On The Deep Learning Models for EEG-based Brain-Computer Interface Using Motor Imagery

Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best perf...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 30; p. 1
Main Authors Zhu, Hao, Forenzo, Dylan, He, Bin
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best performing models among them would be beneficial for designing better BCI systems and classifiers going forward. However, it is difficult to directly compare performance of various models through the original publications, since the datasets used to test the models are different from each other, too small, or even not publicly available. In this work, we selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 42 and 62 human subjects. Our results show that the models performed similarly on one dataset while EEGNet performed the best on the second with a relatively small training cost using the parameters that we evaluated.
AbstractList Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best performing models among them would be beneficial for designing better BCI systems and classifiers going forward. However, it is difficult to directly compare performance of various models through the original publications, since the datasets used to test the models are different from each other, too small, or even not publicly available. In this work, we selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 42 and 62 human subjects. Our results show that the models performed similarly on one dataset while EEGNet performed the best on the second with a relatively small training cost using the parameters that we evaluated.
Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best performing models among them would be beneficial for designing better BCI systems and classifiers going forward. However, it is difficult to directly compare performance of various models through the original publications, since the datasets used to test the models are different from each other, too small, or even not publicly available. In this work, we selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 42 and 62 human subjects. Our results show that the models performed similarly on one dataset while EEGNet performed the best on the second with a relatively small training cost using the parameters that we evaluated.Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best performing models among them would be beneficial for designing better BCI systems and classifiers going forward. However, it is difficult to directly compare performance of various models through the original publications, since the datasets used to test the models are different from each other, too small, or even not publicly available. In this work, we selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 42 and 62 human subjects. Our results show that the models performed similarly on one dataset while EEGNet performed the best on the second with a relatively small training cost using the parameters that we evaluated.
Author Forenzo, Dylan
He, Bin
Zhu, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Zhu
  fullname: Zhu, Hao
  organization: Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 2
  givenname: Dylan
  surname: Forenzo
  fullname: Forenzo, Dylan
  organization: Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 3
  givenname: Bin
  orcidid: 0000-0003-2944-8602
  surname: He
  fullname: He, Bin
  organization: Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
BookMark eNp9Uk1vEzEQtVARbQN_AC4rceGywR_rXfuCBCGUSIFKkHK1vPZs6mhjp_YGqf8ebzeq1B64jK2Z9948j-cSnfngAaG3BM8JwfLj5ufvX8s5xZTOGZECV-QFuiCcixJTgs_GO6vKilF8ji5T2mFMmpo3r9A545IT3rAL9OfaF5tbKL4CHIo16Oid3xY_goU-FV2IxXJ5VbY6gS2-RO18uQj7w3GAWKx8jp02UNykiTNk-GqvtxDvX6OXne4TvDmdM3TzbblZfC_X11erxed1aTiXQ4620YZWXNbcUMtaJmxjLLGayUrbpsKWatCdyAUgjazrnGiFprVtO0Ylm6HVpGuD3qlDdHsd71XQTj0kQtwqHQdnelC0Yfn12kgQpmKtkULarFALQpq2y81n6NOkdTi2e7AG_BB1_0T0acW7W7UNf5WsKMa1yAIfTgIx3B0hDWrvkoG-1x7CMWUHmBAmWR78DL1_Bt2FY_R5VCOqwvk32ShIJ5SJIaUI3aMZgtW4AuphBdS4Auq0ApkknpGMG_Tgwmja9f-nvpuoDgAee0nBK5E9_wPhgb5E
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s11227_025_07015_1
crossref_primary_10_3389_fncom_2022_1006763
crossref_primary_10_3390_s24206759
crossref_primary_10_3390_sym14122677
crossref_primary_10_1016_j_patrec_2023_10_011
crossref_primary_10_1093_pnasnexus_pgae145
crossref_primary_10_3390_app14146347
crossref_primary_10_1109_ACCESS_2023_3321067
crossref_primary_10_1016_j_jneumeth_2024_110108
crossref_primary_10_1109_TNSRE_2023_3346766
crossref_primary_10_3390_electronics12030604
crossref_primary_10_3389_fnhum_2024_1385360
crossref_primary_10_1016_j_eswa_2023_121915
crossref_primary_10_1109_TNSRE_2023_3241241
crossref_primary_10_1016_j_knosys_2024_112270
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1080_15368378_2024_2415089
crossref_primary_10_3390_brainsci14080836
crossref_primary_10_3389_fnhum_2023_1205881
crossref_primary_10_1007_s11517_023_02857_4
crossref_primary_10_1038_s41597_024_04090_6
crossref_primary_10_1166_jno_2023_3504
crossref_primary_10_1093_cercor_bhad511
crossref_primary_10_3389_fnhum_2022_1019279
Cites_doi 10.1109/MSP.2008.4408441
10.1109/TNNLS.2018.2789927
10.2340/16501977-0020
10.1109/TNSRE.2019.2938295
10.1002/hbm.23730
10.1007/978-3-030-43395-6_4
10.1109/5.939829
10.1109/MCSE.2014.80
10.1088/1741-2552/aace8c
10.1088/1741-2560/14/1/016003
10.1093/oso/9780198538493.001.0001
10.3389/fnhum.2019.00128
10.1109/86.895946
10.1088/1741-2552/ab0ab5
10.1126/scirobotics.aaw6844
10.1016/j.clinph.2004.06.022
10.1109/ChiCC.2015.7260182
10.1073/pnas.0403504101
10.1038/srep38565
10.1088/1741-2552/aab2f2
10.1088/1741-2552/ac0584
10.1088/1741-2560/10/4/046003
10.1109/JPROC.2015.2407272
10.1093/cercor/bhaa234
10.3389/fnins.2012.00055
10.1016/j.neuroimage.2009.10.028
10.1007/s11055-014-9937-y
10.3389/fnins.2020.587520
10.1016/j.eswa.2018.08.031
10.1371/journal.pone.0234178
10.1109/TBME.2014.2312397
10.1016/j.ijleo.2016.10.117
10.1016/j.future.2019.06.027
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOA
DOI 10.1109/TNSRE.2022.3198041
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journal Collection
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1
ExternalDocumentID oai_doaj_org_article_273765ac9e8c43bc989d29368117bf2d
PMC9420068
10_1109_TNSRE_2022_3198041
9854857
Genre orig-research
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  grantid: NS124564, NS096761
  funderid: 10.13039/100000065
– fundername: National Institute of Mental Health
  grantid: MH114233
  funderid: 10.13039/100000025
– fundername: National Center for Complementary and Integrative Health
  grantid: AT009263
  funderid: 10.13039/100008460
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: EB029354, EB021027
  funderid: 10.13039/100000070
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c559t-c5d7ac245965c2d3b38d7cd1da394ad740d2aeaf8b38e179660d2b8a26dbf3293
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 00:51:55 EDT 2025
Thu Aug 21 13:47:30 EDT 2025
Fri Jul 11 09:33:45 EDT 2025
Fri Jul 25 02:47:03 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Tue Jul 01 00:43:26 EDT 2025
Wed Aug 27 02:23:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-c5d7ac245965c2d3b38d7cd1da394ad740d2aeaf8b38e179660d2b8a26dbf3293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2944-8602
OpenAccessLink https://doaj.org/article/273765ac9e8c43bc989d29368117bf2d
PMID 35951573
PQID 2704098038
PQPubID 85423
PageCount 1
ParticipantIDs proquest_journals_2704098038
crossref_primary_10_1109_TNSRE_2022_3198041
doaj_primary_oai_doaj_org_article_273765ac9e8c43bc989d29368117bf2d
ieee_primary_9854857
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9420068
crossref_citationtrail_10_1109_TNSRE_2022_3198041
proquest_miscellaneous_2701139357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref14
ref30
ref11
ref32
stieger (ref31) 2021; 8
ref10
ref2
hernández (ref36) 2018
ref1
ref17
ref16
ref19
ref18
pedregosa (ref39) 2012; 12
bashivan (ref27) 2015
ref24
ref23
ref26
bishop (ref38) 1995
ref25
ref20
ref22
ang (ref15) 2008
ref21
ref28
ref29
ref8
ref7
ref9
vaswani (ref33) 2017
ref4
ref3
ref6
ref5
van der maaten (ref40) 2008; 9
References_xml – ident: ref13
  doi: 10.1109/MSP.2008.4408441
– ident: ref19
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref7
  doi: 10.2340/16501977-0020
– ident: ref28
  doi: 10.1109/TNSRE.2019.2938295
– ident: ref18
  doi: 10.1002/hbm.23730
– volume: 8
  start-page: 1
  year: 2021
  ident: ref31
  article-title: Continuous sensorimotor rhythm based brain computer interface learning in a large population
  publication-title: Data Science Journal
– ident: ref1
  doi: 10.1007/978-3-030-43395-6_4
– ident: ref3
  doi: 10.1109/5.939829
– ident: ref34
  doi: 10.1109/MCSE.2014.80
– ident: ref20
  doi: 10.1088/1741-2552/aace8c
– year: 2015
  ident: ref27
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
  publication-title: arXiv 1511 06448
– ident: ref25
  doi: 10.1088/1741-2560/14/1/016003
– year: 1995
  ident: ref38
  publication-title: Neural Networks for Pattern Recognition
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref30
  doi: 10.3389/fnhum.2019.00128
– ident: ref14
  doi: 10.1109/86.895946
– ident: ref17
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref6
  doi: 10.1126/scirobotics.aaw6844
– ident: ref12
  doi: 10.1016/j.clinph.2004.06.022
– ident: ref23
  doi: 10.1109/ChiCC.2015.7260182
– start-page: 2390
  year: 2008
  ident: ref15
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: Proc IEEE Int Joint Conf Neural Netw IEEE World Congr Comput Intell
– ident: ref2
  doi: 10.1073/pnas.0403504101
– ident: ref10
  doi: 10.1038/srep38565
– ident: ref16
  doi: 10.1088/1741-2552/aab2f2
– start-page: 126
  year: 2018
  ident: ref36
  article-title: A comparison of deep neural network algorithms for recognition of EEG motor imagery signals
  publication-title: Proc Conf on Pattern Recognition
– ident: ref35
  doi: 10.1088/1741-2552/ac0584
– ident: ref9
  doi: 10.1088/1741-2560/10/4/046003
– ident: ref5
  doi: 10.1109/JPROC.2015.2407272
– ident: ref32
  doi: 10.1093/cercor/bhaa234
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref40
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– volume: 12
  start-page: 2825
  year: 2012
  ident: ref39
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref29
  doi: 10.3389/fnins.2012.00055
– ident: ref8
  doi: 10.1016/j.neuroimage.2009.10.028
– ident: ref11
  doi: 10.1007/s11055-014-9937-y
– ident: ref24
  doi: 10.3389/fnins.2020.587520
– ident: ref22
  doi: 10.1016/j.eswa.2018.08.031
– ident: ref37
  doi: 10.1371/journal.pone.0234178
– ident: ref4
  doi: 10.1109/TBME.2014.2312397
– ident: ref21
  doi: 10.1016/j.ijleo.2016.10.117
– ident: ref26
  doi: 10.1016/j.future.2019.06.027
– start-page: 5998
  year: 2017
  ident: ref33
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0017657
Score 2.522456
Snippet Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning...
SourceID doaj
pubmedcentral
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms BCI
Brain
Brain modeling
Brain-computer interface
Classification
Classifiers
Computer applications
Convolution
Convolutional neural networks
Datasets
Deep learning
EEG
Electroencephalography
Feature extraction
Human-computer interface
Imagery
Implants
Machine learning
Mental task performance
motor imagery
Task analysis
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeeBVEoCAjARfINrGdxD5S2FKQWqSyRb1Fjh8FUbIV3T3Ar2fGeahBCHFZ7caO19bM2N_Ynm8AniEIDyFYnmZWq1RKz9MGYW6qdCiCwQUjcxTvfHRcHp7KD2fF2Qa8GmNhvPfx8pmf0dd4lu-Wdk1bZXtaIb4uqk3YRMeti9UaTwyqMrJ6ogHLVAqeDQEymd5bHH86maMryDl6qJoId7bhBgWk5kUlJutRpO3v86xMIOf0wuS1FejgFhwNfe8unnybrVfNzP76g9bxfwd3G272UJS97nTnDmz49i48v047zBYd5wB7wU4mjN478PljS6XsrfeXrCdpPWeUWe3iiiEQZvP5u5SWSMf2KQtFOqSPYHEPMhjrWbyugO-g28_efycyjZ_34PRgvnhzmPY5GlKLvsgKP11lLJeFLgvLnWiEcpV1uTNCS-MqmTluvAkKCzwaf1nig0YZXromCMQa92GrXbb-AbBcVTZ3Hh1aK4gyyIgcf-IEGArCITaBfJBUbfvhUh6Nizo6Mpmuo6BrEnTdCzqBl-M7lx19xz9r75MCjDWJejs-QEHVvSXXiPdQ14zVXlkpGlRx7XAcJUXsNoG7BHZIuGMjvVwT2B3Uqe6niStsC-dQ_GuhEng6FqOB06mNaf1yHevkOQVQYxPVRA0n_ZyWtF-_RKpwLWnLSD38e58ewTYNv9tR2oWt1Y-1f4wYa9U8icb1GxyaIU4
  priority: 102
  providerName: IEEE
Title On The Deep Learning Models for EEG-based Brain-Computer Interface Using Motor Imagery
URI https://ieeexplore.ieee.org/document/9854857
https://www.proquest.com/docview/2704098038
https://www.proquest.com/docview/2701139357
https://pubmed.ncbi.nlm.nih.gov/PMC9420068
https://doaj.org/article/273765ac9e8c43bc989d29368117bf2d
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPpYIqgXKbbpKzm6ur5ABV3FW0nzUGGtorsH_70zabpsL3rxUmjzaDKTZGaSzDeE7IESbq1VLIyU4GGaGhZWoOaGXNjMShAYkUZ_5-ub_OIhvXrKnmZCfeGdsAYeuCHcEYjXIs-kEoarNKmgRqFBROXoIFlZpnH1BZnXGlP-_ACKFK2LTCSOhjf3dwMwBhkDG1Ug5E5HDDm0fh9epaNpdu9JzgiesyWy6DVGety0dJnMmXqF7M-iA9NhAw1AD-hdB3h7lTze1hRUPHpqzAf1WKrPFAOgjb4o6Kt0MDgP-yDJNO1jsIiwjfJA3VahlcpQd6sAyoB1Ti_fEPPie408nA2GJxehD6UQKjAZxvDUhVQszUSeKaaTKuG6UDrWMhGp1EUaaSaNtBwSDMzRPIcPFZcs15VNgN7rZL5-r80GoTEvVKwN2J0qQWQfmcTwCkyyGaoLKiBxS9lS-e5iuItR6eyNSJSOGyVyo_TcCMjhtMxHg7Lxa-4-MmyaExGy3QcYN6UfN-Vf4yYgq8juaSWCg-2WFQHZbtlf-tn8BXXBUge_TnhAdqfJMA_xcEXW5n3i8sQx-jlDFUVn2HTa2U2pX18cordIcWeHb_5Hx7bIAhKr2SbaJvPjz4nZAcVpXPXcHOk5H8cfjX4UoA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIcFe-BqIwAAjAS-QLomdxH5k0NHBWqTRTXuLHH8AYqQTax_gr-fOSaMFIcRLlcaOY-fufHe273cAz9AI996bLE6MkrEQLotrNHNjqXzuNSqMxFK883RWTI7F-9P8dANe9bEwzrlw-MyN6DLs5duFWdFS2a6SaF_n5RW4ino_T9torX7PoCwCrieKsIgFz5J1iEyiduezT0djdAazDH1URZA7W3CNQlLTvOQDjRSA-7tMKwOjc3hk8pIO2r8J03Xv26Mn30arZT0yv_4Advzf4d2CG50xyl633HMbNlxzB55fBh5m8xZ1gL1gRwNM7204-dhQKXvr3DnrYFo_M8qtdnbB0BRm4_G7mJSkZXuUhyJeJ5BgYRXSa-NYOLCAz6Djzw6-E5zGz7twvD-ev5nEXZaG2KA3ssRfW2qTiVwVucksr7m0pbGp1VwJbUuR2Ew77SUWOBT_osAbtdRZYWvP0dq4B5vNonH3gaWyNKl16NIaTqBBmqf4F6dAn5MlYiJI15SqTDdcyqRxVgVXJlFVIHRFhK46Qkfwsn_mvAXw-GftPWKAviaBb4cbSKiqk-UKLT7kNW2Uk0bwGplcWRxHQTG7tc9sBNtE3L6Rjq4R7KzZqeomigtsC2dRfDWXETzti1HEad9GN26xCnXSlEKosYlywIaDfg5Lmq9fAli4ErRoJB_8vU9P4PpkPj2sDg9mHx7CFn2Kdn1pBzaXP1buEVpcy_pxELTfTcYklw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Deep+Learning+Models+for+EEG-Based+Brain-Computer+Interface+Using+Motor+Imagery&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhu%2C+Hao&rft.au=Forenzo%2C+Dylan&rft.au=He%2C+Bin&rft.date=2022&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=30&rft.spage=2283&rft.epage=2291&rft_id=info:doi/10.1109%2FTNSRE.2022.3198041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2022_3198041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon