Assessment of the axial resolution of a compact gamma camera with coded aperture collimator

Purpose Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imagin...

Full description

Saved in:
Bibliographic Details
Published inEJNMMI physics Vol. 11; no. 1; pp. 30 - 21
Main Authors Meißner, Tobias, Cerbone, Laura Antonia, Russo, Paolo, Nahm, Werner, Hesser, Jürgen
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 21.03.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods. Methods An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12–100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM). Results While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively. Conclusion Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.
AbstractList PurposeHandheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods.MethodsAn experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12–100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM).ResultsWhile taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively.ConclusionOur results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.
Purpose Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods. Methods An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12–100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM). Results While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively. Conclusion Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.
Abstract Purpose Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods. Methods An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12–100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM). Results While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively. Conclusion Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.
Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods.PURPOSEHandheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods.An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12-100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM).METHODSAn experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12-100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM).While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively.RESULTSWhile taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively.Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.CONCLUSIONOur results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.
Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods. An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12-100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM). While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively. Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.
ArticleNumber 30
Author Hesser, Jürgen
Russo, Paolo
Meißner, Tobias
Nahm, Werner
Cerbone, Laura Antonia
Author_xml – sequence: 1
  givenname: Tobias
  orcidid: 0000-0002-0435-5103
  surname: Meißner
  fullname: Meißner, Tobias
  email: publications@ibt.kit.edu
  organization: Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University
– sequence: 2
  givenname: Laura Antonia
  surname: Cerbone
  fullname: Cerbone, Laura Antonia
  organization: Scuola Superiore Meridionale, INFN Sezione di Napoli, Istituto Nazionale di Fisica Nucleare
– sequence: 3
  givenname: Paolo
  surname: Russo
  fullname: Russo, Paolo
  organization: INFN Sezione di Napoli, Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica “Ettore Pancini”, Universitá di Napoli Federico II
– sequence: 4
  givenname: Werner
  surname: Nahm
  fullname: Nahm, Werner
  organization: Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT)
– sequence: 5
  givenname: Jürgen
  surname: Hesser
  fullname: Hesser, Jürgen
  organization: Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Central Institute for Computer Engineering (ZITI), Heidelberg University, CZS Heidelberg Center for Model-Based AI, Heidelberg University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38509411$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAQtlARLUv_AAcUiQuXgMd2nPiEqopHpUpc4MTBmjiT3aySeLEdHv8ed1NKy4GTPTPffPP6nrKT2c_E2HPgrwEa_SYqrqum5EKVnGsJZfWInQkwdVlLrU7u_U_ZeYx7zjmISgsQT9ipbCpuFMAZ-3oRI8U40ZwK3xdpRwX-HHAsAkU_Lmnw840fC-enA7pUbHGasoUTBSx-DGmXIx11BR4opCVQNsdxmDD58Iw97nGMdH77btiX9-8-X34srz99uLq8uC5dVZlUKuJCNk1tjBENB6Je1a3T5PKYqNqehNbKaXQNr41sJfRCKte3BqQBo7jcsKuVt_O4t4eQq4df1uNgjw4fthZDGtxIFjtnqOsUSImKGmk6QRJalCavUCFkrrcr12FpJ-pc3kvA8QHpw8g87OzWf7cAuU157ObVLUPw3xaKyU5DdDSOOJNfohWmlsBFnY-2YS__ge79Eua8q4zSRkmRkRklVpQLPsZA_V03wO2NFuyqBZu1YI9asFVOenF_jruUP5fPALkCYg7NWwp_a_-H9jd8MsB3
Cites_doi 10.1186/s13550-020-00729-8
10.1364/ao.17.003562
10.1016/j.ejmp.2019.12.024
10.3390/jimaging9050102
10.1364/AO.40.004697
10.1007/s40846-016-0111-6
10.1364/ao.28.004344
10.1088/1748-0221/18/01/P01006
10.1088/0031-9155/56/17/R01
10.1109/TNS.2007.909846
10.1109/TMI.2006.873298
10.1088/1748-0221/15/06/p06028
10.1016/S0168-9002(01)01326-2
10.1088/1748-0221/12/01/C01059
10.1016/S0168-9002(02)00965-8
10.1118/1.3567503
10.1016/j.radmeas.2016.08.002
10.1162/15353500200221362
10.1016/j.nima.2018.09.081
10.1007/s13139-015-0341-5
10.1016/j.nima.2016.06.124
10.26502/jcsct.5079037
10.1007/s11307-011-0494-2
10.1364/AO.18.001052
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
NPM
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s40658-024-00631-5
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2197-7364
EndPage 21
ExternalDocumentID oai_doaj_org_article_adc9edd4133a4e839d2e31ba396314a1
10_1186_s40658_024_00631_5
38509411
Genre Journal Article
GrantInformation_xml – fundername: Karlsruher Institut für Technologie (KIT) (4220)
– fundername: Zentrales Innovationsprogramm Mittelstand (ZIM)
  grantid: KK5044701BS0
GroupedDBID 0R~
53G
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABDBF
ABEEZ
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADRAZ
AFGXO
AFKRA
AFPKN
AHBXF
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ARAPS
ASPBG
BAWUL
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
DIK
EBLON
EBS
GROUPED_DOAJ
HCIFZ
HYE
IAO
KQ8
M~E
OK1
P62
PIMPY
PROAC
RPM
RSV
SOJ
ITC
NPM
PGMZT
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c559t-4e0238879992801eef47bc6ec186a4bfe2664c6ac80793b31f234cfb913919403
IEDL.DBID RPM
ISSN 2197-7364
IngestDate Tue Oct 22 15:12:57 EDT 2024
Tue Sep 17 21:27:46 EDT 2024
Sat Oct 26 04:34:34 EDT 2024
Fri Nov 08 20:50:34 EST 2024
Thu Sep 26 21:47:06 EDT 2024
Sat Nov 02 12:13:08 EDT 2024
Wed Jul 24 05:39:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Coded aperture
Timepix3
Axial resolution
Radioguided surgery
Intraoperative imaging
Compact gamma camera
Image reconstruction
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-4e0238879992801eef47bc6ec186a4bfe2664c6ac80793b31f234cfb913919403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0435-5103
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266340/
PMID 38509411
PQID 2969432310
PQPubID 2034774
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_adc9edd4133a4e839d2e31ba396314a1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11266340
proquest_miscellaneous_2973102706
proquest_journals_2969432310
crossref_primary_10_1186_s40658_024_00631_5
pubmed_primary_38509411
springer_journals_10_1186_s40658_024_00631_5
PublicationCentury 2000
PublicationDate 2024-03-21
PublicationDateYYYYMMDD 2024-03-21
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-21
  day: 21
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationTitle EJNMMI physics
PublicationTitleAbbrev EJNMMI Phys
PublicationTitleAlternate EJNMMI Phys
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Cieślak, Gamage, Glover (CR20) 2016; 92
Kaissas, Papadimitropoulos, Potiriadis, Karafasoulis, Loukas, Lambropoulos (CR11) 2017; 12
Kogler, Polemi, Nair, Majewski, Dengel, Slingluff (CR5) 2020
Ozkan, Eroglu (CR4) 2015; 49
Mu, Liu (CR10) 2006; 25
Farnworth, Bugby (CR1) 2023; 9
Fenimore (CR7) 1978; 17
Paradiso, Amgarou, de Lanaute, Bonnet, Beltramello, Liénard (CR12) 2018; 910
Mu, Dobrucki, Liu (CR14) 2016; 36
Fujii, Idoine, Gioux, Accorsi, Slochower, Lanza (CR3) 2012; 14
Russo, Mettivier (CR18) 2011; 38
Accorsi, Gasparini, Lanza (CR23) 2001; 474
Accorsi, Lanza (CR9) 2001; 40
Schellingerhout, Accorsi, Mahmood, Idoine, Lanza, Weissleder (CR25) 2002; 1
Ibraheem, Gamil, Tantawy, Talaat, Boutrrus, Gomaa (CR15) 2019; 03
Accorsi, Celentano, Laccetti, Lanza, Marotta, Mettivier (CR21) 2008; 55
Cannon, Fenimore (CR8) 1979; 18
CR24
Rozhkov, Chelkov, Hernández, Ivanov, Kozhevnikov, Leyva (CR16) 2020; 15
Massari, Ucci, Campisi, Scopinaro, Soluri (CR6) 2016; 832
Gottesman, Fenimore (CR19) 1989; 28
Meißner, Rozhkov, Hesser, Nahm, Loew (CR22) 2023; 18
Peterson, Furenlid (CR2) 2011
Bertolucci, Maiorino, Mettivier, Montesi, Russo (CR17) 2002; 487
Russo, Di Lillo, Corvino, Frallicciardi, Sarno, Mettivier (CR13) 2019; 2020
MH Ibraheem (631_CR15) 2019; 03
Z Mu (631_CR14) 2016; 36
E Bertolucci (631_CR17) 2002; 487
R Accorsi (631_CR9) 2001; 40
E Ozkan (631_CR4) 2015; 49
MJ Cieślak (631_CR20) 2016; 92
P Russo (631_CR13) 2019; 2020
I Kaissas (631_CR11) 2017; 12
SR Gottesman (631_CR19) 1989; 28
EE Fenimore (631_CR7) 1978; 17
TM Cannon (631_CR8) 1979; 18
R Massari (631_CR6) 2016; 832
Z Mu (631_CR10) 2006; 25
P Russo (631_CR18) 2011; 38
AL Farnworth (631_CR1) 2023; 9
AK Kogler (631_CR5) 2020
V Paradiso (631_CR12) 2018; 910
V Rozhkov (631_CR16) 2020; 15
R Accorsi (631_CR23) 2001; 474
631_CR24
D Schellingerhout (631_CR25) 2002; 1
T Meißner (631_CR22) 2023; 18
TE Peterson (631_CR2) 2011
H Fujii (631_CR3) 2012; 14
R Accorsi (631_CR21) 2008; 55
References_xml – year: 2020
  ident: CR5
  article-title: Evaluation of camera-based freehand SPECT in preoperative sentinel lymph node mapping for melanoma patients
  publication-title: EJNMMI Res.
  doi: 10.1186/s13550-020-00729-8
  contributor:
    fullname: Slingluff
– volume: 17
  start-page: 3562
  issue: 22
  year: 1978
  ident: CR7
  article-title: Coded aperture imaging: predicted performance of uniformly redundant arrays
  publication-title: Appl Opt
  doi: 10.1364/ao.17.003562
  contributor:
    fullname: Fenimore
– volume: 2020
  start-page: 223
  issue: 69
  year: 2019
  end-page: 232
  ident: CR13
  article-title: CdTe compact gamma camera for coded aperture imaging in radioguided surgery
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2019.12.024
  contributor:
    fullname: Mettivier
– volume: 9
  start-page: 102
  issue: 5
  year: 2023
  ident: CR1
  article-title: Intraoperative gamma cameras: a review of development in the last decade and future outlook
  publication-title: J Imaging
  doi: 10.3390/jimaging9050102
  contributor:
    fullname: Bugby
– volume: 40
  start-page: 4697
  issue: 26
  year: 2001
  ident: CR9
  article-title: Near-field artifact reduction in planar coded aperture imaging
  publication-title: Appl Opt
  doi: 10.1364/AO.40.004697
  contributor:
    fullname: Lanza
– volume: 36
  start-page: 32
  issue: 1
  year: 2016
  end-page: 43
  ident: CR14
  article-title: SPECT imaging of 2-D and 3-D distributed sources with near-field coded aperture collimation: computer simulation and real data validation
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-016-0111-6
  contributor:
    fullname: Liu
– volume: 28
  start-page: 4344
  issue: 20
  year: 1989
  ident: CR19
  article-title: New family of binary arrays for coded aperture imaging
  publication-title: Appl Opt
  doi: 10.1364/ao.28.004344
  contributor:
    fullname: Fenimore
– volume: 18
  start-page: P01006
  issue: 01
  year: 2023
  ident: CR22
  article-title: Quantitative comparison of planar coded aperture imaging reconstruction methods
  publication-title: J Instrum
  doi: 10.1088/1748-0221/18/01/P01006
  contributor:
    fullname: Loew
– year: 2011
  ident: CR2
  article-title: SPECT detectors: the anger camera and beyond
  publication-title: Phys Med Biol.
  doi: 10.1088/0031-9155/56/17/R01
  contributor:
    fullname: Furenlid
– volume: 55
  start-page: 481
  issue: 1
  year: 2008
  end-page: 490
  ident: CR21
  article-title: High-resolution 125I small animal imaging with a coded aperture and a hybrid pixel detector
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2007.909846
  contributor:
    fullname: Mettivier
– volume: 25
  start-page: 701
  issue: 6
  year: 2006
  end-page: 711
  ident: CR10
  article-title: Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2006.873298
  contributor:
    fullname: Liu
– volume: 15
  start-page: P06028
  issue: 06
  year: 2020
  end-page: P06028
  ident: CR16
  article-title: Visualization of radiotracers for SPECT imaging using a Timepix detector with a coded aperture
  publication-title: J Instrum
  doi: 10.1088/1748-0221/15/06/p06028
  contributor:
    fullname: Leyva
– volume: 474
  start-page: 273
  issue: 3
  year: 2001
  end-page: 284
  ident: CR23
  article-title: Optimal coded aperture patterns for improved SNR in nuclear medicine imaging
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip
  doi: 10.1016/S0168-9002(01)01326-2
  contributor:
    fullname: Lanza
– volume: 12
  start-page: 1
  issue: 1
  year: 2017
  end-page: 9
  ident: CR11
  article-title: Imaging of spatially extended hot spots with coded apertures for intra-operative nuclear medicine applications
  publication-title: J Instrum
  doi: 10.1088/1748-0221/12/01/C01059
  contributor:
    fullname: Lambropoulos
– volume: 487
  start-page: 193
  issue: 1–2
  year: 2002
  end-page: 201
  ident: CR17
  article-title: Preliminary test of an imaging probe for nuclear medicine using hybrid pixel detectors
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip
  doi: 10.1016/S0168-9002(02)00965-8
  contributor:
    fullname: Russo
– volume: 38
  start-page: 2099
  issue: 4
  year: 2011
  end-page: 2115
  ident: CR18
  article-title: Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector
  publication-title: Med Phys
  doi: 10.1118/1.3567503
  contributor:
    fullname: Mettivier
– volume: 92
  start-page: 59
  year: 2016
  end-page: 71
  ident: CR20
  article-title: Coded-aperture imaging systems: past, present and future development—a review
  publication-title: Radiat Meas
  doi: 10.1016/j.radmeas.2016.08.002
  contributor:
    fullname: Glover
– volume: 1
  start-page: 153535002002213
  issue: 4
  year: 2002
  ident: CR25
  article-title: Coded aperture nuclear scintigraphy: a novel small animal imaging technique
  publication-title: Mol Imaging
  doi: 10.1162/15353500200221362
  contributor:
    fullname: Weissleder
– volume: 910
  start-page: 194
  issue: August
  year: 2018
  end-page: 203
  ident: CR12
  article-title: 3-D localization of radioactive hotspots via portable gamma cameras
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip.
  doi: 10.1016/j.nima.2018.09.081
  contributor:
    fullname: Liénard
– volume: 49
  start-page: 318
  issue: 4
  year: 2015
  end-page: 320
  ident: CR4
  article-title: The utility of intraoperative handheld gamma camera for detection of sentinel lymph nodes in melanoma
  publication-title: Nucl Med Mol Imaging
  doi: 10.1007/s13139-015-0341-5
  contributor:
    fullname: Eroglu
– volume: 832
  start-page: 271
  year: 2016
  end-page: 278
  ident: CR6
  article-title: A novel fully integrated handheld gamma camera
  publication-title: Nucl Instrum Methods Phys Res Sect A
  doi: 10.1016/j.nima.2016.06.124
  contributor:
    fullname: Soluri
– volume: 03
  start-page: 229
  issue: 04
  year: 2019
  end-page: 39
  ident: CR15
  article-title: The role of intra-operative mobile gamma camera and gamma probe in detection of sentinel lymph node in early stage breast cancer
  publication-title: J Cancer Sci Clin Ther.
  doi: 10.26502/jcsct.5079037
  contributor:
    fullname: Gomaa
– volume: 14
  start-page: 173
  issue: 2
  year: 2012
  end-page: 182
  ident: CR3
  article-title: Optimization of coded aperture radioscintigraphy for sentinel lymph node mapping
  publication-title: Mol Imag Biol
  doi: 10.1007/s11307-011-0494-2
  contributor:
    fullname: Lanza
– volume: 18
  start-page: 1052
  issue: 7
  year: 1979
  ident: CR8
  article-title: Tomographical imaging using uniformly redundant arrays
  publication-title: Appl Opt
  doi: 10.1364/AO.18.001052
  contributor:
    fullname: Fenimore
– ident: CR24
– volume: 14
  start-page: 173
  issue: 2
  year: 2012
  ident: 631_CR3
  publication-title: Mol Imag Biol
  doi: 10.1007/s11307-011-0494-2
  contributor:
    fullname: H Fujii
– volume: 36
  start-page: 32
  issue: 1
  year: 2016
  ident: 631_CR14
  publication-title: J Med Biol Eng
  doi: 10.1007/s40846-016-0111-6
  contributor:
    fullname: Z Mu
– volume: 40
  start-page: 4697
  issue: 26
  year: 2001
  ident: 631_CR9
  publication-title: Appl Opt
  doi: 10.1364/AO.40.004697
  contributor:
    fullname: R Accorsi
– volume: 15
  start-page: P06028
  issue: 06
  year: 2020
  ident: 631_CR16
  publication-title: J Instrum
  doi: 10.1088/1748-0221/15/06/p06028
  contributor:
    fullname: V Rozhkov
– volume: 474
  start-page: 273
  issue: 3
  year: 2001
  ident: 631_CR23
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip
  doi: 10.1016/S0168-9002(01)01326-2
  contributor:
    fullname: R Accorsi
– volume: 92
  start-page: 59
  year: 2016
  ident: 631_CR20
  publication-title: Radiat Meas
  doi: 10.1016/j.radmeas.2016.08.002
  contributor:
    fullname: MJ Cieślak
– volume: 832
  start-page: 271
  year: 2016
  ident: 631_CR6
  publication-title: Nucl Instrum Methods Phys Res Sect A
  doi: 10.1016/j.nima.2016.06.124
  contributor:
    fullname: R Massari
– volume: 17
  start-page: 3562
  issue: 22
  year: 1978
  ident: 631_CR7
  publication-title: Appl Opt
  doi: 10.1364/ao.17.003562
  contributor:
    fullname: EE Fenimore
– year: 2011
  ident: 631_CR2
  publication-title: Phys Med Biol.
  doi: 10.1088/0031-9155/56/17/R01
  contributor:
    fullname: TE Peterson
– volume: 487
  start-page: 193
  issue: 1–2
  year: 2002
  ident: 631_CR17
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip
  doi: 10.1016/S0168-9002(02)00965-8
  contributor:
    fullname: E Bertolucci
– volume: 12
  start-page: 1
  issue: 1
  year: 2017
  ident: 631_CR11
  publication-title: J Instrum
  doi: 10.1088/1748-0221/12/01/C01059
  contributor:
    fullname: I Kaissas
– volume: 910
  start-page: 194
  issue: August
  year: 2018
  ident: 631_CR12
  publication-title: Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip.
  doi: 10.1016/j.nima.2018.09.081
  contributor:
    fullname: V Paradiso
– volume: 2020
  start-page: 223
  issue: 69
  year: 2019
  ident: 631_CR13
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2019.12.024
  contributor:
    fullname: P Russo
– volume: 55
  start-page: 481
  issue: 1
  year: 2008
  ident: 631_CR21
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2007.909846
  contributor:
    fullname: R Accorsi
– volume: 03
  start-page: 229
  issue: 04
  year: 2019
  ident: 631_CR15
  publication-title: J Cancer Sci Clin Ther.
  doi: 10.26502/jcsct.5079037
  contributor:
    fullname: MH Ibraheem
– volume: 38
  start-page: 2099
  issue: 4
  year: 2011
  ident: 631_CR18
  publication-title: Med Phys
  doi: 10.1118/1.3567503
  contributor:
    fullname: P Russo
– ident: 631_CR24
– volume: 25
  start-page: 701
  issue: 6
  year: 2006
  ident: 631_CR10
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2006.873298
  contributor:
    fullname: Z Mu
– volume: 9
  start-page: 102
  issue: 5
  year: 2023
  ident: 631_CR1
  publication-title: J Imaging
  doi: 10.3390/jimaging9050102
  contributor:
    fullname: AL Farnworth
– volume: 49
  start-page: 318
  issue: 4
  year: 2015
  ident: 631_CR4
  publication-title: Nucl Med Mol Imaging
  doi: 10.1007/s13139-015-0341-5
  contributor:
    fullname: E Ozkan
– volume: 18
  start-page: P01006
  issue: 01
  year: 2023
  ident: 631_CR22
  publication-title: J Instrum
  doi: 10.1088/1748-0221/18/01/P01006
  contributor:
    fullname: T Meißner
– volume: 1
  start-page: 153535002002213
  issue: 4
  year: 2002
  ident: 631_CR25
  publication-title: Mol Imaging
  doi: 10.1162/15353500200221362
  contributor:
    fullname: D Schellingerhout
– volume: 18
  start-page: 1052
  issue: 7
  year: 1979
  ident: 631_CR8
  publication-title: Appl Opt
  doi: 10.1364/AO.18.001052
  contributor:
    fullname: TM Cannon
– volume: 28
  start-page: 4344
  issue: 20
  year: 1989
  ident: 631_CR19
  publication-title: Appl Opt
  doi: 10.1364/ao.28.004344
  contributor:
    fullname: SR Gottesman
– year: 2020
  ident: 631_CR5
  publication-title: EJNMMI Res.
  doi: 10.1186/s13550-020-00729-8
  contributor:
    fullname: AK Kogler
SSID ssj0001256212
Score 2.3270385
Snippet Purpose Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a...
Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising...
Abstract Purpose Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures...
PurposeHandheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30
SubjectTerms Algorithms
Aperture
Apertures
Applied and Technical Physics
Axial resolution
Cameras
Coded aperture
Collimators
Compact gamma camera
Computational Mathematics and Numerical Analysis
Diameters
Engineering
Image reconstruction
Imaging
Intraoperative imaging
Maximum likelihood decoding
Medicine
Medicine & Public Health
Nuclear Medicine
Original Research
Radioguided surgery
Radiology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQB8Slagtt09LKlbhRi_gZ50hREUKiJ5CQOFhjx2k5bBbBIvXnd8bJLmwf6qXH2FZifTPON-PHZ8b2IVqXkelEjC4Jk5IUrfVagErG1snUvkzmnH91p5fm7MpePbnqi_aEjfLAI3CH0KU2dx3-azWYjHTeqaxlBI2eIw2MiU_dPkmmxtkV5HWplqdkvDu8N0S2AilJEC1LYdeYqAj2_ynK_H2z5C8rpoWITp6zZ1MEyY_Gnr9gG3l4ybbOpzXyHXZ9tBLb5POeY4DH4Qd6GcfEevIzKgdetp-nBf8Gsxk-AU1PcZqX5XTOveNwm-9ofYGTr9zMKDvfZZcnXy6OT8V0hYJImCoshMnEyb7BMFAhF-XcmyYmlxNCAib2GfnZJAfJk1Be1LJX2qQ-kliobE2tX7HNYT7kN4zb7NrUqBqsazDKcxEjBVv3CaIHzINMxQ6WcIbbUSkjlAzDuzCCHxD8UMAPtmKfCfFVS1K5LgVo-zDZPvzL9hXbW9orTEPvPqjWtUZT2Fqxj6tqHDS0EgJDnj9QmwbrVVO7ir0ezbvqifakKSjx5X7N8GtdXa8Zbr4XYW46juW0wQ9_WvrIY7_-jsXb_4HFO7atinNroeQe21zcPeT3GC8t4ocyNH4CRVIPzQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4t1AQUbiBlbjZ5wTKoilQionKlXiYNmOU3rYZNndSv35nfE6W5bXMbaVOOOxv29m7DEhb3zQJgHSsRBMZCpGzlptJfMiKl1HVdvszDn5ao5P1ZczfVYcbquyrXJaE_NC3Y0RfeSHojWtkshG3i9-Mrw1CqOr5QqN2-QOF02Dxpedff7FxwLozsV0Vsaaw5VCyGUATAzBmTO9g0c5bf_fuOafWyZ_i5tmOJo9IPcLj6RHm4F_SG6l4RG5e1Ii5Y_J96Ntyk069hRoHvVXoGsUzOuibVjuad6EHtf03M_n8OTRSUXRO0vxtHtH_SItMcpAUWMu5mijPyGns0_fPh6zcpECi2AwrJlKiMy2ATIoAJFS6lUTokkRROJV6BOgtIrGR4vp8oLkvZAq9gFThvJW1fIp2RvGIe0TqpNpYyNqr00DXM8E4Au67qMP1oM1pCrydhKnW2zyZbhsZ1jjNsJ3IHyXhe90RT6gxLctMdd1LhiX565MHee72KauA7SVXiUgdJ1IkgcvYe3gyvOKHEzj5coEXLkbdanI6201TB2Mh_ghjZfYpoF60dSmIs82w7vtibSYWZDDy-3OwO90dbdmuPiR03PjoSwjFXz43aQjN_36tyye__83XpB7IqutZIIfkL318jK9BD60Dq-y0l8D_H0G6g
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkJwQG35ChRkpN7AIv6McywrqgqpPVGpUg-W7TjQw2ardivx85nxZpddaA8cYzuJ5RnnvfHYLwCHIRqbEel4jDZxnZLgrXGKB5m0qZOuXVnMOT2zJ-f624W5GGVy6CzMev5eOPv5VhNGckQSTmgquHkEO4jBjrZvTexkbT0FkVzI5bmYe2_dwJ4i0X8fr_x3e-RfOdICPce78GzkjOxoYeQ92MrDPjxdUxLch8enY478OVwercQ22axnSPBY-IVexjCwHv2MygMr28_TnP0I0yleBVqeYrQuy-ice8fCdb6h_AIjX7maUnT-As6Pv36fnPDxFwo8Yagw5zoTJrsGaaBELMq5101MNiccoKBjnxGfdbIhORLKi0r0UunURxILFa2u1UvYHmZDfg3MZNumRtbB2AZZno3IFEzdpxBdwDhIV_BxObj-eqGU4UuE4axfmMKjKXwxhTcVfKHxX7UkletSgMb346TxoUtt7jrEWRV0RirXyaxEDAq_GkIHUcHB0np-nHq3Xra21YpoawUfVtU4aSgTEoY8u6M2DdbLprYVvFoYe9UT5UhTUODD3YYbbHR1s2a4-lmEuek4llUaX_xp6TF_-vXwWLz5v-Zv4YksTq24FAewPb-5y--QGc3j-zIlfgPonQRY
  priority: 102
  providerName: Springer Nature
Title Assessment of the axial resolution of a compact gamma camera with coded aperture collimator
URI https://link.springer.com/article/10.1186/s40658-024-00631-5
https://www.ncbi.nlm.nih.gov/pubmed/38509411
https://www.proquest.com/docview/2969432310
https://www.proquest.com/docview/2973102706
https://pubmed.ncbi.nlm.nih.gov/PMC11266340
https://doaj.org/article/adc9edd4133a4e839d2e31ba396314a1
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-aDsZexr7nrQsa7G1TY31Yth_T0KwEUsq2QmEPRlLkNrA4IU1hf_7uFDtb9vGyFxtLBou7k3-_O51OAO-sy0xApOPOGc-194KXWaG4lV5nqddpEYM503NzdqknV9nVAZhuL0xM2vduftx8Wxw385uYW7la-EGXJza4mI5o24tROh30oIcW-ouPvo2sIKYL2e2QKczgVhPQcoQjTpAsOJ1XowqqHSfEHiDFuv1_I5t_5kz-tnAa8Wj8CB62RJINtwN-DAeheQL3p-1S-VP4OtzV3GTLmiHPY_Y7GhtD_7o1N2q3LGah-w27tosFPlmKUjEKzzLa7j5jdhXWtMzAyGTmC3LSn8Hl-PTL6Iy3Jylwjx7DhutA0FzkyAYlQlIItc6dN8GjdKx2dUB5am-sL6henlOilkr72lHNUFHqVD2Hw2bZhJfAsmBKn8vUZiZHsmccEoYsrb11hUV3SCfwvhNntdoWzKiio1GYaquHCvVQRT1UWQInJPHdm1TsOjYs19dVq_LKznwZZjOEW2V1QEY3k0EJZxX-PIS2IoGjTl9VOwNvK1maUitirwm83XXj3KEFEduE5R29k2O_zFOTwIutencj6cwjgWJP8XtD3e9Bc431uTvzTOBDZyM_x_VvWbz6_y-9hgcyWrfiUhzB4WZ9F94gWdq4PvSK8cc-3BsOJ58neD85Pb_4hK0jqelqRv0YhujHOfQDLdIW1w
link.rule.ids 230,315,730,783,787,867,888,2109,12777,21400,27936,27937,33385,33386,33756,33757,41131,41132,42200,42201,43612,43817,51588,52245,53804,53806,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELaglaAXxLMsFDASN7C6fqx394Ra1CpAEyHUSpU4WLbXW3rIbpqkEj-fGcebEl7HrFeJMx77-2bG_kzIG-sKHQDpmHPaM-U9Z3VRSWaFV0XuVV7FZM54okdn6tN5cZ4Sbou0rXJYE-NC3fQec-T7ota1kshG3s-uGN4ahdXVdIXGbbKNUlUQfG0fHk2-fP0lywL4zsVwWqbS-wuFoMsAmhjCM2fFBiJF4f6_sc0_N03-VjmNgHR8n9xLTJIerIb-AbkVuofkzjjVyh-Rbwdr0U3atxSIHrU_wNsoBNjJ3_C5pXEbul_SCzudwieLaSqK-VmK590bamdhjnUGij5zOcUo_TE5Oz46_TBi6SoF5iFkWDIVEJurEuigAEwKoVWl8zp4MIlVrg2A08pr6ysUzHOSt0Iq3zoUDeW1yuUTstX1XXhKaBF07UuR20KXwPa0A8ZQ5K23rrIQD6mMvB3MaWYrxQwTI41Km5XxDRjfROObIiOHaPH1m6h2HR_08wuTJo-xja9D0wDeSqsCULpGBMmdlbB6cGV5RvaG8TJpCi7MjcNk5PW6GSYPVkRsF_prfKeEdlHmOiO7q-Fd90RWqC3I4curjYHf6OpmS3f5PQp047EsLRX88LvBR2769W9bPPv_33hF7o5Oxyfm5OPk83OyI6ILSyb4Htlazq_DC2BHS_cyTYGf7AMLOw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgK1VcEO8GChiJG1gbP-IkJ9RCV-XRVYWoVImDZTtO6WGTZXcr8fOZ8TpbltcxcZQ447G_bx4eE_LSukIHQDrmnPZMec9ZXVSSWeFVkXuVV9GZczLVx2fqw3lxnvKflimtclgT40Ld9B595GNR61pJZCPjNqVFnL6bvJl_Z3iCFEZa03EaN8lOqbTMR2Tn8Gh6-vkXjwtgPRfDzplKj5cKAZgBTDGEas6KLXSKRfz_xjz_TKD8LYoawWlyh9xOrJIerNXgLrkRuntk9yTFze-TrwebApy0bymQPmp_gOZRMLaT7uF9S2NKul_RCzubwZVFlxVFXy3Fve8NtfOwwJgDRf25nKHF_oCcTY6-vD1m6VgF5sF8WDEVEKerEqihAHwKoVWl8zp4EIlVrg2A2cpr6yssnuckb4VUvnVYQJTXKpcPyajru7BHaBF07UuR20KXwPy0A_ZQ5K23rrJgG6mMvBrEaebr6hkmWh2VNmvhGxC-icI3RUYOUeKbJ7HydbzRLy5MmkjGNr4OTQPYK60KQO8aESR3VsJKwpXlGdkfxsuk6bg018qTkRebZphIGB2xXeiv8JkS2kWZ64w8Wg_vpieywjqDHF5ebQ38Vle3W7rLb7FYN27R0lLBh18POnLdr3_L4vH_f-M52QXtN5_eTz8-IbdE1GDJBN8no9XiKjwForRyz9IM-AmIgQ9p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+axial+resolution+of+a+compact+gamma+camera+with+coded+aperture+collimator&rft.jtitle=EJNMMI+physics&rft.au=Mei%C3%9Fner%2C+Tobias&rft.au=Cerbone%2C+Laura+Antonia&rft.au=Russo%2C+Paolo&rft.au=Nahm%2C+Werner&rft.date=2024-03-21&rft.pub=Springer+Nature+B.V&rft.eissn=2197-7364&rft.volume=11&rft.issue=1&rft.spage=30&rft_id=info:doi/10.1186%2Fs40658-024-00631-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2197-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2197-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2197-7364&client=summon