Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1α induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis
Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myoca...
Saved in:
Published in | Nutrition & metabolism Vol. 17; no. 1; p. 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
31.01.2020
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis.
The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression.
The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition.
The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α. |
---|---|
AbstractList | Background Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis. Methods The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression. Results The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition. Conclusion The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α. Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis. The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression. The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition. The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α. Abstract Background Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis. Methods The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression. Results The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition. Conclusion The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α. Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis.BACKGROUNDDiabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis.The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression.METHODSThe cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression.The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition.RESULTSThe results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition.The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α.CONCLUSIONThe results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α. |
ArticleNumber | 12 |
Author | Hsu, Yuan-Man Huang, Chih-Yang Wang, Shulin Li, Qiaowen Yang, Jai-Sing Tsai, Chang-Hai Shibu, Marthandam Asokan Liu, Shih-Ping Tsai, Fuu-Jen Tang, Chih-Hsin Chung, Jing-Gung |
Author_xml | – sequence: 1 givenname: Shih-Ping surname: Liu fullname: Liu, Shih-Ping – sequence: 2 givenname: Marthandam Asokan surname: Shibu fullname: Shibu, Marthandam Asokan – sequence: 3 givenname: Fuu-Jen surname: Tsai fullname: Tsai, Fuu-Jen – sequence: 4 givenname: Yuan-Man surname: Hsu fullname: Hsu, Yuan-Man – sequence: 5 givenname: Chang-Hai surname: Tsai fullname: Tsai, Chang-Hai – sequence: 6 givenname: Jing-Gung surname: Chung fullname: Chung, Jing-Gung – sequence: 7 givenname: Jai-Sing surname: Yang fullname: Yang, Jai-Sing – sequence: 8 givenname: Chih-Hsin surname: Tang fullname: Tang, Chih-Hsin – sequence: 9 givenname: Shulin surname: Wang fullname: Wang, Shulin – sequence: 10 givenname: Qiaowen surname: Li fullname: Li, Qiaowen – sequence: 11 givenname: Chih-Yang surname: Huang fullname: Huang, Chih-Yang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32021640$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhSNURH_gAdggS2zYBPybxBskqCgzUgUsytpynJuMR5442Mlowgux5kV4JjxMW7WVEGxsX_s7x7r2Oc2Oet9Dlj0n-DUhVfEmEiqrIscU55gzmu8eZSek5CwvcSmO7qyPs9MY1xgzxiV-kh0ziikpOD7JflzBGPQGxtXshjno77YHFGALIUJEK9ut8s5NxkdAtm8mAw1azYPfWYOgbcGMEdUz6qHTo92Cm5O2m1wq-g4tlhc5-fXzVvj-0_ILQ7AbAsRofY9Gj9LVzvqgR0ALaSgyOjTWb2ZfOx1HpAc_jD7a-DR73GoX4dn1fJZ9vfhwdb7ILz9_XJ6_u8yNEHLMta6MbAVvcG0oA6pZo8u6loy0vGq5xmmUkjeV0KIxzBSUixYqWhNWsKZh7CxbHnwbr9dqCHajw6y8turPhg-d0mG0xoEyNZRcc14awJwwU_EasMZFretSamyS19uD1zDVG2gM9Omp3T3T-ye9XanOb1UhpaC4TAavrg2C_zZBHNXGRgPO6R78FBUVlFMhBC3-jXKMeSEE-w-UCcKropJ79OUDdO2n0KcP2FMlr1KiZKJe3O3ztsGblCWgPAAm-BgDtMrYMWXE79u2ThGs9nlWhzyrlGe1z7PaJSV5oLwx_7vmN53C_IY |
CitedBy_id | crossref_primary_10_1002_tox_24372 crossref_primary_10_1007_s10522_021_09929_8 crossref_primary_10_3390_life12081250 crossref_primary_10_1016_j_jep_2020_113297 crossref_primary_10_1002_tox_23449 crossref_primary_10_3390_nu13061881 crossref_primary_10_18632_aging_205026 crossref_primary_10_3920_BM2020_0094 crossref_primary_10_1002_jcb_30146 crossref_primary_10_3390_ijms22126251 crossref_primary_10_1007_s12640_023_00666_z crossref_primary_10_1016_j_fct_2020_111837 crossref_primary_10_1002_ptr_7855 crossref_primary_10_18632_aging_204210 crossref_primary_10_1002_tox_23450 crossref_primary_10_1002_tox_24385 crossref_primary_10_1007_s12602_020_09668_1 crossref_primary_10_1007_s13273_022_00250_0 crossref_primary_10_62347_XTRT2780 crossref_primary_10_18632_aging_204466 crossref_primary_10_1002_tox_23737 crossref_primary_10_1016_j_cbi_2020_109331 crossref_primary_10_1007_s13273_024_00464_4 crossref_primary_10_1016_j_cbi_2023_110451 crossref_primary_10_1016_j_jnutbio_2024_109567 crossref_primary_10_1002_tox_23385 crossref_primary_10_1002_tox_23660 crossref_primary_10_1002_tox_23544 crossref_primary_10_1016_j_freeradbiomed_2021_07_026 crossref_primary_10_1016_j_heliyon_2023_e20011 crossref_primary_10_1002_tox_23145 crossref_primary_10_1016_j_phymed_2020_153450 crossref_primary_10_1016_j_bbrc_2020_07_052 crossref_primary_10_3389_fnut_2023_1085248 crossref_primary_10_1016_j_jff_2023_105901 crossref_primary_10_1002_tox_24240 crossref_primary_10_3389_fcvm_2021_749072 crossref_primary_10_4103_cjop_CJOP_D_23_00009 crossref_primary_10_1002_tox_23153 crossref_primary_10_1002_bab_2620 crossref_primary_10_3389_fmed_2022_910623 crossref_primary_10_1002_tox_23553 crossref_primary_10_1016_j_biopha_2022_113005 crossref_primary_10_1002_tox_23717 crossref_primary_10_1016_j_crtox_2023_100136 crossref_primary_10_1017_S0031182022001408 crossref_primary_10_1007_s12640_022_00544_0 crossref_primary_10_1002_jcb_29946 crossref_primary_10_1007_s12013_022_01080_6 crossref_primary_10_1016_j_bcp_2024_116552 crossref_primary_10_1210_clinem_dgac378 crossref_primary_10_3390_molecules26216577 crossref_primary_10_1016_j_jff_2023_105874 crossref_primary_10_3390_ijms23031387 crossref_primary_10_1002_tox_23360 crossref_primary_10_1002_tox_24332 crossref_primary_10_1097_HJH_0000000000003285 crossref_primary_10_3389_fphar_2022_891729 crossref_primary_10_1002_tox_23880 crossref_primary_10_1016_j_heliyon_2024_e29729 crossref_primary_10_1002_tox_23521 crossref_primary_10_1016_j_prmcm_2022_100171 crossref_primary_10_18632_aging_204131 crossref_primary_10_1142_S0192415X22500549 crossref_primary_10_1016_j_biopha_2023_114294 crossref_primary_10_1016_j_biopha_2021_112427 crossref_primary_10_1007_s11010_021_04261_8 crossref_primary_10_1016_j_cbi_2022_109810 crossref_primary_10_1002_tox_23936 crossref_primary_10_1002_tox_23935 crossref_primary_10_1002_tox_23818 crossref_primary_10_1007_s11033_023_08327_2 crossref_primary_10_18632_aging_205230 crossref_primary_10_1021_acs_jafc_1c02384 crossref_primary_10_1142_S0192415X24500472 crossref_primary_10_1016_j_jare_2020_06_015 crossref_primary_10_1002_tox_23460 crossref_primary_10_2174_1381612829666230215100507 crossref_primary_10_1002_tox_23101 crossref_primary_10_1002_bab_2671 crossref_primary_10_3390_molecules27134106 crossref_primary_10_1007_s12013_024_01286_w crossref_primary_10_1021_acs_jafc_4c05945 crossref_primary_10_1016_j_jff_2020_104255 crossref_primary_10_3389_fphar_2022_953438 crossref_primary_10_1016_j_mito_2024_101923 crossref_primary_10_1016_j_celbio_2025_100016 crossref_primary_10_18632_aging_205287 crossref_primary_10_1002_tox_23075 crossref_primary_10_1016_j_phymed_2022_154250 crossref_primary_10_1111_jfbc_14041 crossref_primary_10_1002_tox_23638 crossref_primary_10_1096_fj_202100572R crossref_primary_10_1002_tox_23637 crossref_primary_10_1007_s12602_022_09982_w crossref_primary_10_18632_aging_204526 crossref_primary_10_1039_D3DT02358C |
Cites_doi | 10.1001/archinte.163.4.445 10.1161/CIRCRESAHA.118.311371 10.1016/j.jvs.2010.12.030 10.2337/diaspect.21.3.160 10.1038/sj.cdd.4400852 10.1051/bmdcn/2017070204 10.4161/auto.5901 10.1016/j.jff.2018.10.038 10.1124/mol.106.027029 10.1002/tox.22510 10.1016/j.cub.2006.10.053 10.1242/jeb.01109 10.1016/j.jff.2018.11.040 10.1016/j.canlet.2013.03.015 10.1080/08977194.2016.1191480 10.1016/j.jep.2016.07.018 10.1016/j.vascn.2007.09.001 10.1080/09540105.2019.1611745 10.1016/j.ijcard.2015.05.111 10.1002/jcp.28151 10.1016/j.jnutbio.2015.12.020 10.1016/j.ejphar.2015.04.041 10.1007/s10616-016-9957-2 10.1371/journal.pone.0158619 10.1038/nature06639 10.1002/tox.22270 10.1016/j.neuropharm.2010.12.002 10.1056/NEJM200003023420904 10.1161/01.CIR.81.4.1161 10.1002/jms.3034 10.1084/jem.20030613 10.1186/s12986-019-0356-5 10.1007/s00204-015-1600-z 10.3390/nu5103854 10.4161/auto.5905 10.1038/sj.onc.1206666 10.1002/tox.22589 10.1007/978-981-10-5978-0_11 10.1161/CIRCRESAHA.107.164731 10.1016/j.molmed.2009.01.002 10.2337/diabetes.51.6.1938 10.1038/onc.2009.49 10.1002/tox.22742 10.1111/j.1742-7843.2007.00059.x 10.1007/s11626-010-9368-1 10.1007/s11010-008-9708-6 10.1016/S0008-6363(99)00372-7 10.1159/000374076 10.1038/nrc704 10.1161/01.CIR.0000091257.27563.32 10.1016/j.biopha.2017.11.020 10.1016/j.fct.2016.12.017 10.1101/gad.1243304 |
ContentType | Journal Article |
Copyright | The Author(s). 2020. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2020 |
Copyright_xml | – notice: The Author(s). 2020. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2020 |
DBID | AAYXX CITATION NPM 3V. 7QP 7RV 7TS 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. KB0 M0S M1P M2O MBDVC NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s12986-020-0432-x |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database ProQuest Research Library Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Diet & Clinical Nutrition |
EISSN | 1743-7075 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_cbe74a447ce0413c84be0a06bab79a0c PMC6995207 32021640 10_1186_s12986_020_0432_x |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: CMU102-TC-01 |
GroupedDBID | --- 04C 0R~ 123 29N 2WC 53G 5VS 7RV 7X7 88E 8FI 8FJ 8G5 A8Z AAFWJ AAHBH AAJSJ AASML AAWTL AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BCNDV BENPR BFQNJ BKEYQ BMC BMSDO BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EIHBH EMB EMK EMOBN ESTFP ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HMCUK HYE IAO ICU IHR ISR ITC KQ8 M1P M2O M48 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SCM SOJ SV3 TUS UKHRP WOQ WOW XSB 2VQ 4.4 ADRAZ AHSBF C1A EJD EX3 H13 IPNFZ NPM PJZUB PPXIY RIG 3V. 7QP 7TS 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c559t-aa8c9f54d0bc23e2a3da7bb931f48f4a048f994d85a5dc3c6245fe82b1363dd33 |
IEDL.DBID | 7X7 |
ISSN | 1743-7075 |
IngestDate | Wed Aug 27 01:21:02 EDT 2025 Thu Aug 21 13:49:43 EDT 2025 Fri Jul 11 15:09:43 EDT 2025 Fri Jul 11 10:23:16 EDT 2025 Fri Jul 11 06:57:56 EDT 2025 Fri Jul 25 22:16:55 EDT 2025 Mon Jul 21 06:04:04 EDT 2025 Tue Jul 01 02:17:43 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Caspase HIF-1 Hypoxia Diabetes mellitus Food flavoring |
Language | English |
License | The Author(s). 2020. Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-aa8c9f54d0bc23e2a3da7bb931f48f4a048f994d85a5dc3c6245fe82b1363dd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2357480339?pq-origsite=%requestingapplication% |
PMID | 32021640 |
PQID | 2357480339 |
PQPubID | 24069 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cbe74a447ce0413c84be0a06bab79a0c pubmedcentral_primary_oai_pubmedcentral_nih_gov_6995207 proquest_miscellaneous_2524255526 proquest_miscellaneous_2400465536 proquest_miscellaneous_2351486896 proquest_journals_2357480339 pubmed_primary_32021640 crossref_citationtrail_10_1186_s12986_020_0432_x crossref_primary_10_1186_s12986_020_0432_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-31 |
PublicationDateYYYYMMDD | 2020-01-31 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Nutrition & metabolism |
PublicationTitleAlternate | Nutr Metab (Lond) |
PublicationYear | 2020 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | GZ Feuerstein (432_CR5) 2000; 45 E Magi (432_CR52) 2012; 47 M Hu (432_CR7) 2016; 2016 YF Chen (432_CR44) 2016; 31 S-C Liu (432_CR38) 2019; 30 AL Harris (432_CR11) 2002; 2 BB Dokken (432_CR6) 2008; 21 P Witek (432_CR20) 2016; 68 CC Feng (432_CR18) 2016; 34 N Yurkova (432_CR17) 2008; 102 N Mizushima (432_CR33) 2008; 451 YL Hsieh (432_CR42) 2016; 192 M Li (432_CR58) 2004; 31 HP Chen (432_CR55) 2007; 100 C-C Feng (432_CR26) 2016; 34 DL Pucciarelli (432_CR51) 2013; 5 CY Tsai (432_CR45) 2015; 195 S Kothari (432_CR14) 2003; 22 RM Graham (432_CR10) 2004; 207 JY Kim (432_CR12) 2004; 199 SH Lee (432_CR27) 2000; 342 J Chen (432_CR53) 2017; 109 RJ Thomas (432_CR2) 2003; 163 HC Kenny (432_CR3) 2019; 124 Y Zhang (432_CR8) 2018; 2018 K Sada (432_CR9) 2016; 11 W Bursch (432_CR35) 2001; 8 MA Shibu (432_CR48) 2017 RW Li (432_CR59) 2015; 761 C Mammucari (432_CR16) 2008; 4 TC Or (432_CR22) 2011; 60 L Fan (432_CR23) 2011; 54 X Gong (432_CR56) 2016; 90 H-P Lee (432_CR40) 2019; 52 L Cai (432_CR4) 2002; 51 CY Tsai (432_CR41) 2019; 34 RC Scott (432_CR34) 2007; 17 C-C Feng (432_CR25) 2018; 97 X Zhang (432_CR57) 2019; 234 K-H Lin (432_CR24) 2015; 36 M Asokan Shibu (432_CR47) 2017; 7 MA Shibu (432_CR46) 2018; 33 JM Hwang (432_CR29) 2008; 311 SJ Watkins (432_CR19) 2011; 47 CC Lin (432_CR39) 2019; 43 Q Ke (432_CR32) 2006; 70 J Shaw (432_CR13) 2008; 4 YC Hsieh (432_CR36) 2009; 15 KM Wu (432_CR37) 2019; 16 AV Kuznetsov (432_CR21) 1853; 2015 MA Pfeffer (432_CR28) 1990; 81 AJ Giaccia (432_CR31) 2004; 18 K-H Lin (432_CR50) 2019; 52 Z Chen (432_CR54) 2013; 336 G Chinnadurai (432_CR15) 2008; 27 MA Creager (432_CR1) 2003; 108 PY Chen (432_CR43) 2017; 32 JT Chiang (432_CR49) 2018; 33 KR Pitts (432_CR30) 2008; 57 |
References_xml | – volume: 163 start-page: 445 year: 2003 ident: 432_CR2 publication-title: Arch Intern Med doi: 10.1001/archinte.163.4.445 – volume: 124 start-page: 121 year: 2019 ident: 432_CR3 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.118.311371 – volume: 54 start-page: 192 year: 2011 ident: 432_CR23 publication-title: J Vasc Surg doi: 10.1016/j.jvs.2010.12.030 – volume: 21 start-page: 160 year: 2008 ident: 432_CR6 publication-title: Diabetes Spectrum doi: 10.2337/diaspect.21.3.160 – volume: 8 start-page: 569 year: 2001 ident: 432_CR35 publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400852 – volume: 7 start-page: 11 year: 2017 ident: 432_CR47 publication-title: BioMedicine doi: 10.1051/bmdcn/2017070204 – volume: 4 start-page: 427 year: 2008 ident: 432_CR13 publication-title: Autophagy doi: 10.4161/auto.5901 – volume: 52 start-page: 212 year: 2019 ident: 432_CR50 publication-title: J Funct Foods doi: 10.1016/j.jff.2018.10.038 – volume: 70 start-page: 1469 year: 2006 ident: 432_CR32 publication-title: Mol Pharmacol doi: 10.1124/mol.106.027029 – volume: 33 start-page: 220 year: 2018 ident: 432_CR46 publication-title: Environ Toxicol doi: 10.1002/tox.22510 – volume: 2016 start-page: 9 year: 2016 ident: 432_CR7 publication-title: J Diab Res – volume: 17 start-page: 1 year: 2007 ident: 432_CR34 publication-title: Curr Biol doi: 10.1016/j.cub.2006.10.053 – volume: 207 start-page: 3189 year: 2004 ident: 432_CR10 publication-title: J Exp Biol doi: 10.1242/jeb.01109 – volume: 52 start-page: 537 year: 2019 ident: 432_CR40 publication-title: J Funct Foods doi: 10.1016/j.jff.2018.11.040 – volume: 336 start-page: 281 year: 2013 ident: 432_CR54 publication-title: Cancer Lett doi: 10.1016/j.canlet.2013.03.015 – volume: 43 start-page: e12902 year: 2019 ident: 432_CR39 publication-title: J Food Biochem – volume: 34 start-page: 73 year: 2016 ident: 432_CR18 publication-title: Growth Factors doi: 10.1080/08977194.2016.1191480 – volume: 192 start-page: 170 year: 2016 ident: 432_CR42 publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2016.07.018 – volume: 34 start-page: 73 year: 2016 ident: 432_CR26 publication-title: Growth Factors doi: 10.1080/08977194.2016.1191480 – volume: 57 start-page: 42 year: 2008 ident: 432_CR30 publication-title: J Pharmacol Toxicol Methods doi: 10.1016/j.vascn.2007.09.001 – volume: 30 start-page: 620 year: 2019 ident: 432_CR38 publication-title: Food Agric Immunol doi: 10.1080/09540105.2019.1611745 – volume: 195 start-page: 300 year: 2015 ident: 432_CR45 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2015.05.111 – volume: 234 start-page: 15098 year: 2019 ident: 432_CR57 publication-title: J Cell Physiol doi: 10.1002/jcp.28151 – volume: 31 start-page: 98 year: 2016 ident: 432_CR44 publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2015.12.020 – volume: 31 start-page: 97 year: 2004 ident: 432_CR58 publication-title: Clin Hemorheol Microcirc – volume: 761 start-page: 153 year: 2015 ident: 432_CR59 publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2015.04.041 – volume: 68 start-page: 2407 year: 2016 ident: 432_CR20 publication-title: Cytotechnology doi: 10.1007/s10616-016-9957-2 – volume: 11 start-page: e0158619 year: 2016 ident: 432_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0158619 – volume: 451 start-page: 1069 year: 2008 ident: 432_CR33 publication-title: Nature doi: 10.1038/nature06639 – volume: 2015 start-page: 276 year: 1853 ident: 432_CR21 publication-title: Biochim Biophys Acta – volume: 32 start-page: 679 year: 2017 ident: 432_CR43 publication-title: Environ Toxicol doi: 10.1002/tox.22270 – volume: 60 start-page: 823 year: 2011 ident: 432_CR22 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2010.12.002 – volume: 342 start-page: 626 year: 2000 ident: 432_CR27 publication-title: N Engl J Med doi: 10.1056/NEJM200003023420904 – volume: 81 start-page: 1161 year: 1990 ident: 432_CR28 publication-title: Circulation doi: 10.1161/01.CIR.81.4.1161 – volume: 47 start-page: 1191 year: 2012 ident: 432_CR52 publication-title: J Mass Spectrom doi: 10.1002/jms.3034 – volume: 199 start-page: 113 year: 2004 ident: 432_CR12 publication-title: J Exp Med doi: 10.1084/jem.20030613 – volume: 16 start-page: 36 year: 2019 ident: 432_CR37 publication-title: Nutr Metab (Lond) doi: 10.1186/s12986-019-0356-5 – volume: 90 start-page: 2187 year: 2016 ident: 432_CR56 publication-title: Arch Toxicol doi: 10.1007/s00204-015-1600-z – volume: 5 start-page: 3854 year: 2013 ident: 432_CR51 publication-title: Nutrients doi: 10.3390/nu5103854 – volume: 4 start-page: 524 year: 2008 ident: 432_CR16 publication-title: Autophagy doi: 10.4161/auto.5905 – volume: 22 start-page: 4734 year: 2003 ident: 432_CR14 publication-title: Oncogene doi: 10.1038/sj.onc.1206666 – volume: 33 start-page: 1113 year: 2018 ident: 432_CR49 publication-title: Environ Toxicol doi: 10.1002/tox.22589 – start-page: 337 volume-title: Medicinal Plants and Fungi: Recent Advances in Research and Development year: 2017 ident: 432_CR48 doi: 10.1007/978-981-10-5978-0_11 – volume: 102 start-page: 472 year: 2008 ident: 432_CR17 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.107.164731 – volume: 2018 start-page: 8 year: 2018 ident: 432_CR8 publication-title: J Diab Res – volume: 15 start-page: 129 year: 2009 ident: 432_CR36 publication-title: Trends Mol Med doi: 10.1016/j.molmed.2009.01.002 – volume: 51 start-page: 1938 year: 2002 ident: 432_CR4 publication-title: Diabetes doi: 10.2337/diabetes.51.6.1938 – volume: 27 start-page: S114 issue: Suppl 1 year: 2008 ident: 432_CR15 publication-title: Oncogene doi: 10.1038/onc.2009.49 – volume: 34 start-page: 760 year: 2019 ident: 432_CR41 publication-title: Environ Toxicol doi: 10.1002/tox.22742 – volume: 100 start-page: 366 year: 2007 ident: 432_CR55 publication-title: Basic Clin Pharmacol Toxicol doi: 10.1111/j.1742-7843.2007.00059.x – volume: 47 start-page: 125 year: 2011 ident: 432_CR19 publication-title: In Vitro Cell Dev Biol Anim doi: 10.1007/s11626-010-9368-1 – volume: 311 start-page: 179 year: 2008 ident: 432_CR29 publication-title: Mol Cell Biochem doi: 10.1007/s11010-008-9708-6 – volume: 45 start-page: 560 year: 2000 ident: 432_CR5 publication-title: Cardiovasc Res doi: 10.1016/S0008-6363(99)00372-7 – volume: 36 start-page: 334 year: 2015 ident: 432_CR24 publication-title: Cell Physiol Biochem doi: 10.1159/000374076 – volume: 2 start-page: 38 year: 2002 ident: 432_CR11 publication-title: Nat Rev Cancer doi: 10.1038/nrc704 – volume: 108 start-page: 1527 year: 2003 ident: 432_CR1 publication-title: Circulation doi: 10.1161/01.CIR.0000091257.27563.32 – volume: 97 start-page: 880 year: 2018 ident: 432_CR25 publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2017.11.020 – volume: 109 start-page: 930 year: 2017 ident: 432_CR53 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2016.12.017 – volume: 18 start-page: 2183 year: 2004 ident: 432_CR31 publication-title: Genes Dev doi: 10.1101/gad.1243304 |
SSID | ssj0033490 |
Score | 2.541332 |
Snippet | Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our... Background Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate... BACKGROUND: Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate... Abstract Background Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 12 |
SubjectTerms | Apoptosis BNIP3 protein Cardiomyocytes Cardiovascular disease Caspase Cell viability Cytotoxicity Diabetes Diabetes mellitus Flavors Food flavoring Gene expression Glucose HIF-1 Hyperglycemia Hypoxia hypoxia-inducible factor 1 Membranes Metabolism nutrition patients protein synthesis Proteins pyrazines |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQV2wQtDwCBRkJsUCKmsTvZQuMpkiMWLRSd5FfoSNNk6iTSpMvYs2P8E1cO8mog9CwYRtfJ7Hv9X3EJ8cIvXNccFpxm8rK6ZRSz1PjKE0tNV4L5vOKhZ-Tvy74_JJ-uWJX9476CpiwgR54mLgTa7ygmlJhfQYO10q4SaYzbrQRSmc2eF-IeVMxNfhgQqia9jBzyU_WENVkANsGKCMp0s1OFIpk_X_LMP8ESt6LPLPH6NGYMuLT4VWfoAe-PkRHpzWUyzc9fo8jiDN-HT9Eyael7-DaSPe5wouJbf8I_bjwXYBigWpWbX8beaVxYHAKMA4ceIsnADuGQh1U7vB13zabpcUj6gObHtf-e-QKX_XQN55jD8EPz89naf7r57bj2eL8G8F-M8Jsa9w1GB69CoQAncdzZQtsIxT2pm8MZPAd1m3Tds16uX6KLmefLz7O0_GchtRCPdKlWkurKkZdZmxBfKGJ08IYRfKKyopqcBKVUtRJppmzxPKCssrLwuSEE-cIeYYO6qb2LxB2QnNuiRAWOgqV60KawPDGaKUc9zJB2aS30o4k5uEsjVUZixnJy0HVJai6DKouNwn6sO3SDgwe-4TPgjFsBQP5drwAJlmOJln-yyQTdDyZUjl6hHUZaIWoBMtUCXq7bYa1HDZodO2buygD1SmXiu-RCU4XZoTsk2GhkGSsAJnngwVvR0QKyOo4zRIkdmx7Z8i7LfXyOvKOc6VYkYmX_2OOXqGHRVyOOWQBx-igu73zryG968ybuJJ_A404VHA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEF5V5cIFQctPSkGLhDggGWzv_wGhFohSpEYcGqk3a3e9biO5dkhcKX4izrwIz8TsxrYIinK1Z2StZ2Znxvv5G4Te5lxwWnAbySLXEaWORyanNLLUOC2YSwrmf06-nPLJjH6_ZtcHqB9v1b3A1c7Wzs-Tmi3LD-uf7WcI-E8h4CX_uIKcJT2U1gMVSRpBSfkAEpPwAw0u6XCoQAhV_cHmTrWt1BQY_HeVnf-jJ_9JR-PH6FFXR-KzjeGfoANXHaHjswp66LsWv8MB2Rk-mR-h0de5a-BaxwFa4mlPwX-Mfl25xuOzwF7lol0GsmnsaZ08tgN7MuMe1Y6hewc_yPFtu6jXc4s7KAg2La7cTSAQL1vQDcPtISPiycU4Sv78HhTPpxc_CHbrDntb4abG8OjSswQ0Dk-UTbEN-Ni7tjZQ1jdYL-pFU6_mq6doNv529WUSdcMbIgtNShNpLa0qGM1jY1PiUk1yLYxRJCmoLKiGnaNQiuaSaZZbYnlKWeFkahLCSZ4T8gwdVnXlXiCcC825JUJYUBQq0ak0nvaN0ULl3MkRinu7ZbZjNvcDNsosdDiSZxtTZ2DqzJs6W4_Q-0FlsaH12Cd87p1hEPSM3OFCvbzJugDPrHGCakqFdTEUBlaCs8c65kYboXRsR-i0d6Ws9_LMcw1RCZ6pRujNcBsC3J_a6MrV90EGWlYuFd8j43dieCNknwzz3SVjKcg833jwsCKSQqnHaTxCYsu3t5a8faea3wYycq4US2Nxsn95L9HDNARaAkn_FB02y3v3Cqq5xrwOMfoXZbxOIg priority: 102 providerName: Scholars Portal |
Title | Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1α induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32021640 https://www.proquest.com/docview/2357480339 https://www.proquest.com/docview/2351486896 https://www.proquest.com/docview/2400465536 https://www.proquest.com/docview/2524255526 https://pubmed.ncbi.nlm.nih.gov/PMC6995207 https://doaj.org/article/cbe74a447ce0413c84be0a06bab79a0c |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB60ffFFtPUSrcsI4oMQmmTuT9LVLluhS5EW-hbmlnZhm6S7KWx-kc_-EX-TM7NJdEX2JQ_JGcLknDmXmS_fAeCDoYziguqYF0bGGFsaK4NxrLGykhGbFsT_nHw-o9Mr_O2aXHcbbqsOVtn7xOCoTaX9Hvmxp2XBPEFIfK7vY981yp-udi00HoN9T13mrZpdDwUXQlj0J5kpp8crF9u4h9x6QCPK4vVWLAqU_f_LM_-FS_4VfybPwNMucYQnG00_B49seQAOT0pXNN-18CMMUM6wR34Aoq9z27h7HennAs56zv1D8OPSNh6Q5RS0qNtlYJeGnsfJgzmgZy_uYezQletO8QbetnW1nmvYYT-gamFpbwJj-KJ1Y0M3excC4fRsEqe_fg4Dx7OzCwTtugPblrCpoHv1wtMCNBZOhc6gDoDYu7ZSLo9voKyruqlW89ULcDU5vfwyjbtuDbF2VUkTS8m1KAg2idIZsplERjKlBEoLzAssnasohMCGE0mMRppmmBSWZypFFBmD0EuwV1alfQ2gYZJSjRjTbiATqcy48jxvBBfCUMsjkPR6y3VHZe47aizyUNJwmm9UnTtV517V-ToCn4Yh9YbHY5fw2BvDIOgpuMONanmTdys618oyLDFm2iYuE9DcWXciE6qkYkImOgJHvSnlnV9Y5X-sOALvh8duRftjGlna6iHIuBqVckF3yHjX674I2iVDfDlJSOZkXm0seJgRylxuR3ESAbZl21tT3n5Szm8D-zgVgmQJe7N7em_BkywstNRF-SOw1ywf7DuXvjVqFNboCOyPT2cX30dhE8RdzzH_Dfu9Tlc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWqsoANgpZHoICRgAXSqDO2x48FQi0lSmgbsUil7Aa_Jo2UzoRkKjJfxA6JH-GbsJ2ZQBDKrtuZa0XOPb6-1z5zLgCvDGWU5FRHPDcyIsTSSBlCIk2UlSy1SZ76j5PPB7R3QT6N0tEO-NF-C-NplW1MDIHalNqfkR96WRbCY4zF-9nXyHeN8rerbQuNFSxObf3NlWyLd_0T59_XCHU_Dj_0oqarQKRd9lxFUnIt8pSYWGmELZLYSKaUwElOeE6kg3QuBDE8lanRWFNE0txypBJMsTH-ANSF_Ftu4419scdG6wIPYyLam9OE08OF20u5p_h6AiVG0XJj7wstAv6X1_5Lz_xrv-veA3ebRBUerZB1H-zYYg_sHxWuSL-q4RsYqKPhTH4PdE4mtnLPGpHRKRy0Gv_74PvQVp4A5gAxndXzoGYNvW6UJ49Ar5bc0ubhpDAOaAZe1rNyOdGw4ZpAVcPCjoNC-bR2Y8eh5Vgxhr1-N0p-_VwPPB70P2Nolw25t4BVCd1PT70MQWVhT2gEdSDgXtWlcnVDBeWsnFXlYrJ4AC5uxI8PwW5RFvYxgIZJSjVmTLuBTCQSceV15VKSC0Mt74C49VumG-l038FjmoUSitNs5erMuTrzrs6WHfB2PWS20g3ZZnzswbA29JLf4UE5H2dNBMm0soxIQpi2scs8NHerKZYxVVIxIWPdAQctlLImDi2yP6umA16uX7sI4q-FZGHL62DjamLKBd1i40O9-0fwNpvUl69pipzNoxWC1zPCyOWSlMQdwDawvTHlzTfF5DKonVMhUhSzJ9un9wLc7g3Pz7Kz_uD0KbiDwqJLXIZxAHar-bV95lLHSj0P6xWCLzcdIH4DXviIuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tetramethylpyrazine+reverses+high-glucose+induced+hypoxic+effects+by+negatively+regulating+HIF-1%CE%B1+induced+BNIP3+expression+to+ameliorate+H9c2+cardiomyoblast+apoptosis&rft.jtitle=Nutrition+%26+metabolism&rft.date=2020-01-31&rft.pub=BioMed+Central&rft.eissn=1743-7075&rft.volume=17&rft.spage=1&rft_id=info:doi/10.1186%2Fs12986-020-0432-x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-7075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-7075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-7075&client=summon |