Parallel Spatial–Temporal Self-Attention CNN-Based Motor Imagery Classification for BCI

Motor imagery (MI) electroencephalography (EEG) classification is an important part of the brain-computer interface (BCI), allowing people with mobility problems to communicate with the outside world via assistive devices. However, EEG decoding is a challenging task because of its complexity, dynami...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 14; p. 587520
Main Authors Liu, Xiuling, Shen, Yonglong, Liu, Jing, Yang, Jianli, Xiong, Peng, Lin, Feng
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 11.12.2020
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor imagery (MI) electroencephalography (EEG) classification is an important part of the brain-computer interface (BCI), allowing people with mobility problems to communicate with the outside world via assistive devices. However, EEG decoding is a challenging task because of its complexity, dynamic nature, and low signal-to-noise ratio. Designing an end-to-end framework that fully extracts the high-level features of EEG signals remains a challenge. In this study, we present a parallel spatial–temporal self-attention-based convolutional neural network for four-class MI EEG signal classification. This study is the first to define a new spatial-temporal representation of raw EEG signals that uses the self-attention mechanism to extract distinguishable spatial–temporal features. Specifically, we use the spatial self-attention module to capture the spatial dependencies between the channels of MI EEG signals. This module updates each channel by aggregating features over all channels with a weighted summation, thus improving the classification accuracy and eliminating the artifacts caused by manual channel selection. Furthermore, the temporal self-attention module encodes the global temporal information into features for each sampling time step, so that the high-level temporal features of the MI EEG signals can be extracted in the time domain. Quantitative analysis shows that our method outperforms state-of-the-art methods for intra-subject and inter-subject classification, demonstrating its robustness and effectiveness. In terms of qualitative analysis, we perform a visual inspection of the new spatial–temporal representation estimated from the learned architecture. Finally, the proposed method is employed to realize control of drones based on EEG signal, verifying its feasibility in real-time applications.
AbstractList Motor imagery (MI) electroencephalography (EEG) classification is an important part of the brain--computer interface (BCI), allowing people with mobility problems to communicate with the outside world via assistive devices. However, EEG decoding is a challenging task because of its complexity, dynamic nature, and low signal-to-noise ratio. Designing an end-to-end framework that fully extracts the high-level features of EEG signals remains a challenge. In this study, we present a parallel spatial--temporal self-attention-based convolutional neural network for four-class MI EEG signal classification. This study is the first to define a new spatial--temporal representation of raw EEG signals that uses the self-attention mechanism to extract distinguishable spatial--temporal features. Specifically, we use the spatial self-attention module to capture the spatial dependencies between the channels of MI EEG signals. This module updates each channel by aggregating features over all channels with a weighted summation, thus improving the classification accuracy and eliminating the artifacts caused by manual channel selection. Furthermore, the temporal self-attention module encodes the global temporal information into features for each sampling time step, so that the high-level temporal features of the MI EEG signals can be extracted in the time domain. Quantitative analysis shows that our method outperforms state-of-the-art methods for intra-subject and inter-subject classification, demonstrating its robustness and effectiveness. In terms of qualitative analysis, we perform a visual inspection of the new spatial--temporal representation estimated from the learned architecture. Finally, the proposed method is employed to realize control of drones based on EEG signal, verifying its feasibility in real-time applications.
Motor imagery (MI) electroencephalography (EEG) classification is an important part of the brain-computer interface (BCI), allowing people with mobility problems to communicate with the outside world via assistive devices. However, EEG decoding is a challenging task because of its complexity, dynamic nature, and low signal-to-noise ratio. Designing an end-to-end framework that fully extracts the high-level features of EEG signals remains a challenge. In this study, we present a parallel spatial-temporal self-attention-based convolutional neural network for four-class MI EEG signal classification. This study is the first to define a new spatial-temporal representation of raw EEG signals that uses the self-attention mechanism to extract distinguishable spatial-temporal features. Specifically, we use the spatial self-attention module to capture the spatial dependencies between the channels of MI EEG signals. This module updates each channel by aggregating features over all channels with a weighted summation, thus improving the classification accuracy and eliminating the artifacts caused by manual channel selection. Furthermore, the temporal self-attention module encodes the global temporal information into features for each sampling time step, so that the high-level temporal features of the MI EEG signals can be extracted in the time domain. Quantitative analysis shows that our method outperforms state-of-the-art methods for intra-subject and inter-subject classification, demonstrating its robustness and effectiveness. In terms of qualitative analysis, we perform a visual inspection of the new spatial-temporal representation estimated from the learned architecture. Finally, the proposed method is employed to realize control of drones based on EEG signal, verifying its feasibility in real-time applications.Motor imagery (MI) electroencephalography (EEG) classification is an important part of the brain-computer interface (BCI), allowing people with mobility problems to communicate with the outside world via assistive devices. However, EEG decoding is a challenging task because of its complexity, dynamic nature, and low signal-to-noise ratio. Designing an end-to-end framework that fully extracts the high-level features of EEG signals remains a challenge. In this study, we present a parallel spatial-temporal self-attention-based convolutional neural network for four-class MI EEG signal classification. This study is the first to define a new spatial-temporal representation of raw EEG signals that uses the self-attention mechanism to extract distinguishable spatial-temporal features. Specifically, we use the spatial self-attention module to capture the spatial dependencies between the channels of MI EEG signals. This module updates each channel by aggregating features over all channels with a weighted summation, thus improving the classification accuracy and eliminating the artifacts caused by manual channel selection. Furthermore, the temporal self-attention module encodes the global temporal information into features for each sampling time step, so that the high-level temporal features of the MI EEG signals can be extracted in the time domain. Quantitative analysis shows that our method outperforms state-of-the-art methods for intra-subject and inter-subject classification, demonstrating its robustness and effectiveness. In terms of qualitative analysis, we perform a visual inspection of the new spatial-temporal representation estimated from the learned architecture. Finally, the proposed method is employed to realize control of drones based on EEG signal, verifying its feasibility in real-time applications.
Author Xiong, Peng
Liu, Jing
Liu, Xiuling
Yang, Jianli
Lin, Feng
Shen, Yonglong
AuthorAffiliation 2 Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University , Baoding , China
4 Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences , Beijing , China
1 College of Electronic Information Engineering, Hebei University , Baoding , China
3 College of Computer and Cyber Security, Hebei Normal University , Shijiazhuang , China
5 School of Computer Science and Engineering, Nanyang Technological University , Singapore , Singapore
AuthorAffiliation_xml – name: 3 College of Computer and Cyber Security, Hebei Normal University , Shijiazhuang , China
– name: 2 Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University , Baoding , China
– name: 4 Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences , Beijing , China
– name: 1 College of Electronic Information Engineering, Hebei University , Baoding , China
– name: 5 School of Computer Science and Engineering, Nanyang Technological University , Singapore , Singapore
Author_xml – sequence: 1
  givenname: Xiuling
  surname: Liu
  fullname: Liu, Xiuling
– sequence: 2
  givenname: Yonglong
  surname: Shen
  fullname: Shen, Yonglong
– sequence: 3
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
– sequence: 4
  givenname: Jianli
  surname: Yang
  fullname: Yang, Jianli
– sequence: 5
  givenname: Peng
  surname: Xiong
  fullname: Xiong, Peng
– sequence: 6
  givenname: Feng
  surname: Lin
  fullname: Lin, Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33362458$$D View this record in MEDLINE/PubMed
BookMark eNp9ksluFDEQhi0URBZ4AC6oJS5cevDabl-QklYCI2VBSpDgZLm9DB6524PdEym3vANvyJPgzIQoyYGTraqvftXy74OdMY4WgLcIzghpxUc3-jHPMMRwxlrOMHwB9lDT4Joy8n3n0X8X7Oe8hLDBLcWvwC4hpMGUtXvgx1eVVAg2VJcrNXkV_tz-vrLDKpZodWmDqw-nyY6Tj2PVnZ_XRypbU53FKaZqPqiFTTdVF1TO3nmtNpgrqaNu_hq8dCpk--b-PQDfTo6vui_16cXneXd4WmvGxFRzQSAiAjnTOKcxJry1RkDbM0qoExwxbJDrlaOU9dD0RAhqueAGK0GpNuQAzLe6JqqlXCU_qHQjo_JyE4hpIVWavA5WEo2JY1BgLjCFAiliDCeqb3kjtBG8aH3aaq3W_WCNLoOXPTwRfZoZ_U-5iNeScyaaRhSBD_cCKf5a2zzJwWdtQ1CjjessMeWEIowgK-j7Z-gyrtNYVlWoRlBMKaKFeve4o4dW_l2wAGgL6BRzTtY9IAjKO5fIjUvknUvk1iWlhj-r0X7aHK8M5cN_Kv8CdYPCyg
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3085865
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_1109_TNSRE_2023_3241846
crossref_primary_10_3390_brainsci13020268
crossref_primary_10_3390_diagnostics12040995
crossref_primary_10_1109_TNSRE_2023_3242280
crossref_primary_10_3390_s24237611
crossref_primary_10_1186_s13040_023_00336_y
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_1016_j_bspc_2021_102983
crossref_primary_10_3390_math9243297
crossref_primary_10_1016_j_jneumeth_2024_110356
crossref_primary_10_1109_ACCESS_2024_3392008
crossref_primary_10_3390_electronics11223674
crossref_primary_10_1016_j_bspc_2021_102826
crossref_primary_10_1016_j_bspc_2024_106092
crossref_primary_10_3390_bioengineering9070323
crossref_primary_10_1109_TNSRE_2022_3198041
crossref_primary_10_1016_j_measurement_2024_115500
crossref_primary_10_1109_TIM_2024_3375980
crossref_primary_10_1016_j_bspc_2025_107491
crossref_primary_10_1109_TBME_2023_3274231
crossref_primary_10_1016_j_bspc_2022_104141
crossref_primary_10_1016_j_bspc_2024_106206
crossref_primary_10_1109_TNSRE_2023_3342331
crossref_primary_10_1007_s11760_023_02986_1
crossref_primary_10_1088_1741_2552_ac93b4
crossref_primary_10_1109_THMS_2023_3332209
crossref_primary_10_3390_bios12010022
crossref_primary_10_3934_mbe_2023116
crossref_primary_10_1016_j_jneumeth_2023_109953
crossref_primary_10_12677_CSA_2024_143052
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1364_BOE_516063
crossref_primary_10_1016_j_compbiomed_2023_107254
crossref_primary_10_1088_1741_2552_acfe9c
crossref_primary_10_1109_ACCESS_2023_3285236
crossref_primary_10_1007_s11042_023_16536_x
crossref_primary_10_3934_mbe_2022325
crossref_primary_10_1038_s41598_024_79202_8
Cites_doi 10.3389/fnins.2019.01275
10.1007/978-3-030-32520-6_22
10.1016/j.bspc.2018.12.027
10.1152/jn.01113.2002
10.1109/TNNLS.2018.2789927
10.1109/TMI.2016.2520024
10.1016/S1388-2457(01)00661-7
10.1109/TNSRE.2019.2938295
10.1109/TNSRE.2019.2915621
10.1002/hbm.23730
10.1109/TNSRE.2019.2923315
10.1109/TNSRE.2016.2601240
10.1109/TPAMI.2017.2730871
10.3389/fnins.2012.00055
10.1088/1741-2552/aab2f2
10.1109/APWC-on-CSE.2016.017
10.1088/1741-2560/14/1/016003
10.1088/1741-2552/aace8c
10.1016/S1388-2457(98)00038-8
10.1016/j.patrec.2017.03.023
10.1016/S0013-4694(97)00080-1
10.1007/978-3-319-67361-5_40
10.1016/j.neunet.2019.07.008
10.1016/j.future.2019.06.027
10.1109/TNSRE.2019.2953121
10.1080/00222895.2017.1327417
10.1016/j.clinph.2008.06.019
10.1109/TNSRE.2017.2655542
10.1016/j.neuroimage.2013.10.027
10.1016/S1388-2457(99)00141-8
10.1109/86.895946
ContentType Journal Article
Copyright Copyright © 2020 Liu, Shen, Liu, Yang, Xiong and Lin.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Liu, Shen, Liu, Yang, Xiong and Lin. 2020 Liu, Shen, Liu, Yang, Xiong and Lin
Copyright_xml – notice: Copyright © 2020 Liu, Shen, Liu, Yang, Xiong and Lin.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Liu, Shen, Liu, Yang, Xiong and Lin. 2020 Liu, Shen, Liu, Yang, Xiong and Lin
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2020.587520
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_3c23f50927924091a3dd73ab8769cd97
PMC7759669
33362458
10_3389_fnins_2020_587520
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61802109; 61673158
– fundername: Natural Science Foundation of Hebei Province
  grantid: F2020205006
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c559t-79301391fd6ffc22378ed90eb5434f97152d1fbaf445b0db3994e797d2a944cd3
IEDL.DBID BENPR
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:24:44 EDT 2025
Thu Aug 21 18:28:49 EDT 2025
Fri Jul 11 02:10:15 EDT 2025
Fri Jul 25 11:43:55 EDT 2025
Thu Jan 02 22:58:33 EST 2025
Tue Jul 01 01:39:16 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords spatial-temporal self-attention
deep learning
BCI
motor imagery
EEG
Language English
License Copyright © 2020 Liu, Shen, Liu, Yang, Xiong and Lin.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-79301391fd6ffc22378ed90eb5434f97152d1fbaf445b0db3994e797d2a944cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Davide Valeriani, Massachusetts Eye & Ear Infirmary, Harvard Medical School, United States; Jacobo Fernandez-Vargas, University of Essex, United Kingdom
Edited by: Saugat Bhattacharyya, Ulster University, United Kingdom
OpenAccessLink https://www.proquest.com/docview/2469424414?pq-origsite=%requestingapplication%
PMID 33362458
PQID 2469424414
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_3c23f50927924091a3dd73ab8769cd97
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7759669
proquest_miscellaneous_2473412105
proquest_journals_2469424414
pubmed_primary_33362458
crossref_primary_10_3389_fnins_2020_587520
crossref_citationtrail_10_3389_fnins_2020_587520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-11
PublicationDateYYYYMMDD 2020-12-11
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-11
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Ehrsson (B6) 2003; 90
Qiu (B27) 2017; 25
Vaswani (B37) 2017
De (B5) 2017; 40
Li (B16) 2019; 27
Jin (B11) 2019; 118
Gramfort (B10) 2014; 86
Lin (B17) 2017
Ma (B21) 2017
Tabar (B35) 2016; 14
Schirrmeister (B30) 2017; 38
Zhang (B39) 2019
Lotte (B18) 2018; 15
Lu (B19) 2016; 25
Sakhavi (B29) 2018; 29
Zhu (B41) 2018
Kumar (B14) 2016
Amin (B1) 2019; 101
Gong (B9) 2018; 50
Neuper (B24) 2001; 112
Zhu (B42) 2019; 49
Lawhern (B15) 2018; 15
B33
Fu (B7) 2019
Kumar (B13) 2016; 35
Ma (B20) 2018
Ang (B3) 2008
Kübler (B12) 2008; 119
Tangermann (B36) 2012; 6
Sharma (B32) 2017; 94
Zhao (B40) 2019; 27
Müller-Gerking (B23) 1999; 110
Ramoser (B28) 2000; 8
Glorot (B8) 2010
Pfurtscheller (B26) 1997; 103
Shah (B31) 2018
Song (B34) 2019
Wu (B38) 2019; 13
Ang (B2) 2012
Ma (B22) 2020; 28
Pfurtscheller (B25) 1999; 110
Azab (B4) 2019; 27
References_xml – volume: 13
  start-page: 1275
  year: 2019
  ident: B38
  article-title: A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2019.01275
– start-page: 5998
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: B37
  article-title: “Attention is all you need,”
– year: 2018
  ident: B41
  article-title: Negative log likelihood ratio loss for deep neural network classification
  publication-title: arXiv preprint arXiv:1804.10690
  doi: 10.1007/978-3-030-32520-6_22
– volume: 49
  start-page: 396
  year: 2019
  ident: B42
  article-title: Separated channel convolutional neural network to realize the training free motor imagery BCI systems
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.12.027
– volume: 90
  start-page: 3304
  year: 2003
  ident: B6
  article-title: Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.01113.2002
– start-page: 249
  volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
  year: 2010
  ident: B8
  article-title: “Understanding the difficulty of training deep feedforward neural networks,”
– start-page: 136
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2017
  ident: B21
  article-title: “Nonlinear statistical shape modeling for ankle bone segmentation using a novel Kernelized robust PCA,”
– volume: 29
  start-page: 5619
  year: 2018
  ident: B29
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2018.2789927
– start-page: 3146
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: B7
  article-title: “Dual attention network for scene segmentation,”
– start-page: 480
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2018
  ident: B20
  article-title: “A novel Bayesian model incorporating deep neural network and statistical shape model for pancreas segmentation,”
– volume: 35
  start-page: 1555
  year: 2016
  ident: B13
  article-title: Mixed spectrum analysis on fMRI time-series
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2520024
– volume: 112
  start-page: 2084
  year: 2001
  ident: B24
  article-title: Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(01)00661-7
– start-page: 39
  volume-title: Front. Neurosci
  year: 2012
  ident: B2
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
– volume: 27
  start-page: 2164
  year: 2019
  ident: B40
  article-title: A multi-branch 3D convolutional neural network for EEG-based motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2019.2938295
– volume: 27
  start-page: 1170
  year: 2019
  ident: B16
  article-title: A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2019.2915621
– volume: 38
  start-page: 5391
  year: 2017
  ident: B30
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.23730
– volume: 27
  start-page: 1352
  year: 2019
  ident: B4
  article-title: Weighted transfer learning for improving motor imagery-based brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2019.2923315
– volume: 25
  start-page: 566
  year: 2016
  ident: B19
  article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2016.2601240
– volume: 40
  start-page: 1770
  year: 2017
  ident: B5
  article-title: Transduction on directed graphs via absorbing random walks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2017.2730871
– start-page: 7354
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: B39
  article-title: “Self-attention generative adversarial networks,”
– year: 2017
  ident: B17
  article-title: A structured self-attentive sentence embedding
  publication-title: arXiv preprint arXiv:1703.03130
– ident: B33
– volume: 6
  start-page: 55
  year: 2012
  ident: B36
  article-title: Review of the BCI competition IV
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2012.00055
– volume: 15
  start-page: 031005
  year: 2018
  ident: B18
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aab2f2
– start-page: 34
  volume-title: 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)
  year: 2016
  ident: B14
  article-title: “A deep learning approach for motor imagery EEG signal classification,”
  doi: 10.1109/APWC-on-CSE.2016.017
– volume: 14
  start-page: 016003
  year: 2016
  ident: B35
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/14/1/016003
– volume: 15
  start-page: 056013
  year: 2018
  ident: B15
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 110
  start-page: 787
  year: 1999
  ident: B23
  article-title: Designing optimal spatial filters for single-trial EEG classification in a movement task
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(98)00038-8
– volume: 94
  start-page: 172
  year: 2017
  ident: B32
  article-title: Adam: a method for stochastic optimization
  publication-title: Pattern Recogn. Lett
  doi: 10.1016/j.patrec.2017.03.023
– volume: 103
  start-page: 642
  year: 1997
  ident: B26
  article-title: EEG-based discrimination between imagination of right and left hand movement
  publication-title: Electroencephalogr. Clin. Neurophysiol
  doi: 10.1016/S0013-4694(97)00080-1
– start-page: 621
  volume-title: Field and Service Robotics
  year: 2018
  ident: B31
  article-title: “AirSim: High-fidelity visual and physical simulation for autonomous vehicles,”
  doi: 10.1007/978-3-319-67361-5_40
– volume: 118
  start-page: 262
  year: 2019
  ident: B11
  article-title: Correlation-based channel selection and regularized feature optimization for MI-based BCI
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.07.008
– volume: 101
  start-page: 542
  year: 2019
  ident: B1
  article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion
  publication-title: Future Gener. Comput. Syst
  doi: 10.1016/j.future.2019.06.027
– volume: 28
  start-page: 297
  year: 2020
  ident: B22
  article-title: Deep channel-correlation network for motor imagery decoding from the same limb
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2019.2953121
– volume: 50
  start-page: 254
  year: 2018
  ident: B9
  article-title: Time-frequency cross mutual information analysis of the brain functional networks underlying multiclass motor imagery
  publication-title: J. Motor Behav
  doi: 10.1080/00222895.2017.1327417
– volume: 119
  start-page: 2658
  year: 2008
  ident: B12
  article-title: Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?
  publication-title: Clin. Neurophysiol
  doi: 10.1016/j.clinph.2008.06.019
– start-page: 1
  volume-title: 2019 International Joint Conference on Neural Networks (IJCNN)
  year: 2019
  ident: B34
  article-title: “EEG-based motor imagery classification with deep multi-task learning,”
– volume: 25
  start-page: 1009
  year: 2017
  ident: B27
  article-title: Optimized motor imagery paradigm based on imagining Chinese characters writing movement
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2017.2655542
– start-page: 2390
  year: 2008
  ident: B3
  article-title: “Filter bank common spatial pattern (FBCSP) in brain-computer interface,”
  publication-title: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
– volume: 86
  start-page: 446
  year: 2014
  ident: B10
  article-title: MNE software for processing MEG and EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 110
  start-page: 1842
  year: 1999
  ident: B25
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 8
  start-page: 441
  year: 2000
  ident: B28
  article-title: Optimal spatial filtering of single trial eeg during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng
  doi: 10.1109/86.895946
SSID ssj0062842
Score 2.4456441
Snippet Motor imagery (MI) electroencephalography (EEG) classification is an important part of the brain-computer interface (BCI), allowing people with mobility...
Motor imagery (MI) electroencephalography (EEG) classification is an important part of the brain--computer interface (BCI), allowing people with mobility...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 587520
SubjectTerms Accuracy
BCI
Classification
Deep learning
EEG
Electroencephalography
Feature selection
Mental task performance
Methods
motor imagery
Neural networks
Neuroscience
spatial-temporal self-attention
Temporal variations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy6ohbakpciVqh6QAnHsxPFxd1UElVhxAAlOkT9VpCVboXDgxn_gH_JLOmNnV7tVRS-9Oo7ieMaZ9-LxG0K-Kmm8CJznrPRAUBgQFF2pIpdK-QLCMSBePOB8Pq1Pr8SP6-p6pdQX5oQleeA0ccfcljxAVEOhO-AiTHPnJNcGVrGyTsVz5NC8IFPpG1zDR7dMe5hAwdRx6G471OYui6MKADoW916JQlGs_28I889EyZXIc_KGbA-QkY7SUN-SDd_tkN1RB3T57pF-ozGJM_4d3yU3F_oeq6PMKNYaBt96eXq-TOpT0ORnIR_1fcpwpJPpNB9DEHP0fA7Mm57doZ7FI411MjGDKBqNAqql48nZO3J18v1ycpoP1RNyCyyhh9nmCO9YcHUIFlCAbLxThTd4mDQoCYHbsWB0EKIyhTOAVISXSrpSKyGs4-_JZjfv_B6hEgKpL42tNW-ELWxTN05bY2RlmG20zEixmM3WDtLiWOFi1gLFQAO00QAtGqBNBsjI4fKWX0lX47XOYzTRsiNKYscGcJR2cJT2X46Skf2FgdthncJDRK3wqB8TGfmyvAwrDLdNdOfnD9hHQqgHalxl5EPyh-VIOAcAIKomI3LNU9aGun6lu_0ZVbylrIBqqo__490-kS2cLkyzYWyfbPb3D_4zgKXeHMR18RvALBJL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLWm8cILYoyPwEBGQjwgZSSxE8cPCLUV04bUiodVGk-WP9mkLoUuk-gb_4F_yC_hXieNKKr2mriV5Xvdc059fS4hb6QwngfG0rzwIFByECi6lFkqpPQZwDEwXrzgPJ1Vp3P--aK82COb9lb9At7slHbYT2q-Whz__LH-CBv-AypOwNv3oblq0Hm7yI5LoN8FKPh7AEwC9-mUD4cKFfwSx8PPCi8KAVPvDjl3f8UWTEU3_10U9P9Kyn-g6eQhedBzSjrqkuCA7PnmETkcNaCnr9f0LY1VnvHv80Py9YteYfuUBcVmxJB8f379Pu_sqeCRX4R01LZdCSSdzGbpGFDO0ekSpDk9u0bDizWNjTSxxChGlQLtpePJ2WMyP_l0PjlN-_YKqQUZ0UI4GPK_PLgqBAs0QdTeycwbvG0apABkd3kwOnBemswZoDLcCylcoSXn1rEnZL9ZNv4ZoQKQ1hfGVprV3Ga2rmqnrTGiNLmttUhItllNZXvvcWyBsVCgQTAAKgZAYQBUF4CEvBs-8r0z3rhr8BhDNAxEz-z4YLn6pvotqJgtWAB-hJaJoGpzzZwTTBvAA2mdhEkebQKsNnmoCl5JvAuY84S8Hl7DFsRzFd345S2OEcAFQDuXCXna5cMwE8aAIfCyTojYypStqW6_aa4uo823ECVoUfn87mm9IPdxIbDCJs-PyH67uvUvgSe15lXM_r_BphB5
  priority: 102
  providerName: Scholars Portal
Title Parallel Spatial–Temporal Self-Attention CNN-Based Motor Imagery Classification for BCI
URI https://www.ncbi.nlm.nih.gov/pubmed/33362458
https://www.proquest.com/docview/2469424414
https://www.proquest.com/docview/2473412105
https://pubmed.ncbi.nlm.nih.gov/PMC7759669
https://doaj.org/article/3c23f50927924091a3dd73ab8769cd97
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvXBBQPlZKJWREAek0Dh24viEdlctLdKuKtRKyynyL1TaJu02PfTGO_CGPAkzTjbqItRLDo6jWJ7xzPfZ4xlC3itpvAicJyzzQFAYEBSdqzSRSvkU3DEgXrzgPJsXR2fi6yJf9Btu131Y5domRkPtGot75PsZ8Di8lMXE58urBKtG4elqX0LjIdkGE1wC-dqeHMxPvq1tcQHGN553Fng3CMB5d64JtEzth_q8xnzdWfopB9COBb_veKaYwP9_qPPf4Mk73ujwCXncw0g67uT-lDzw9TOyM66BQl_c0g80BnbGHfMd8v1Er7BiypJi_WHQtz-_fp92GamgyS9DMm7bLuqRTufzZAKOzdFZA2ycHl9gjotbGmtnYlRRFCQFpEsn0-Pn5Ozw4HR6lPQVFRILzKEFCXCEfCy4IgQLyECW3qnUG7xgGpQEZ-5YMDoIkZvUGUAvwkslXaaVENbxF2Srbmr_ilAJztVnxhaal8KmtixKp60xMjfMllqOSLqezcr26cax6sWyAtqBAqiiACoUQNUJYEQ-Dp9cdrk27us8QRENHTFNdmxoVj-qftVV3GY8ACTCLIlAZJnmzkmuDbgAZZ2CQe6uBVz1axd-MmjaiLwbXsOqw6MUXfvmBvtIcP9Al_MRednpwzASzgEUiLwcEbmhKRtD3XxTn_-Mmb2lzIF-qtf3D-sNeYQTgUE1jO2SrXZ1498CNGrNXq__e3FrAZ5fFgyeM1H-BfehELo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXBJSHocAiAQckU9u79noPCCWhVUKbqEKpVE6u92GolDolpEK58R_4H_wofgkzfkQNQr31aq_t1c7szPd55wHwUkntRMG5H0YOCUqIBCWPVeBLpVyA7hgRLyU4j8bJ4Eh8PI6PN-B3mwtDYZWtTawMtZ0Z-ke-EyGPo6SsULw__-ZT1yg6XW1baNRqse-WP5CyfX83_IDyfRVFe7uT_sBvugr4BtHzAmfBCfaEhU2KwqB3lKmzKnCakiwLJdGh2bDQeSFErAOr0YMLJ5W0Ua6EMJbje2_ApuBIZTqw2dsdH35qbX-Cxr46X00oFwnJQH2OijRQ7RTlaUn1waPgbYwkgRqMX_KEVcOA_6Hcf4M1L3m_vTtwu4GtrFvr2V3YcOU92OqWSNnPluw1qwJJqz_0W_D5MJ9Th5Ypo37HqN9_fv6a1BWw8JKbFn53saijLFl_PPZ76EgtG82Q_bPhGdXUWLKqVydFMVWKwxBZs15_eB-OrmWtH0CnnJXuETCJztxF2iQ5T4UJTJqkNjday1iHJs2lB0G7mplpyptTl41phjSHBJBVAshIAFktAA_erB45r2t7XDW4RyJaDaSy3NWF2fxL1uzyjJuIFwjBqCojEucw59ZKnmt0OcpYhZPcbgWcNbYCP7LSbA9erG7jLqejm7x0swsaIxFuID2PPXhY68NqJpwjCBFx6oFc05S1qa7fKU-_VpXEpYyR7qrHV0_rOdwcTEYH2cFwvP8EbtGiUEBPGG5DZzG_cE8Rli30s2YvMDi57u33F9szSnU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJcEFAehgKLBByQTGyv7fUeEErSRg2lVoRaqZxc7wsqpXYJrlBu_Af-DT-HX8KMX2oQ6q1Xe22vdmb2m887D0JeCi5NaBlz_cAAQfGBoOSR8FwuhPEAjsHjxQTngzTeOwo_HEfHG-R3lwuDYZXdnlhv1LpU-I98GACPw6QsPxzaNixivjN9f_7NxQ5SeNLatdNoVGTfrH4Affv-brYDsn4VBNPdw8me23YYcBV40hXMiKEL5FsdW6sAKXlitPCMxIRLKziAm_atzG0YRtLTEtA8NFxwHeQiDJVm8N4bZJMDK_IGZHO8m84_dTgQw8Zfn7XGmJcExKA5UwVKKIa2OC2wVnjgvY2AMGCz8UuoWDcP-J_H-2_g5iUknN4ht1sXlo4anbtLNkxxj2yNCqDvZyv6mtZBpfXf-i3yeZ4vsVvLgmLvY9D1Pz9_HTbVsOCSWVh3VFVNxCWdpKk7BlDV9KCsyiWdnWF9jRWt-3ZiRFOtRBS8bDqezO6To2tZ6wdkUJSFeUQoB2A3gVRxzpJQeSqJE50rKXkkfZXk3CFet5qZakudY8eNRQaUBwWQ1QLIUABZIwCHvOkfOW_qfFw1eIwi6gdiie76Qrn8krUWnzEVMAvuGFZoBBLt50xrznIJ8COUFjDJ7U7AWbtvwEd6LXfIi_42WDwe4-SFKS9wDAfXA6h65JCHjT70M2EMHJIwShzC1zRlbarrd4rTr3VVcc4joL7i8dXTek5ugtllH2fp_hNyC9cEY3t8f5sMquWFeQoeWiWftaZAycl1W99fLBNOqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Spatial%E2%80%93Temporal+Self-Attention+CNN-Based+Motor+Imagery+Classification+for+BCI&rft.jtitle=Frontiers+in+neuroscience&rft.au=Liu%2C+Xiuling&rft.au=Shen%2C+Yonglong&rft.au=Liu%2C+Jing&rft.au=Yang%2C+Jianli&rft.date=2020-12-11&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2020.587520&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon