On The Deep Learning Models for EEG-based Brain-Computer Interface Using Motor Imagery
Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best perf...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best performing models among them would be beneficial for designing better BCI systems and classifiers going forward. However, it is difficult to directly compare performance of various models through the original publications, since the datasets used to test the models are different from each other, too small, or even not publicly available. In this work, we selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 42 and 62 human subjects. Our results show that the models performed similarly on one dataset while EEGNet performed the best on the second with a relatively small training cost using the parameters that we evaluated. |
---|---|
AbstractList | Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best performing models among them would be beneficial for designing better BCI systems and classifiers going forward. However, it is difficult to directly compare performance of various models through the original publications, since the datasets used to test the models are different from each other, too small, or even not publicly available. In this work, we selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 42 and 62 human subjects. Our results show that the models performed similarly on one dataset while EEGNet performed the best on the second with a relatively small training cost using the parameters that we evaluated. Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best performing models among them would be beneficial for designing better BCI systems and classifiers going forward. However, it is difficult to directly compare performance of various models through the original publications, since the datasets used to test the models are different from each other, too small, or even not publicly available. In this work, we selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 42 and 62 human subjects. Our results show that the models performed similarly on one dataset while EEGNet performed the best on the second with a relatively small training cost using the parameters that we evaluated.Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning technology has prompted considerable interest in using deep learning for classification and resulted in multiple models. Finding the best performing models among them would be beneficial for designing better BCI systems and classifiers going forward. However, it is difficult to directly compare performance of various models through the original publications, since the datasets used to test the models are different from each other, too small, or even not publicly available. In this work, we selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 42 and 62 human subjects. Our results show that the models performed similarly on one dataset while EEGNet performed the best on the second with a relatively small training cost using the parameters that we evaluated. |
Author | Forenzo, Dylan He, Bin Zhu, Hao |
Author_xml | – sequence: 1 givenname: Hao surname: Zhu fullname: Zhu, Hao organization: Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 2 givenname: Dylan surname: Forenzo fullname: Forenzo, Dylan organization: Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 3 givenname: Bin orcidid: 0000-0003-2944-8602 surname: He fullname: He, Bin organization: Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA |
BookMark | eNp9Uk1vEzEQtVARbQN_AC4rceGywR_rXfuCBCGUSIFKkHK1vPZs6mhjp_YGqf8ebzeq1B64jK2Z9948j-cSnfngAaG3BM8JwfLj5ufvX8s5xZTOGZECV-QFuiCcixJTgs_GO6vKilF8ji5T2mFMmpo3r9A545IT3rAL9OfaF5tbKL4CHIo16Oid3xY_goU-FV2IxXJ5VbY6gS2-RO18uQj7w3GAWKx8jp02UNykiTNk-GqvtxDvX6OXne4TvDmdM3TzbblZfC_X11erxed1aTiXQ4620YZWXNbcUMtaJmxjLLGayUrbpsKWatCdyAUgjazrnGiFprVtO0Ylm6HVpGuD3qlDdHsd71XQTj0kQtwqHQdnelC0Yfn12kgQpmKtkULarFALQpq2y81n6NOkdTi2e7AG_BB1_0T0acW7W7UNf5WsKMa1yAIfTgIx3B0hDWrvkoG-1x7CMWUHmBAmWR78DL1_Bt2FY_R5VCOqwvk32ShIJ5SJIaUI3aMZgtW4AuphBdS4Auq0ApkknpGMG_Tgwmja9f-nvpuoDgAee0nBK5E9_wPhgb5E |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1007_s11227_025_07015_1 crossref_primary_10_3389_fncom_2022_1006763 crossref_primary_10_3390_s24206759 crossref_primary_10_3390_sym14122677 crossref_primary_10_1016_j_patrec_2023_10_011 crossref_primary_10_1093_pnasnexus_pgae145 crossref_primary_10_3390_app14146347 crossref_primary_10_1109_ACCESS_2023_3321067 crossref_primary_10_1016_j_jneumeth_2024_110108 crossref_primary_10_1109_TNSRE_2023_3346766 crossref_primary_10_3390_electronics12030604 crossref_primary_10_3389_fnhum_2024_1385360 crossref_primary_10_1016_j_eswa_2023_121915 crossref_primary_10_1109_TNSRE_2023_3241241 crossref_primary_10_1016_j_knosys_2024_112270 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1080_15368378_2024_2415089 crossref_primary_10_3390_brainsci14080836 crossref_primary_10_3389_fnhum_2023_1205881 crossref_primary_10_1007_s11517_023_02857_4 crossref_primary_10_1038_s41597_024_04090_6 crossref_primary_10_1166_jno_2023_3504 crossref_primary_10_1093_cercor_bhad511 crossref_primary_10_3389_fnhum_2022_1019279 |
Cites_doi | 10.1109/MSP.2008.4408441 10.1109/TNNLS.2018.2789927 10.2340/16501977-0020 10.1109/TNSRE.2019.2938295 10.1002/hbm.23730 10.1007/978-3-030-43395-6_4 10.1109/5.939829 10.1109/MCSE.2014.80 10.1088/1741-2552/aace8c 10.1088/1741-2560/14/1/016003 10.1093/oso/9780198538493.001.0001 10.3389/fnhum.2019.00128 10.1109/86.895946 10.1088/1741-2552/ab0ab5 10.1126/scirobotics.aaw6844 10.1016/j.clinph.2004.06.022 10.1109/ChiCC.2015.7260182 10.1073/pnas.0403504101 10.1038/srep38565 10.1088/1741-2552/aab2f2 10.1088/1741-2552/ac0584 10.1088/1741-2560/10/4/046003 10.1109/JPROC.2015.2407272 10.1093/cercor/bhaa234 10.3389/fnins.2012.00055 10.1016/j.neuroimage.2009.10.028 10.1007/s11055-014-9937-y 10.3389/fnins.2020.587520 10.1016/j.eswa.2018.08.031 10.1371/journal.pone.0234178 10.1109/TBME.2014.2312397 10.1016/j.ijleo.2016.10.117 10.1016/j.future.2019.06.027 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM DOA |
DOI | 10.1109/TNSRE.2022.3198041 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journal Collection url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_273765ac9e8c43bc989d29368117bf2d PMC9420068 10_1109_TNSRE_2022_3198041 9854857 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Institute of Neurological Disorders and Stroke grantid: NS124564, NS096761 funderid: 10.13039/100000065 – fundername: National Institute of Mental Health grantid: MH114233 funderid: 10.13039/100000025 – fundername: National Center for Complementary and Integrative Health grantid: AT009263 funderid: 10.13039/100008460 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: EB029354, EB021027 funderid: 10.13039/100000070 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c559t-c5d7ac245965c2d3b38d7cd1da394ad740d2aeaf8b38e179660d2b8a26dbf3293 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 00:51:55 EDT 2025 Thu Aug 21 13:47:30 EDT 2025 Fri Jul 11 09:33:45 EDT 2025 Fri Jul 25 02:47:03 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Tue Jul 01 00:43:26 EDT 2025 Wed Aug 27 02:23:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-c5d7ac245965c2d3b38d7cd1da394ad740d2aeaf8b38e179660d2b8a26dbf3293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2944-8602 |
OpenAccessLink | https://doaj.org/article/273765ac9e8c43bc989d29368117bf2d |
PMID | 35951573 |
PQID | 2704098038 |
PQPubID | 85423 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2704098038 crossref_primary_10_1109_TNSRE_2022_3198041 doaj_primary_oai_doaj_org_article_273765ac9e8c43bc989d29368117bf2d ieee_primary_9854857 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9420068 crossref_citationtrail_10_1109_TNSRE_2022_3198041 proquest_miscellaneous_2701139357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref14 ref30 ref11 ref32 stieger (ref31) 2021; 8 ref10 ref2 hernández (ref36) 2018 ref1 ref17 ref16 ref19 ref18 pedregosa (ref39) 2012; 12 bashivan (ref27) 2015 ref24 ref23 ref26 bishop (ref38) 1995 ref25 ref20 ref22 ang (ref15) 2008 ref21 ref28 ref29 ref8 ref7 ref9 vaswani (ref33) 2017 ref4 ref3 ref6 ref5 van der maaten (ref40) 2008; 9 |
References_xml | – ident: ref13 doi: 10.1109/MSP.2008.4408441 – ident: ref19 doi: 10.1109/TNNLS.2018.2789927 – ident: ref7 doi: 10.2340/16501977-0020 – ident: ref28 doi: 10.1109/TNSRE.2019.2938295 – ident: ref18 doi: 10.1002/hbm.23730 – volume: 8 start-page: 1 year: 2021 ident: ref31 article-title: Continuous sensorimotor rhythm based brain computer interface learning in a large population publication-title: Data Science Journal – ident: ref1 doi: 10.1007/978-3-030-43395-6_4 – ident: ref3 doi: 10.1109/5.939829 – ident: ref34 doi: 10.1109/MCSE.2014.80 – ident: ref20 doi: 10.1088/1741-2552/aace8c – year: 2015 ident: ref27 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks publication-title: arXiv 1511 06448 – ident: ref25 doi: 10.1088/1741-2560/14/1/016003 – year: 1995 ident: ref38 publication-title: Neural Networks for Pattern Recognition doi: 10.1093/oso/9780198538493.001.0001 – ident: ref30 doi: 10.3389/fnhum.2019.00128 – ident: ref14 doi: 10.1109/86.895946 – ident: ref17 doi: 10.1088/1741-2552/ab0ab5 – ident: ref6 doi: 10.1126/scirobotics.aaw6844 – ident: ref12 doi: 10.1016/j.clinph.2004.06.022 – ident: ref23 doi: 10.1109/ChiCC.2015.7260182 – start-page: 2390 year: 2008 ident: ref15 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: Proc IEEE Int Joint Conf Neural Netw IEEE World Congr Comput Intell – ident: ref2 doi: 10.1073/pnas.0403504101 – ident: ref10 doi: 10.1038/srep38565 – ident: ref16 doi: 10.1088/1741-2552/aab2f2 – start-page: 126 year: 2018 ident: ref36 article-title: A comparison of deep neural network algorithms for recognition of EEG motor imagery signals publication-title: Proc Conf on Pattern Recognition – ident: ref35 doi: 10.1088/1741-2552/ac0584 – ident: ref9 doi: 10.1088/1741-2560/10/4/046003 – ident: ref5 doi: 10.1109/JPROC.2015.2407272 – ident: ref32 doi: 10.1093/cercor/bhaa234 – volume: 9 start-page: 2579 year: 2008 ident: ref40 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – volume: 12 start-page: 2825 year: 2012 ident: ref39 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: ref29 doi: 10.3389/fnins.2012.00055 – ident: ref8 doi: 10.1016/j.neuroimage.2009.10.028 – ident: ref11 doi: 10.1007/s11055-014-9937-y – ident: ref24 doi: 10.3389/fnins.2020.587520 – ident: ref22 doi: 10.1016/j.eswa.2018.08.031 – ident: ref37 doi: 10.1371/journal.pone.0234178 – ident: ref4 doi: 10.1109/TBME.2014.2312397 – ident: ref21 doi: 10.1016/j.ijleo.2016.10.117 – ident: ref26 doi: 10.1016/j.future.2019.06.027 – start-page: 5998 year: 2017 ident: ref33 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst |
SSID | ssj0017657 |
Score | 2.522456 |
Snippet | Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which requires powerful classifiers. Recent development of deep learning... |
SourceID | doaj pubmedcentral proquest crossref ieee |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | BCI Brain Brain modeling Brain-computer interface Classification Classifiers Computer applications Convolution Convolutional neural networks Datasets Deep learning EEG Electroencephalography Feature extraction Human-computer interface Imagery Implants Machine learning Mental task performance motor imagery Task analysis |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PaBeeBVEoCAjARfINrGdxD5S2FKQWqSyRb1Fjh8FUbIV3T3Ar2fGeahBCHFZ7caO19bM2N_Ynm8AniEIDyFYnmZWq1RKz9MGYW6qdCiCwQUjcxTvfHRcHp7KD2fF2Qa8GmNhvPfx8pmf0dd4lu-Wdk1bZXtaIb4uqk3YRMeti9UaTwyqMrJ6ogHLVAqeDQEymd5bHH86maMryDl6qJoId7bhBgWk5kUlJutRpO3v86xMIOf0wuS1FejgFhwNfe8unnybrVfNzP76g9bxfwd3G272UJS97nTnDmz49i48v047zBYd5wB7wU4mjN478PljS6XsrfeXrCdpPWeUWe3iiiEQZvP5u5SWSMf2KQtFOqSPYHEPMhjrWbyugO-g28_efycyjZ_34PRgvnhzmPY5GlKLvsgKP11lLJeFLgvLnWiEcpV1uTNCS-MqmTluvAkKCzwaf1nig0YZXromCMQa92GrXbb-AbBcVTZ3Hh1aK4gyyIgcf-IEGArCITaBfJBUbfvhUh6Nizo6Mpmuo6BrEnTdCzqBl-M7lx19xz9r75MCjDWJejs-QEHVvSXXiPdQ14zVXlkpGlRx7XAcJUXsNoG7BHZIuGMjvVwT2B3Uqe6niStsC-dQ_GuhEng6FqOB06mNaf1yHevkOQVQYxPVRA0n_ZyWtF-_RKpwLWnLSD38e58ewTYNv9tR2oWt1Y-1f4wYa9U8icb1GxyaIU4 priority: 102 providerName: IEEE |
Title | On The Deep Learning Models for EEG-based Brain-Computer Interface Using Motor Imagery |
URI | https://ieeexplore.ieee.org/document/9854857 https://www.proquest.com/docview/2704098038 https://www.proquest.com/docview/2701139357 https://pubmed.ncbi.nlm.nih.gov/PMC9420068 https://doaj.org/article/273765ac9e8c43bc989d29368117bf2d |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPpYIqgXKbbpKzm6ur5ABV3FW0nzUGGtorsH_70zabpsL3rxUmjzaDKTZGaSzDeE7IESbq1VLIyU4GGaGhZWoOaGXNjMShAYkUZ_5-ub_OIhvXrKnmZCfeGdsAYeuCHcEYjXIs-kEoarNKmgRqFBROXoIFlZpnH1BZnXGlP-_ACKFK2LTCSOhjf3dwMwBhkDG1Ug5E5HDDm0fh9epaNpdu9JzgiesyWy6DVGety0dJnMmXqF7M-iA9NhAw1AD-hdB3h7lTze1hRUPHpqzAf1WKrPFAOgjb4o6Kt0MDgP-yDJNO1jsIiwjfJA3VahlcpQd6sAyoB1Ti_fEPPie408nA2GJxehD6UQKjAZxvDUhVQszUSeKaaTKuG6UDrWMhGp1EUaaSaNtBwSDMzRPIcPFZcs15VNgN7rZL5-r80GoTEvVKwN2J0qQWQfmcTwCkyyGaoLKiBxS9lS-e5iuItR6eyNSJSOGyVyo_TcCMjhtMxHg7Lxa-4-MmyaExGy3QcYN6UfN-Vf4yYgq8juaSWCg-2WFQHZbtlf-tn8BXXBUge_TnhAdqfJMA_xcEXW5n3i8sQx-jlDFUVn2HTa2U2pX18cordIcWeHb_5Hx7bIAhKr2SbaJvPjz4nZAcVpXPXcHOk5H8cfjX4UoA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIcFe-BqIwAAjAS-QLomdxH5k0NHBWqTRTXuLHH8AYqQTax_gr-fOSaMFIcRLlcaOY-fufHe273cAz9AI996bLE6MkrEQLotrNHNjqXzuNSqMxFK883RWTI7F-9P8dANe9bEwzrlw-MyN6DLs5duFWdFS2a6SaF_n5RW4ino_T9torX7PoCwCrieKsIgFz5J1iEyiduezT0djdAazDH1URZA7W3CNQlLTvOQDjRSA-7tMKwOjc3hk8pIO2r8J03Xv26Mn30arZT0yv_4Advzf4d2CG50xyl633HMbNlxzB55fBh5m8xZ1gL1gRwNM7204-dhQKXvr3DnrYFo_M8qtdnbB0BRm4_G7mJSkZXuUhyJeJ5BgYRXSa-NYOLCAz6Djzw6-E5zGz7twvD-ev5nEXZaG2KA3ssRfW2qTiVwVucksr7m0pbGp1VwJbUuR2Ew77SUWOBT_osAbtdRZYWvP0dq4B5vNonH3gaWyNKl16NIaTqBBmqf4F6dAn5MlYiJI15SqTDdcyqRxVgVXJlFVIHRFhK46Qkfwsn_mvAXw-GftPWKAviaBb4cbSKiqk-UKLT7kNW2Uk0bwGplcWRxHQTG7tc9sBNtE3L6Rjq4R7KzZqeomigtsC2dRfDWXETzti1HEad9GN26xCnXSlEKosYlywIaDfg5Lmq9fAli4ErRoJB_8vU9P4PpkPj2sDg9mHx7CFn2Kdn1pBzaXP1buEVpcy_pxELTfTcYklw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Deep+Learning+Models+for+EEG-Based+Brain-Computer+Interface+Using+Motor+Imagery&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhu%2C+Hao&rft.au=Forenzo%2C+Dylan&rft.au=He%2C+Bin&rft.date=2022&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=30&rft.spage=2283&rft.epage=2291&rft_id=info:doi/10.1109%2FTNSRE.2022.3198041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2022_3198041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |