3390_cells13030210
crossref_primary_10_1016_j_ccr_2025_216581
crossref_primary_10_3390_molecules27238494
crossref_primary_10_3390_gels8070410
crossref_primary_10_1039_D2BM01486F
crossref_primary_10_3390_gels9070519
crossref_primary_10_1021_acsbiomaterials_4c01475
crossref_primary_10_1039_D4NJ02752C
crossref_primary_10_3390_gels10090589
crossref_primary_10_1016_j_mtcomm_2024_108563
crossref_primary_10_3390_pharmaceutics17030389
Cites_doi 10.1038/s41551-021-00812-y
10.1186/s13287-021-02638-6
10.1016/j.msec.2018.07.016
10.1021/acsabm.1c00620
10.3390/gels7040182
10.1002/adma.201906615
10.3390/polym12091994
10.1021/acsabm.0c01458
10.3390/polym8010023
10.1039/D1TB01163D
10.1016/0014-3057(94)90003-5
10.4103/1673-5374.306097
10.1155/2021/2225426
10.1002/mame.201500399
10.1111/ijd.15487
10.2478/msp-2020-0054
10.1038/nmat4401
10.1016/j.indcrop.2011.06.002
10.1016/S0376-7388(00)80265-3
10.1063/5.0038364
10.1002/mabi.200390039
10.1016/S0142-9612(98)00233-6
10.1016/j.bjps.2007.03.005
10.1111/j.1742-4801.2006.00212.x
10.1016/j.ijpharm.2016.11.032
10.1016/j.ijbiomac.2020.10.095
10.1002/app.25605
10.3390/ijms21176367
10.1016/j.colsurfb.2021.111850
10.1111/gtc.12843
10.3389/fbioe.2021.810155
10.1111/jocd.13894
10.3390/pharmaceutics13020127
10.3390/antibiotics10010049
10.3390/polym12102372
10.1016/j.msec.2021.112538
10.1016/j.ijbiomac.2006.09.019
10.1038/s41598-017-06457-9
10.1155/2021/9968602
10.1089/ten.2006.0320
10.1016/j.jconrel.2021.10.007
10.1186/s12951-020-00764-6
10.3389/fbioe.2021.718377
10.1080/19396368.2020.1725927
10.1016/j.ijpharm.2019.118803
10.1016/j.biomaterials.2021.120818
10.1163/156856208786140373
10.1016/j.ijbiomac.2021.11.184
10.3389/fchem.2020.615665
10.1021/acs.bioconjchem.5b00483
10.3390/polym12112702
10.2174/0929867326666190903113004
10.1039/D0TB02442B
10.1016/j.ijbiomac.2021.12.100
10.1021/ie100257s
10.3389/fcell.2021.729670
10.1021/acs.molpharmaceut.0c00910
10.1016/j.carbpol.2013.08.048
10.1016/j.actbio.2019.02.046
10.1016/j.biomaterials.2019.02.004
10.1007/s10971-008-1750-z
10.3390/polym12112506
10.1046/j.1524-475X.1994.20305.x
10.3390/mi12030293
10.1016/S0168-3659(99)00027-9
10.1002/pola.23607
10.1016/j.ijbiomac.2021.07.111
10.1073/pnas.1607350114
10.1021/la0631769
10.1016/j.biomaterials.2006.08.027
10.1007/s13770-017-0060-3
10.1007/BF01412597
10.1016/j.progpolymsci.2011.06.003
10.1021/acsabm.0c00858
10.1021/acsabm.1c00548
10.1039/D1SM00780G
10.1007/s40843-018-9347-5
10.1021/acsabm.1c00870
10.1039/D1BM00442E
10.1016/j.msec.2018.10.048
10.1039/D0BM00425A
10.1016/S0140-6736(94)90067-1
10.7603/s40681-015-0022-9
10.1021/ma00104a027
10.3389/fbioe.2020.00373
10.1016/j.colsurfb.2020.111200
10.1186/s12967-016-1028-0
10.1016/B978-0-12-816421-1.00001-X
10.1002/app.50376
10.1016/j.ijbiomac.2021.06.084
10.3390/ma13122750
10.1016/j.ijpharm.2009.01.008
10.1021/ma400494n
10.1016/j.pdpdt.2021.102521
10.1002/(SICI)1097-4628(19991128)74:9<2170::AID-APP7>3.0.CO;2-Q
10.1007/s10561-019-09790-7
10.3390/gels7040225
10.1002/adhm.201500005
10.1016/S0378-5173(02)00004-2
10.1021/acsbiomaterials.0c01751
10.1016/j.carbpol.2013.06.074
10.3390/bioengineering8020027
10.1021/acs.biomac.1c01180
10.1002/jbm.820190405
10.1038/srep43519
10.1016/j.msec.2019.109904
10.1016/j.carbpol.2019.01.115
10.1016/j.biomaterials.2010.02.044
10.1016/j.carbpol.2015.11.001
10.1038/s41586-019-1244-x
10.1055/s-0041-1731584
10.1371/journal.pone.0259052
10.1016/0168-3659(88)90079-X
10.3390/ijms222212200
10.1021/acsnano.1c04206
10.3390/ijms22052491
10.1016/j.biomaterials.2022.121455
10.1021/acsami.1c09889
10.1038/s41598-018-37788-w
10.1016/j.eurpolymj.2016.05.019
10.1155/2016/1917394
10.1039/C7TB00721C
10.3390/ma14092344
10.1039/C8MH00586A
10.1016/j.polymertesting.2017.10.018
10.1186/1477-3163-5-2
10.1097/00000658-198905000-00006
10.1007/978-3-319-76735-2_7
10.1002/(SICI)1097-4636(199621)33:1<35::AID-JBM6>3.0.CO;2-N
10.3390/polym13162772
10.1111/cea.14028
10.1016/j.carbpol.2021.117777
10.1016/j.actbio.2017.12.026
10.1016/S0142-9612(98)00107-0
10.1039/C7RA00372B
10.1016/j.carbpol.2018.02.088
10.2217/nnm-2016-0261
10.17795/jjnpp-20126
10.1039/C9SM01619H
10.1016/j.biomaterials.2021.121270
10.1016/j.heliyon.2020.e03719
10.1016/0168-583X(95)00550-1
10.1126/sciadv.aav6090
10.1002/jbm.b.34832
10.1002/smll.202102219
10.20944/preprints201608.0036.v1
10.1021/bm990017d
10.2147/IJN.S249129
10.1166/jbn.2021.3165
10.1039/C7CC03482B
10.1016/j.actbio.2016.11.016
10.3390/gels8010027
10.3389/fmats.2018.00039
10.1080/03602559.2011.639830
10.1088/1758-5090/ac42de
10.1038/21619
10.1016/j.seppur.2018.11.067
10.1016/j.biomaterials.2010.01.125
10.1016/j.biomaterials.2010.08.103
10.1016/j.ijpharm.2009.07.033
10.1002/jbm.a.36272
10.1002/jbm.a.35671
10.3390/biom10081169
10.1093/rb/rbaa052
10.1021/acsami.7b15843
10.2106/JBJS.CC.21.00753
10.1021/acs.chemrev.1c00815
10.1002/pi.4980040603
10.1016/j.snb.2016.01.110
10.1021/acs.analchem.0c03968
10.1021/acsabm.0c01591
10.1021/acsmacrolett.7b00275
10.1371/journal.pone.0239242
10.1016/j.biomaterials.2017.11.004
10.1002/jbm.820110309
10.1073/pnas.1621350114
10.3390/gels7040247
10.1211/00223570281
10.1007/BF00655475
10.1126/sciadv.1700348
10.1088/1758-5090/aaf657
10.1002/jbm.a.36603
10.1021/acsbiomaterials.9b01939
10.1002/jbm.a.36675
10.1002/jbm.820290514
10.1039/C4TA02463J
10.1016/j.actbio.2015.01.012
10.1038/s41598-018-21174-7
10.1038/s41598-019-41985-6
10.1016/j.biomaterials.2006.03.025
10.1016/j.carbpol.2021.117875
10.1023/A:1015949330425
10.1002/adhm.202002249
10.1021/ja064569x
10.1002/macp.1990.021910514
10.1021/bm501148y
10.1007/s13239-020-00515-6
10.1021/acsbiomaterials.0c00588
10.1016/j.ijbiomac.2018.04.032
10.1016/j.tibtech.2016.03.002
10.1002/jps.2600700226
10.1016/j.ijbiomac.2017.11.137
10.1039/C9TB00669A
10.1073/pnas.1907855116
10.3389/fbioe.2020.00665
10.1590/abd1806-4841.20164741
10.1021/acs.biomac.7b00781
10.2147/IJN.S339500
10.1016/j.msec.2019.03.093
10.1002/bit.25553
10.1007/s00289-021-03875-8
10.1039/C4RA11946K
10.1016/j.carbpol.2016.09.023
10.1021/ma00033a019
10.3109/10731197909119370
10.1016/j.msec.2019.110168
10.1038/376219a0
10.1038/nature06931
10.1002/jbm.10333
10.1088/1758-5090/ac1e78
10.1016/j.heliyon.2019.e01416
10.1007/s10853-019-04230-z
10.1016/j.anai.2022.03.014
10.1038/185117a0
10.1089/ten.tea.2014.0375
10.1016/j.carbpol.2015.07.037
10.1007/s10856-005-4722-7
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/molecules27092902
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_1354616ddf62478e87f546df76904350
PMC9104731
35566251
10_3390_molecules27092902
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: MOST 109-2221-E-037-001-MY3
– fundername: Kaohsiung Medical University
  grantid: KMUH110-0T02
– fundername: Research Center for Environmental Medicine
– fundername: NPUST-KMU JOINT RESEARCH PROJECT
  grantid: NPUST-KMU-111-P002
– fundername: Kaohsiung Veterans General Hospital
  grantid: KSVGH111-153
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c559t-cc1afb44aea4707155e91e59ff313aca90a3492ff85bb2763a2c6b1d68c05e3
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:31:45 EDT 2025
Thu Aug 21 14:07:06 EDT 2025
Fri Jul 11 11:46:39 EDT 2025
Fri Jul 25 20:00:37 EDT 2025
Mon Jul 21 05:46:35 EDT 2025
Tue Jul 01 03:12:20 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 3D cell culture
tissue engineering
medical application
wound dressing
drug delivery
hydrogel
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-cc1afb44aea4707155e91e59ff313aca90a3492ff85bb2763a2c6b1d68c05e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally as the first author to this work.
ORCID 0000-0002-7469-9913
0000-0001-5856-0498
0000-0001-9741-5824
0000-0002-3973-8390
0000-0002-1917-5893
OpenAccessLink https://doaj.org/article/1354616ddf62478e87f546df76904350
PMID 35566251
PQID 2663054839
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_1354616ddf62478e87f546df76904350
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9104731
proquest_miscellaneous_2664798415
proquest_journals_2663054839
pubmed_primary_35566251
crossref_citationtrail_10_3390_molecules27092902
crossref_primary_10_3390_molecules27092902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220502
PublicationDateYYYYMMDD 2022-05-02
PublicationDate_xml – month: 5
  year: 2022
  text: 20220502
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhao (ref_221) 2022; 122
Wei (ref_82) 2018; 10
Stanton (ref_116) 2018; 108
Pan (ref_204) 2021; 5
ref_98
Migliorini (ref_41) 2016; 228
Timaeva (ref_88) 2020; 55
ref_97
ref_96
Heo (ref_154) 2019; 95
Nam (ref_179) 2019; 200
Khaliq (ref_211) 2022; 197
Madihally (ref_100) 2021; 138
Wichterle (ref_24) 1960; 185
Loh (ref_225) 2018; 8
ref_121
Eyrich (ref_151) 2007; 28
Lee (ref_56) 1999; 74
Rop (ref_8) 2019; 5
Romero (ref_134) 2016; 104
Price (ref_137) 2007; 60
Chen (ref_144) 2018; 5
ref_158
Yuqi (ref_18) 2017; 7
Hiratani (ref_59) 2018; 5
Karvinen (ref_90) 2019; 94
Hu (ref_230) 2022; 6
Okita (ref_169) 2021; 26
Zapp (ref_178) 2021; 9
Rowley (ref_30) 1999; 20
ref_74
ref_157
Shimojo (ref_68) 2022; 52
Sharma (ref_62) 2013; 98
Ono (ref_112) 2022; 5
Jose (ref_120) 2020; 27
Lei (ref_138) 2011; 32
Sun (ref_223) 2019; 107
Coury (ref_67) 2022; 12
Hahn (ref_19) 2007; 40
Park (ref_161) 2019; 212
Xu (ref_217) 2021; 4
Percival (ref_199) 2002; 20
Korsmeyer (ref_26) 1981; 9
Rosiak (ref_99) 1995; 105
ref_84
Geuss (ref_153) 2015; 112
You (ref_103) 2006; 128
Wei (ref_186) 2009; 381
Wang (ref_164) 2021; 2021
Zhao (ref_191) 2016; 5
Smeriglio (ref_125) 2015; 21
Lazarus (ref_197) 1994; 2
Yan (ref_102) 2020; 8
ref_210
ref_212
Eswaramma (ref_48) 2017; 156
Zhu (ref_77) 2015; 133
Rosellini (ref_115) 2018; 106
Nong (ref_135) 2019; 20
Gorczyca (ref_155) 2020; 161
Zoratto (ref_75) 2018; 1059
Wang (ref_214) 2021; 13
Huang (ref_215) 2021; 17
Wang (ref_220) 2021; 4
Bogdanov (ref_71) 2000; 1
Zhang (ref_91) 2017; 6
Cui (ref_78) 2014; 99
Nugent (ref_106) 2005; 16
Wang (ref_190) 2017; 114
ref_205
Seidlits (ref_139) 2010; 31
Yean (ref_28) 1990; 191
Mittal (ref_42) 2016; 301
Ichanti (ref_133) 2019; 9
Timaeva (ref_87) 2020; 16
Gao (ref_101) 2020; 106
Eagland (ref_21) 1994; 30
Wilkinson (ref_166) 2019; 571
Kilmer (ref_129) 2020; 6
Chung (ref_152) 2015; 17
Yan (ref_233) 2021; 12
Lee (ref_159) 2012; 37
Afewerki (ref_175) 2021; 205
Yang (ref_140) 2016; 2016
Christoffersson (ref_177) 2018; 11
Liang (ref_207) 2021; 15
Ghani (ref_192) 2021; 4
Zhang (ref_219) 2021; 131
Finklea (ref_228) 2021; 274
Sathish (ref_232) 2022; 195
Lin (ref_35) 2021; 22
Shuai (ref_108) 2021; 260
Dror (ref_11) 1979; 7
ref_117
ref_119
Li (ref_187) 2021; 7
Dienes (ref_72) 2021; 7
ref_110
ref_231
Liu (ref_122) 2021; 9
Tirino (ref_148) 2021; 8
Tabata (ref_33) 1998; 19
Senol (ref_173) 2020; 38
ref_227
Suo (ref_146) 2019; 211
Zhao (ref_182) 2021; 339
Chung (ref_180) 2021; 185
Huglin (ref_55) 1992; 270
Yan (ref_109) 2020; 32
Peppas (ref_10) 1977; 11
Bagher (ref_167) 2020; 66
Ding (ref_209) 2020; 6
Yu (ref_40) 2019; 116
Bachmann (ref_156) 2020; 8
Wan (ref_105) 2002; 63
Baker (ref_54) 1992; 25
Heintz (ref_31) 1994; 343
Lin (ref_189) 2020; 195
Nair (ref_15) 2019; 9
Zain (ref_9) 2018; 115
Ranjha (ref_20) 2008; 47
Suo (ref_79) 2018; 92
Hawes (ref_58) 2017; 53
Gander (ref_13) 1989; 6
Kouchak (ref_39) 2014; 9
Kim (ref_229) 2021; 13
Gbenebor (ref_3) 2017; 20
Zhang (ref_51) 2014; 2
Huang (ref_196) 2021; 9
Velmurugan (ref_1) 2009; 18
Cui (ref_124) 2021; 16
Zhang (ref_83) 2019; 62
Wang (ref_57) 2017; 3
Higginbotham (ref_107) 2009; 372
Song (ref_27) 1981; 70
Zhang (ref_213) 2021; 9
Xing (ref_183) 2021; 2021
Bordini (ref_235) 2021; 4
Xu (ref_111) 2022; 283
Hunt (ref_162) 2017; 49
Yang (ref_216) 2020; 15
Moore (ref_201) 2006; 3
Liu (ref_76) 2008; 19
Abedi (ref_194) 2021; 19
Jansen (ref_176) 2022; 280
Zhang (ref_43) 2021; 8
Aswathy (ref_237) 2020; 6
Tsurusawa (ref_17) 2019; 5
Molyneaux (ref_168) 2021; 109
Wu (ref_141) 2017; 5
Olad (ref_7) 2018; 190
Chen (ref_174) 2017; 2017
Nuhn (ref_85) 2014; 15
Zhu (ref_165) 2010; 31
Rouwkema (ref_130) 2016; 34
Jiao (ref_2) 2011; 20
Meleties (ref_60) 2021; 17
Liu (ref_236) 2021; 16
Sidhu (ref_171) 2021; 9
Roorda (ref_29) 1988; 7
Cerchiara (ref_23) 2002; 54
Qing (ref_118) 2021; 261
(ref_65) 2021; 15
Ning (ref_224) 2019; 7
Osada (ref_50) 1995; 376
Li (ref_226) 2021; 187
Li (ref_92) 2006; 27
Li (ref_64) 2015; 5
Golinko (ref_200) 2009; 55
Peppas (ref_89) 1999; 62
Xu (ref_142) 2021; 17
Douglas (ref_14) 2017; 114
Liu (ref_36) 2021; 9
Alawami (ref_69) 2021; 20
ref_53
ref_52
Aronsson (ref_61) 2017; 7
Peppas (ref_12) 1985; 19
Haldon (ref_25) 1972; 4
ref_181
Peng (ref_4) 2012; 51
Miyata (ref_63) 1999; 399
Qing (ref_188) 2021; 36
Yang (ref_47) 2002; 235
Eshraghi (ref_70) 2021; 60
Herndon (ref_202) 1989; 209
Berkovitch (ref_73) 2017; 523
Dong (ref_218) 2011; 34
Bellamkonda (ref_32) 1995; 29
Fan (ref_206) 2021; 9
Fan (ref_193) 2021; 10
ref_66
Wu (ref_104) 2007; 23
Bucatariu (ref_147) 2020; 165
Shi (ref_234) 2021; 14
Cascone (ref_222) 2020; 573
Lu (ref_16) 2008; 453
Wei (ref_114) 2021; 93
ref_170
Ren (ref_143) 2021; 4
Faraj (ref_123) 2007; 13
Kopecek (ref_38) 2009; 47
Buitrago (ref_136) 2018; 69
Sylvester (ref_172) 2021; 12
Lou (ref_150) 2018; 154
Kurt (ref_81) 2016; 81
Lu (ref_113) 2013; 3
Moxon (ref_163) 2019; 104
Najafipour (ref_195) 2021; 18
Gonzalez (ref_198) 2016; 91
Jin (ref_127) 2017; 14
Adair (ref_6) 2017; 64
Rehmann (ref_95) 2017; 18
Bieback (ref_132) 2018; 35
Rodell (ref_94) 2015; 26
Zamani (ref_5) 2010; 49
Bilici (ref_80) 2013; 46
Dhivya (ref_203) 2015; 5
Neves (ref_160) 2020; 8
Miao (ref_34) 2016; 137
ref_37
Ying (ref_208) 2019; 101
Iizawa (ref_46) 2007; 104
Seidlits (ref_149) 2019; 107
ref_184
ref_45
Tamaddon (ref_128) 2017; 7
ref_44
ref_185
Gao (ref_86) 2016; 11
Grindy (ref_93) 2015; 14
Pachence (ref_126) 1996; 33
Matsuda (ref_49) 1994; 27
Li (ref_131) 2016; 14
Yokoyama (ref_22) 1986; 264
Boregowda (ref_145) 2006; 5
References_xml – volume: 6
  start-page: 421
  year: 2022
  ident: ref_230
  article-title: Biomaterial-induced conversion of quiescent cardiomyocytes into pacemaker cells in rats
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00812-y
– volume: 12
  start-page: 572
  year: 2021
  ident: ref_233
  article-title: Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-021-02638-6
– volume: 92
  start-page: 612
  year: 2018
  ident: ref_79
  article-title: Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2018.07.016
– volume: 4
  start-page: 6993
  year: 2021
  ident: ref_235
  article-title: Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.1c00620
– ident: ref_53
  doi: 10.3390/gels7040182
– volume: 32
  start-page: e1906615
  year: 2020
  ident: ref_109
  article-title: An Ion-Crosslinked Supramolecular Hydrogel for Ultrahigh and Fast Uranium Recovery from Seawater
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906615
– ident: ref_52
  doi: 10.3390/polym12091994
– volume: 4
  start-page: 1624
  year: 2021
  ident: ref_192
  article-title: Molecular-Gated Drug Delivery Systems Using Light-Triggered Hydrophobic-to-Hydrophilic Switches
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c01458
– ident: ref_74
  doi: 10.3390/polym8010023
– volume: 9
  start-page: 5887
  year: 2021
  ident: ref_213
  article-title: Injectable, self-healing and pH responsive stem cell factor loaded collagen hydrogel as a dynamic bioadhesive dressing for diabetic wound repair
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB01163D
– volume: 30
  start-page: 767
  year: 1994
  ident: ref_21
  article-title: Complexation between polyoxyethyl and polymethacrylic acid- the importance of the molar-mass of polyoxyethylene
  publication-title: Eur. Polym. J.
  doi: 10.1016/0014-3057(94)90003-5
– volume: 16
  start-page: 1856
  year: 2021
  ident: ref_124
  article-title: Characteristics of neural growth and cryopreservation of the dorsal root ganglion using three-dimensional collagen hydrogel culture versus conventional culture
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.306097
– volume: 2021
  start-page: 2225426
  year: 2021
  ident: ref_164
  article-title: Poly(vinyl alcohol) Hydrogels: The Old and New Functional Materials
  publication-title: Int. J. Polym. Sci.
  doi: 10.1155/2021/2225426
– volume: 301
  start-page: 496
  year: 2016
  ident: ref_42
  article-title: Recent Progress on the Design and Applications of Polysaccharide-Based Graft Copolymer Hydrogels as Adsorbents for Wastewater Purification
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201500399
– volume: 60
  start-page: e285
  year: 2021
  ident: ref_70
  article-title: Nicolau syndrome, a rare though important complication of hyaluronic acid injection
  publication-title: Int. J. Dermatol.
  doi: 10.1111/ijd.15487
– volume: 38
  start-page: 443
  year: 2020
  ident: ref_173
  article-title: Preparation and characterization of pH-sensitive hydrogels from photo-crosslinked poly(ethylene glycol) diacrylate incorporating titanium dioxide
  publication-title: Mater. Sci. Pol.
  doi: 10.2478/msp-2020-0054
– volume: 18
  start-page: 383
  year: 2009
  ident: ref_1
  article-title: Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles
  publication-title: Iran. Polym. J.
– volume: 14
  start-page: 1210
  year: 2015
  ident: ref_93
  article-title: Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4401
– volume: 34
  start-page: 1629
  year: 2011
  ident: ref_218
  article-title: Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2011.06.002
– volume: 9
  start-page: 211
  year: 1981
  ident: ref_26
  article-title: Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)80265-3
– volume: 5
  start-page: 011504
  year: 2021
  ident: ref_204
  article-title: Recent advances on polymeric hydrogels as wound dressings
  publication-title: APL Bioeng.
  doi: 10.1063/5.0038364
– volume: 3
  start-page: 296
  year: 2013
  ident: ref_113
  article-title: Antigen Responsive Hydrogels Based on Polymerizable Antibody Fab’ Fragment
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200390039
– volume: 19
  start-page: 807
  year: 1998
  ident: ref_33
  article-title: Bone regeneration by basic fibroblast growth factor complexed with biodegradble hydrogels
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00233-6
– volume: 60
  start-page: 1110
  year: 2007
  ident: ref_137
  article-title: Hyaluronic acid: The scientific and clinical evidence
  publication-title: J. Plast. Reconstr. Aesthet. Surg.
  doi: 10.1016/j.bjps.2007.03.005
– volume: 3
  start-page: 89
  year: 2006
  ident: ref_201
  article-title: Prediction and monitoring the therapeutic response of chronic dermal wounds
  publication-title: Int. Wound J.
  doi: 10.1111/j.1742-4801.2006.00212.x
– volume: 523
  start-page: 545
  year: 2017
  ident: ref_73
  article-title: Semi-synthetic hydrogel composition and stiffness regulate neuronal morphogenesis
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.11.032
– volume: 165
  start-page: 2528
  year: 2020
  ident: ref_147
  article-title: A new sponge-type hydrogel based on hyaluronic acid and poly(methylvinylether-alt-maleic acid) as a 3D platform for tumor cell growth
  publication-title: Int. J. Biol Macromol.
  doi: 10.1016/j.ijbiomac.2020.10.095
– volume: 104
  start-page: 842
  year: 2007
  ident: ref_46
  article-title: Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.25605
– ident: ref_157
  doi: 10.3390/ijms21176367
– volume: 205
  start-page: 111850
  year: 2021
  ident: ref_175
  article-title: Oxygen-generating microparticles in chondrocytes-laden hydrogels by facile and versatile click chemistry strategy
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2021.111850
– volume: 26
  start-page: 336
  year: 2021
  ident: ref_169
  article-title: Polyvinyl alcohol scaffolds and supplementation support 3D and sphere culturing of human cancer cell lines by reducing apoptosis and promoting cellular proliferation
  publication-title: Genes Cells
  doi: 10.1111/gtc.12843
– volume: 9
  start-page: 810155
  year: 2021
  ident: ref_36
  article-title: Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.810155
– volume: 20
  start-page: 1483
  year: 2021
  ident: ref_69
  article-title: Late onset hypersensitivity reaction to hyaluronic acid dermal fillers manifesting as cutaneous and visceral angioedema
  publication-title: J. Cosmet. Dermatol.
  doi: 10.1111/jocd.13894
– ident: ref_184
  doi: 10.3390/pharmaceutics13020127
– ident: ref_212
  doi: 10.3390/antibiotics10010049
– ident: ref_98
  doi: 10.3390/polym12102372
– volume: 131
  start-page: 112538
  year: 2021
  ident: ref_219
  article-title: A balanced charged hydrogel with anti-biofouling and antioxidant properties for treatment of irradiation-induced skin injury
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2021.112538
– volume: 40
  start-page: 374
  year: 2007
  ident: ref_19
  article-title: Synthesis and degradation test of hyaluronic acid hydrogels
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2006.09.019
– volume: 7
  start-page: 7013
  year: 2017
  ident: ref_61
  article-title: Folding driven self-assembly of a stimuli-responsive peptide-hyaluronan hybrid hydrogel
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06457-9
– volume: 2021
  start-page: 9968602
  year: 2021
  ident: ref_183
  article-title: Development, Characterization, and Evaluation of SLN-Loaded Thermoresponsive Hydrogel System of Topotecan as Biological Macromolecule for Colorectal Delivery
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2021/9968602
– volume: 20
  start-page: 1155
  year: 2017
  ident: ref_3
  article-title: Acetylation, crystalline and morphological properties of structural polysaccharide from shrimp exoskeleton
  publication-title: Eng. Sci. Technol.
– volume: 13
  start-page: 2387
  year: 2007
  ident: ref_123
  article-title: Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.0320
– volume: 339
  start-page: 484
  year: 2021
  ident: ref_182
  article-title: Thermoresponsive polymeric dexamethasone prodrug for arthritis pain
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.10.007
– volume: 19
  start-page: 18
  year: 2021
  ident: ref_194
  article-title: An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells
  publication-title: J. Nanobiotechnology
  doi: 10.1186/s12951-020-00764-6
– volume: 9
  start-page: 718377
  year: 2021
  ident: ref_206
  article-title: Biomimetic Hydrogels to Promote Wound Healing
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.718377
– volume: 66
  start-page: 202
  year: 2020
  ident: ref_167
  article-title: Differentiation of neonate mouse spermatgonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold
  publication-title: Syst. Biol. Reprod. Med.
  doi: 10.1080/19396368.2020.1725927
– volume: 573
  start-page: 118803
  year: 2020
  ident: ref_222
  article-title: Hydrogel-based commercial products for biomedical applications: A review
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.118803
– volume: 274
  start-page: 120818
  year: 2021
  ident: ref_228
  article-title: Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120818
– volume: 19
  start-page: 1503
  year: 2008
  ident: ref_76
  article-title: P(AAm-co-MAA) semi-IPN hybrid hydrogels in the presence of PANI and MWNTs-COOH: Improved swelling behavior and mechanical properties
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/156856208786140373
– volume: 195
  start-page: 179
  year: 2022
  ident: ref_232
  article-title: Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.11.184
– volume: 8
  start-page: 615665
  year: 2021
  ident: ref_43
  article-title: Rational Design of Smart Hydrogels for Biomedical Applications
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.615665
– volume: 26
  start-page: 2279
  year: 2015
  ident: ref_94
  article-title: Supramolecular guest-host interactions for the preparation of biomedical materials
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.5b00483
– ident: ref_45
  doi: 10.3390/polym12112702
– volume: 27
  start-page: 2734
  year: 2020
  ident: ref_120
  article-title: Natural Polymers Based Hydrogels for Cell Culture Applications
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867326666190903113004
– volume: 9
  start-page: 1888
  year: 2021
  ident: ref_196
  article-title: A pH/redox-dual responsive, nanoemulsion-embedded hydrogel for efficient oral delivery and controlled intestinal release of magnesium ions
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB02442B
– volume: 197
  start-page: 157
  year: 2022
  ident: ref_211
  article-title: Self-crosslinked chitosan/κ-carrageenan-based biomimetic membranes to combat diabetic burn wound infections
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.12.100
– volume: 49
  start-page: 8094
  year: 2010
  ident: ref_5
  article-title: Effects of partial dehydration and freezing temperature on the morphology and water binding capacity of carboxymehty chitosan-based superabsorbents
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie100257s
– volume: 9
  start-page: 729670
  year: 2021
  ident: ref_178
  article-title: Natural Presentation of Glycosaminoglycans in Synthetic Matrices for 3D Angiogenesis Models
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.729670
– volume: 18
  start-page: 275
  year: 2021
  ident: ref_195
  article-title: MTX-Loaded Dual Thermoresponsive and pH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.0c00910
– volume: 99
  start-page: 31
  year: 2014
  ident: ref_78
  article-title: Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.08.048
– volume: 95
  start-page: 348
  year: 2019
  ident: ref_154
  article-title: Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.02.046
– volume: 200
  start-page: 15
  year: 2019
  ident: ref_179
  article-title: Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.02.004
– volume: 47
  start-page: 23
  year: 2008
  ident: ref_20
  article-title: Methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels for controlled drug delivery
  publication-title: J. Sol-Gel Sci. Technol
  doi: 10.1007/s10971-008-1750-z
– ident: ref_170
  doi: 10.3390/polym12112506
– volume: 2
  start-page: 165
  year: 1994
  ident: ref_197
  article-title: Definitions and guidelines for assessment of wounds and evaluation of healing
  publication-title: Wound Repair Regen.
  doi: 10.1046/j.1524-475X.1994.20305.x
– ident: ref_96
  doi: 10.3390/mi12030293
– volume: 62
  start-page: 81
  year: 1999
  ident: ref_89
  article-title: Poly(ethylene glycol)-containing hydrogels in drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(99)00027-9
– volume: 47
  start-page: 5929
  year: 2009
  ident: ref_38
  article-title: Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.23607
– volume: 187
  start-page: 200
  year: 2021
  ident: ref_226
  article-title: Dual-enzymatically cross-linked gelatin hydrogel promotes neural differentiation and neurotrophin secretion of bone marrow-derived mesenchymal stem cells for treatment of moderate traumatic brain injury
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.07.111
– volume: 114
  start-page: 885
  year: 2017
  ident: ref_14
  article-title: Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1607350114
– volume: 23
  start-page: 2805
  year: 2007
  ident: ref_104
  article-title: Theoretical and experimental studies on the surface structures of conjugated rod-coil block copolymer brushes
  publication-title: Langmuir
  doi: 10.1021/la0631769
– volume: 28
  start-page: 55
  year: 2007
  ident: ref_151
  article-title: Long-term stable fibrin gels for cartilage engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.08.027
– volume: 14
  start-page: 383
  year: 2017
  ident: ref_127
  article-title: Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes
  publication-title: Tissue Eng. Regen. Med.
  doi: 10.1007/s13770-017-0060-3
– volume: 264
  start-page: 595
  year: 1986
  ident: ref_22
  article-title: Morphology and structure of highy elastic polyvinyl-aclohol hydrogel prepared by repeated freezing-and-melting
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/BF01412597
– volume: 37
  start-page: 106
  year: 2012
  ident: ref_159
  article-title: Alginate: Properties and biomedical applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.06.003
– volume: 4
  start-page: 3
  year: 2021
  ident: ref_217
  article-title: Lignin-Incorporated Nanogel Serving as an Antioxidant Biomaterial for Wound Healing
  publication-title: ACS Appl. Bio. Mater.
  doi: 10.1021/acsabm.0c00858
– volume: 4
  start-page: 5797
  year: 2021
  ident: ref_220
  article-title: Functionalization of an Electroactive Self-Healing Polypyrrole-Grafted Gelatin-Based Hydrogel by Incorporating a Polydopamine@AgNP Nanocomposite
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.1c00548
– volume: 17
  start-page: 6470
  year: 2021
  ident: ref_60
  article-title: Self-assembly of stimuli-responsive coiled-coil fibrous hydrogels
  publication-title: Soft Matter
  doi: 10.1039/D1SM00780G
– volume: 62
  start-page: 586
  year: 2019
  ident: ref_83
  article-title: Self-recoverable semi-crystalline hydrogels with thermomechanics and shape memory performance
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-018-9347-5
– volume: 5
  start-page: 471
  year: 2022
  ident: ref_112
  article-title: Angiogenesis Promotion by Combined Administration of DFO and Vein Endothelial Cells Using Injectable, Biodegradable, Nanocomposite Hydrogel Scaffolds
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.1c00870
– volume: 9
  start-page: 6266
  year: 2021
  ident: ref_171
  article-title: A 3-D hydrogel based system for hematopoietic differentiation and its use in modeling down syndrome associated transient myeloproliferative disorder
  publication-title: Biomater. Sci.
  doi: 10.1039/D1BM00442E
– volume: 20
  start-page: 114
  year: 2002
  ident: ref_199
  article-title: Classification of Wounds and their Management
  publication-title: Surgery
– volume: 94
  start-page: 1056
  year: 2019
  ident: ref_90
  article-title: Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2018.10.048
– volume: 8
  start-page: 3193
  year: 2020
  ident: ref_102
  article-title: A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00425A
– volume: 343
  start-page: 950
  year: 1994
  ident: ref_31
  article-title: Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(94)90067-1
– volume: 5
  start-page: 22
  year: 2015
  ident: ref_203
  article-title: Wound dressings—A review
  publication-title: Biomedicine
  doi: 10.7603/s40681-015-0022-9
– volume: 27
  start-page: 7695
  year: 1994
  ident: ref_49
  article-title: Order-Disorder Transition of a Hydrogel Containing an n-Alkyl Acrylate
  publication-title: Macromolecules
  doi: 10.1021/ma00104a027
– volume: 8
  start-page: 373
  year: 2020
  ident: ref_156
  article-title: Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00373
– volume: 195
  start-page: 111200
  year: 2020
  ident: ref_189
  article-title: Design and evaluation of pH-responsive hydrogel for oral delivery of amifostine and study on its radioprotective effects
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2020.111200
– volume: 14
  start-page: 271
  year: 2016
  ident: ref_131
  article-title: Recent advances in bioprinting techniques: Approaches, applications and future prospects
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-016-1028-0
– ident: ref_84
  doi: 10.1016/B978-0-12-816421-1.00001-X
– volume: 138
  start-page: 50376
  year: 2021
  ident: ref_100
  article-title: Synthetic hydrogels: Synthesis, novel trends, and applications
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.50376
– volume: 185
  start-page: 122
  year: 2021
  ident: ref_180
  article-title: Developing photothermal-responsive and anti-oxidative silk/dopamine nanoparticles decorated with drugs which were incorporated into silk films as a depot-based drug delivery
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.06.084
– ident: ref_227
  doi: 10.3390/ma13122750
– volume: 372
  start-page: 154
  year: 2009
  ident: ref_107
  article-title: The synthesis of novel pH-sensitive poly(vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2009.01.008
– volume: 46
  start-page: 3125
  year: 2013
  ident: ref_80
  article-title: Shape Memory Hydrogels via Micellar Copolymerization of Acrylic Acid and n-Octadecyl Acrylate in Aqueous Media
  publication-title: Macromolecules
  doi: 10.1021/ma400494n
– volume: 36
  start-page: 102521
  year: 2021
  ident: ref_188
  article-title: Indocyanine green loaded pH-responsive bortezomib supramolecular hydrogel for synergistic chemo-photothermal/photodynamic colorectal cancer therapy
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2021.102521
– volume: 74
  start-page: 2170
  year: 1999
  ident: ref_56
  article-title: Thermoreversible hydrogels. VIII. Effect of a zwitterionic monomer on swelling behaviors of thermosensitive hydrogels copolymerized by N-isopropylacrylamide with N,N’-dimethyl (acrylamidopropyl) ammonium propane sulfonate
  publication-title: J. Appl. Polym. Sci
  doi: 10.1002/(SICI)1097-4628(19991128)74:9<2170::AID-APP7>3.0.CO;2-Q
– volume: 20
  start-page: 557
  year: 2019
  ident: ref_135
  article-title: The effect of different cross-linking conditions of EDC/NHS on type II collagen scaffolds: An in vitro evaluation
  publication-title: Cell Tissue Bank.
  doi: 10.1007/s10561-019-09790-7
– ident: ref_37
  doi: 10.3390/gels7040225
– volume: 5
  start-page: 108
  year: 2016
  ident: ref_191
  article-title: Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500005
– volume: 235
  start-page: 1
  year: 2002
  ident: ref_47
  article-title: Colon-specific drug delivery: New approaches and in vitro/in vivo evaluation
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(02)00004-2
– volume: 7
  start-page: 1587
  year: 2021
  ident: ref_72
  article-title: Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c01751
– volume: 98
  start-page: 1025
  year: 2013
  ident: ref_62
  article-title: Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.06.074
– ident: ref_44
  doi: 10.3390/bioengineering8020027
– volume: 22
  start-page: 5270
  year: 2021
  ident: ref_35
  article-title: Redox-Responsive Hydrogels with Decoupled Initial Stiffness and Degradation
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.1c01180
– volume: 7
  start-page: 377
  year: 2021
  ident: ref_187
  article-title: Tumor acid microenvironment-activated self-targeting & splitting gold nanoassembly for tumor chemo-radiotherapy
  publication-title: Bioact. Mater.
– volume: 19
  start-page: 397
  year: 1985
  ident: ref_12
  article-title: The structure of highly crosslinked poly(2-hydroxyethyl methacrylate) hydrogels
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820190405
– volume: 7
  start-page: 43519
  year: 2017
  ident: ref_128
  article-title: Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro
  publication-title: Sci. Rep.
  doi: 10.1038/srep43519
– volume: 104
  start-page: 109904
  year: 2019
  ident: ref_163
  article-title: Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2019.109904
– volume: 211
  start-page: 336
  year: 2019
  ident: ref_146
  article-title: Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.01.115
– volume: 31
  start-page: 4639
  year: 2010
  ident: ref_165
  article-title: Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.044
– volume: 137
  start-page: 433
  year: 2016
  ident: ref_34
  article-title: Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm-co-HEMAPCL)
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.11.001
– volume: 571
  start-page: 117
  year: 2019
  ident: ref_166
  article-title: Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation
  publication-title: Nature
  doi: 10.1038/s41586-019-1244-x
– volume: 15
  start-page: 798
  year: 2021
  ident: ref_65
  article-title: A Rare Case of Contact Allergy towards Impression Compound Material
  publication-title: Eur. J. Dent.
  doi: 10.1055/s-0041-1731584
– ident: ref_110
  doi: 10.1371/journal.pone.0259052
– volume: 7
  start-page: 45
  year: 1988
  ident: ref_29
  article-title: Zero-order release of oxprenolol-HCl, a new approach
  publication-title: J. Control. Release
  doi: 10.1016/0168-3659(88)90079-X
– ident: ref_121
  doi: 10.3390/ijms222212200
– volume: 15
  start-page: 12687
  year: 2021
  ident: ref_207
  article-title: Functional Hydrogels as Wound Dressing to Enhance Wound Healing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04206
– ident: ref_117
  doi: 10.3390/ijms22052491
– volume: 283
  start-page: 121455
  year: 2022
  ident: ref_111
  article-title: Structure remodeling of soy protein-derived amyloid fibrils mediated by epigallocatechin-3-gallate
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121455
– volume: 13
  start-page: 33584
  year: 2021
  ident: ref_214
  article-title: Inflammation-Responsive Drug-Loaded Hydrogels with Sequential Hemostasis, Antibacterial, and Anti-Inflammatory Behavior for Chronically Infected Diabetic Wound Treatment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09889
– volume: 9
  start-page: 1072
  year: 2019
  ident: ref_15
  article-title: Colloidal gels with tunable mechanomorphology regulate endothelial morphogenesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37788-w
– volume: 81
  start-page: 12
  year: 2016
  ident: ref_81
  article-title: High-strength semi-crystalline hydrogels with self-healing and shape memory functions
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2016.05.019
– volume: 2016
  start-page: 1917394
  year: 2016
  ident: ref_140
  article-title: Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2016/1917394
– volume: 5
  start-page: 3870
  year: 2017
  ident: ref_141
  article-title: Three-Dimensional Hyaluronic Acid Hydrogel-Based Models for In Vitro Human iPSC-Derived NPC Culture and Differentiation
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00721C
– ident: ref_119
  doi: 10.3390/ma14092344
– volume: 5
  start-page: 1076
  year: 2018
  ident: ref_59
  article-title: Stable and sensitive stimuli-responsive anisotropic hydrogels for sensing ionic strength and pressure
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00586A
– volume: 64
  start-page: 321
  year: 2017
  ident: ref_6
  article-title: Superabsorbent materials derived fromhydroxyethyl cellulose and bentonite: Preparation, Characterization and swelling capacities
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2017.10.018
– volume: 5
  start-page: 2
  year: 2006
  ident: ref_145
  article-title: Expression of hyaluronan in human tumor progression
  publication-title: J. Carcinog.
  doi: 10.1186/1477-3163-5-2
– volume: 209
  start-page: 547
  year: 1989
  ident: ref_202
  article-title: A comparison of conservative versus early excision. Therapies in severely burned patients
  publication-title: Ann. Surg.
  doi: 10.1097/00000658-198905000-00006
– volume: 1059
  start-page: 155
  year: 2018
  ident: ref_75
  article-title: Semi-IPN- and IPN-Based Hydrogels
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-76735-2_7
– volume: 33
  start-page: 35
  year: 1996
  ident: ref_126
  article-title: Collagen-based devices for soft tissue repair
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(199621)33:1<35::AID-JBM6>3.0.CO;2-N
– ident: ref_185
  doi: 10.3390/polym13162772
– volume: 52
  start-page: 183
  year: 2022
  ident: ref_68
  article-title: Fish collagen as a potential indicator of severe allergic reactions among patients with fish allergies
  publication-title: Clin. Exp. Allergy
  doi: 10.1111/cea.14028
– volume: 260
  start-page: 117777
  year: 2021
  ident: ref_108
  article-title: Fabrication of an injectable iron (III) crosslinked alginate-hyaluronic acid hydrogel with shear-thinning and antimicrobial activities
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.117777
– volume: 69
  start-page: 218
  year: 2018
  ident: ref_136
  article-title: Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.12.026
– volume: 20
  start-page: 45
  year: 1999
  ident: ref_30
  article-title: Alginate hydrogels as synthetic extracellular matrix materials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00107-0
– volume: 7
  start-page: 14504
  year: 2017
  ident: ref_18
  article-title: Super water absorbecy OMMT/PAA hydrogel matrials with excellent mechanical properties
  publication-title: RSC Adv.
  doi: 10.1039/C7RA00372B
– volume: 190
  start-page: 95
  year: 2018
  ident: ref_7
  article-title: Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: Reaction parameters and swelling characteristics
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.02.088
– volume: 11
  start-page: 3261
  year: 2016
  ident: ref_86
  article-title: Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2016-0261
– volume: 9
  start-page: e20126
  year: 2014
  ident: ref_39
  article-title: In situ gelling systems for drug delivery
  publication-title: Jundishapur J. Nat. Pharm. Prod.
  doi: 10.17795/jjnpp-20126
– volume: 16
  start-page: 219
  year: 2020
  ident: ref_87
  article-title: Structure and dynamics of titania—poly(N-vinyl caprolactam) composite hydrogels
  publication-title: Soft Matter
  doi: 10.1039/C9SM01619H
– volume: 280
  start-page: 121270
  year: 2022
  ident: ref_176
  article-title: A poly(ethylene glycol) three-dimensional bone marrow hydrogel
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121270
– volume: 6
  start-page: e03719
  year: 2020
  ident: ref_237
  article-title: Commercial hydrogels for biomedical applications
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e03719
– volume: 9
  start-page: 316
  year: 2021
  ident: ref_122
  article-title: Cell-matrix reciprocity in 3D culture models with nonlinear elasticity
  publication-title: Bioact. Mater.
– volume: 105
  start-page: 335
  year: 1995
  ident: ref_99
  article-title: Hydrogels for biomedical purposes
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
  doi: 10.1016/0168-583X(95)00550-1
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_17
  article-title: Direct link between mechanical stability in gels and percolation of isostatic particles
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav6090
– volume: 109
  start-page: 1744
  year: 2021
  ident: ref_168
  article-title: Physically-cross-linked poly(vinyl alcohol) cell culture plate coatings facilitate preservation of cell-cell interactions, spheroid formation, and stemness
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.34832
– volume: 17
  start-page: e2102219
  year: 2021
  ident: ref_142
  article-title: Bioinspired 3D Culture in Nanoliter Hyaluronic Acid-Rich Core-Shell Hydrogel Microcapsules Isolates Highly Pluripotent Human iPSCs
  publication-title: Small
  doi: 10.1002/smll.202102219
– ident: ref_181
  doi: 10.20944/preprints201608.0036.v1
– volume: 1
  start-page: 31
  year: 2000
  ident: ref_71
  article-title: Structural and rheological properties of methacrylamide modified gelatin hydrogels
  publication-title: Biomacromolecules
  doi: 10.1021/bm990017d
– volume: 15
  start-page: 5911
  year: 2020
  ident: ref_216
  article-title: Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S249129
– volume: 17
  start-page: 2021
  year: 2021
  ident: ref_215
  article-title: Plasma Exosomes Loaded pH-Responsive Carboxymethylcellulose Hydrogel Promotes Wound Repair by Activating the Vascular Endothelial Growth Factor Signaling Pathway in Type 1 Diabetic Mice
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2021.3165
– volume: 53
  start-page: 5989
  year: 2017
  ident: ref_58
  article-title: A resilient and luminescent stimuli-responsive hydrogel from a heterotopic 1,8-naphthalimide-derived ligand
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC03482B
– volume: 49
  start-page: 329
  year: 2017
  ident: ref_162
  article-title: 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.11.016
– ident: ref_97
  doi: 10.3390/gels8010027
– volume: 5
  start-page: 39
  year: 2018
  ident: ref_144
  article-title: Influence of Hyaluronic Acid Transitions in Tumor Microenvironment on Glioblastoma Malignancy and Invasive Behavior
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2018.00039
– volume: 51
  start-page: 381
  year: 2012
  ident: ref_4
  article-title: Influence of Chemical Cross-Linking on Properties of Gelatin/Chitosan Micropheres
  publication-title: Polym. Plast Technol.
  doi: 10.1080/03602559.2011.639830
– volume: 14
  start-page: 014107
  year: 2021
  ident: ref_234
  article-title: Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ac42de
– volume: 399
  start-page: 766
  year: 1999
  ident: ref_63
  article-title: A reversibly antigen-responsive hydrogel
  publication-title: Nature
  doi: 10.1038/21619
– volume: 212
  start-page: 611
  year: 2019
  ident: ref_161
  article-title: Selective lithium and magnesium adsorption by phosphonate metal-organic framework-incorporated alginate hydrogel inspired from lithium adsorption characteristics of brown algae
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.11.067
– volume: 31
  start-page: 3930
  year: 2010
  ident: ref_139
  article-title: The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.125
– volume: 32
  start-page: 39
  year: 2011
  ident: ref_138
  article-title: The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.103
– volume: 381
  start-page: 1
  year: 2009
  ident: ref_186
  article-title: Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2009.07.033
– volume: 106
  start-page: 769
  year: 2018
  ident: ref_115
  article-title: Protein/polysaccharide-based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36272
– volume: 104
  start-page: 1462
  year: 2016
  ident: ref_134
  article-title: Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.35671
– ident: ref_205
  doi: 10.3390/biom10081169
– volume: 8
  start-page: rbaa052
  year: 2021
  ident: ref_148
  article-title: Gelatin-biofermentative unsulfated glycosaminoglycans semi-interpenetrating hydrogels via microbial-transglutaminase crosslinking enhance osteogenic potential of dental pulp stem cells
  publication-title: Regen. Biomater.
  doi: 10.1093/rb/rbaa052
– volume: 10
  start-page: 2946
  year: 2018
  ident: ref_82
  article-title: Semicrystalline Hydrophobically Associated Hydrogels with Integrated High Performances
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15843
– volume: 12
  start-page: e21
  year: 2022
  ident: ref_67
  article-title: Intraoperative Anaphylaxis to the Bovine Flowable Gelatin Matrix: A Report of 2 Cases
  publication-title: JBJS Case Connect.
  doi: 10.2106/JBJS.CC.21.00753
– volume: 122
  start-page: 5604
  year: 2022
  ident: ref_221
  article-title: Supramolecular Adhesive Hydrogels for Tissue Engineering Applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00815
– volume: 161
  start-page: 61325
  year: 2020
  ident: ref_155
  article-title: Proteolytically Degraded Alginate Hydrogels and Hydrophobic Microbioreactors for Porcine Oocyte Encapsulation
  publication-title: J. Vis. Exp.
– volume: 4
  start-page: 491
  year: 1972
  ident: ref_25
  article-title: Structure and permeability of porous films of poly (hydroxy ethyl methacrylate)
  publication-title: Br. Polym. J.
  doi: 10.1002/pi.4980040603
– volume: 228
  start-page: 758
  year: 2016
  ident: ref_41
  article-title: Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.01.110
– volume: 93
  start-page: 6613
  year: 2021
  ident: ref_114
  article-title: Direct Transverse Relaxation Time Biosensing Strategy for Detecting Foodborne Pathogens through Enzyme-Mediated Sol-Gel Transition of Hydrogels
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03968
– volume: 4
  start-page: 2601
  year: 2021
  ident: ref_143
  article-title: Hyaluronic Acid Hydrogel with Adjustable Stiffness for Mesenchymal Stem Cell 3D Culture via Related Molecular Mechanisms to Maintain Stemness and Induce Cartilage Differentiation
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c01591
– volume: 6
  start-page: 641
  year: 2017
  ident: ref_91
  article-title: Dynamic Supramolecular Hydrogels: Regulating Hydrogel Properties through Self-Complementary Quadruple Hydrogen Bonds and Thermo-Switch
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.7b00275
– ident: ref_158
  doi: 10.1371/journal.pone.0239242
– volume: 154
  start-page: 213
  year: 2018
  ident: ref_150
  article-title: Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.004
– volume: 11
  start-page: 423
  year: 1977
  ident: ref_10
  article-title: Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820110309
– volume: 114
  start-page: 5912
  year: 2017
  ident: ref_190
  article-title: B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release
  publication-title: Proc. Natl. Acad. Sci USA
  doi: 10.1073/pnas.1621350114
– ident: ref_231
  doi: 10.3390/gels7040247
– volume: 54
  start-page: 1453
  year: 2002
  ident: ref_23
  article-title: Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/00223570281
– volume: 270
  start-page: 234
  year: 1992
  ident: ref_55
  article-title: Thermodynamic Properties of Copolymeric Hydrogels Based on 2-Hydroxyethyl Methacrylate and a Zwitterionic Methacrylate
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/BF00655475
– volume: 35
  start-page: 99
  year: 2018
  ident: ref_132
  article-title: Fetal Bovine Serum (FBS): Past-Present-Future
  publication-title: ALTEX
– volume: 3
  start-page: e1700348
  year: 2017
  ident: ref_57
  article-title: Cooperative deformations of periodically patterned hydrogels
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700348
– volume: 11
  start-page: 015013
  year: 2018
  ident: ref_177
  article-title: Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aaf657
– volume: 107
  start-page: 704
  year: 2019
  ident: ref_149
  article-title: Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.36603
– volume: 6
  start-page: 3464
  year: 2020
  ident: ref_129
  article-title: Collagen Type I and II Blend Hydrogel with Autologous Mesenchymal Stem Cells as a Scaffold for Articular Cartilage Defect Repair
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b01939
– volume: 2017
  start-page: 4051763
  year: 2017
  ident: ref_174
  article-title: Preparation and Characterization of Hyaluronic Acid-Polycaprolactone Copolymer Micelles for the Drug Delivery of Radioactive Iodine-131 Labeled Lipiodol
  publication-title: Biomed. Res. Int.
– volume: 107
  start-page: 1898
  year: 2019
  ident: ref_223
  article-title: 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.36675
– volume: 29
  start-page: 663
  year: 1995
  ident: ref_32
  article-title: Hydrogel-based three-dimensional matrix for neural cells
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.820290514
– volume: 2
  start-page: 13373
  year: 2014
  ident: ref_51
  article-title: Light-healable hard hydrogels through photothermally induced melting–crystallization phase transition
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02463J
– volume: 17
  start-page: 78
  year: 2015
  ident: ref_152
  article-title: Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.01.012
– volume: 8
  start-page: 2875
  year: 2018
  ident: ref_225
  article-title: Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21174-7
– volume: 9
  start-page: 5437
  year: 2019
  ident: ref_133
  article-title: Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41985-6
– volume: 27
  start-page: 4132
  year: 2006
  ident: ref_92
  article-title: Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and α-cyclodextrin for controlled drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.03.025
– volume: 261
  start-page: 117875
  year: 2021
  ident: ref_118
  article-title: Preparation and propeties of polyvinyl alcohol/N–succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.117875
– volume: 6
  start-page: 578
  year: 1989
  ident: ref_13
  article-title: Effect of polymeric network structure on drug release from cross-linked poly(vinyl alcohol) micromatrices
  publication-title: Pharm. Res.
  doi: 10.1023/A:1015949330425
– volume: 20
  start-page: 123
  year: 2011
  ident: ref_2
  article-title: Synthesis and characterization of chitosan-based schiff base compounds with aromatic substituent groups
  publication-title: Iran. Polym. J.
– volume: 10
  start-page: e2002249
  year: 2021
  ident: ref_193
  article-title: Responsive Hydrogel Microcarrier-Integrated Microneedles for Versatile and Controllable Drug Delivery
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202002249
– volume: 128
  start-page: 13336
  year: 2006
  ident: ref_103
  article-title: An easy way to sugar-containing polymer vesicles or glycosomes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja064569x
– volume: 191
  start-page: 1119
  year: 1990
  ident: ref_28
  article-title: Reversible immobilization of drugs on a hydrogel matrix, 2. Diffusion of free chloramphenicol from poly (2-hydroxyethyl methacrylate) hydrogels
  publication-title: Makromol. Chem.
  doi: 10.1002/macp.1990.021910514
– volume: 15
  start-page: 4111
  year: 2014
  ident: ref_85
  article-title: Size-dependent knockdown potential of siRNA-loaded cationic nanohydrogel particles
  publication-title: Biomacromolecules
  doi: 10.1021/bm501148y
– volume: 12
  start-page: 183
  year: 2021
  ident: ref_172
  article-title: Cell-Laden Bioactive Poly(ethylene glycol) Hydrogels for Studying Mesenchymal Stem Cell Behavior in Myocardial Infarct-Stiffness Microenvironments
  publication-title: Cardiovasc. Eng. Technol.
  doi: 10.1007/s13239-020-00515-6
– volume: 6
  start-page: 3855
  year: 2020
  ident: ref_209
  article-title: Novel Self-Healing Hydrogel with Injectable, pH-Responsive, Strain-Sensitive, Promoting Wound-Healing, and Hemostatic Properties Based on Collagen and Chitosan
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c00588
– volume: 115
  start-page: 61
  year: 2018
  ident: ref_9
  article-title: Superabsorbent hydrogel based on sulfonated-starch for improving water and saline absorbency
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.04.032
– volume: 34
  start-page: 733
  year: 2016
  ident: ref_130
  article-title: Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.03.002
– volume: 70
  start-page: 216
  year: 1981
  ident: ref_27
  article-title: Progestin permeation through polymer membranes V: Progesterone release from monolithic hydrogel devices
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600700226
– volume: 108
  start-page: 333
  year: 2018
  ident: ref_116
  article-title: Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.11.137
– volume: 7
  start-page: 4538
  year: 2019
  ident: ref_224
  article-title: Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB00669A
– volume: 116
  start-page: 20820
  year: 2019
  ident: ref_40
  article-title: Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1907855116
– volume: 8
  start-page: 665
  year: 2020
  ident: ref_160
  article-title: Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00665
– volume: 91
  start-page: 614
  year: 2016
  ident: ref_198
  article-title: Wound healing—A literature review
  publication-title: An. Bras. Dermatol.
  doi: 10.1590/abd1806-4841.20164741
– volume: 18
  start-page: 3131
  year: 2017
  ident: ref_95
  article-title: Tuning and Predicting Mesh Size and Protein Release from Step Growth Hydrogels
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00781
– volume: 55
  start-page: 54
  year: 2009
  ident: ref_200
  article-title: Wound emergencies: The importance of assessment, documentation, and early treatment using a wound electronic medical record
  publication-title: Ostomy Wound Manag.
– volume: 16
  start-page: 8417
  year: 2021
  ident: ref_236
  article-title: 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S339500
– volume: 101
  start-page: 487
  year: 2019
  ident: ref_208
  article-title: In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2019.03.093
– volume: 112
  start-page: 1446
  year: 2015
  ident: ref_153
  article-title: Maintenance of HL-1 cardiomyocyte functional activity in PEGylated fibrin gels
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25553
– ident: ref_210
  doi: 10.1007/s00289-021-03875-8
– volume: 5
  start-page: 18242
  year: 2015
  ident: ref_64
  article-title: Stimuli-responsive hydrogels prepared by simultaneous “click chemistry” and metal–ligand coordination
  publication-title: RSC Adv.
  doi: 10.1039/C4RA11946K
– volume: 156
  start-page: 125
  year: 2017
  ident: ref_48
  article-title: Synthesis of dual responsive carbohydrate polymer based IPN microbeads for controlled release of anti-HIV drug
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.09.023
– volume: 25
  start-page: 1955
  year: 1992
  ident: ref_54
  article-title: Swelling Equilibria for Acrylamide-Based Polyampholyte Hydrogels
  publication-title: Macromolecules
  doi: 10.1021/ma00033a019
– volume: 7
  start-page: 31
  year: 1979
  ident: ref_11
  article-title: Interpenetrating polymer networks for biological applications
  publication-title: Biomater. Med. Devices Artif. Organs
  doi: 10.3109/10731197909119370
– volume: 106
  start-page: 110168
  year: 2020
  ident: ref_101
  article-title: Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2019.110168
– volume: 376
  start-page: 219
  year: 1995
  ident: ref_50
  article-title: Shape memory in hydrogels
  publication-title: Nature
  doi: 10.1038/376219a0
– volume: 453
  start-page: 449
  year: 2008
  ident: ref_16
  article-title: Gelation of particles with short-range attration
  publication-title: Nature
  doi: 10.1038/nature06931
– volume: 63
  start-page: 854
  year: 2002
  ident: ref_105
  article-title: Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.10333
– volume: 13
  start-page: 045014
  year: 2021
  ident: ref_229
  article-title: Transplantation of 3D bio-printed cardiac mesh improves cardiac function and vessel formation via ANGPT1/Tie2 pathway in rats with acute myocardial infarction
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ac1e78
– volume: 5
  start-page: e01416
  year: 2019
  ident: ref_8
  article-title: Biodegradable water hyacinth cellulose-graft-poly(ammunium acrylate-co-acrylic acid)polymer hydrogel for potential agricultural application
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01416
– volume: 55
  start-page: 3005
  year: 2020
  ident: ref_88
  article-title: Synthesis and physico-chemical properties of poly(N-vinyl pyrrolidone)-based hydrogels with titania nanoparticles
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-04230-z
– ident: ref_66
  doi: 10.1016/j.anai.2022.03.014
– volume: 185
  start-page: 117
  year: 1960
  ident: ref_24
  article-title: Hydrophilic Gels for Biological Use
  publication-title: Nature
  doi: 10.1038/185117a0
– volume: 21
  start-page: 840
  year: 2015
  ident: ref_125
  article-title: Collagen VI enhances cartilage tissue generation by stimulating chondrocyte proliferation
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2014.0375
– volume: 133
  start-page: 448
  year: 2015
  ident: ref_77
  article-title: Structure and properties of semi-interpenetrating network hydrogel based on starch
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.07.037
– volume: 16
  start-page: 1149
  year: 2005
  ident: ref_106
  article-title: Investigation of a novel freeze-thaw process for the production of drug delivery hydrogels
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-005-4722-7
SSID ssj0021415
Score 2.7180524
SecondaryResourceType review_article
Snippet Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2902
SubjectTerms 3D cell culture
Biological activity
drug delivery
Enzymes
Hyaluronic acid
hydrogel
Hydrogels
medical application
Physical properties
Polyethylene glycol
Polymerization
Polymers
Polyvinyl alcohol
Regenerative medicine
Review
Tissue engineering
wound dressing
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEB-0HvQi1apdrbJCT8LSzffGS2mL5SEogi2825LNRy3obvve68H_3kk2-9qn0usmC2FmkvnNTPIbgH1CLEc_o6pgNa04r13VGUIrzSRzVItOpJzul69yds4_z8U8J9yW-VrldCamg9oNNubID9CRoGly9OeHV9dV7BoVq6u5hcZDeBSpy-KVLjW_DbgIeqexkskwtD_4NTac9UuqakQFOZMy-aJE2f8_nPn3dck7_ud0G55m4FgejZp-Bg98_xwen0z92nZAzH67xXCBvu5j-S2m2BeRK7U0vSuP7lSpy8u-PE5v7lNN_QV8P_10djKrclOEyiL4X1XWEhM6zo03XCE-EMJr4oUOgRFmrNG1iYSDITSi6yieHoZa2REnG1sLz17CVj_0fhfKoBrNnWPOcsklNcYEL6yjnkuLwmwKqCfhtDbzhce2FT9bjBuiPNt_5FnAh_UvVyNZxn2Tj6PE1xMjz3X6MCwu2rxtWsIEl0Q6FyTlqvGNCvjBBYVBPQK9uoC9SV9t3nzL9tZUCni_HkZtxFqI6f1wk-ZwpRs0kAJejepdrwQhmMSwkBSgNhS_sdTNkf7yR6Lm1pH5gpHX9y_rDTyh8RVFvDdJ92BrtbjxbxHbrLp3yYD_AIiv-tA
  priority: 102
  providerName: ProQuest
Title Hydrogels: Properties and Applications in Biomedicine
URI https://www.ncbi.nlm.nih.gov/pubmed/35566251
https://www.proquest.com/docview/2663054839
https://www.proquest.com/docview/2664798415
https://pubmed.ncbi.nlm.nih.gov/PMC9104731
https://doaj.org/article/1354616ddf62478e87f546df76904350
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RcmgviEILoe0qSJyQosbvuLdu1WWFRFUBlfYWOX60lSCLttsD_56xk6x2oYILlxxsR3JmHM83M_Y3AO8IsRztjCqC1bTgvHRFYwgtNJPMUS0akWK6ny7l9Jp_nInZWqmveCasowfuBHdCmOCSSOeCpFxVvlIBG1xQ6NahqU_eOtq8wZnqXS2CdqnLYTJ06k--d6Vm_T1VJeKBPoYyWKFE1v8Ywvz9oOSa5Zk8h2c9ZMzPuqnuwRPfvoCd86FS20sQ059uMb9BK3eaX8Xg-iKypOamdfnZWn46v2vzcbptn7Lp-_BlcvH1fFr05RAKi7B_WVhLTGg4N95whchACK-JFzoERpixRpcmUg2GUImmobhvGGplQ5ysbCk8O4Dtdt7615AHVWnuHHOWSy6pMSZ4YR31XFpCdJVBOQintj1TeCxY8a1GjyHKs_5Dnhm8X73yo6PJ-NvgcZT4amBkuE4NqPe613v9L71ncDToq-5_u_sa0QbuXxxBXwZvV92ojZgFMa2fP6QxXOkKF0gGrzr1rmaC4EuiQ0gyUBuK35jqZk97d5tIuXXkvGDkzf_4tkPYpfGWRTxXSY9ge7l48MeIfZbNCLbUTOGzmnwYwdPxxeXV51Fa-r8A2b0FHw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9VAFD5BfMAX404RtSb6YtLQWdshMQTQ60WWmIgJTzbTWZBEW7j3EsJ_8kdypptcNbzxOjNtJmeZ7ywz5wC8IcRwxJks8UbRhPPUJqUmNFFMMkuVKEUT090_kONv_POROFqA3_1bmHCtsj8Tm4Pa1ibEyNcQSFA0OeL5xulZErpGhexq30KjFYtdd3mBLtv0_c4H5O9bSkcfD7fHSddVIDFoPc8SY4j2JefaaZ4hwArhFHFCec8I00arVIeKfd7noiwpqp-mRpbEytykwjH86x24yxlTQZ_y0afBvSOIhW3eFCfTtV9te1s3pVmKNkgXt-mRr2kQ8D-r9u_LmdfQbvQA7ndmarzZytVDWHDVI1ja7rvDPQYxvrST-hiRdT3-EgL6k1CZNdaVjTev5cTjkyreal74Nxn8J_D1Foj1FBarunLLEPssV9xaZg2XXFKttXfCWOq4NISoPIK0J05huurkoUnGzwK9lEDP4h96RvBu-OS0Lc1x0-KtQPFhYaiq3QzUk-OiU9KCMMElkdZ6SXmWuzzzOGB9JlWKZmUawWrPr6JT9WnxRzAjeD1MIzdC5kVXrj5v1vBM5SggETxr2TvsBA0-iU4oiSCbY_zcVudnqpMfTSFwFepsMLJy87ZewdL4cH-v2Ns52H0O92h4vxFubNJVWJxNzt0LtKpm5ctGmGP4fru6cwWpJjdl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBPVFvB2NOoK-CMNO39OCSA6XjdEQUGGfHHr6iAGdibsbJP_Mn2f1HJusSt7y2t0zNHX0V9VVXQXwghDLEWdUFqymGee5yypDaKaZZI5qUYn2Tvfjvpx84e-nYroGv4e3MDGtcjgT24PaNTbekY8QSFA0OeL5KPRpEQc747fHP7PYQSpGWod2Gp2I7PnTX-i-zd_s7iCvX1I6fvd5e5L1HQYyi5b0IrOWmFBxbrzhCsFWCK-JFzoERpixRucmVu8LoRBVRVEVDbWyIk4WNhee4V-vwFXFBIkapqZnrh5BXOxiqIzpfPSja3Xr51TlaI_0dzgDCrbNAv5n4f6dqHkO-ca34GZvsqabnYzdhjVf34Hr20OnuLsgJqdu1hwiyr5OD-Ll_ixWaU1N7dLNc_Hx9KhOt9rX_m00_x58ugRi3Yf1uqn9Q0iDKjR3jjnLJZfUGBO8sI56Li0hukggH4hT2r5SeWyY8b1EjyXSs_yHngm8Wn5y3JXpuGjxVqT4cmGssN0ONLPDslfYkjDBJZHOBUm5KnyhAg64oKTO0cTME9gY-FX2aj8vz4Q0gefLaeRGjMKY2jcn7RqudIECksCDjr3LnaDxJ9EhJQmoFcavbHV1pj761hYF17HmBiOPLt7WM7iGWlN-2N3feww3aHzKEZM36QasL2Yn_gkaWIvqaSvLKXy9XNX5A7fgO5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogels%3A+Properties+and+Applications+in+Biomedicine&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Tzu-Chuan+Ho&rft.au=Chin-Chuan+Chang&rft.au=Hung-Pin+Chan&rft.au=Tze-Wen+Chung&rft.date=2022-05-02&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=27&rft.issue=9&rft.spage=2902&rft_id=info:doi/10.3390%2Fmolecules27092902&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1354616ddf62478e87f546df76904350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon