Methyl Salicylate Enhances Flavonoid Biosynthesis in Tea Leaves by Stimulating the Phenylpropanoid Pathway

The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea (Camellia sinensis L.) remains largely unknown. Here, we show tha...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 24; no. 2; p. 362
Main Authors Li, Xin, Zhang, Li-Ping, Zhang, Lan, Yan, Peng, Ahammed, Golam Jalal, Han, Wen-Yan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.01.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea (Camellia sinensis L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as CsPAL, CsC4H, Cs4CL, CsCHS, CsCHI, CsF3H, CsDFR, CsANS and CsUFGT in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.
AbstractList The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea (Camellia sinensis L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as CsPAL, CsC4H, Cs4CL, CsCHS, CsCHI, CsF3H, CsDFR, CsANS and CsUFGT in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.
The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea (Camellia sinensis L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as CsPAL, CsC4H, Cs4CL, CsCHS, CsCHI, CsF3H, CsDFR, CsANS and CsUFGT in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea (Camellia sinensis L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as CsPAL, CsC4H, Cs4CL, CsCHS, CsCHI, CsF3H, CsDFR, CsANS and CsUFGT in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.
The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea ( Camellia sinensis L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as CsPAL , CsC4H , Cs4CL , CsCHS , CsCHI , CsF3H , CsDFR , CsANS and CsUFGT in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.
The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea ( L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as , , , , , , , and in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.
Author Yan, Peng
Ahammed, Golam Jalal
Zhang, Li-Ping
Han, Wen-Yan
Zhang, Lan
Li, Xin
AuthorAffiliation 2 College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
1 Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China; lixin@tricaas.com (X.L.); lpzhang8263@163.com (L.-P.Z.); zhanglan@tricaas.com (L.Z.); yanpengzn@tricaas.com (P.Y.)
AuthorAffiliation_xml – name: 1 Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou 310008, China; lixin@tricaas.com (X.L.); lpzhang8263@163.com (L.-P.Z.); zhanglan@tricaas.com (L.Z.); yanpengzn@tricaas.com (P.Y.)
– name: 2 College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
Author_xml – sequence: 1
  givenname: Xin
  surname: Li
  fullname: Li, Xin
– sequence: 2
  givenname: Li-Ping
  surname: Zhang
  fullname: Zhang, Li-Ping
– sequence: 3
  givenname: Lan
  surname: Zhang
  fullname: Zhang, Lan
– sequence: 4
  givenname: Peng
  surname: Yan
  fullname: Yan, Peng
– sequence: 5
  givenname: Golam Jalal
  orcidid: 0000-0001-9621-8431
  surname: Ahammed
  fullname: Ahammed, Golam Jalal
– sequence: 6
  givenname: Wen-Yan
  surname: Han
  fullname: Han, Wen-Yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30669582$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGzYTPEjdsYbJFq1tNIgKrWsrWvnZuKRxx7iZFD-PZ5OqdoisbJlf-fo3MdxcRBiwKJ4T8kp54p8XkePdvSYWEUY4ZK9Ko5oxciMk0odPLkfFscprQhhtKLiTXHIiZRKzNlRsfqOQzf58ha8s5OHAcuL0EGwmMpLD9sYomvKMxfTFIYOk0ulC-UdQrlA2GbITOXt4NZjlrqwLDNT3nQYJr_p4wbu1TcwdL9helu8bsEnfPdwnhQ_Ly_uzq9mix_frs-_LmZWCDXMBBiFNVBWMZSG0bmRtWp5Q41gCoRB0irbSMlbAGFrKZtKCQq8loxJiZKfFNd73ybCSm96t4Z-0hGcvn-I_VJDPzjrUWMlhTEEGLG5M0YqU8-pAmkt5mYZkb2-7L02o1ljYzEMPfhnps9_guv0Mm615ELVlGWDTw8Gffw1Yhr02iWL3kPAOCbNaK2qHFzt0I8v0FUc-5BbpZmoFOGczneJPjxN9Bjl70gzQPeA7WNKPbaPCCV6tzb6n7XJmvqFxrohDzTuinL-P8o_PKHLZg
CitedBy_id crossref_primary_10_1007_s13562_024_00872_6
crossref_primary_10_1016_j_bcab_2019_101470
crossref_primary_10_1080_15592324_2020_1804684
crossref_primary_10_3390_app10248916
crossref_primary_10_1016_j_plantsci_2025_112409
crossref_primary_10_1093_treephys_tpae056
crossref_primary_10_3390_life15010133
crossref_primary_10_1016_j_scienta_2024_113291
crossref_primary_10_3389_fpls_2024_1449006
crossref_primary_10_3390_polym16111518
crossref_primary_10_1111_nph_18833
crossref_primary_10_1007_s11738_021_03226_0
crossref_primary_10_1016_j_tifs_2022_09_013
crossref_primary_10_3390_ijms241512345
crossref_primary_10_1021_acs_jafc_0c01833
crossref_primary_10_3390_plants14020260
crossref_primary_10_1016_j_foodchem_2023_135527
crossref_primary_10_3390_genes11091000
crossref_primary_10_3390_plants9101275
crossref_primary_10_3390_horticulturae8070637
crossref_primary_10_3390_plants10112346
crossref_primary_10_3389_fpls_2021_767335
crossref_primary_10_3389_fpls_2022_894840
crossref_primary_10_1007_s12033_022_00525_w
crossref_primary_10_3390_life13030706
crossref_primary_10_1016_j_foodres_2023_113137
crossref_primary_10_1016_j_indcrop_2022_115405
crossref_primary_10_1093_hr_uhac144
crossref_primary_10_3390_molecules28010083
crossref_primary_10_1016_j_foodres_2021_110463
crossref_primary_10_3390_plants12091770
crossref_primary_10_3390_horticulturae8060556
crossref_primary_10_1016_j_sajb_2023_05_016
crossref_primary_10_1186_s12870_023_04569_1
crossref_primary_10_1080_14786419_2021_1961251
crossref_primary_10_1134_S1021443723600575
crossref_primary_10_1007_s00217_019_03386_x
crossref_primary_10_1071_FP22225
crossref_primary_10_3390_f13101629
crossref_primary_10_1111_pce_14216
crossref_primary_10_3390_antiox11122332
crossref_primary_10_1016_j_cpb_2024_100397
crossref_primary_10_1016_j_postharvbio_2023_112396
crossref_primary_10_1094_PHYTO_01_23_0014_R
crossref_primary_10_1002_jsfa_12990
crossref_primary_10_3389_fpls_2020_00305
crossref_primary_10_3390_ijms231810646
crossref_primary_10_1016_j_plaphy_2023_108162
crossref_primary_10_1186_s12870_023_04115_z
crossref_primary_10_3390_molecules26113290
crossref_primary_10_1016_j_ygeno_2020_09_048
crossref_primary_10_1038_s41598_022_21322_0
crossref_primary_10_1016_j_jplph_2024_154356
crossref_primary_10_1016_j_plaphy_2022_06_021
crossref_primary_10_3389_fpls_2023_1149182
crossref_primary_10_1016_j_scienta_2023_112290
crossref_primary_10_3389_fchem_2025_1537877
crossref_primary_10_1016_j_postharvbio_2024_113298
Cites_doi 10.1111/ppl.12813
10.1016/j.foodchem.2006.01.014
10.1104/pp.17.00506
10.1007/978-1-4614-0634-1
10.1016/j.indcrop.2018.03.044
10.1016/j.gene.2011.12.029
10.1186/s12870-018-1418-y
10.1016/j.tplants.2014.12.001
10.1016/j.ajps.2017.08.004
10.3389/fpls.2016.01447
10.19103/AS.2017.0036.19
10.3390/nu9070777
10.1007/978-94-017-7758-2
10.1007/s11101-014-9362-4
10.1080/07352689.2012.747384
10.1016/j.plaphy.2013.03.014
10.1111/jpi.12512
10.1631/jzus.2005.B0778
10.1016/j.tplants.2015.06.007
10.1016/j.plantsci.2012.07.014
10.1007/s10142-008-0092-9
10.1006/meth.2001.1262
10.1111/j.1744-7909.2011.01042.x
10.1016/j.jnutbio.2016.11.007
10.1038/s41598-017-08465-1
10.3389/fpls.2018.01133
10.1016/j.jplph.2017.04.005
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules24020362
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_e465bb0a20c141b69b7819a6cce002b5
PMC6359712
30669582
10_3390_molecules24020362
Genre Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2017YFE0107500
– fundername: Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences
  grantid: CAAS-ASTIP-2014-TRICAAS
– fundername: Open Fund of State Key Laboratory of Tea Plant Biology and Utilization
  grantid: SKLTOF20170106
– fundername: Henan University of Science and Technology Research Start-up Fund for New Faculty
  grantid: 13480058
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IHR
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c559t-5ab9e7a1242e6b218b679f3d1b529a5be0f9cd663faa5c766d4951a3762266e63
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:31:40 EDT 2025
Thu Aug 21 14:08:14 EDT 2025
Fri Jul 11 16:51:46 EDT 2025
Fri Jul 25 20:03:54 EDT 2025
Wed Feb 19 02:35:26 EST 2025
Tue Jul 01 03:12:07 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords tea quality
salicylic acid
flavonoids
phenylalanine ammonia-lyase (PAL)
phenylpropanoid pathway
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-5ab9e7a1242e6b218b679f3d1b529a5be0f9cd663faa5c766d4951a3762266e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-9621-8431
OpenAccessLink https://doaj.org/article/e465bb0a20c141b69b7819a6cce002b5
PMID 30669582
PQID 2549033185
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_e465bb0a20c141b69b7819a6cce002b5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6359712
proquest_miscellaneous_2179422692
proquest_journals_2549033185
pubmed_primary_30669582
crossref_primary_10_3390_molecules24020362
crossref_citationtrail_10_3390_molecules24020362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-21
PublicationDateYYYYMMDD 2019-01-21
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-21
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Agati (ref_23) 2013; 72
Xu (ref_11) 2015; 20
Rani (ref_18) 2012; 495
Zheng (ref_29) 2005; 6
Livak (ref_30) 2001; 25
(ref_27) 2017; 174
Li (ref_19) 2018; 9
Lin (ref_28) 2007; 101
George (ref_5) 2017; 45
Singh (ref_13) 2009; 9
Mancini (ref_3) 2017; 34
ref_17
ref_16
Li (ref_8) 2017; 214
Peng (ref_22) 2011; 53
Agati (ref_9) 2012; 196
Lee (ref_15) 2018; 65
ref_25
Nenadis (ref_14) 2015; 14
Zhao (ref_10) 2015; 20
Li (ref_12) 2017; 7
Tounekti (ref_21) 2013; 32
ref_1
ref_2
Wang (ref_6) 2018; 13
ref_26
Ni (ref_24) 2018; 118
Li (ref_7) 2016; 7
ref_4
Gondor (ref_20) 2016; 7
References_xml – ident: ref_26
  doi: 10.1111/ppl.12813
– volume: 101
  start-page: 140
  year: 2007
  ident: ref_28
  article-title: Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.01.014
– volume: 174
  start-page: 1359
  year: 2017
  ident: ref_27
  article-title: An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00506
– volume: 7
  start-page: 1304
  year: 2016
  ident: ref_7
  article-title: Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids
  publication-title: Front. Plant Sci.
– ident: ref_16
  doi: 10.1007/978-1-4614-0634-1
– volume: 118
  start-page: 102
  year: 2018
  ident: ref_24
  article-title: Salicylic acid-induced flavonoid accumulation in Ginkgo biloba leaves is dependent on red and far-red light
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2018.03.044
– volume: 495
  start-page: 205
  year: 2012
  ident: ref_18
  article-title: Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]
  publication-title: Gene
  doi: 10.1016/j.gene.2011.12.029
– ident: ref_25
  doi: 10.1186/s12870-018-1418-y
– volume: 20
  start-page: 176
  year: 2015
  ident: ref_11
  article-title: Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.12.001
– volume: 13
  start-page: 12
  year: 2018
  ident: ref_6
  article-title: Bioactive flavonoids in medicinal plants: Structure, activity and biological fate
  publication-title: Asian J. Pharm. Sci.
  doi: 10.1016/j.ajps.2017.08.004
– volume: 7
  start-page: 1447
  year: 2016
  ident: ref_20
  article-title: Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01447
– ident: ref_2
  doi: 10.19103/AS.2017.0036.19
– ident: ref_1
– ident: ref_4
  doi: 10.3390/nu9070777
– ident: ref_17
  doi: 10.1007/978-94-017-7758-2
– volume: 14
  start-page: 273
  year: 2015
  ident: ref_14
  article-title: Assessing the response of plant flavonoids to UV radiation: An overview of appropriate techniques
  publication-title: Phytochem. Rev.
  doi: 10.1007/s11101-014-9362-4
– volume: 32
  start-page: 192
  year: 2013
  ident: ref_21
  article-title: Improving the Polyphenol Content of Tea
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2012.747384
– volume: 72
  start-page: 35
  year: 2013
  ident: ref_23
  article-title: Functional roles of flavonoids in photoprotection: New evidence, lessons from the past
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.03.014
– volume: 34
  start-page: 26
  year: 2017
  ident: ref_3
  article-title: Green tea effects on cognition, mood and human brain function: A systematic review
  publication-title: Phytomed. Int. J. Phytother. Phytopharm.
– volume: 65
  start-page: e12512
  year: 2018
  ident: ref_15
  article-title: Flavonoids inhibit both rice and sheep serotonin N-acetyltransferases and reduce melatonin levels in plants
  publication-title: J. Pineal Res.
  doi: 10.1111/jpi.12512
– volume: 6
  start-page: 778
  year: 2005
  ident: ref_29
  article-title: Active changes of lignification-related enzymes in pepper response to Glomus intraradices and/or Phytophthora capsici
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.2005.B0778
– volume: 20
  start-page: 576
  year: 2015
  ident: ref_10
  article-title: Flavonoid transport mechanisms: How to go, and with whom
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.06.007
– volume: 196
  start-page: 67
  year: 2012
  ident: ref_9
  article-title: Flavonoids as antioxidants in plants: Location and functional significance
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.07.014
– volume: 9
  start-page: 125
  year: 2009
  ident: ref_13
  article-title: Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea
  publication-title: Funct. Integr. Genom.
  doi: 10.1007/s10142-008-0092-9
– volume: 25
  start-page: 402
  year: 2001
  ident: ref_30
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 53
  start-page: 632
  year: 2011
  ident: ref_22
  article-title: Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2011.01042.x
– volume: 45
  start-page: 1
  year: 2017
  ident: ref_5
  article-title: Plant flavonoids in cancer chemoprevention: Role in genome stability
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2016.11.007
– volume: 7
  start-page: 7937
  year: 2017
  ident: ref_12
  article-title: Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08465-1
– volume: 9
  start-page: 1133
  year: 2018
  ident: ref_19
  article-title: Salicylic Acid: A Double-Edged Sword for Programed Cell Death in Plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01133
– volume: 214
  start-page: 145
  year: 2017
  ident: ref_8
  article-title: Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2017.04.005
SSID ssj0021415
Score 2.5051725
Snippet The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 362
SubjectTerms Biosynthesis
Communication
Enzymes
Flavonoids
Flavonoids - biosynthesis
Gene expression
Gene Expression Regulation, Plant
Hormones
Metabolic Networks and Pathways - drug effects
Metabolism
Metabolites
phenylalanine ammonia-lyase (PAL)
phenylpropanoid pathway
Plant Leaves - genetics
Plant Leaves - metabolism
Propanols - metabolism
Salicylates - metabolism
Salicylates - pharmacology
salicylic acid
Tea
Tea - genetics
Tea - metabolism
tea quality
Transcription, Genetic
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gPMAL4puDgYLEE1K1ph8JeUJs2mlCDE3aJt1b5aTurlOXjvU2dP89dtu7cYD22jiSFTv2z7VjC_ExdyqrwPHrdkyizIKOrIkhMokH5VJNIIQDxcMf-uA0-zbLZ-MPt24sq1zZxN5Ql63nf-Q7HMjEKb_1_XL5M-KpUZxdHUdo3BcPuHUZl3SZ2W3Apcg7DZnMlEL7nYth4Cx2nFFgy73hi_qW_f_DmX-XS_7hf6ZPxOMROMqvg6SfinsYnomHe6t5bc_F-SHSoTfyGLjTb0MYUu6HOQu1k9MGbtrQ1qXcrdtuGQj1dXUn6yBPEOR3hBsickt5vKgv-nle4UwSjTyaY1g2xCvZDN59RHjxFyxfiNPp_sneQTROUog8RQyLKCdpoAHy5QlqR17daWOrtFQuTyzkDuPK-pLARwWQe6N1SXGTAjI-hM406vSl2AptwNdCAkEeNEleWQuZMZ-tMx595VGpSpXOTES8OtPCj23GedpFU1C4wWIo_hHDRHxab7kcemzcRbzLgloTcnvs_kN7dVaMt63ATOfOxZDEnnTAaWKSkA9o75HUwuUTsb0SczHe2a641bCJ-LBeJiFyCgUCttdEw_aLzsQSH68GrVhzQsGXJh2kFbOhLxusbq6Eet539CbUZ41K3tzN1lvxiOAal7dFidoWW4ura3xHkGjh3vd6_xty4g_f
  priority: 102
  providerName: ProQuest
Title Methyl Salicylate Enhances Flavonoid Biosynthesis in Tea Leaves by Stimulating the Phenylpropanoid Pathway
URI https://www.ncbi.nlm.nih.gov/pubmed/30669582
https://www.proquest.com/docview/2549033185
https://www.proquest.com/docview/2179422692
https://pubmed.ncbi.nlm.nih.gov/PMC6359712
https://doaj.org/article/e465bb0a20c141b69b7819a6cce002b5
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgPMAL4jcdozIST0jR4iS260c6tUyITRXbpL5FZ_dCM2UOIt2m_veck7RaAcELL3mIL9Ll7uz7Ptm-Y-y9tCIrwIbb7ZhEmQEVGR1DpBMHwqaKQEggiien6vgi-zyX8zutvsKZsK48cGe4Q8yUtDaGJHYiE1YZqymJgXIOaTLbtnop5bwNmeqpFonKbg8zJVJ_eNW1msUm7CWENXsnC7XF-v-EMH89KHkn80yfsMc9ZOQfO1Wfsnvon7GHR5tObc_Z5QmSuSt-BqHGb0XokU_8Mriz4dMKbmpflws-Lutm7QnvNWXDS8_PEfgXhBsSsmt-tiqv2k5e_hsnGT5bol9XpCutFuHrGSHFW1i_YBfTyfnRcdT3UIgccYVVJMkPqIGyeILKUj63SpsiXQgrEwPSYlwYtyDYUQBIp5VaEGMSQMsO4TKFKn3J9nzt8TXjQGAHdSILYyDTekSecOgKh0IUYmH1gMUbm-auLzAe-lxUORGN4Ib8NzcM2IftJ9-76hp_Ex4HR20FQ2Hs9gWFS96HS_6vcBmwg42b8362NnkgyXEa7pEP2LvtMDkxbJ6Ax_qaZMLKRTYxpMerLiq2mhDtUkaOaETvxMuOqrsjvly2tbwJ7xktkv3_8W9v2COCc-H4W5SIA7a3-nGNbwkyreyQ3ddzTc_R9NOQPRhPTmdfh-2M-Qkpkxux
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4t0tBYwEF6SoedrrA0K0dNnS3apSt1JvwXacblDqtM22Vf4Uv5GZvGAB9dZrPIlGntc3GXuGkHeR8sJUKrzdbnwnFJI5grvS4b6WngoYgBBMFKcHbHwcfjuJTlbIz-4uDB6r7Hxi7aiTQuM_8i1MZNwA7_p-Or9wcGoUVle7ERqNWuyb6gZStvLj3heQ73vfH-3OdsZOO1XA0YCeF04EnBkuIa75himIcIpxkQaJpyJfyEgZNxU6gUCcShlpzlgCOYQnwRABqTDDAvjuPXI_DAKBFjUcfe0TPA-iYVM5hUV366wZcGtKrGBgpFiKffWIgP_h2r-PZ_4R70aPyMMWqNLPjWY9JivGPiFrO918uKfkx9SAkHN6JLGzcA6Yle7aOSpRSUe5vC5skSV0OyvKygLKLLOSZpbOjKQTI6-BSFX0aJGd1fPD7CkFGno4N7bKgVfwUfj2IeDTG1k9I8d3ssfPyaotrFknVALEMtyPUiFkyPlQKK6NTrXxvNRLFB8Qt9vTWLdtzXG6Rh5DeoNiiP8Rw4B86F85b3p63Ea8jYLqCbEdd_2guDyNW-uOTcgipVzpuxp0QDFgEpCWZFobUAsVDchmJ-a49RFl_FujB-RtvwxCxJKNtKa4Ahr0l7AnAvh40WhFzwkke0xEQ1jhS_qyxOryis3mdQdxQJmCe_7G7Wy9IWvj2XQST_YO9l-SBwAV8Wid43ubZHVxeWVeARxbqNe1DVDy_a6N7hdME0xJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4s2WAkaCC1K0cbK26wNC9LFq6UMrtZX2FmzH6QalTttsW-1f49cxk8eWBdRbr_EkGnle32TsGUI-csMGmTZ4u91FwUBpESgZ6kBGVjMTCwAhmCjuH4jt48H3MR8vkV_dXRg8Vtn5xNpRp6XFf-R9TGTCGO_69rP2WMRoc_j17DzACVJYae3GaTQqsutm15C-VV92NkHWn6JouHW0sR20EwYCC0h6GnDg0kkNMS5ywkC0M0KqLE6Z4ZHS3LgwUzaFoJxpza0UIoV8gmkwSkAtwokYvnuP3JcxZ2hjcnyT7DGIjE0VNY5V2D9tht26CqsZGDUW4mA9LuB_GPfvo5p_xL7hE_K4Ba30W6NlT8mS88_Iw41uVtxz8nPfgcALeqixy3AB-JVu-QkqVEWHhb4qfZmndD0vq5kHxFnlFc09PXKa7jl9BURmRg-n-Wk9S8yfUKCho4nzswJ4BX-Fb48Aq17r2QtyfCd7_JIs-9K714RqgFtORjxTSg-kXFNGWmcz6xjLWGpkj4Tdnia2bXGOkzaKBFIdFEPyjxh65PP8lbOmv8dtxOsoqDkhtuauH5QXJ0lr6YkbCG5MqKPQgg4YAUwC6tLCWgdqYXiPrHZiTlp_USU32t0jH-bLIEQs32jvykugQd8Je6KAj1eNVsw5gcRPKL4GK3JBXxZYXVzx-aTuJg6IU0kWrdzO1nvyAMwt2ds52H1DHgFqxFN2QcRWyfL04tK9BWQ2Ne9qE6Dkx13b3G9UiVB2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methyl+Salicylate+Enhances+Flavonoid+Biosynthesis+in+Tea+Leaves+by+Stimulating+the+Phenylpropanoid+Pathway&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xin&rft.au=Zhang%2C+Li-Ping&rft.au=Zhang%2C+Lan&rft.au=Yan%2C+Peng&rft.date=2019-01-21&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=24&rft.issue=2&rft_id=info:doi/10.3390%2Fmolecules24020362&rft_id=info%3Apmid%2F30669582&rft.externalDocID=PMC6359712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon