A CNN-LSTM-Based Model to Forecast Stock Prices
Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1076-2787 1099-0526 |
DOI | 10.1155/2020/6622927 |
Cover
Loading…
Abstract | Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data. |
---|---|
AbstractList | Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data. |
Audience | Academic |
Author | Sun, Aijun Wang, Jingyang Li, Yifan Li, Jiazheng Lu, Wenjie |
Author_xml | – sequence: 1 fullname: Sun, Aijun – sequence: 2 fullname: Li, Yifan – sequence: 3 fullname: Li, Jiazheng – sequence: 4 fullname: Lu, Wenjie – sequence: 5 fullname: Wang, Jingyang |
BookMark | eNqFkd1rFDEUxYNUsB---SwDPup08zGZJI_rYmthW4XW53A3uVOz7k5qklL63zfrFItFkTwkXH7nnCTngOyNcURC3jB6zJiUM045nfU954arF2SfUWNaKnm_tzurvuVKq1fkIOc1pdT0Qu2T2bxZXFy0y8ur8_YjZPTNefS4aUpsTmJCB7k0lyW6H83XFBzmI_JygE3G14_7Ifl28ulq8bldfjk9W8yXrZPSlFZIQG16pqWumd5RaZSWKw3K6J5L6p2XkqKGAXznmPYICEri4FZKAu_EITmbfH2Etb1JYQvp3kYI9tcgpmsLqQS3QasAka26-vYOuhpnqPN06L3QA5iVNNXr3eR1k-LPW8zFruNtGuv1Le96JevXaPpEXUM1DeMQSwK3DdnZuRZMCVGdK3X8F6ouj9vgah1DqPM_BB8mgUsx54TD78cwanet2V1r9rG1ivNnuAsFSohjzQmbf4neT6LvYfRwF_4X8XaisTI4wBPNOkE7KR4A0_is5g |
CitedBy_id | crossref_primary_10_1088_2632_2153_ad1436 crossref_primary_10_3390_app112311353 crossref_primary_10_1145_3573200 crossref_primary_10_21015_vtse_v11i2_1439 crossref_primary_10_1109_ACCESS_2023_3339190 crossref_primary_10_22399_ijcesen_1418 crossref_primary_10_1007_s11042_024_18610_4 crossref_primary_10_3389_frai_2025_1510341 crossref_primary_10_1016_j_eswa_2023_121708 crossref_primary_10_31185_wjcms_288 crossref_primary_10_33723_rs_1232231 crossref_primary_10_1016_j_ress_2022_108954 crossref_primary_10_1109_ACCESS_2023_3317953 crossref_primary_10_1109_ACCESS_2022_3179577 crossref_primary_10_1016_j_neucom_2024_128389 crossref_primary_10_1051_itmconf_20224403033 crossref_primary_10_1080_0954898X_2024_2393245 crossref_primary_10_2174_2666255816666220623160821 crossref_primary_10_1021_acsomega_4c07893 crossref_primary_10_1109_ACCESS_2022_3208139 crossref_primary_10_3390_s22166107 crossref_primary_10_1155_jama_7706431 crossref_primary_10_3934_DSFE_2021019 crossref_primary_10_1155_2022_4702095 crossref_primary_10_1002_widm_1519 crossref_primary_10_1109_ACCESS_2023_3309007 crossref_primary_10_1016_j_physa_2022_127686 crossref_primary_10_1007_s11600_022_00875_8 crossref_primary_10_3390_foods11193082 crossref_primary_10_3846_tede_2023_19294 crossref_primary_10_59324_ejtas_2024_2_1__15 crossref_primary_10_1109_JSEN_2024_3475292 crossref_primary_10_1007_s12553_022_00711_5 crossref_primary_10_1155_2022_3174530 crossref_primary_10_1109_ACCESS_2024_3404824 crossref_primary_10_1016_j_eswa_2022_118933 crossref_primary_10_1109_JIOT_2023_3262882 crossref_primary_10_1109_ACCESS_2021_3122140 crossref_primary_10_1142_S0218213023500288 crossref_primary_10_1109_ACCESS_2024_3519556 crossref_primary_10_1155_2021_5360828 crossref_primary_10_3389_fspas_2022_1031407 crossref_primary_10_1111_exsy_13317 crossref_primary_10_1109_ACCESS_2024_3471806 crossref_primary_10_1080_14697688_2023_2181707 crossref_primary_10_1109_ACCESS_2023_3255404 crossref_primary_10_2139_ssrn_4116243 crossref_primary_10_1109_ACCESS_2024_3368034 crossref_primary_10_1109_ACCESS_2022_3140646 crossref_primary_10_1155_2022_7316396 crossref_primary_10_3390_electronics11213513 crossref_primary_10_3390_e27010082 crossref_primary_10_26794_2587_5671_2022_26_4_95_108 crossref_primary_10_32628_IJSRSET229264 crossref_primary_10_3390_jrfm18030120 crossref_primary_10_3390_hydrology10020029 crossref_primary_10_3103_S1060992X24700024 crossref_primary_10_54691_bcpbm_v34i_2861 crossref_primary_10_1016_j_jii_2024_100711 crossref_primary_10_1155_2024_1124822 crossref_primary_10_1007_s10346_023_02104_9 crossref_primary_10_3390_electronics13204111 crossref_primary_10_1155_2021_2446543 crossref_primary_10_3390_w16020289 crossref_primary_10_1109_ACCESS_2023_3296308 crossref_primary_10_1063_5_0082993 crossref_primary_10_47836_pjst_30_4_22 crossref_primary_10_1016_j_asoc_2024_112393 crossref_primary_10_1155_2021_9903518 crossref_primary_10_3390_math12101538 crossref_primary_10_1002_ima_22749 crossref_primary_10_38124_ijisrt_IJISRT24JUN055 crossref_primary_10_1016_j_eswa_2023_121424 crossref_primary_10_3233_JIFS_221919 crossref_primary_10_1109_ACCESS_2025_3536889 crossref_primary_10_1016_j_chaos_2024_114875 crossref_primary_10_2174_1872212118666230303154251 crossref_primary_10_1007_s40031_024_01037_8 crossref_primary_10_1016_j_chaos_2021_111304 crossref_primary_10_3233_JCM_225999 crossref_primary_10_1007_s44273_023_00005_w crossref_primary_10_1016_j_asoc_2021_107469 crossref_primary_10_3390_biomedinformatics3010014 crossref_primary_10_1016_j_eswa_2023_121191 crossref_primary_10_3390_bdcc7030152 crossref_primary_10_3389_fenrg_2024_1491332 crossref_primary_10_3390_app14135602 crossref_primary_10_1186_s12889_024_19590_8 crossref_primary_10_1007_s10614_024_10769_0 crossref_primary_10_1111_exsy_13454 crossref_primary_10_1002_adem_202401544 crossref_primary_10_1016_j_asoc_2023_110356 crossref_primary_10_1108_AJEB_05_2022_0051 crossref_primary_10_1007_s10614_023_10400_8 crossref_primary_10_3233_IDT_230183 crossref_primary_10_1016_j_energy_2024_131590 crossref_primary_10_1109_JSEN_2023_3334230 crossref_primary_10_3934_era_2024314 crossref_primary_10_1016_j_mlwa_2024_100552 crossref_primary_10_1049_cmu2_12384 crossref_primary_10_4108_eetsis_4585 crossref_primary_10_35784_acs_2023_30 crossref_primary_10_1057_s41283_024_00152_6 crossref_primary_10_3934_math_2024603 crossref_primary_10_48084_etasr_9850 crossref_primary_10_61186_joc_17_2_149 crossref_primary_10_1016_j_eswa_2022_117123 crossref_primary_10_1016_j_knosys_2024_112252 crossref_primary_10_3390_systems12060204 crossref_primary_10_1007_s10614_023_10499_9 crossref_primary_10_1145_3696411 crossref_primary_10_1080_00207543_2022_2128921 crossref_primary_10_1080_08982112_2024_2385920 crossref_primary_10_3390_en14113030 crossref_primary_10_3390_s23249754 crossref_primary_10_54392_irjmt24619 crossref_primary_10_1016_j_envadv_2024_100539 crossref_primary_10_1002_tee_24005 crossref_primary_10_3389_fpsyg_2022_980778 crossref_primary_10_3390_en17112687 crossref_primary_10_21015_vtse_v12i4_1949 crossref_primary_10_1371_journal_pone_0307721 crossref_primary_10_1007_s10614_024_10597_2 crossref_primary_10_1051_shsconf_202419401003 crossref_primary_10_54097_hset_v34i_5380 crossref_primary_10_1007_s12530_022_09481_x crossref_primary_10_3390_agronomy14020349 crossref_primary_10_1016_j_measen_2022_100657 crossref_primary_10_1016_j_suscom_2023_100869 crossref_primary_10_61453_jods_v2023no04 crossref_primary_10_1016_j_engappai_2023_106550 crossref_primary_10_1007_s11192_022_04286_w crossref_primary_10_3390_atmos14101568 crossref_primary_10_1155_2022_1967607 crossref_primary_10_1016_j_iswa_2022_200111 crossref_primary_10_1186_s40854_021_00321_6 crossref_primary_10_62762_TIS_2024_300700 crossref_primary_10_3390_s24237745 crossref_primary_10_3390_electronics12214483 crossref_primary_10_20965_jaciii_2023_p0105 crossref_primary_10_31200_makuubd_1164099 crossref_primary_10_1155_jece_4575735 crossref_primary_10_3390_systems11090470 crossref_primary_10_26599_IJCS_2024_9100013 crossref_primary_10_1109_ACCESS_2021_3103903 crossref_primary_10_1007_s11334_022_00481_3 crossref_primary_10_3233_JIFS_231472 crossref_primary_10_1108_JHTI_12_2023_0960 crossref_primary_10_1016_j_eswa_2022_116659 crossref_primary_10_1016_j_jksuci_2024_101959 crossref_primary_10_54691_bcpbm_v44i_4919 crossref_primary_10_1109_JTEHM_2023_3256966 crossref_primary_10_3390_math11030590 crossref_primary_10_3934_QFE_2024007 crossref_primary_10_35193_bseufbd_1037563 |
Cites_doi | 10.24846/v28i1y201904 10.3390/app10020437 10.1007/s00521-004-0439-7 10.1007/s00521-020-04992-7 10.17559/TV-20180419095119 10.24818/18423264/53.2.19.09 10.24818/18423264/53.3.19.01 10.1016/j.eswa.2018.03.002 10.17559/TV-20170206144804 10.1007/s00521-019-04515-z 10.1016/j.eswa.2018.11.028 10.1016/s0925-2312(01)00702-0 10.1007/s00521-013-1386-y 10.1002/for.2585 10.2507/ijsimm18(4)491 10.1007/978-3-540-78246-9_59 10.1007/s00521-017-3296-x 10.1109/5.726791 10.1080/096031096334303 10.1016/j.procs.2020.03.257 10.1007/s00521-019-04504-2 10.24818/18423264/53.2.19.05 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Wenjie Lu et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Wenjie Lu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2020 Wenjie Lu et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Wenjie Lu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | ADJCN AHFXO AHMDM RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2020/6622927 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete قاعدة العلوم الإنسانية - e-Marefa Humanities Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics International Relations |
EISSN | 1099-0526 |
Editor | Hassanien, Abd E. I.-Baset |
Editor_xml | – sequence: 1 givenname: Abd E. I.-Baset surname: Hassanien fullname: Hassanien, Abd E. I.-Baset |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_7aee1b40204a487890cd0f6d38fa9b59 A831733890 10_1155_2020_6622927 1143045 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Humanities and Social Science Research Project of Hebei Education Department grantid: SD201010 – fundername: Soft Science Project of Hebei Province grantid: 205576142D |
GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3R3 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACBWZ ACCFJ ACSCC ACXQS ADBBV ADIZJ ADJCN ADZOD AEEZP AEIMD AENEX AEQDE AFBPY AFKRA AFPKN AFZJQ AHFXO AHMDM AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCNDV BDRZF BENPR BFHJK BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DU5 DWQXO EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LH4 LP6 LP7 LW6 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC WYUIH XBAML XG1 XPP XSW XV2 ~IA ~WT RHU RHW AAYXX ACCMX AMVHM CITATION ICD PHGZM PHGZT PMFND 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c559t-35ae8961858787dc059785b8a7986250dcd550e8afad4c18deaea75efcb75a243 |
IEDL.DBID | RHX |
ISSN | 1076-2787 |
IngestDate | Wed Aug 27 01:26:34 EDT 2025 Fri Jul 25 20:59:17 EDT 2025 Tue Jun 17 21:58:42 EDT 2025 Tue Jun 10 20:57:44 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Tue Jul 01 02:02:03 EDT 2025 Sun Jun 02 18:54:57 EDT 2024 Thu Nov 28 18:43:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-35ae8961858787dc059785b8a7986250dcd550e8afad4c18deaea75efcb75a243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7751-6924 |
OpenAccessLink | https://dx.doi.org/10.1155/2020/6622927 |
PQID | 2467507680 |
PQPubID | 2029978 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7aee1b40204a487890cd0f6d38fa9b59 proquest_journals_2467507680 gale_infotracmisc_A831733890 gale_infotracacademiconefile_A831733890 crossref_primary_10_1155_2020_6622927 crossref_citationtrail_10_1155_2020_6622927 hindawi_primary_10_1155_2020_6622927 emarefa_primary_1143045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 22 23 26 27 28 29 R. Qiao (6) 2019; 28 H. White (14) 1988; 8 J. Sousa (4) 2019; 18 A. Adebiyi (9) L. Qin (24) 2018; 25 J. Li (13) 2019; 26 30 31 32 33 12 15 16 17 L. Zhang (2) 2020; 10 18 Q. Yang (11) 2019; 36 R. Vanaga (1) 2020; 7 S. Hochreiter (25) 1997; 9 B. Svetlana (34) 2019; 38 3 C. Zhang (10) 2005; 4 5 7 8 Y. Hu (19) 2018; 4 20 21 |
References_xml | – volume: 28 start-page: 132 issue: 10 year: 2019 ident: 6 article-title: Stock prediction model based on neural network publication-title: Operations Research and Management Science – ident: 27 doi: 10.24846/v28i1y201904 – volume: 4 start-page: 71 year: 2018 ident: 19 article-title: Stock market timing model based on convolutional neural network – a case study of Shanghai composite index publication-title: Finance& Economy – ident: 26 doi: 10.3390/app10020437 – volume: 4 start-page: 144 year: 2005 ident: 10 article-title: An empirical research in the stock market of Shanghai by GARCH model publication-title: Operations Research and Management Science – ident: 9 article-title: Stock price prediction using the ARIMA model – ident: 16 doi: 10.1007/s00521-004-0439-7 – ident: 21 doi: 10.1007/s00521-020-04992-7 – ident: 28 doi: 10.17559/TV-20180419095119 – ident: 5 doi: 10.24818/18423264/53.2.19.09 – ident: 3 doi: 10.24818/18423264/53.3.19.01 – ident: 31 doi: 10.1016/j.eswa.2018.03.002 – volume: 25 start-page: 528 issue: 2 year: 2018 ident: 24 article-title: Applying the convolutional neural network deep learning technology to behavioural recognition in intelligent video publication-title: Tehnicki Vjesnik-Technical Gazette – volume: 18 start-page: 205 issue: 2 year: 2019 ident: 4 article-title: Economic lot-size using machine learning, parallelism, metaheuristic and simulation publication-title: Journal of Logistics, Informatics and Service Science – ident: 20 doi: 10.17559/TV-20170206144804 – volume: 10 start-page: 82 issue: 2 year: 2020 ident: 2 article-title: The influence of financial service characteristics on use intention through customer satisfaction with mobile fintech publication-title: Journal of System and Management Sciences – ident: 29 doi: 10.1007/s00521-019-04515-z – ident: 32 doi: 10.1016/j.eswa.2018.11.028 – ident: 15 doi: 10.1016/s0925-2312(01)00702-0 – volume: 7 start-page: 17 issue: 1 year: 2020 ident: 1 article-title: Financial and capital market commission financing: aspects and challenges publication-title: Journal of Logistics, Informatics and Service Science – ident: 17 doi: 10.1007/s00521-013-1386-y – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 25 article-title: Long short-term memory publication-title: MIT Press – volume: 38 start-page: 600 issue: 6 year: 2019 ident: 34 article-title: An ensemble of LSTM neural networks for high-frequency stock market classification publication-title: Journal of Forecasting doi: 10.1002/for.2585 – ident: 23 doi: 10.2507/ijsimm18(4)491 – ident: 8 doi: 10.1007/978-3-540-78246-9_59 – ident: 18 doi: 10.1007/s00521-017-3296-x – volume: 26 start-page: 1670 issue: 6 year: 2019 ident: 13 article-title: A machine learning based method for customer behavior prediction publication-title: Tehnicki Vjesnik-Technical Gazette – ident: 22 doi: 10.1109/5.726791 – ident: 7 doi: 10.1080/096031096334303 – ident: 30 doi: 10.1016/j.procs.2020.03.257 – ident: 33 doi: 10.1007/s00521-019-04504-2 – volume: 36 start-page: 65 issue: 6 year: 2019 ident: 11 article-title: A study on forecast of global stock indices based on deep LSTM neural network publication-title: Statistical Research – volume: 8 start-page: 409 issue: 5 year: 1988 ident: 14 article-title: Economic prediction using neural networks: the case of IBM daily stock returns publication-title: Earth Surface Processes & Landforms – ident: 12 doi: 10.24818/18423264/53.2.19.05 |
SSID | ssj0009637 |
Score | 2.5978758 |
Snippet | Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of... |
SourceID | doaj proquest gale crossref hindawi emarefa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Bias Computational linguistics Deep learning Feature extraction Forecasting Forecasts and trends International relations Language processing Machine learning Mathematical models Natural language interfaces Neural networks Prices and rates Pricing Regression analysis Securities markets Stock exchanges Stocks Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUGgPpUlfTrdFh5S2FLFeW5Ll4yYkhNDdSxLITYz1oIWwKbVD_35nZHmbUEouPdoWljSa12dL3zB2UEanpY9S6A6xqqzdQkB0QVSy052S2tWSDjiv1vr0Up5dqas7pb5oT9hIDzwKbt5ACIuOUI4ETK5NWzpfRu1rE6HtVDq6hzFvAlMT3a5ObJmIbbSoUCenLe9KEdov51pXVUuVZO4Eo8TZnw7mAl7D1kc__kbo-Nf3v7x1CkEnz9mznDvy5TjmXfYobPbY09WWeLXfY7vZVnv-KRNKf37B5kt-tF6Lr-cXK3GIUctzqoB2zYcbTpU5HfQDPx_QMfJUBL5_yS5Pji-OTkUulCAcAoJB1AqCodItCgXUeIcpU2NUZ6BpEbCo0juPQCQYiOClWxgfIECjQnRdo6CS9Su2s7nZhDeMxxrfA06D9KVslG4X0RilcQ1wCUKlC_Zlkph1mUWcillc24QmlLIkX5vlW7AP29Y_RvaMf7Q7JOFv2xDndbqBmmCzJtiHNKFgr_PS_ekLs0HMWQv2kZbSks3iYB3kowc4ZWK_skuDWRRi9bYs2OxeS7Q1d-_xQVaGB6YzmzTFZpfQ2wpDkqL_nuX-_5jtW_aEuhy_Bs3YzvDzNrzD_Gjo3idT-A0k6gIq priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Rb9MwED5BJyR4QGzAyCjID0OAkNU0sR3nCbXTpgnRCrFN2pvl2M5AmtqxBO3vc5e6KRUCHh1bjmP7zvc59vcBHKa1U8LXgqsKsarI3Zjb2gWeiUpVUiiXC7rgPJur0wvx6VJexg23Jh6rXPvEzlH7paM98lGGFi3pt1H68eYHJ9Uo-rsaJTTuww66YC0HsDM9nn_5uqHdVR1rJmIcxTOcm-uj71IS6k9HSmVZSYoyvy1KHXd_d0HXYtr2vvrBN0LJd9__8NrdUnTyBB7HGJJNVoO-C_fCYg_2t_b2WH_IbQ8ezXpqVkztRmtu2LtIOf3-KYwm7Gg-55_Pzmd8iuuaZ6SRds3aJSPtTmeblp216DpZJxPfPIOLk-Pzo1MepRS4Q8jQ8lzaoEncRWrsBe8wqCq0rLQtSoQ0MvXOI1QJ2tbWCzfWPthgCxlqVxXSZiJ_DoPFchFeAKtzrMc6ZYVPRSFVOa61lioEhGpZyFQCH9Z9aVzkGSe5i2vT4Q0pDfW8iT2fwJu-9M2KX-Mv5aY0LH0ZYsXuHixvr0w0MlNYbEVFiFhYBGK6TJ1Pa-VzXduykmUC-3FQN-_CeBGj2gTe0iAbsmpsrLPxcgJ-MvFjmYnGOAvRfJkmMNwqidbotrIP4zT5z-cM13PIRKfRmM0UP_h39kt4SJWtdoKGMGhvf4ZXGBu11etoAL8A9McERg priority: 102 providerName: ProQuest |
Title | A CNN-LSTM-Based Model to Forecast Stock Prices |
URI | https://search.emarefa.net/detail/BIM-1143045 https://dx.doi.org/10.1155/2020/6622927 https://www.proquest.com/docview/2467507680 https://doaj.org/article/7aee1b40204a487890cd0f6d38fa9b59 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xIST2gNj4CpTKD0OAkLXUsR3nsZ1WKkQrxDapb5bjD4E0dRMJ4t_n7LqdyoTgMYnj2Oc73_3s-HcAx2WwkrvAqWwRq_LKjqgJ1lPGW9kKLm3F4wHn-ULOLvmnpVhmkqTu7hY-ersIz8sTKRlrWL0He6hgEZTPlrfcujJRYyKQkZShAm7-b__j3R3Pkwj60ylcg9dmOyE_-Bah8K_vd6bm5G-mj-FRDhTJeD2yh3DPr47gYL5lWe2O4DAbZkfeZfbo90_gZExOFwv6-fxiTifoohyJ6c6uSH9NYhpOa7qenPc4C5KU8b17CpfTs4vTGc1ZEajF6L-nlTBexTwtQmFfncX4qFaiVaZuEJ2I0lmHqMMrE4zjdqScN97Uwgfb1sIwXj2D_dX1yr8AEiqsx1hpuCt5LWQzCkoJ6T2iLuaZLODDRmLaZsrwmLniSifoIISO8tVZvgW82Za-WVNl_KXcJAp_WyYSXKcbOOg624uuDbaijeCWG8RUqimtK4N0lQqmaUVTwPM8dLffwtAPA9QC3sah1NFAsbHW5HMG2OVIdaXHCkMmBOZNWcBgpyQalt15fJyV4R_dGWw0RWf77zRD_yPiJmf58v9qeQUP4-V6cWcA-_2Pn_41hjt9O0SVn34cwv3J2eLL12FaNBgmA_gND_jyrQ |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amxDwgNiAUSjgh02AUNQ0sR3nAaF2bOpYWyG2SXszju0A0tSONWjiT_EbOSd1WioEPO3RieX4ci7fcezzAezEpZXclTySBcaqPLXdyJTWRwkvZCG4tCmnC86jsRyc8vdn4mwNfjZ3YehYZWMTa0Ptppb2yDsJarSg30bx24tvEbFG0d_VhkJjLhZH_scVhmyzN4fvcH13k-Rg_2RvEAVWgcgieq6iVBiviOdEKBRWZxFfZEoUymQ5onsRO-sQtXtlSuO47SrnjTeZ8KUtMmESnmK7N2ADYUaOWrTR3x9_-LhM8yvrLJ0YU8koweabo_ZC0C5D3JEySXJisPnNCdZcAfWFYINls_ANN79QVH719Q8vUbu-g3twN2BW1psL2Sas-ckWbK_sJbLFobotuDNapILF0mawHjP2MqS4fnUfOj22Nx5Hw-OTUdRHP-oYcbKds2rKiCvUmlnFjis01aympZ89gNNrmeSHsD6ZTvwjYGWK7RgrDXcxz4TMu6VSQnqPoWHiE9mC181cahvymhO9xrmu4xshNM28DjPfgt1F7Yt5Po-_1OvTsizqUBbu-sH08rMOSq0zg70oKALnBgM_lcfWxaV0qSpNXoi8BdthUZffQnyKKLoFL2iRNVkR7Kw14TIEDpnycemeQlyXIpiMW9BeqYnab1de7wQx-c9w2o0M6WCkZnqpUo___fo53BqcjIZ6eDg-egK3qeH5LlQb1qvL7_4p4rKqeBaUgcGn69a_XxbaQa0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-LSTM-Based+Model+to+Forecast+Stock+Prices&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Lu%2C+Wenjie&rft.au=Li%2C+Jiazheng&rft.au=Li%2C+Yifan&rft.au=Sun%2C+Aijun&rft.date=2020&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F6622927&rft.externalDocID=A831733890 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |