Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing
Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 23; no. 3; p. 632 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.03.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on recent in vivo, nanoparticle-based strategies. |
---|---|
AbstractList | Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on recent in vivo, nanoparticle-based strategies. Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on recent in vivo, nanoparticle-based strategies.Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on recent in vivo, nanoparticle-based strategies. |
Author | Quijano, Elias Saltzman, W. Putman, Rachael Ricciardi, Adele Glazer, Peter |
AuthorAffiliation | 3 Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA 2 Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; elias.quijano@yale.edu 1 Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; adele.ricciardi@yale.edu (A.S.R.); rachael.putman@yale.edu (R.P.); mark.saltzman@yale.edu (W.M.S.) |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; adele.ricciardi@yale.edu (A.S.R.); rachael.putman@yale.edu (R.P.); mark.saltzman@yale.edu (W.M.S.) – name: 2 Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; elias.quijano@yale.edu – name: 3 Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA |
Author_xml | – sequence: 1 givenname: Adele orcidid: 0000-0003-2637-8522 surname: Ricciardi fullname: Ricciardi, Adele – sequence: 2 givenname: Elias surname: Quijano fullname: Quijano, Elias – sequence: 3 givenname: Rachael surname: Putman fullname: Putman, Rachael – sequence: 4 givenname: W. surname: Saltzman fullname: Saltzman, W. – sequence: 5 givenname: Peter orcidid: 0000-0003-4525-5560 surname: Glazer fullname: Glazer, Peter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29534473$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl1rFTEQhoNU7If-AG9kwRtvVpPNx25uCqW0tVBUaL0O2cnkmMOezTHJCv57055W2oohMEPmnYc3yRySvTnOSMhbRj9yrumnTZwQlglzxymnincvyAETHW05FXrvUb5PDnNeU9oxweQrst9pyYXo-QE5_obbEhw2XxaYMEBzAsHlxtbd3MQ4NT6m5joUbK-3CMFXxQXO2Jy5UMK8ek1eejtlfHMfj8j387Ob08_t1deLy9OTqxak1KVVfoTBMa-d6kaglCIHyT3zoIR31TgOjFoKUgNKGD1VmqJjrtbYMOqeH5HLHddFuzbbFDY2_TbRBnN3ENPK2FRCvYLxUkkpQAo_2hr6wTpwnfOaSS_5KCrreMfaLuMGHeBckp2eQJ9W5vDDrOIvI7VQSqsK-HAPSPHngrmYTciA02RnjEs2HWW8H0TPeJW-fyZdxyXN9alMx-gg61Kyqt49dvTXysM3VUG_E0CKOSf0BkKxJcRbg2EyjJrbgTD_DETtZM86H-D_7_kDmxy6wg |
CitedBy_id | crossref_primary_10_1246_bcsj_20210086 crossref_primary_10_1016_j_jcf_2024_07_009 crossref_primary_10_1007_s12015_020_10096_5 crossref_primary_10_1021_acs_biochem_2c00431 crossref_primary_10_1038_s41467_018_04894_2 crossref_primary_10_13005_ojc_340528 crossref_primary_10_15171_apb_2018_064 crossref_primary_10_3389_fphar_2021_662110 crossref_primary_10_1016_j_molmed_2019_04_007 crossref_primary_10_1073_pnas_2109175118 crossref_primary_10_1016_j_bios_2019_04_027 crossref_primary_10_1002_cbic_202000589 crossref_primary_10_3762_bjnano_10_201 crossref_primary_10_1158_1541_7786_MCR_19_0661 crossref_primary_10_3390_molecules25030735 crossref_primary_10_1002_cbic_201800256 crossref_primary_10_1016_j_bioorg_2025_108146 crossref_primary_10_1109_TNB_2020_3028313 crossref_primary_10_3389_fgeed_2020_583577 crossref_primary_10_1002_bip_23475 crossref_primary_10_1039_D2CB00017B crossref_primary_10_1038_s41598_019_39211_4 crossref_primary_10_1039_D0CC00169D crossref_primary_10_3389_fimmu_2021_688747 crossref_primary_10_1002_sctm_19_0338 crossref_primary_10_1016_j_crstbi_2021_06_002 crossref_primary_10_1158_0008_5472_CAN_21_0736 crossref_primary_10_1021_acs_joc_9b00821 crossref_primary_10_1056_NEJMra1800729 crossref_primary_10_1016_j_jbc_2024_107720 crossref_primary_10_1016_j_tetlet_2019_04_038 crossref_primary_10_1021_acs_chemrev_1c00386 crossref_primary_10_1093_nar_gkad655 crossref_primary_10_1002_ppul_24965 crossref_primary_10_1002_btm2_10458 crossref_primary_10_3390_ijms22126275 crossref_primary_10_1016_j_omtm_2021_03_025 crossref_primary_10_1146_annurev_med_041817_125507 crossref_primary_10_3390_molecules23081977 crossref_primary_10_1016_j_bmcl_2020_127064 crossref_primary_10_1002_adma_201906783 crossref_primary_10_1002_eng2_12238 crossref_primary_10_1093_synbio_ysad003 crossref_primary_10_1016_j_cobme_2018_08_002 crossref_primary_10_1071_CH20017 crossref_primary_10_1016_j_bioorg_2023_106860 crossref_primary_10_1016_j_ccm_2022_06_011 crossref_primary_10_3390_ph14010014 crossref_primary_10_1371_journal_pone_0266218 crossref_primary_10_1016_j_gendis_2018_11_005 crossref_primary_10_1021_acsomega_8b02550 |
Cites_doi | 10.1073/pnas.262556899 10.1073/pnas.88.17.7595 10.1093/nar/23.2.217 10.1016/j.chembiol.2011.07.010 10.1093/nar/gkp217 10.3390/molecules22071144 10.1021/bc900048y 10.1021/ja0625576 10.1093/hmg/7.12.1913 10.1093/nar/21.2.197 10.1056/NEJM199406093302303 10.1002/adhm.201400355 10.1126/science.1962210 10.1038/gt.2012.82 10.1093/hmg/ddq235 10.1073/pnas.0711793105 10.1016/j.jconrel.2012.09.020 10.1038/nprot.2006.92 10.1038/sj.gt.3302626 10.1038/mt.2010.200 10.1038/365566a0 10.1126/science.271.5250.802 10.1016/S0378-1119(99)00489-8 10.1007/978-1-4939-0992-6_8 10.1016/j.jconrel.2005.10.026 10.1021/ar7002336 10.1038/ncomms13304 10.1158/1535-7163.MCT-12-0956 10.1128/MCB.20.3.990-1000.2000 10.1038/mtna.2013.59 10.1002/stem.1668 10.1016/S0169-409X(02)00182-5 10.1073/pnas.90.22.10648 10.1021/bi0481040 10.1016/S0300-9084(99)80034-0 10.1021/jo200482d 10.1182/blood-2010-09-309591 10.1182/blood-2011-09-382408 10.1002/cbic.201100646 10.2174/1566523214666140825154158 10.1038/mt.2012.262 10.3390/ph3040961 10.1038/ncomms7952 10.1093/nar/gkn671 10.1038/nature13905 10.1038/ng0992-21 10.1038/mt.2011.163 10.1093/nar/25.14.2730 10.7326/0003-4819-135-9-200111060-00008 10.1056/NEJMoa0802905 10.1002/jmr.300070303 10.1016/0006-3002(57)90091-4 10.1021/bc800068h 10.1073/pnas.96.21.11804 10.1073/pnas.39.2.84 10.1126/science.1279811 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules23030632 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_f56554c54fba4c578adcd2df915f53b4 PMC5946696 29534473 10_3390_molecules23030632 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IHR IPNFZ KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RPM SV3 TR2 TUS UKHRP ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c559t-6fbc8d1f9d62bc000e3c53f1fc64fd632e810a0c59ce5cbf0690ed1dfd618b973 |
IEDL.DBID | 7X7 |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:30:46 EDT 2025 Thu Aug 21 13:42:35 EDT 2025 Fri Jul 11 06:21:53 EDT 2025 Fri Jul 25 19:56:55 EDT 2025 Thu Apr 03 07:08:22 EDT 2025 Tue Jul 01 03:11:47 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | PNA PLGA nanoparticles Duchenne muscular dystrophy cystic fibrosis CCR5 gene editing triplex β-thalassemia peptide nucleic acids sickle cell disease |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-6fbc8d1f9d62bc000e3c53f1fc64fd632e810a0c59ce5cbf0690ed1dfd618b973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4525-5560 0000-0003-2637-8522 |
OpenAccessLink | https://www.proquest.com/docview/2108555565?pq-origsite=%requestingapplication% |
PMID | 29534473 |
PQID | 2108555565 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f56554c54fba4c578adcd2df915f53b4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5946696 proquest_miscellaneous_2013784713 proquest_journals_2108555565 pubmed_primary_29534473 crossref_citationtrail_10_3390_molecules23030632 crossref_primary_10_3390_molecules23030632 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180311 |
PublicationDateYYYYMMDD | 2018-03-11 |
PublicationDate_xml | – month: 3 year: 2018 text: 20180311 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ioannidis (ref_31) 2001; 135 Bertoni (ref_54) 2014; 32 McNeer (ref_18) 2013; 20 McNeer (ref_21) 2015; 6 Knauert (ref_56) 2005; 44 Lohse (ref_28) 1999; 96 Papapetrou (ref_43) 2005; 12 Hanvey (ref_36) 1992; 258 Green (ref_48) 2008; 41 Abes (ref_27) 2006; 110 Sahu (ref_5) 2011; 76 Agrawal (ref_44) 1991; 88 Shiraishi (ref_26) 2006; 1 Trabulo (ref_50) 2010; 3 Rogers (ref_10) 2002; 99 Johnson (ref_52) 1992; 2 Musallam (ref_33) 2012; 119 Cheng (ref_42) 2015; 518 Hutter (ref_29) 2009; 360 Kayali (ref_53) 2010; 19 Nielsen (ref_55) 1993; 21 Pauling (ref_1) 1953; 39 Petit (ref_58) 1999; 81 Quijano (ref_6) 2017; 90 Campbell (ref_24) 1989; 1 Platt (ref_34) 1994; 330 McNeer (ref_23) 2011; 19 Kuo (ref_57) 2008; 22 Schleifman (ref_17) 2011; 18 Fields (ref_20) 2015; 4 Nielsen (ref_15) 1994; 7 Shen (ref_40) 2009; 20 Egholm (ref_4) 1993; 365 Wang (ref_8) 1996; 271 Lonkar (ref_16) 2009; 37 Rogers (ref_37) 2012; 20 Koppelhus (ref_39) 2008; 19 Fields (ref_49) 2012; 164 Egholm (ref_14) 1995; 23 Batty (ref_59) 2000; 241 Felsenfeld (ref_2) 1957; 26 Morris (ref_51) 1997; 25 Rapireddy (ref_45) 2006; 128 Bahal (ref_22) 2016; 7 Faruqi (ref_9) 2000; 20 Kamat (ref_47) 2013; 12 Goncz (ref_25) 1998; 7 Ricciardi (ref_11) 2014; 1176 Chin (ref_32) 2013; 21 Bahal (ref_35) 2014; 14 Schleifman (ref_19) 2013; 2 Nielsen (ref_3) 1991; 254 Peffer (ref_13) 1993; 90 Chin (ref_12) 2008; 105 Ivanova (ref_41) 2008; 36 Koppelhus (ref_38) 2003; 55 Allers (ref_30) 2011; 117 Bahal (ref_46) 2012; 13 ref_7 |
References_xml | – volume: 99 start-page: 16695 year: 2002 ident: ref_10 article-title: Site-directed recombination via bifunctional PNA-DNA conjugates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.262556899 – volume: 88 start-page: 7595 year: 1991 ident: ref_44 article-title: Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.17.7595 – volume: 23 start-page: 217 year: 1995 ident: ref_14 article-title: Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA publication-title: Nucleic Acid. Res. doi: 10.1093/nar/23.2.217 – volume: 18 start-page: 1189 year: 2011 ident: ref_17 article-title: Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2011.07.010 – volume: 37 start-page: 3635 year: 2009 ident: ref_16 article-title: Targeted correction of a thalassemia-associated beta-globin mutation induced by pseudo-complementary peptide nucleic acids publication-title: Nucleic Acid. Res. doi: 10.1093/nar/gkp217 – ident: ref_7 doi: 10.3390/molecules22071144 – volume: 20 start-page: 1729 year: 2009 ident: ref_40 article-title: Phospholipid conjugate for intracellular delivery of peptide nucleic acids publication-title: Bioconjug. Chem. doi: 10.1021/bc900048y – volume: 128 start-page: 10258 year: 2006 ident: ref_45 article-title: A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0625576 – volume: 7 start-page: 1913 year: 1998 ident: ref_25 article-title: Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/7.12.1913 – volume: 1 start-page: 223 year: 1989 ident: ref_24 article-title: Homologous recombination involving small single-stranded oligonucleotides in human cells publication-title: New Biol. – volume: 21 start-page: 197 year: 1993 ident: ref_55 article-title: Sequence specific inhibition of DNA restriction enzyme cleavage by PNA publication-title: Nucleic Acid Res. doi: 10.1093/nar/21.2.197 – volume: 330 start-page: 1639 year: 1994 ident: ref_34 article-title: Mortality in sickle cell disease. Life expectancy and risk factors for early death publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199406093302303 – volume: 4 start-page: 361 year: 2015 ident: ref_20 article-title: Modified poly(lactic-co-glycolic acid) nanoparticles for enhanced cellular uptake and gene editing in the lung publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201400355 – volume: 254 start-page: 1497 year: 1991 ident: ref_3 article-title: Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide publication-title: Science doi: 10.1126/science.1962210 – volume: 20 start-page: 658 year: 2013 ident: ref_18 article-title: Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo publication-title: Gene Ther. doi: 10.1038/gt.2012.82 – volume: 19 start-page: 3266 year: 2010 ident: ref_53 article-title: Site-directed gene repair of the dystrophin gene mediated by PNA-ssODNs publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq235 – volume: 105 start-page: 13514 year: 2008 ident: ref_12 article-title: Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0711793105 – volume: 164 start-page: 41 year: 2012 ident: ref_49 article-title: Surface modified poly(beta amino ester)-containing nanoparticles for plasmid DNA delivery publication-title: J. Contro. Release doi: 10.1016/j.jconrel.2012.09.020 – volume: 1 start-page: 633 year: 2006 ident: ref_26 article-title: Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.92 – volume: 12 start-page: S118 year: 2005 ident: ref_43 article-title: Genetic modification of hematopoietic stem cells with nonviral systems: Past progress and future prospects publication-title: Gene Ther. doi: 10.1038/sj.gt.3302626 – volume: 19 start-page: 172 year: 2011 ident: ref_23 article-title: Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors publication-title: Mol. Ther. doi: 10.1038/mt.2010.200 – volume: 365 start-page: 566 year: 1993 ident: ref_4 article-title: PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules publication-title: Nature doi: 10.1038/365566a0 – volume: 271 start-page: 802 year: 1996 ident: ref_8 article-title: Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair publication-title: Science doi: 10.1126/science.271.5250.802 – volume: 241 start-page: 193 year: 2000 ident: ref_59 article-title: Damage recognition in nucleotide excision repair of DNA publication-title: Gene doi: 10.1016/S0378-1119(99)00489-8 – volume: 1176 start-page: 89 year: 2014 ident: ref_11 article-title: Targeted genome modification via triple helix formation publication-title: Method Mol. Biol. doi: 10.1007/978-1-4939-0992-6_8 – volume: 110 start-page: 595 year: 2006 ident: ref_27 article-title: Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2005.10.026 – volume: 41 start-page: 749 year: 2008 ident: ref_48 article-title: A combinatorial polymer library approach yields insight into nonviral gene delivery publication-title: Acc. Chem. Res. doi: 10.1021/ar7002336 – volume: 7 start-page: 13304 year: 2016 ident: ref_22 article-title: In vivo correction of anaemia in beta-thalassemic mice by gammaPNA-mediated gene editing with nanoparticle delivery publication-title: Nat. Commun. doi: 10.1038/ncomms13304 – volume: 12 start-page: 405 year: 2013 ident: ref_47 article-title: Poly(beta-amino ester) nanoparticle delivery of TP53 has activity against small cell lung cancer in vitro and in vivo publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-12-0956 – volume: 90 start-page: 583 year: 2017 ident: ref_6 article-title: Therapeutic peptide nucleic acids: Principles, limitations, and opportunities publication-title: Yale J. Biol. Med. – volume: 20 start-page: 990 year: 2000 ident: ref_9 article-title: Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.3.990-1000.2000 – volume: 2 start-page: e135 year: 2013 ident: ref_19 article-title: Site-specific Genome Editing in PBMCs With PLGA Nanoparticle-delivered PNAs Confers HIV-1 Resistance in Humanized publication-title: Mice. Mol. Ther. Nucleic Acid doi: 10.1038/mtna.2013.59 – volume: 32 start-page: 1817 year: 2014 ident: ref_54 article-title: Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy publication-title: Stem Cells doi: 10.1002/stem.1668 – volume: 55 start-page: 267 year: 2003 ident: ref_38 article-title: Cellular delivery of peptide nucleic acid (PNA) publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00182-5 – volume: 90 start-page: 10648 year: 1993 ident: ref_13 article-title: Strand-invasion of duplex DNA by peptide nucleic acid oligomers publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.22.10648 – volume: 44 start-page: 3856 year: 2005 ident: ref_56 article-title: Distance and affinity dependence of triplex-induced recombination publication-title: Biochemistry doi: 10.1021/bi0481040 – volume: 81 start-page: 15 year: 1999 ident: ref_58 article-title: Nucleotide excision repair: From E. coli to man publication-title: Biochimie doi: 10.1016/S0300-9084(99)80034-0 – volume: 76 start-page: 5614 year: 2011 ident: ref_5 article-title: Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing gamma-peptide nucleic acids with superior hybridization properties and water solubility publication-title: J. Org. Chem. doi: 10.1021/jo200482d – volume: 117 start-page: 2791 year: 2011 ident: ref_30 article-title: Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation publication-title: Blood doi: 10.1182/blood-2010-09-309591 – volume: 119 start-page: 364 year: 2012 ident: ref_33 article-title: Fetal hemoglobin levels and morbidity in untransfused patients with beta-thalassemia intermedia publication-title: Blood doi: 10.1182/blood-2011-09-382408 – volume: 13 start-page: 56 year: 2012 ident: ref_46 article-title: Sequence-unrestricted, Watson-Crick recognition of double helical B-DNA by (R)-miniPEG-gammaPNAs publication-title: ChemBioChem doi: 10.1002/cbic.201100646 – volume: 14 start-page: 331 year: 2014 ident: ref_35 article-title: Single-stranded gammaPNAs for in vivo site-specific genome editing via Watson-Crick recognition publication-title: Curr. Gene Ther. doi: 10.2174/1566523214666140825154158 – volume: 21 start-page: 580 year: 2013 ident: ref_32 article-title: Triplex-forming peptide nucleic acids induce heritable elevations in gamma-globin expression in hematopoietic progenitor cells publication-title: Mol. Ther. doi: 10.1038/mt.2012.262 – volume: 3 start-page: 961 year: 2010 ident: ref_50 article-title: Cell-Penetrating Peptides-Mechanisms of Cellular Uptake and Generation of Delivery Systems publication-title: Pharmaceuticals doi: 10.3390/ph3040961 – volume: 6 start-page: 6952 year: 2015 ident: ref_21 article-title: Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium publication-title: Nat. Commun. doi: 10.1038/ncomms7952 – volume: 36 start-page: 6418 year: 2008 ident: ref_41 article-title: Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle publication-title: Nucleic Acid Res. doi: 10.1093/nar/gkn671 – volume: 518 start-page: 107 year: 2015 ident: ref_42 article-title: MicroRNA silencing for cancer therapy targeted to the tumour microenvironment publication-title: Nature doi: 10.1038/nature13905 – volume: 2 start-page: 21 year: 1992 ident: ref_52 article-title: Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis publication-title: Nat. Genet. doi: 10.1038/ng0992-21 – volume: 20 start-page: 109 year: 2012 ident: ref_37 article-title: Targeted gene modification of hematopoietic progenitor cells in mice following systemic administration of a PNA-peptide conjugate publication-title: Mol. Ther. doi: 10.1038/mt.2011.163 – volume: 25 start-page: 2730 year: 1997 ident: ref_51 article-title: A new peptide vector for efficient delivery of oligonucleotides into mammalian cells publication-title: Nucleic Acid Res. doi: 10.1093/nar/25.14.2730 – volume: 135 start-page: 782 year: 2001 ident: ref_31 article-title: Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3′A alleles on HIV-1 disease progression: An international meta-analysis of individual-patient data publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-135-9-200111060-00008 – volume: 360 start-page: 692 year: 2009 ident: ref_29 article-title: Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0802905 – volume: 7 start-page: 165 year: 1994 ident: ref_15 article-title: Evidence for (PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement publication-title: J. Mol. Recognit. doi: 10.1002/jmr.300070303 – volume: 26 start-page: 457 year: 1957 ident: ref_2 article-title: Studies on the formation of two- and three-stranded polyribonucleotides publication-title: Biochim. Biophys. Acta doi: 10.1016/0006-3002(57)90091-4 – volume: 19 start-page: 1526 year: 2008 ident: ref_39 article-title: Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain publication-title: Bioconjug. Chem. doi: 10.1021/bc800068h – volume: 22 start-page: 305 year: 2008 ident: ref_57 article-title: Gamma-H2AX—A novel biomarker for DNA double-strand breaks publication-title: In Vivo – volume: 96 start-page: 11804 year: 1999 ident: ref_28 article-title: Double duplex invasion by peptide nucleic acid: A general principle for sequence-specific targeting of double-stranded DNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.21.11804 – volume: 39 start-page: 84 year: 1953 ident: ref_1 article-title: A proposed structure for the nucleic acids publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.39.2.84 – volume: 258 start-page: 1481 year: 1992 ident: ref_36 article-title: Antisense and antigene properties of peptide nucleic acids publication-title: Science doi: 10.1126/science.1279811 |
SSID | ssj0021415 |
Score | 2.4416254 |
SecondaryResourceType | review_article |
Snippet | Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 632 |
SubjectTerms | CCR5 cystic fibrosis Duchenne muscular dystrophy gene editing Genome editing Genomes nanoparticles peptide nucleic acids PLGA PNA Review sickle cell disease triplex β-thalassemia |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-yF30Rv51OieCTUNa0SZu8CHNsDMEhuMHeSj5xMFtx2__vpe3GpqIvlkKhl8Llcu39jlx_h9Ct08qEkXNBkoYSEhQeBpKYMOCCM0WojJNyK-ZpmAzG9HHCJhutvnxNWEUPXBmu7QBxMKoZdUrCJeXSaBMZJwhzLFYlEyjEvFUyVadaBOJStYcZQ1Lffqtazdo5AG7AyHG0FYVKsv6fEObXQsmNyNM_QPs1ZMSdStVDtGPzI7TbXXVqO0b3z740xVg89OTEU407emrmWMKJR0UxwwBM8Qtgy6DsNu9ghGebxj0z9UXPJ2jc7426g6DuixBowP-LIHFKc0OcMEmkNHzTbKxZ7IjTCXUGZmc5CWWomdCWaeU8GbE1xICMcCXS-BQ18iK35whznULEhhzDSEsFJYpTCwbnqVAARShronBlp0zXpOG-d8Usg-TBmzb7Ztomuls_8l4xZvw2-MEbfz3Qk12XN8AFstoFsr9coIlaq6XL6jdwnkX-two4EpjDzVoMC-M3RGRuiyWM8XyLPjzHTXRWrfRak0gwT4YIknTLB7ZU3Zbk09eSn5t5zn6RXPzH3C7RHmhZ_gVJSAs1Fh9LewUwaKGuS4__BCKuB4s priority: 102 providerName: Directory of Open Access Journals |
Title | Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29534473 https://www.proquest.com/docview/2108555565 https://www.proquest.com/docview/2013784713 https://pubmed.ncbi.nlm.nih.gov/PMC5946696 https://doaj.org/article/f56554c54fba4c578adcd2df915f53b4 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-29mF7Gd232y54sKeBqWVLtvSy0pZkZbBQthbyZvTZBTq7bdL_f3eykzbbqDE2-GQs3Um6O-n8O4BPwRqXFyFkVZ1rdFBknmnm8kwqKQzjuqziVsz3aXV6wb_NxGxYcFsMYZWrOTFO1K6ztEZ-UFCYPB6VOLy-yShrFO2uDik0nsI2QZdRSFc9u3e4GGqnfiezRNf-4HefcNYv0OxGS7ksNnRRhOz_n535d7jkA_0z2YEXg-GYHvWSfglPfPsKnp2s8rW9hi9nFKDifDoliOK5TY_s3C1SjWd63nVXKZqn6U9sTRZzzgcsQZjT6djNKfT5DVxMxucnp9mQHSGz6AUssyoYKx0LylWFsTiz-dKKMrBgKx4cts5LluvcCmW9sCYQJLF3zCGNSaPq8i1stV3r30MqbY16Gz0Npz1XnBnJPTJa1sqgQcJFAvmKT40doMMpg8VVgy4Esbb5h7UJfF6_ct3jZjxW-JiYvy5IkNfxQXd72QwjqAlYI8Gt4MFovNVSO-sKFxQTQZSGJ7C_El0zjMNFc99rEvi4JqNgaFtEt767wzKEukhKukzgXS_pdU0KJQgSESn1Rh_YqOompZ3_iijdgpD7VbX7eLX24Dl-P_7lyNg-bC1v7_wHNHOWZhT7Ml7l5OsIto_H07Mfo7hk8AewfwGb |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXxBtDgUWCC5JVr71r7x4AldKQ0jZCIpV6M94XRCp2aVIh_hS_kRk_AgHUWyNLkTJrazQzu_tNdjwfwLNgjUvSEOK8SCpMUFQSV9wlsdJKGi6qLG-PYg4n-fhIvD-Wx2vwc3gXhsoqhzWxXahdY-k_8q2UyuTxk8vXp99iYo2i09WBQqMLi33_4zumbPOXe2_Rv8_TdLQ73RnHPatAbBE9L-I8GKscD9rlqbG4IvjMyizwYHMRXJ6lXvGkSqzU1ktrArXy9Y47lHFldJHhc6_AVZFlmmaUGr1bJngcd8Pu5BSFydbXjuDWzxHmIzLP0pW9r6UI-B-u_bs884_9bnQDrvdAlW13kXUT1nx9CzZ2Bn642_DqAxXEOM8m1BJ5Ztm2nbk5q_Bi06Y5YQiH2Ue0Xtxy3AccQT2u2a6bUan1HTi6FLvdhfW6qf19YMoWiBMws3GVF1pwo4RHx6pCGwRAQkaQDHYqbd-qnBgzTkpMWci05T-mjeDF8pbTrk_HRYPfkPGXA6nFdvtDc_a57GdsGVAjKawUwVT4VajKWZe6oLkMMjMigs3BdWU_7-fl7yiN4OlSjI6hY5iq9s05jqEujwQKsgjudZ5eapJqSS0YUVKsxMCKqquSeval7QouiSlA5w8uVusJbIynhwflwd5k_yFcQ13aNyw534T1xdm5f4QQa2Eet3HN4NNlT6RfPRs8sg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBfVF_DZadQV9EcJls7vJ5kGltj1aq0fBFu4tZr_0oCa1d0X81_zrnMnH1VPpW0MgkN2EYWZ29zfZyfwAXgRrXJKGEGd5UmGAopO44i6JdaGV4bISWbsV83GS7R7J91M1XYNfw78wlFY5zIntRO0aS9_IRymlyeORqVHo0yIOtsdvT77HxCBFO60DnUbnIvv-5w8M3-av97bR1i_TdLxzuLUb9wwDsUUkvYizYKx2PBQuS43F2cELq0TgwWYyuEykXvOkSqwqrFfWBCrr6x132Ma1KXKB770CV3OhOI2xfHoe7HFcGbtdVCGKZPStI7v1c4T8iNJFurIOtnQB_8O4f6dq_rH2jW_BzR60ss3Oy27Dmq_vwPWtgSvuLrw5oOQY59mEyiPPLNu0MzdnFZ7ssGmOGUJj9gm1F7d89wF7UL1rtuNmlHZ9D44uRW_3Yb1uav8QmLY5YgaMclzlZSG50dKjkXVeGARDUkWQDHoqbV-2nNgzjksMX0i15T-qjeDV8pGTrmbHRZ3fkfKXHancdnujOf1S9qO3DCiRklbJYCq85Lpy1qUuFFwFJYyMYGMwXdnPAfPy3GMjeL5sRsPQlkxV--YM-1DFRwIIIoIHnaWXkqSFonKM2JKv-MCKqKst9exrWyFcEWtAkT26WKxncA2HUPlhb7L_GG6gKO3PlpxvwPri9Mw_QbS1ME9bt2bw-bLH0W-Q8kDf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+Nucleic+Acids+as+a+Tool+for+Site-Specific+Gene+Editing&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Ricciardi%2C+Adele+S.&rft.au=Quijano%2C+Elias&rft.au=Putman%2C+Rachael&rft.au=Saltzman%2C+W.+Mark&rft.date=2018-03-11&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=23&rft.issue=3&rft_id=info:doi/10.3390%2Fmolecules23030632&rft_id=info%3Apmid%2F29534473&rft.externalDocID=PMC5946696 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |