Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars
Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucle...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 20; pp. 8057 - 8062 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
14.05.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1217133110 |
Cover
Loading…
Abstract | Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. |
---|---|
AbstractList | Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat. [PUBLICATION ABSTRACT] |
Author | Wong, Debbie Morell, Matthew K. Brown-Guedira, Gina L. Hayden, Matthew J. Reynolds, Matthew Saintenac, Cyrille Wang, Shichen Chao, Shiaoman Talbert, Luther Forrest, Kerrie Tomar, Luxmi See, Deven Akhunova, Alina Huang, Bevan Emma da Silva, Marta Lopez Bockelman, Harold Akhunov, Eduard Stephen, Stuart Kong, Stephan Anderson, James A. Kiani, Seifollah Korzun, Viktor Carter, Arron Dubcovsky, Jorge Dreisigacker, Susanne Sorrells, Mark E. Bai, Guihua Pumphrey, Michael Morrell, Peter Laurent Cavanagh, Colin R. Baenziger, Stephen |
Author_xml | – sequence: 1 givenname: Colin R. surname: Cavanagh fullname: Cavanagh, Colin R. – sequence: 2 givenname: Shiaoman surname: Chao fullname: Chao, Shiaoman – sequence: 3 givenname: Shichen surname: Wang fullname: Wang, Shichen – sequence: 4 givenname: Bevan Emma surname: Huang fullname: Huang, Bevan Emma – sequence: 5 givenname: Stuart surname: Stephen fullname: Stephen, Stuart – sequence: 6 givenname: Seifollah surname: Kiani fullname: Kiani, Seifollah – sequence: 7 givenname: Kerrie surname: Forrest fullname: Forrest, Kerrie – sequence: 8 givenname: Cyrille surname: Saintenac fullname: Saintenac, Cyrille – sequence: 9 givenname: Gina L. surname: Brown-Guedira fullname: Brown-Guedira, Gina L. – sequence: 10 givenname: Alina surname: Akhunova fullname: Akhunova, Alina – sequence: 11 givenname: Deven surname: See fullname: See, Deven – sequence: 12 givenname: Guihua surname: Bai fullname: Bai, Guihua – sequence: 13 givenname: Michael surname: Pumphrey fullname: Pumphrey, Michael – sequence: 14 givenname: Luxmi surname: Tomar fullname: Tomar, Luxmi – sequence: 15 givenname: Debbie surname: Wong fullname: Wong, Debbie – sequence: 16 givenname: Stephan surname: Kong fullname: Kong, Stephan – sequence: 17 givenname: Matthew surname: Reynolds fullname: Reynolds, Matthew – sequence: 18 givenname: Marta Lopez surname: da Silva fullname: da Silva, Marta Lopez – sequence: 19 givenname: Harold surname: Bockelman fullname: Bockelman, Harold – sequence: 20 givenname: Luther surname: Talbert fullname: Talbert, Luther – sequence: 21 givenname: James A. surname: Anderson fullname: Anderson, James A. – sequence: 22 givenname: Susanne surname: Dreisigacker fullname: Dreisigacker, Susanne – sequence: 23 givenname: Stephen surname: Baenziger fullname: Baenziger, Stephen – sequence: 24 givenname: Arron surname: Carter fullname: Carter, Arron – sequence: 25 givenname: Viktor surname: Korzun fullname: Korzun, Viktor – sequence: 26 givenname: Peter Laurent surname: Morrell fullname: Morrell, Peter Laurent – sequence: 27 givenname: Jorge surname: Dubcovsky fullname: Dubcovsky, Jorge – sequence: 28 givenname: Matthew K. surname: Morell fullname: Morell, Matthew K. – sequence: 29 givenname: Mark E. surname: Sorrells fullname: Sorrells, Mark E. – sequence: 30 givenname: Matthew J. surname: Hayden fullname: Hayden, Matthew J. – sequence: 31 givenname: Eduard surname: Akhunov fullname: Akhunov, Eduard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23630259$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02651659$$DView record in HAL |
BookMark | eNqFks9v0zAUxy00xLrBmRNgiQscsj3bdRxfkKZpbEiVuOxuuY6zukriYDvdduYfx1m7ApUQF_96n_f1-3WCjnrfW4TeEjgjINj50Ot4RigRhDFC4AWaEZCkKOcSjtAMgIqimtP5MTqJcQ0AklfwCh1TVjKgXM7Qz2vb-84W96622Phu0EEnt7G4zkuILj3isTd-OuNubJMbWouTDnc2RewbHG1rTXK-x40P2HVDyGxn-4Rdj1f2QQ-tdzW-X1mdcKv7OmhjI84HbCa5jQ7xNXrZ6DbaN7v9FN1-vbq9vCkW36-_XV4sCsO5TAWvat0sAYgGWApiBBgmZG0M1ZXUAupaUmgkYaKWhLBKUC54aZt85YxW7BR92coO47KztclBBt2qIbhOh0fltVN_W3q3Und-o1jJRUVZFvi8FVgduN1cLNT0BrTkpORyQzL7afdZ8D9GG5PqXDS2zSWwfoyK5A5xwiSU_0cZp1RImPOMfjxA134MfS7aEyUEFeWU6Ps_E92H-tz1DPAtYIKPMdhGGZf01MWct2sVATVNl5qmS_2erux3fuD3LP1vjw-7UCbDns44BVUBF5l4tyXWMfmwR-a5lGWZA_4FNbbnJA |
CitedBy_id | crossref_primary_10_1007_s00122_015_2631_9 crossref_primary_10_1126_science_1251788 crossref_primary_10_1186_s13059_015_0606_4 crossref_primary_10_1111_pbi_12456 crossref_primary_10_1371_journal_pone_0191305 crossref_primary_10_1007_s10681_021_02900_1 crossref_primary_10_1186_s13059_021_02354_7 crossref_primary_10_3198_jpr2018_07_0052crmp crossref_primary_10_1371_journal_pone_0208196 crossref_primary_10_3390_ijms21124497 crossref_primary_10_1371_journal_pone_0154242 crossref_primary_10_3389_fpls_2023_1137808 crossref_primary_10_1371_journal_pone_0152185 crossref_primary_10_1094_PDIS_02_19_0380_RE crossref_primary_10_3389_fpls_2022_990915 crossref_primary_10_3389_fpls_2020_00042 crossref_primary_10_1007_s00122_018_3231_2 crossref_primary_10_3390_ijms23063086 crossref_primary_10_3389_fpls_2024_1518829 crossref_primary_10_1002_tpg2_20300 crossref_primary_10_1371_journal_pone_0189594 crossref_primary_10_3389_fpls_2017_01293 crossref_primary_10_3390_plants10061167 crossref_primary_10_2135_cropsci2015_03_0194 crossref_primary_10_1016_j_gfs_2020_100446 crossref_primary_10_3389_fpls_2018_00609 crossref_primary_10_1093_dnares_dsy004 crossref_primary_10_1007_s00122_014_2311_1 crossref_primary_10_1007_s00122_015_2642_6 crossref_primary_10_1371_journal_pone_0169606 crossref_primary_10_1534_g3_114_010942 crossref_primary_10_1534_g3_115_019703 crossref_primary_10_1534_g3_117_043471 crossref_primary_10_3389_fgene_2022_956921 crossref_primary_10_1007_s00438_015_1091_x crossref_primary_10_1371_journal_pone_0118144 crossref_primary_10_3389_fgene_2020_589490 crossref_primary_10_3835_plantgenome2017_02_0008 crossref_primary_10_1007_s00122_018_3146_y crossref_primary_10_3389_fpls_2021_738710 crossref_primary_10_3390_plants11070986 crossref_primary_10_3389_fpls_2016_01617 crossref_primary_10_1007_s00122_016_2841_9 crossref_primary_10_1016_j_tplants_2014_06_012 crossref_primary_10_1111_pbi_13564 crossref_primary_10_1371_journal_pone_0132112 crossref_primary_10_1007_s00122_019_03415_z crossref_primary_10_1186_s12870_018_1234_4 crossref_primary_10_1021_acs_jafc_7b05450 crossref_primary_10_1111_ppa_13166 crossref_primary_10_1017_S1479262120000192 crossref_primary_10_1094_PHYTO_04_17_0153_R crossref_primary_10_1007_s00122_019_03307_2 crossref_primary_10_3390_agronomy12081848 crossref_primary_10_1016_j_fcr_2015_11_007 crossref_primary_10_1371_journal_pone_0170941 crossref_primary_10_1534_g3_116_037622 crossref_primary_10_1073_pnas_1515919112 crossref_primary_10_1371_journal_pone_0166577 crossref_primary_10_1111_pbi_12240 crossref_primary_10_3389_fpls_2019_01247 crossref_primary_10_3389_fgene_2019_01345 crossref_primary_10_3389_fpls_2021_800284 crossref_primary_10_1007_s00122_016_2830_z crossref_primary_10_1007_s00122_014_2312_0 crossref_primary_10_1007_s00122_021_03970_4 crossref_primary_10_3390_su12010384 crossref_primary_10_3389_fgene_2020_580782 crossref_primary_10_1007_s00122_014_2430_8 crossref_primary_10_3389_fgene_2022_772517 crossref_primary_10_1007_s00425_016_2538_y crossref_primary_10_1007_s00122_020_03720_y crossref_primary_10_1093_g3journal_jkaa050 crossref_primary_10_1534_g3_116_038604 crossref_primary_10_1007_s11032_013_9905_1 crossref_primary_10_3389_fpls_2018_01825 crossref_primary_10_1016_j_envexpbot_2023_105394 crossref_primary_10_56093_ijas_v86i10_62092 crossref_primary_10_3389_fpls_2018_01829 crossref_primary_10_1038_s41598_021_85226_1 crossref_primary_10_1093_g3journal_jkaa057 crossref_primary_10_1186_s12864_015_1310_1 crossref_primary_10_1007_s00122_020_03622_z crossref_primary_10_1186_s13059_015_0582_8 crossref_primary_10_1007_s00122_022_04133_9 crossref_primary_10_1007_s00122_018_3166_7 crossref_primary_10_1038_s41598_021_02666_5 crossref_primary_10_1371_journal_pone_0088568 crossref_primary_10_1093_jxb_eraa471 crossref_primary_10_1111_pbi_12538 crossref_primary_10_1007_s11032_019_1004_5 crossref_primary_10_1534_g3_118_200058 crossref_primary_10_1007_s11032_015_0200_1 crossref_primary_10_1016_j_plgene_2025_100495 crossref_primary_10_1111_tpj_12366 crossref_primary_10_1007_s00122_017_2946_9 crossref_primary_10_1111_tpj_14421 crossref_primary_10_1186_s12870_017_1056_9 crossref_primary_10_3390_ijms23031052 crossref_primary_10_3389_fpls_2018_00529 crossref_primary_10_3389_fpls_2022_793925 crossref_primary_10_2134_age2019_07_0059 crossref_primary_10_1093_jxb_erv223 crossref_primary_10_1186_s12864_019_6011_8 crossref_primary_10_3389_fpls_2014_00692 crossref_primary_10_1111_pbi_12424 crossref_primary_10_2135_cropsci2018_11_0694 crossref_primary_10_1038_s41598_022_24678_5 crossref_primary_10_3835_plantgenome2016_12_0124 crossref_primary_10_1016_j_pbi_2014_02_001 crossref_primary_10_1371_journal_pone_0179851 crossref_primary_10_1002_cche_10376 crossref_primary_10_1038_s41467_017_00945_2 crossref_primary_10_1007_s10681_015_1574_1 crossref_primary_10_1007_s11032_015_0235_3 crossref_primary_10_3198_jpr2017_08_0053crmp crossref_primary_10_1002_jsf2_192 crossref_primary_10_1016_j_funbio_2020_02_013 crossref_primary_10_3389_fpls_2018_01968 crossref_primary_10_1007_s00122_019_03286_4 crossref_primary_10_1016_j_tplants_2017_04_002 crossref_primary_10_3389_fpls_2018_00513 crossref_primary_10_2135_cropsci2015_11_0683 crossref_primary_10_3389_fpls_2019_01278 crossref_primary_10_3389_fpls_2016_01674 crossref_primary_10_3390_ijms20020432 crossref_primary_10_1186_s12864_020_07351_x crossref_primary_10_2135_cropsci2015_09_0568 crossref_primary_10_1007_s00122_020_03689_8 crossref_primary_10_1111_jipb_12197 crossref_primary_10_1007_s00122_016_2840_x crossref_primary_10_1016_S2095_3119_14_60902_3 crossref_primary_10_1186_s41065_019_0093_9 crossref_primary_10_1002_jsfa_6434 crossref_primary_10_2135_cropsci2014_09_0621 crossref_primary_10_1007_s00122_019_03373_6 crossref_primary_10_1038_s41598_021_91515_6 crossref_primary_10_1111_pbi_13648 crossref_primary_10_1007_s00122_021_03881_4 crossref_primary_10_1371_journal_pone_0143890 crossref_primary_10_3835_plantgenome2015_09_0078 crossref_primary_10_1534_g3_118_200038 crossref_primary_10_3389_fgene_2020_572975 crossref_primary_10_2135_cropsci2017_07_0423 crossref_primary_10_3389_fpls_2020_01316 crossref_primary_10_1186_s12863_019_0736_x crossref_primary_10_3389_fpls_2016_00452 crossref_primary_10_1093_database_baaa090 crossref_primary_10_3389_fpls_2014_00217 crossref_primary_10_1007_s00122_015_2548_3 crossref_primary_10_1007_s00122_014_2337_4 crossref_primary_10_1071_CP16355 crossref_primary_10_1007_s00122_018_3130_6 crossref_primary_10_1186_s40659_024_00562_6 crossref_primary_10_1007_s10681_024_03408_0 crossref_primary_10_1093_aob_mcad003 crossref_primary_10_1111_pbi_13652 crossref_primary_10_3835_plantgenome2015_05_0032 crossref_primary_10_1186_s12864_016_3383_x crossref_primary_10_1111_pbr_12820 crossref_primary_10_1007_s10142_024_01424_w crossref_primary_10_1038_s41588_019_0382_2 crossref_primary_10_1002_tpg2_20513 crossref_primary_10_1007_s00122_015_2514_0 crossref_primary_10_7717_peerj_7276 crossref_primary_10_1007_s00122_019_03398_x crossref_primary_10_1111_pbi_12690 crossref_primary_10_1016_j_cj_2020_03_007 crossref_primary_10_2135_cropsci2015_06_0389 crossref_primary_10_3390_cimb45080419 crossref_primary_10_1007_s10681_015_1475_3 crossref_primary_10_2135_cropsci2018_03_0208 crossref_primary_10_1186_1471_2105_14_S15_S15 crossref_primary_10_1007_s00122_018_3126_2 crossref_primary_10_1007_s10142_016_0475_2 crossref_primary_10_1371_journal_pone_0105593 crossref_primary_10_1071_CP21311 crossref_primary_10_1093_jxb_erx311 crossref_primary_10_1111_tpj_15952 crossref_primary_10_2135_cropsci2017_03_0143 crossref_primary_10_3389_fpls_2022_877496 crossref_primary_10_1071_FP14060 crossref_primary_10_1111_mec_13339 crossref_primary_10_3389_fgene_2020_00217 crossref_primary_10_1016_S2095_3119_18_62023_4 crossref_primary_10_1007_s00122_020_03703_z crossref_primary_10_1038_srep41247 crossref_primary_10_2135_cropsci2017_12_0740 crossref_primary_10_1371_journal_pone_0316945 crossref_primary_10_1007_s00122_015_2492_2 crossref_primary_10_9787_KJBS_2018_50_4_364 crossref_primary_10_1007_s13237_018_0243_x crossref_primary_10_3389_fpls_2016_01244 crossref_primary_10_1094_PDIS_09_21_1946_RE crossref_primary_10_1016_j_cj_2017_09_003 crossref_primary_10_2135_cropsci2017_03_0159 crossref_primary_10_1007_s00122_023_04481_0 crossref_primary_10_1186_s12870_020_02722_8 crossref_primary_10_3390_biology10040258 crossref_primary_10_1146_annurev_genet_120116_024846 crossref_primary_10_1186_s12859_017_1593_0 crossref_primary_10_1007_s10681_018_2264_6 crossref_primary_10_1186_s12870_014_0258_7 crossref_primary_10_7717_peerj_10733 crossref_primary_10_1007_s00122_023_04526_4 crossref_primary_10_1007_s11032_014_0176_2 crossref_primary_10_3389_fpls_2017_01214 crossref_primary_10_1111_pbi_12504 crossref_primary_10_1094_PHYTO_11_17_0375_R crossref_primary_10_3389_fpls_2019_00308 crossref_primary_10_3390_d9040051 crossref_primary_10_3389_fpls_2017_01586 crossref_primary_10_1007_s11032_017_0655_3 crossref_primary_10_3389_fpls_2017_01461 crossref_primary_10_3389_fpls_2015_01046 crossref_primary_10_3389_fpls_2018_01529 crossref_primary_10_1007_s00122_024_04709_7 crossref_primary_10_1155_2015_830618 crossref_primary_10_1007_s11032_016_0540_5 crossref_primary_10_1371_journal_pone_0222755 crossref_primary_10_3390_agronomy6010004 crossref_primary_10_1007_s00122_019_03495_x crossref_primary_10_1071_CP20362 crossref_primary_10_1007_s00122_017_2990_5 crossref_primary_10_1007_s10142_021_00825_5 crossref_primary_10_1007_s00122_014_2380_1 crossref_primary_10_3389_fpls_2020_583738 crossref_primary_10_1111_pbi_12757 crossref_primary_10_3389_fpls_2021_783830 crossref_primary_10_1007_s00122_023_04538_0 crossref_primary_10_1534_g3_120_401234 crossref_primary_10_1371_journal_pone_0192261 crossref_primary_10_1111_tpj_13515 crossref_primary_10_3389_fpls_2018_00104 crossref_primary_10_1007_s00122_015_2504_2 crossref_primary_10_1007_s00122_020_03735_5 crossref_primary_10_1371_journal_pone_0091758 crossref_primary_10_3390_su12229728 crossref_primary_10_1186_s13007_021_00777_8 crossref_primary_10_1038_srep44530 crossref_primary_10_1111_tpj_12660 crossref_primary_10_1007_s00122_017_2927_z crossref_primary_10_1016_j_indcrop_2024_118763 crossref_primary_10_1016_j_xplc_2021_100216 crossref_primary_10_1371_journal_pone_0208217 crossref_primary_10_1007_s00122_017_3023_0 crossref_primary_10_1371_journal_pone_0129580 crossref_primary_10_1093_dnares_dsu020 crossref_primary_10_1093_jxb_erv122 crossref_primary_10_1111_pbi_12888 crossref_primary_10_1186_s12870_019_1919_3 crossref_primary_10_1007_s11032_023_01359_3 crossref_primary_10_1371_journal_pone_0218389 crossref_primary_10_3390_ijms18061329 crossref_primary_10_1186_s12870_014_0320_5 crossref_primary_10_17221_154_2018_CJGPB crossref_primary_10_1186_s12864_019_5712_3 crossref_primary_10_3389_fpls_2017_01434 crossref_primary_10_3390_foods9111691 crossref_primary_10_1016_j_cj_2020_04_005 crossref_primary_10_1016_j_fcr_2016_10_001 crossref_primary_10_1534_genetics_116_197095 crossref_primary_10_3389_fpls_2020_567147 crossref_primary_10_1080_07388551_2020_1765730 crossref_primary_10_3389_fpls_2018_00333 crossref_primary_10_3390_ijms21165649 crossref_primary_10_1093_aob_mcx148 crossref_primary_10_3389_fpls_2020_01067 crossref_primary_10_1007_s00122_015_2482_4 crossref_primary_10_1111_tpj_12550 crossref_primary_10_1111_pbi_12770 crossref_primary_10_3390_horticulturae8020116 crossref_primary_10_1534_g3_119_400292 crossref_primary_10_1111_nph_12706 crossref_primary_10_1186_1471_2164_15_873 crossref_primary_10_1016_j_jia_2023_07_028 crossref_primary_10_1270_jsbbs_22004 crossref_primary_10_1534_g3_119_400103 crossref_primary_10_1093_dnares_dsw014 crossref_primary_10_1186_s12864_015_1424_5 crossref_primary_10_1186_s12870_020_02525_x crossref_primary_10_1016_j_scienta_2023_112406 crossref_primary_10_1094_PHYTO_03_15_0060_R crossref_primary_10_1002_plr2_20147 crossref_primary_10_1007_s10142_014_0364_5 crossref_primary_10_3835_plantgenome2016_03_0026 crossref_primary_10_1371_journal_pone_0194698 crossref_primary_10_1038_s41597_022_01891_5 crossref_primary_10_3389_fmicb_2016_01542 crossref_primary_10_3390_agronomy13092408 crossref_primary_10_1007_s00122_019_03293_5 crossref_primary_10_3389_fpls_2023_1131751 crossref_primary_10_1186_s13059_019_1744_x crossref_primary_10_1007_s11032_020_1105_1 crossref_primary_10_1007_s00438_017_1310_8 crossref_primary_10_3390_ijms21113960 crossref_primary_10_3389_fpls_2016_01169 crossref_primary_10_1016_j_gene_2020_145303 crossref_primary_10_1094_PHYTO_06_17_0195_R crossref_primary_10_3389_fpls_2021_756877 crossref_primary_10_1007_s11032_022_01282_z crossref_primary_10_3390_genes11060699 crossref_primary_10_1080_17429145_2019_1672815 crossref_primary_10_1007_s11032_014_0179_z crossref_primary_10_2135_cropsci2016_06_0459 crossref_primary_10_1038_s41598_021_87182_2 crossref_primary_10_1016_j_tplants_2015_03_010 crossref_primary_10_1007_s00122_024_04730_w crossref_primary_10_3389_fpls_2020_01040 crossref_primary_10_3835_plantgenome2016_10_0101 crossref_primary_10_1016_j_cj_2020_06_015 crossref_primary_10_3389_fpls_2017_01389 crossref_primary_10_3390_plants14060914 crossref_primary_10_1186_s12864_018_4969_2 crossref_primary_10_1534_g3_116_036525 crossref_primary_10_3390_plants9060698 crossref_primary_10_1007_s00122_013_2118_5 crossref_primary_10_1007_s00122_019_03316_1 crossref_primary_10_1016_j_cj_2020_12_006 crossref_primary_10_3389_fpls_2021_775383 crossref_primary_10_1007_s00122_021_03851_w crossref_primary_10_1002_csc2_20741 crossref_primary_10_1016_j_indcrop_2021_113889 crossref_primary_10_7717_peerj_11857 crossref_primary_10_1007_s00122_015_2594_x crossref_primary_10_1016_j_foodcont_2015_07_006 crossref_primary_10_1007_s00122_021_04003_w crossref_primary_10_1371_journal_pone_0154609 crossref_primary_10_3390_ijms25073600 crossref_primary_10_1016_j_nbt_2016_01_008 crossref_primary_10_1007_s00122_022_04153_5 crossref_primary_10_1007_s11032_014_0166_4 crossref_primary_10_1007_s10681_021_02843_7 crossref_primary_10_3389_fpls_2017_00258 crossref_primary_10_1007_s10681_015_1594_x crossref_primary_10_3389_fpls_2018_01484 crossref_primary_10_1007_s00122_018_3232_1 crossref_primary_10_3390_genes9010019 crossref_primary_10_1007_s00122_015_2506_0 crossref_primary_10_1016_S2095_3119_16_61339_4 crossref_primary_10_2135_cropsci2013_09_0634 crossref_primary_10_1556_0806_46_2018_033 crossref_primary_10_3389_fgene_2014_00293 crossref_primary_10_1038_s41438_021_00637_5 crossref_primary_10_1016_j_pbi_2015_02_009 crossref_primary_10_1371_journal_pone_0244455 crossref_primary_10_1007_s11032_017_0741_6 crossref_primary_10_1111_1755_0998_12183 crossref_primary_10_2135_cropsci2017_01_0022 crossref_primary_10_1094_PDIS_04_17_0468_RE crossref_primary_10_3389_fpls_2018_00141 crossref_primary_10_1016_j_tplants_2021_03_010 crossref_primary_10_3389_fpls_2020_00170 crossref_primary_10_2135_cropsci2013_07_0438 crossref_primary_10_1007_s11032_021_01272_7 crossref_primary_10_2135_cropsci2017_08_0488 crossref_primary_10_1111_jac_12473 crossref_primary_10_1007_s00122_017_3010_5 crossref_primary_10_3389_fpls_2024_1499055 crossref_primary_10_1007_s00122_019_03283_7 crossref_primary_10_1590_1678_4685_gmb_2016_0207 crossref_primary_10_1534_g3_115_024349 crossref_primary_10_1534_g3_115_020362 crossref_primary_10_1007_s00122_017_2884_6 crossref_primary_10_1371_journal_pone_0239375 crossref_primary_10_1002_csc2_20307 crossref_primary_10_3390_ijms24098390 crossref_primary_10_1007_s11032_017_0707_8 crossref_primary_10_3389_fpls_2017_01843 crossref_primary_10_3390_agronomy8060079 crossref_primary_10_1371_journal_pone_0152852 crossref_primary_10_2135_cropsci2015_01_0043 crossref_primary_10_1007_s00122_019_03367_4 crossref_primary_10_1007_s00122_017_2895_3 crossref_primary_10_1186_s12864_017_3960_7 crossref_primary_10_3389_fpls_2023_1232897 crossref_primary_10_1007_s00122_023_04352_8 crossref_primary_10_3389_fpls_2021_635397 crossref_primary_10_1534_genetics_116_194688 crossref_primary_10_1007_s10681_014_1313_z crossref_primary_10_1007_s11032_018_0788_z crossref_primary_10_1038_srep38496 crossref_primary_10_2135_cropsci2015_07_0415 crossref_primary_10_1094_PDIS_09_22_2242_RE crossref_primary_10_2135_cropsci2013_09_0601 crossref_primary_10_1007_s11032_014_0183_3 crossref_primary_10_1186_s12863_019_0785_1 crossref_primary_10_1038_s41598_017_07084_0 crossref_primary_10_1002_csc2_20302 crossref_primary_10_1111_nph_13533 crossref_primary_10_17221_73_2020_CJGPB crossref_primary_10_1139_gen_2017_0246 crossref_primary_10_1155_2013_585467 crossref_primary_10_1371_journal_pone_0237293 crossref_primary_10_1371_journal_pone_0179087 crossref_primary_10_3390_agriculture14122317 crossref_primary_10_1007_s00122_016_2783_2 crossref_primary_10_1038_s41598_017_04028_6 crossref_primary_10_1126_sciadv_abj4633 crossref_primary_10_2135_cropsci2014_08_0533 crossref_primary_10_3389_fpls_2020_585515 crossref_primary_10_3389_fpls_2021_684671 crossref_primary_10_3389_fpls_2023_1112297 crossref_primary_10_1007_s13353_021_00664_x crossref_primary_10_3389_fpls_2021_732837 crossref_primary_10_1007_s10681_015_1393_4 crossref_primary_10_1111_1755_0998_12896 crossref_primary_10_1073_pnas_2209875119 crossref_primary_10_1186_s12864_015_1996_0 crossref_primary_10_1016_j_scienta_2017_03_034 crossref_primary_10_1111_pbr_13025 crossref_primary_10_3390_agronomy8060095 crossref_primary_10_1186_s12870_022_03986_y crossref_primary_10_3390_crops1020007 crossref_primary_10_1038_s41598_019_47936_5 crossref_primary_10_1371_journal_pone_0208614 crossref_primary_10_1093_pcp_pct163 crossref_primary_10_1080_07060661_2021_1982011 crossref_primary_10_1094_PDIS_11_22_2600_RE crossref_primary_10_1002_plr2_20077 crossref_primary_10_1094_PHYTO_12_16_0444_R crossref_primary_10_1111_tpj_17047 crossref_primary_10_3390_agronomy12010075 crossref_primary_10_1094_PDIS_12_18_2264_RE crossref_primary_10_1371_journal_pone_0113287 crossref_primary_10_3390_agriculture8070089 crossref_primary_10_1007_s10681_014_1334_7 crossref_primary_10_1007_s10681_019_2432_3 crossref_primary_10_1186_s12870_016_0784_6 crossref_primary_10_1007_s10681_017_1945_x crossref_primary_10_1007_s00122_016_2815_y crossref_primary_10_3389_fpls_2023_1101271 crossref_primary_10_1534_g3_118_200921 crossref_primary_10_3390_plants9121631 crossref_primary_10_1094_PHYTO_10_18_0388_R crossref_primary_10_2135_cropsci2015_07_0438 crossref_primary_10_3389_fpls_2019_00727 crossref_primary_10_3389_fpls_2022_967432 crossref_primary_10_1371_journal_pone_0197317 crossref_primary_10_1186_s12870_024_05445_2 crossref_primary_10_18699_VJ19_37_o crossref_primary_10_1007_s11032_015_0404_4 crossref_primary_10_1007_s00122_023_04440_9 crossref_primary_10_1093_aob_mcz041 crossref_primary_10_1007_s11032_015_0398_y crossref_primary_10_3390_agronomy9020066 crossref_primary_10_3390_ijms23031842 crossref_primary_10_1186_s12863_020_0825_x crossref_primary_10_1002_tpg2_20196 crossref_primary_10_1038_s41467_022_28453_y crossref_primary_10_1371_journal_pone_0243675 crossref_primary_10_1534_genetics_118_301286 crossref_primary_10_1007_s00122_014_2277_z crossref_primary_10_1007_s00122_016_2699_x crossref_primary_10_1007_s00122_013_2215_5 crossref_primary_10_1007_s00122_018_3181_8 crossref_primary_10_3390_ijms19103011 crossref_primary_10_7717_peerj_11593 crossref_primary_10_1038_hdy_2014_104 crossref_primary_10_1094_PHYTO_09_16_0347_R crossref_primary_10_1093_biosci_bix114 crossref_primary_10_9787_KJBS_2023_55_4_350 crossref_primary_10_1111_pbr_12231 crossref_primary_10_1534_g3_114_014563 crossref_primary_10_3835_plantgenome2016_06_0051 crossref_primary_10_1002_csc2_20113 crossref_primary_10_1002_tpg2_20061 crossref_primary_10_1016_j_molp_2015_02_002 crossref_primary_10_1038_s41598_020_60190_4 crossref_primary_10_1002_tpg2_20185 crossref_primary_10_1002_csc2_20458 crossref_primary_10_1371_journal_pone_0186329 crossref_primary_10_1007_s00122_015_2602_1 crossref_primary_10_1007_s13353_016_0347_4 crossref_primary_10_1007_s11032_018_0906_y crossref_primary_10_1007_s00122_017_2984_3 crossref_primary_10_1007_s11032_015_0198_4 crossref_primary_10_3389_fpls_2017_01412 crossref_primary_10_3835_plantgenome2016_01_0008 crossref_primary_10_1093_aobpla_plaa039 crossref_primary_10_1186_s12864_020_6536_x crossref_primary_10_1038_s41588_022_01189_7 crossref_primary_10_1016_j_molp_2022_01_004 crossref_primary_10_3389_fpls_2021_727077 crossref_primary_10_1007_s42976_020_00015_2 crossref_primary_10_1016_j_jcs_2017_06_005 crossref_primary_10_1007_s11032_014_0185_1 crossref_primary_10_1186_s12864_015_1297_7 crossref_primary_10_3390_ijms21041342 crossref_primary_10_1111_ppa_12928 crossref_primary_10_1186_s12862_018_1193_2 crossref_primary_10_1071_CP19165 crossref_primary_10_1002_tpg2_20096 crossref_primary_10_1002_evl3_285 crossref_primary_10_3732_ajb_1400119 crossref_primary_10_1007_s00122_022_04119_7 crossref_primary_10_1007_s00122_020_03544_w crossref_primary_10_1016_j_cj_2020_08_006 crossref_primary_10_1038_s41598_019_47038_2 crossref_primary_10_1186_s12864_016_3148_6 crossref_primary_10_3389_fpls_2017_00653 crossref_primary_10_3389_fpls_2017_00774 crossref_primary_10_3389_fgene_2020_00447 crossref_primary_10_1007_s00122_019_03347_8 crossref_primary_10_1038_s41477_017_0083_8 crossref_primary_10_1371_journal_pone_0126794 crossref_primary_10_1007_s11032_020_01135_7 crossref_primary_10_1016_S2095_3119_17_61710_6 crossref_primary_10_3390_ijms24021700 crossref_primary_10_1186_s12864_018_4915_3 crossref_primary_10_1093_g3journal_jkaf037 crossref_primary_10_1016_j_cj_2015_10_002 crossref_primary_10_1094_PDIS_10_23_2037_RE crossref_primary_10_1094_PHYTO_08_20_0358_FI crossref_primary_10_1186_s12870_019_2177_0 crossref_primary_10_3390_genes15050583 crossref_primary_10_1371_journal_pone_0157029 crossref_primary_10_1038_hdy_2014_1 crossref_primary_10_2135_cropsci2014_12_0852 crossref_primary_10_1007_s00122_014_2436_2 crossref_primary_10_3390_ijms23179662 crossref_primary_10_1007_s11032_017_0696_7 crossref_primary_10_1016_j_jare_2025_01_011 crossref_primary_10_1016_j_plantsci_2018_02_019 crossref_primary_10_3389_fpls_2019_00527 crossref_primary_10_1016_j_molp_2017_06_008 crossref_primary_10_1038_s41598_020_64399_1 crossref_primary_10_1186_s12870_018_1612_y crossref_primary_10_1007_s00122_014_2401_0 crossref_primary_10_1111_pbr_12383 crossref_primary_10_1007_s00122_014_2341_8 crossref_primary_10_1186_s12864_020_06991_3 crossref_primary_10_1186_s13059_015_0665_6 crossref_primary_10_3835_plantgenome2015_10_0109 crossref_primary_10_1371_journal_pone_0096855 crossref_primary_10_1371_journal_pone_0148671 crossref_primary_10_1002_tpg2_20150 crossref_primary_10_1534_g3_116_028407 crossref_primary_10_1002_tpg2_20031 crossref_primary_10_3390_agronomy10070943 crossref_primary_10_1007_s00122_018_3164_9 crossref_primary_10_3389_fgene_2022_1022931 crossref_primary_10_1016_j_jplph_2020_153351 crossref_primary_10_3390_plants12234014 crossref_primary_10_1186_1471_2229_14_107 crossref_primary_10_1038_srep38636 crossref_primary_10_1094_PHYTO_05_16_0186_R crossref_primary_10_3389_fpls_2020_00688 crossref_primary_10_1073_pnas_1514883112 crossref_primary_10_1007_s00122_020_03631_y crossref_primary_10_1371_journal_pone_0094000 crossref_primary_10_1134_S2635167624602018 crossref_primary_10_1111_pbi_12183 crossref_primary_10_1038_s41598_020_64993_3 crossref_primary_10_1007_s10681_023_03195_0 crossref_primary_10_3390_plants12030426 crossref_primary_10_1094_PDIS_12_16_1743_RE crossref_primary_10_3390_biology2041357 crossref_primary_10_1016_j_rhisph_2021_100413 crossref_primary_10_1016_j_cj_2019_09_003 crossref_primary_10_1093_gigascience_giz018 crossref_primary_10_1534_g3_114_012963 crossref_primary_10_1186_s12870_014_0191_9 crossref_primary_10_1186_s12870_020_02674_z crossref_primary_10_1534_g3_118_200664 crossref_primary_10_1016_S2095_3119_17_61846_X crossref_primary_10_1007_s00122_017_2975_4 crossref_primary_10_1111_pbr_12683 crossref_primary_10_1111_tpj_14194 crossref_primary_10_1007_s00122_015_2634_6 crossref_primary_10_1111_eva_12564 crossref_primary_10_1002_tpg2_20051 crossref_primary_10_1111_tpj_13070 crossref_primary_10_1007_s00122_023_04346_6 crossref_primary_10_1371_journal_pone_0160623 crossref_primary_10_1371_journal_pone_0247016 crossref_primary_10_1007_s10681_017_2002_5 crossref_primary_10_1016_j_ympev_2019_04_010 crossref_primary_10_1007_s10722_014_0114_5 crossref_primary_10_3389_fmicb_2015_00861 crossref_primary_10_1016_S2095_3119_16_61379_5 crossref_primary_10_1094_PDIS_12_20_2654_RE crossref_primary_10_1007_s00122_023_04248_7 crossref_primary_10_1007_s10142_014_0391_2 crossref_primary_10_1016_j_tplants_2014_04_011 crossref_primary_10_1534_g3_117_039842 crossref_primary_10_1002_csc2_20058 crossref_primary_10_3390_plants11151904 crossref_primary_10_1111_pbi_14022 crossref_primary_10_1371_journal_pone_0113309 crossref_primary_10_3835_plantgenome2015_04_0028 crossref_primary_10_1002_tpg2_20165 crossref_primary_10_1007_s00122_021_04018_3 crossref_primary_10_1017_S1479262115000325 crossref_primary_10_3390_biology11010149 crossref_primary_10_3835_plantgenome2015_04_0024 crossref_primary_10_2135_cropsci2018_04_0286 crossref_primary_10_3389_fpls_2015_00644 crossref_primary_10_1111_tpj_15263 crossref_primary_10_3389_fpls_2023_1192356 crossref_primary_10_1007_s11032_016_0536_1 crossref_primary_10_1186_s12870_017_1164_6 crossref_primary_10_3390_plants10020315 crossref_primary_10_1016_j_molp_2021_02_003 crossref_primary_10_1371_journal_pone_0276602 crossref_primary_10_3390_genes15070927 crossref_primary_10_1371_journal_pgen_1004254 crossref_primary_10_1016_j_plgene_2023_100404 crossref_primary_10_1007_s00122_015_2456_6 crossref_primary_10_1038_s41588_019_0393_z crossref_primary_10_3835_plantgenome2016_07_0071 crossref_primary_10_1007_s00122_014_2343_6 crossref_primary_10_1038_hdy_2013_139 crossref_primary_10_1038_s41598_017_11230_z crossref_primary_10_1007_s00122_014_2389_5 crossref_primary_10_1371_journal_pone_0150947 crossref_primary_10_1002_tpg2_20398 crossref_primary_10_1016_j_gene_2014_03_034 crossref_primary_10_3390_ijms252111515 crossref_primary_10_3390_plants14071007 crossref_primary_10_1016_j_tig_2015_10_002 crossref_primary_10_3390_plants7030056 crossref_primary_10_3390_plants12234053 crossref_primary_10_1007_s10681_017_2005_2 crossref_primary_10_1186_1471_2156_15_54 crossref_primary_10_1371_journal_pone_0189669 crossref_primary_10_2135_cropsci2015_05_0312 crossref_primary_10_1007_s00122_014_2445_1 crossref_primary_10_3198_jpr2015_01_0002crmp crossref_primary_10_1016_j_cj_2022_10_008 crossref_primary_10_1007_s13353_019_00514_x crossref_primary_10_1094_PHYTO_07_17_0254_R crossref_primary_10_2135_cropsci2015_05_0315 crossref_primary_10_1371_journal_pone_0219843 crossref_primary_10_1093_plcell_koac130 crossref_primary_10_1007_s00122_020_03674_1 crossref_primary_10_1534_g3_114_012542 crossref_primary_10_1007_s11032_018_0912_0 crossref_primary_10_1111_pbi_13111 crossref_primary_10_3389_fpls_2018_00926 crossref_primary_10_2135_cropsci2012_11_0636 crossref_primary_10_3389_fpls_2016_00991 crossref_primary_10_1186_s12870_021_03180_6 crossref_primary_10_1007_s00122_014_2332_9 crossref_primary_10_1186_s12284_021_00459_y crossref_primary_10_1007_s11032_014_0092_5 crossref_primary_10_1111_pbi_13356 crossref_primary_10_1094_PHYTO_10_22_0402_SA crossref_primary_10_1007_s00122_025_04858_3 crossref_primary_10_2135_cropsci2017_11_0710 crossref_primary_10_1016_j_cj_2021_02_015 crossref_primary_10_1093_jxb_erac484 crossref_primary_10_1186_s12864_021_07519_z crossref_primary_10_1371_journal_pone_0204362 crossref_primary_10_1371_journal_pone_0171963 crossref_primary_10_1007_s00122_016_2766_3 crossref_primary_10_2135_cropsci2013_06_0367 crossref_primary_10_3390_plants12122233 crossref_primary_10_1007_s11032_014_0181_5 crossref_primary_10_1534_g3_117_039974 crossref_primary_10_1016_j_cj_2019_08_004 crossref_primary_10_1007_s00122_014_2344_5 crossref_primary_10_1093_plcell_koad229 crossref_primary_10_1094_PHYTO_02_16_0054_FI crossref_primary_10_1111_pbi_13361 crossref_primary_10_1038_ng_3612 crossref_primary_10_2135_cropsci2013_08_0551 crossref_primary_10_2135_cropsci2015_10_0629 crossref_primary_10_1007_s10681_021_02925_6 crossref_primary_10_1139_gen_2017_0203 crossref_primary_10_1016_j_csbj_2020_02_009 crossref_primary_10_2135_cropsci2016_03_0189 crossref_primary_10_3390_ijms24076547 crossref_primary_10_1534_genetics_114_169995 crossref_primary_10_1002_tpg2_20493 crossref_primary_10_1007_s11032_014_0081_8 crossref_primary_10_1186_1471_2164_15_273 crossref_primary_10_1007_s10681_024_03454_8 crossref_primary_10_1007_s11032_015_0292_7 crossref_primary_10_1007_s00122_015_2655_1 crossref_primary_10_2135_cropsci2018_04_0232 crossref_primary_10_3390_genes13020232 crossref_primary_10_1007_s00122_014_2444_2 crossref_primary_10_1007_s10722_016_0380_5 crossref_primary_10_3390_agronomy4040556 crossref_primary_10_1094_PHYTO_12_17_0392_R crossref_primary_10_1038_srep36398 crossref_primary_10_3389_fpls_2020_569905 crossref_primary_10_3389_fpls_2023_1145371 crossref_primary_10_1016_j_tree_2020_01_006 crossref_primary_10_1111_pbr_12774 crossref_primary_10_1111_tpj_14009 crossref_primary_10_1186_s12864_015_1366_y crossref_primary_10_1007_s11032_021_01222_3 crossref_primary_10_3389_fpls_2019_00919 crossref_primary_10_1186_s12864_023_09768_6 crossref_primary_10_1016_S2095_3119_16_61377_1 crossref_primary_10_1534_g3_113_005819 crossref_primary_10_1038_ng_3887 crossref_primary_10_1002_csc2_20098 crossref_primary_10_1111_pbi_12281 crossref_primary_10_1534_genetics_114_167577 crossref_primary_10_3389_fpls_2020_00748 crossref_primary_10_1094_PDIS_05_18_0846_RE crossref_primary_10_3198_jpr2018_06_0040crmp crossref_primary_10_1007_s11032_014_0116_1 crossref_primary_10_1071_CP13363 crossref_primary_10_1007_s10681_019_2537_8 crossref_primary_10_2135_cropsci2013_08_0526 crossref_primary_10_1007_s10681_015_1589_7 crossref_primary_10_1111_pbi_12288 crossref_primary_10_1186_s12870_023_04098_x crossref_primary_10_1371_journal_pone_0108179 crossref_primary_10_1007_s00438_023_02051_z crossref_primary_10_1016_j_plantsci_2016_05_003 crossref_primary_10_2135_cropsci2015_03_0139 crossref_primary_10_1007_s00122_024_04738_2 crossref_primary_10_3390_ijms22115423 crossref_primary_10_3835_plantgenome2017_01_0001 crossref_primary_10_1002_tpg2_20118 crossref_primary_10_1007_s11032_014_0180_6 crossref_primary_10_1094_PDIS_10_18_1731_RE crossref_primary_10_1146_annurev_phyto_080516_035419 crossref_primary_10_1186_s12870_023_04547_7 crossref_primary_10_1371_journal_pone_0228775 crossref_primary_10_1371_journal_pone_0111337 crossref_primary_10_1007_s11103_020_01035_6 crossref_primary_10_1094_PDIS_06_22_1419_RE crossref_primary_10_1007_s11033_019_05132_8 |
Cites_doi | 10.1093/genetics/164.4.1567 10.1186/1471-2156-11-94 10.1186/1471-2164-11-702 10.1038/nrg3097 10.1098/rspb.1966.0038 10.1186/1471-2164-11-727 10.1007/s001220051542 10.1038/ng.1042 10.1093/molbev/msm077 10.1534/genetics.110.119594 10.1126/science.1094305 10.1101/gr.086652.108 10.1104/pp.108.118232 10.1101/gr.087577.108 10.1371/journal.pgen.1000212 10.1093/molbev/msq148 10.1101/gr.172601 10.1007/s00122-007-0681-3 10.1073/pnas.95.8.4441 10.1073/pnas.0607142103 10.1073/pnas.1209275109 10.1186/gb-2011-12-9-r88 10.1038/nbt.2050 10.1023/A:1018364425150 10.1073/pnas.0937399100 10.1139/g00-013 10.1109/TCBB.2010.35 10.1073/pnas.1215985110 10.1016/S0168-9525(02)00009-4 10.2135/cropsci2007.06.0355 10.1371/journal.pbio.0040137 10.1007/s10681-007-9375-9 10.1007/BF00223692 10.1186/1471-2156-12-42 10.1093/genetics/141.1.333 10.1139/g11-054 10.1534/genetics.108.092221 10.1038/ng.2309 10.1038/22307 10.1101/gr.1917404 10.1111/j.1467-7652.2012.00702.x 10.1007/s00122-006-0229-y 10.1023/A:1017541505152 10.1038/nrg2187 10.1111/j.1365-313X.2003.01991.x 10.1534/genetics.105.044727 10.1093/jxb/erl250 10.1093/bioinformatics/btg316 10.1111/j.1471-8286.2004.00828.x 10.1126/science.1143986 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 14, 2013 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 14, 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1073/pnas.1217133110 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Virology and AIDS Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Comparative population genomics of hexaploid wheat |
EISSN | 1091-6490 |
EndPage | 8062 |
ExternalDocumentID | PMC3657823 oai_HAL_hal_02651659v1 2972933501 23630259 10_1073_pnas_1217133110 110_20_8057 42656636 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 .GJ 1XC 3O- 692 6TJ 79B AAYJJ ACKIV AFHIN AFQQW AS~ HGD HQ3 HTVGU NEJ NHB P-O UMC VOH WHG ZCG 5PM |
ID | FETCH-LOGICAL-c559t-58dafb001a00b71c70c379dcc2a89a70dd920f9137d91138725756ef7d953283 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:38:21 EDT 2025 Wed May 21 12:36:01 EDT 2025 Fri Sep 05 11:28:05 EDT 2025 Fri Sep 05 00:19:55 EDT 2025 Mon Jun 30 08:40:38 EDT 2025 Thu Apr 03 07:09:38 EDT 2025 Tue Jul 01 03:39:42 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Wed Nov 11 00:30:34 EST 2020 Thu May 29 08:40:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | polyploid wheat selection scans wheat improvement SNP genotyping breeding history |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c559t-58dafb001a00b71c70c379dcc2a89a70dd920f9137d91138725756ef7d953283 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 PMCID: PMC3657823 Author contributions: M.J.H. and E.A. designed research; C.R.C., S.C., S.S., S. Kiani, K.F., C.S., G.L.B.-G., A.A., D.S., G.B., M.P., L. Tomar, D.W., S. Kong, M.R., M.L.d.S., H.B., L. Talbert, J.A.A., S.D., S.B., A.C., V.K., P.L.M., J.D., M.K.M., M.E.S., M.J.H., and E.A. performed research; S.W. and B.E.H. contributed new reagents/analytic tools; C.R.C., S.C., S.W., B.E.H., S. Kiani, K.F., C.S., A.C., J.D., M.J.H., and E.A. analyzed data; and C.R.C., P.L.M., M.J.H., and E.A. wrote the paper. Edited by Katrien M. Devos, University of Georgia, Athens, GA, and accepted by the Editorial Board April 5, 2013 (received for review October 4, 2012) |
ORCID | 0000-0002-3791-301X |
PMID | 23630259 |
PQID | 1352772768 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1073_pnas_1217133110 hal_primary_oai_HAL_hal_02651659v1 proquest_journals_1352772768 pubmed_primary_23630259 proquest_miscellaneous_1352279045 crossref_primary_10_1073_pnas_1217133110 pnas_primary_110_20_8057 proquest_miscellaneous_1490513906 jstor_primary_42656636 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3657823 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-14 |
PublicationDateYYYYMMDD | 2013-05-14 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 Dubcovsky J (e_1_3_4_6_2) 1996; 92 Reynolds M (e_1_3_4_4_2) 2007; 58 Wu Y (e_1_3_4_50_2) 2008; 4 Chao S (e_1_3_4_28_2) 2010; 11 Nielsen R (e_1_3_4_34_2) 2007; 8 Wu Y (e_1_3_4_51_2) 2011; 8 Yan L (e_1_3_4_37_2) 2006; 103 Morrell PL (e_1_3_4_10_2) 2011; 13 Hufford MB (e_1_3_4_17_2) 2012; 44 Toomajian C (e_1_3_4_16_2) 2006; 4 Goudet J (e_1_3_4_31_2) 2005; 5 Snape JW (e_1_3_4_5_2) 2001; 120 Sorrells ME (e_1_3_4_49_2) 2011; 54 Sasaki T (e_1_3_4_7_2) 2004; 37 Cavalli-Sforza LL (e_1_3_4_14_2) 1966; 164 Saintenac C (e_1_3_4_29_2) 2011; 12 Akhunov ED (e_1_3_4_27_2) 2010; 11 e_1_3_4_55_2 Horton MW (e_1_3_4_15_2) 2012; 44 Peng J (e_1_3_4_12_2) 1999; 400 Jombart T (e_1_3_4_30_2) 2010; 11 Albrechtsen A (e_1_3_4_35_2) 2010; 27 Simons KJ (e_1_3_4_13_2) 2006; 172 Yan L (e_1_3_4_36_2) 2004; 303 Pickrell JK (e_1_3_4_43_2) 2009; 19 Doebley J (e_1_3_4_11_2) 1995; 141 Hedden P (e_1_3_4_9_2) 2003; 19 Haudry A (e_1_3_4_40_2) 2007; 24 Thornton K (e_1_3_4_52_2) 2003; 19 Xu X (e_1_3_4_18_2) 2012; 30 Akey JM (e_1_3_4_44_2) 2009; 19 White J (e_1_3_4_26_2) 2008; 116 Huang BE (e_1_3_4_20_2) 2012; 10 Falush D (e_1_3_4_53_2) 2003; 164 e_1_3_4_47_2 Yan L (e_1_3_4_21_2) 2003; 100 van Heerwaarden J (e_1_3_4_38_2) 2012; 109 Sourdille P (e_1_3_4_22_2) 2000; 43 Zhang L (e_1_3_4_25_2) 2011; 12 Moose SP (e_1_3_4_46_2) 2008; 147 Chevreux B (e_1_3_4_48_2) 2004; 14 Foll M (e_1_3_4_33_2) 2008; 180 Ortiz R (e_1_3_4_41_2) 2007; 157 Eyre-Walker A (e_1_3_4_39_2) 1998; 95 Morris GP (e_1_3_4_19_2) 2013; 110 Szucs P (e_1_3_4_24_2) 2006; 112 Mathews DJ (e_1_3_4_32_2) 2001; 11 e_1_3_4_54_2 Dubcovsky J (e_1_3_4_2_2) 2007; 316 Jefferies SP (e_1_3_4_8_2) 2000; 101 Börner A (e_1_3_4_23_2) 1998; 100 Zhang XK (e_1_3_4_42_2) 2008; 48 Ralph P (e_1_3_4_45_2) 2010; 186 4379525 - Proc R Soc Lond B Biol Sci. 1966 Mar 22;164(995):362-79 14630667 - Bioinformatics. 2003 Nov 22;19(17):2325-7 19411596 - Genome Res. 2009 May;19(5):711-22 22231484 - Nat Genet. 2012 Feb;44(2):212-6 12930761 - Genetics. 2003 Aug;164(4):1567-87 21569312 - BMC Genet. 2011;12:42 14871306 - Plant J. 2004 Mar;37(5):645-53 21190581 - BMC Genomics. 2010;11:727 16623598 - PLoS Biol. 2006 May;4(5):e137 17600208 - Science. 2007 Jun 29;316(5833):1862-6 21156062 - BMC Genomics. 2010;11:702 20479505 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Mar-Apr;8(2):381-94 15016992 - Science. 2004 Mar 12;303(5664):1640-4 22594629 - Plant Biotechnol J. 2012 Sep;10(7):826-39 18612074 - Plant Physiol. 2008 Jul;147(3):969-77 8536981 - Genetics. 1995 Sep;141(1):333-46 21999208 - Genome. 2011 Nov;54(11):875-82 21917144 - Genome Biol. 2011;12(9):R88 20950446 - BMC Genet. 2010;11:94 18060539 - Theor Appl Genet. 2008 Feb;116(3):439-53 18846212 - PLoS Genet. 2008 Oct;4(10):e1000212 17158798 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19581-6 19307593 - Genome Res. 2009 May;19(5):826-37 22660546 - Nat Genet. 2012 Jul;44(7):808-11 16489429 - Theor Appl Genet. 2006 May;112(7):1277-85 18780740 - Genetics. 2008 Oct;180(2):977-93 17443011 - Mol Biol Evol. 2007 Jul;24(7):1506-17 16172507 - Genetics. 2006 Jan;172(1):547-55 23267105 - Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):453-8 22158310 - Nat Biotechnol. 2012 Jan;30(1):105-11 15140833 - Genome Res. 2004 Jun;14(6):1147-59 24166270 - Theor Appl Genet. 1996 Mar;92(3-4):448-54 20660645 - Genetics. 2010 Oct;186(2):647-68 17943193 - Nat Rev Genet. 2007 Nov;8(11):857-68 22802642 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12420-5 20558595 - Mol Biol Evol. 2010 Nov;27(11):2534-47 17185737 - J Exp Bot. 2007;58(2):177-86 10421366 - Nature. 1999 Jul 15;400(6741):256-61 22207165 - Nat Rev Genet. 2011 Feb;13(2):85-96 9539756 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4441-6 10902713 - Genome. 2000 Jun;43(3):487-94 12493241 - Trends Genet. 2003 Jan;19(1):5-9 12730378 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):6263-8 11483579 - Genome Res. 2001 Aug;11(8):1382-91 |
References_xml | – volume: 164 start-page: 1567 year: 2003 ident: e_1_3_4_53_2 article-title: Inference of population structure: Extensions to linked loci and correlated allele frequencies publication-title: Genetics doi: 10.1093/genetics/164.4.1567 – volume: 11 start-page: 94 year: 2010 ident: e_1_3_4_30_2 article-title: Discriminant analysis of principal components: A new method for the analysis of genetically structured populations publication-title: BMC Genet doi: 10.1186/1471-2156-11-94 – volume: 11 start-page: 702 year: 2010 ident: e_1_3_4_27_2 article-title: Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes publication-title: BMC Genomics doi: 10.1186/1471-2164-11-702 – ident: e_1_3_4_1_2 – volume: 13 start-page: 85 year: 2011 ident: e_1_3_4_10_2 article-title: Crop genomics: Advances and applications publication-title: Nat Rev Genet doi: 10.1038/nrg3097 – volume: 164 start-page: 362 year: 1966 ident: e_1_3_4_14_2 article-title: Population structure and human evolution publication-title: Proc R Soc Lond B Biol Sci doi: 10.1098/rspb.1966.0038 – volume: 11 start-page: 727 year: 2010 ident: e_1_3_4_28_2 article-title: Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.) publication-title: BMC Genomics doi: 10.1186/1471-2164-11-727 – volume: 101 start-page: 767 year: 2000 ident: e_1_3_4_8_2 article-title: Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum) publication-title: Theor Appl Genet doi: 10.1007/s001220051542 – volume: 44 start-page: 212 year: 2012 ident: e_1_3_4_15_2 article-title: Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel publication-title: Nat Genet doi: 10.1038/ng.1042 – volume: 24 start-page: 1506 year: 2007 ident: e_1_3_4_40_2 article-title: Grinding up wheat: A massive loss of nucleotide diversity since domestication publication-title: Mol Biol Evol doi: 10.1093/molbev/msm077 – volume: 186 start-page: 647 year: 2010 ident: e_1_3_4_45_2 article-title: Parallel adaptation: One or many waves of advance of an advantageous allele? publication-title: Genetics doi: 10.1534/genetics.110.119594 – volume: 303 start-page: 1640 year: 2004 ident: e_1_3_4_36_2 article-title: The wheat VRN2 gene is a flowering repressor down-regulated by vernalization publication-title: Science doi: 10.1126/science.1094305 – volume: 19 start-page: 711 year: 2009 ident: e_1_3_4_44_2 article-title: Constructing genomic maps of positive selection in humans: Where do we go from here? publication-title: Genome Res doi: 10.1101/gr.086652.108 – volume: 147 start-page: 969 year: 2008 ident: e_1_3_4_46_2 article-title: Molecular plant breeding as the foundation for 21st century crop improvement publication-title: Plant Physiol doi: 10.1104/pp.108.118232 – volume: 19 start-page: 826 year: 2009 ident: e_1_3_4_43_2 article-title: Signals of recent positive selection in a worldwide sample of human populations publication-title: Genome Res doi: 10.1101/gr.087577.108 – ident: e_1_3_4_47_2 – volume: 4 start-page: e1000212 year: 2008 ident: e_1_3_4_50_2 article-title: Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000212 – volume: 27 start-page: 2534 year: 2010 ident: e_1_3_4_35_2 article-title: Ascertainment biases in SNP chips affect measures of population divergence publication-title: Mol Biol Evol doi: 10.1093/molbev/msq148 – volume: 11 start-page: 1382 year: 2001 ident: e_1_3_4_32_2 article-title: Sequence variation within the fragile X locus publication-title: Genome Res doi: 10.1101/gr.172601 – volume: 116 start-page: 439 year: 2008 ident: e_1_3_4_26_2 article-title: The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome publication-title: Theor Appl Genet doi: 10.1007/s00122-007-0681-3 – ident: e_1_3_4_55_2 – volume: 95 start-page: 4441 year: 1998 ident: e_1_3_4_39_2 article-title: Investigation of the bottleneck leading to the domestication of maize publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.8.4441 – volume: 103 start-page: 19581 year: 2006 ident: e_1_3_4_37_2 article-title: The wheat and barley vernalization gene VRN3 is an orthologue of FT publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0607142103 – volume: 109 start-page: 12420 year: 2012 ident: e_1_3_4_38_2 article-title: Historical genomics of North American maize publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1209275109 – volume: 12 start-page: R88 year: 2011 ident: e_1_3_4_29_2 article-title: Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome publication-title: Genome Biol doi: 10.1186/gb-2011-12-9-r88 – volume: 30 start-page: 105 year: 2012 ident: e_1_3_4_18_2 article-title: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes publication-title: Nat Biotechnol doi: 10.1038/nbt.2050 – volume: 100 start-page: 245 year: 1998 ident: e_1_3_4_23_2 article-title: Comparative genetic mapping of loci affecting plant height and development in cereals publication-title: Euphytica doi: 10.1023/A:1018364425150 – volume: 100 start-page: 6263 year: 2003 ident: e_1_3_4_21_2 article-title: Positional cloning of the wheat vernalization gene VRN1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0937399100 – volume: 43 start-page: 487 year: 2000 ident: e_1_3_4_22_2 article-title: Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population publication-title: Genome doi: 10.1139/g00-013 – volume: 8 start-page: 381 year: 2011 ident: e_1_3_4_51_2 article-title: Accurate construction of consensus genetic maps via integer linear programming publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2010.35 – volume: 110 start-page: 453 year: 2013 ident: e_1_3_4_19_2 article-title: Population genomic and genome-wide association studies of agroclimatic traits in sorghum publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1215985110 – volume: 19 start-page: 5 year: 2003 ident: e_1_3_4_9_2 article-title: The genes of the Green Revolution publication-title: Trends Genet doi: 10.1016/S0168-9525(02)00009-4 – volume: 48 start-page: 458 year: 2008 ident: e_1_3_4_42_2 article-title: Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit publication-title: Crop Sci doi: 10.2135/cropsci2007.06.0355 – ident: e_1_3_4_3_2 – volume: 4 start-page: e137 year: 2006 ident: e_1_3_4_16_2 article-title: A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040137 – volume: 157 start-page: 365 year: 2007 ident: e_1_3_4_41_2 article-title: High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy publication-title: Euphytica doi: 10.1007/s10681-007-9375-9 – volume: 92 start-page: 448 year: 1996 ident: e_1_3_4_6_2 article-title: Mapping of the K+/Na+ discrimination locus Kna1 in wheat publication-title: Theor Appl Genet doi: 10.1007/BF00223692 – volume: 12 start-page: 42 year: 2011 ident: e_1_3_4_25_2 article-title: Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers publication-title: BMC Genet doi: 10.1186/1471-2156-12-42 – volume: 141 start-page: 333 year: 1995 ident: e_1_3_4_11_2 article-title: teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance publication-title: Genetics doi: 10.1093/genetics/141.1.333 – volume: 54 start-page: 875 year: 2011 ident: e_1_3_4_49_2 article-title: Reconstruction of the synthetic W7984 × Opata M85 wheat reference population publication-title: Genome doi: 10.1139/g11-054 – volume: 180 start-page: 977 year: 2008 ident: e_1_3_4_33_2 article-title: A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective publication-title: Genetics doi: 10.1534/genetics.108.092221 – volume: 44 start-page: 808 year: 2012 ident: e_1_3_4_17_2 article-title: Comparative population genomics of maize domestication and improvement publication-title: Nat Genet doi: 10.1038/ng.2309 – volume: 400 start-page: 256 year: 1999 ident: e_1_3_4_12_2 article-title: ‘Green revolution’ genes encode mutant gibberellin response modulators publication-title: Nature doi: 10.1038/22307 – volume: 14 start-page: 1147 year: 2004 ident: e_1_3_4_48_2 article-title: Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs publication-title: Genome Res doi: 10.1101/gr.1917404 – volume: 10 start-page: 826 year: 2012 ident: e_1_3_4_20_2 article-title: A multiparent advanced generation inter-cross population for genetic analysis in wheat publication-title: Plant Biotechnol J doi: 10.1111/j.1467-7652.2012.00702.x – volume: 112 start-page: 1277 year: 2006 ident: e_1_3_4_24_2 article-title: Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0229-y – volume: 120 start-page: 309 year: 2001 ident: e_1_3_4_5_2 article-title: Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks publication-title: Euphytica doi: 10.1023/A:1017541505152 – volume: 8 start-page: 857 year: 2007 ident: e_1_3_4_34_2 article-title: Recent and ongoing selection in the human genome publication-title: Nat Rev Genet doi: 10.1038/nrg2187 – volume: 37 start-page: 645 year: 2004 ident: e_1_3_4_7_2 article-title: A wheat gene encoding an aluminum-activated malate transporter publication-title: Plant J doi: 10.1111/j.1365-313X.2003.01991.x – volume: 172 start-page: 547 year: 2006 ident: e_1_3_4_13_2 article-title: Molecular characterization of the major wheat domestication gene Q publication-title: Genetics doi: 10.1534/genetics.105.044727 – volume: 58 start-page: 177 year: 2007 ident: e_1_3_4_4_2 article-title: Drought-adaptive traits derived from wheat wild relatives and landraces publication-title: J Exp Bot doi: 10.1093/jxb/erl250 – volume: 19 start-page: 2325 year: 2003 ident: e_1_3_4_52_2 article-title: Libsequence: A C++ class library for evolutionary genetic analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg316 – volume: 5 start-page: 184 year: 2005 ident: e_1_3_4_31_2 article-title: Hierfstat, a package for R to compute and test hierarchical F-statistics publication-title: Mol Ecol Notes doi: 10.1111/j.1471-8286.2004.00828.x – ident: e_1_3_4_54_2 – volume: 316 start-page: 1862 year: 2007 ident: e_1_3_4_2_2 article-title: Genome plasticity a key factor in the success of polyploid wheat under domestication publication-title: Science doi: 10.1126/science.1143986 – reference: 22231484 - Nat Genet. 2012 Feb;44(2):212-6 – reference: 19411596 - Genome Res. 2009 May;19(5):711-22 – reference: 21569312 - BMC Genet. 2011;12:42 – reference: 19307593 - Genome Res. 2009 May;19(5):826-37 – reference: 10902713 - Genome. 2000 Jun;43(3):487-94 – reference: 16623598 - PLoS Biol. 2006 May;4(5):e137 – reference: 11483579 - Genome Res. 2001 Aug;11(8):1382-91 – reference: 23267105 - Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):453-8 – reference: 12730378 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):6263-8 – reference: 22158310 - Nat Biotechnol. 2012 Jan;30(1):105-11 – reference: 18612074 - Plant Physiol. 2008 Jul;147(3):969-77 – reference: 10421366 - Nature. 1999 Jul 15;400(6741):256-61 – reference: 18780740 - Genetics. 2008 Oct;180(2):977-93 – reference: 16172507 - Genetics. 2006 Jan;172(1):547-55 – reference: 4379525 - Proc R Soc Lond B Biol Sci. 1966 Mar 22;164(995):362-79 – reference: 16489429 - Theor Appl Genet. 2006 May;112(7):1277-85 – reference: 22207165 - Nat Rev Genet. 2011 Feb;13(2):85-96 – reference: 15016992 - Science. 2004 Mar 12;303(5664):1640-4 – reference: 21917144 - Genome Biol. 2011;12(9):R88 – reference: 8536981 - Genetics. 1995 Sep;141(1):333-46 – reference: 18060539 - Theor Appl Genet. 2008 Feb;116(3):439-53 – reference: 24166270 - Theor Appl Genet. 1996 Mar;92(3-4):448-54 – reference: 14871306 - Plant J. 2004 Mar;37(5):645-53 – reference: 12493241 - Trends Genet. 2003 Jan;19(1):5-9 – reference: 17600208 - Science. 2007 Jun 29;316(5833):1862-6 – reference: 20950446 - BMC Genet. 2010;11:94 – reference: 20479505 - IEEE/ACM Trans Comput Biol Bioinform. 2011 Mar-Apr;8(2):381-94 – reference: 20558595 - Mol Biol Evol. 2010 Nov;27(11):2534-47 – reference: 17185737 - J Exp Bot. 2007;58(2):177-86 – reference: 21156062 - BMC Genomics. 2010;11:702 – reference: 17943193 - Nat Rev Genet. 2007 Nov;8(11):857-68 – reference: 22594629 - Plant Biotechnol J. 2012 Sep;10(7):826-39 – reference: 22660546 - Nat Genet. 2012 Jul;44(7):808-11 – reference: 14630667 - Bioinformatics. 2003 Nov 22;19(17):2325-7 – reference: 17158798 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19581-6 – reference: 20660645 - Genetics. 2010 Oct;186(2):647-68 – reference: 17443011 - Mol Biol Evol. 2007 Jul;24(7):1506-17 – reference: 22802642 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12420-5 – reference: 21190581 - BMC Genomics. 2010;11:727 – reference: 21999208 - Genome. 2011 Nov;54(11):875-82 – reference: 9539756 - Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4441-6 – reference: 12930761 - Genetics. 2003 Aug;164(4):1567-87 – reference: 15140833 - Genome Res. 2004 Jun;14(6):1147-59 – reference: 18846212 - PLoS Genet. 2008 Oct;4(10):e1000212 |
SSID | ssj0009580 |
Score | 2.6154587 |
Snippet | Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the... |
SourceID | pubmedcentral hal proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8057 |
SubjectTerms | Agricultural practices Alleles artificial selection Biological Sciences Crop improvement crops Crops, Agricultural - genetics Cultivars disease resistance Environmental conditions environmental factors flowering fungal diseases of plants fungi Gene Frequency Genes, Plant Genetic diversity genetic improvement Genetic loci Genetic Variation Genome, Plant Genomes Genomics Genotype Haplotypes hexaploidy high-yielding varieties introgression landraces Life Sciences Local population Oligonucleotide Array Sequence Analysis pathogens phenology Plant breeding Ploidies Polymorphism Polymorphism, Single Nucleotide Population genetics sampling single nucleotide polymorphism temporal variation Triticum - genetics Triticum aestivum Wheat wild relatives Winter |
Title | Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars |
URI | https://www.jstor.org/stable/42656636 http://www.pnas.org/content/110/20/8057.abstract https://www.ncbi.nlm.nih.gov/pubmed/23630259 https://www.proquest.com/docview/1352772768 https://www.proquest.com/docview/1352279045 https://www.proquest.com/docview/1490513906 https://hal.inrae.fr/hal-02651659 https://pubmed.ncbi.nlm.nih.gov/PMC3657823 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2ceGCGDCWMZCZOAxNGU7SxMmxlI0Co5q0IXaLnNhVKq1ptbYb4so_zvNn0lGmwaVKEydx8r5ffn4PoTcZyZgA19gXLIQAJR0yP4vj0CeJEIIyXmapXJz8dZD0v3U-X8QXa-t7LdTSYl4clj9Xriv5H6rCPqCrXCX7D5R1F4UdsA30hV-gMPzei8YfRT0ZC_9mxIUBk-sy3tyBLcBqSYzmrAEOaui3AnDMVA8cizUcqfSCyhbKJEglfrDp5WTED26kvpaJTX6l8FtqJZy83DUzn4KMc3vqjOHMQg8GNtfYbVauGHUyO_APTgdNH-Qek_2dzScf2UqowTL2KqYyumfViE3GDT9_t8nuSgJa64ZFzf73Qq7OOhob22OSG4GCEgZNcvOuSba1egiWtqPXYh8KrcjBD_KTjm5F6jS9QdBqlg5JS3GnRNfJtk4A0TbiDwMDGlF2Ra7ZTNblkBG-uWiL3aZjxW9hlETgUWaNpbXogn73LD_9cJyffBp8WT7qKn73uyd5BQwJIXIcJHF2DRH-gxBCIdWe5CJoFZZO9TIr8w5s-Soavbs1S1n32kxpyQlbryQEWKNxZYlfOGtVuHUbNdxyw84fo0cmfsJdLQybaE3UT9CmpRbeN2XU3z5Fv1rSgVvSgZ10YCsd2EoHNtKBJ0PspAODdOCWdOBRjZ10YCUd2EkHhg3spOMZOj8-Ou_1fdNyxC8htJ77ccrZUAYSjJCCBiUlZUQzXpYhSzNGCedZSIZZEFEOXkKUUrB4cSKG8DeOwFPfQhv1pBbbCIchD0QBbBUHRYfTshCcFBDtEE7TWAyZhw4tCfLSlOOXXWEucwULoVEuCZE35PPQvjthqivR_H3onuQdO2o1P3loS5HcDQNfHWK7KPHQtrqeuwncJSS5lBAP7Vq-yI0ehPvCUwFj0iT10Gt3GKyU_PTIajFZ6DEhzSB-vGNMR9YKjDICM3iuWc3NwTKuh-gSEy494_KRelSpavlRIjt2RDv3eScv0MNGC-2ijfnVQryEoGNevFJS9xuJWS8L |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+comparative+diversity+uncovers+multiple+targets+of+selection+for+improvement+in+hexaploid+wheat+landraces+and+cultivars&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cavanagh%2C+Colin+R&rft.au=Chao%2C+Shiaoman&rft.au=Wang%2C+Shichen&rft.au=Huang%2C+Bevan+Emma&rft.date=2013-05-14&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=20&rft.spage=8057&rft.epage=8062&rft_id=info:doi/10.1073%2Fpnas.1217133110&rft_id=info%3Apmid%2F23630259&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02651659v1 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F20.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F20.cover.gif |