A CNN-LSTM-Based Model to Forecast Stock Prices

Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Sun, Aijun, Li, Yifan, Li, Jiazheng, Lu, Wenjie, Wang, Jingyang
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1076-2787
1099-0526
DOI10.1155/2020/6622927

Cover

Loading…
Abstract Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data.
AbstractList Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data.
Audience Academic
Author Sun, Aijun
Wang, Jingyang
Li, Yifan
Li, Jiazheng
Lu, Wenjie
Author_xml – sequence: 1
  fullname: Sun, Aijun
– sequence: 2
  fullname: Li, Yifan
– sequence: 3
  fullname: Li, Jiazheng
– sequence: 4
  fullname: Lu, Wenjie
– sequence: 5
  fullname: Wang, Jingyang
BookMark eNqFkd1rFDEUxYNUsB---SwDPup08zGZJI_rYmthW4XW53A3uVOz7k5qklL63zfrFItFkTwkXH7nnCTngOyNcURC3jB6zJiUM045nfU954arF2SfUWNaKnm_tzurvuVKq1fkIOc1pdT0Qu2T2bxZXFy0y8ur8_YjZPTNefS4aUpsTmJCB7k0lyW6H83XFBzmI_JygE3G14_7Ifl28ulq8bldfjk9W8yXrZPSlFZIQG16pqWumd5RaZSWKw3K6J5L6p2XkqKGAXznmPYICEri4FZKAu_EITmbfH2Etb1JYQvp3kYI9tcgpmsLqQS3QasAka26-vYOuhpnqPN06L3QA5iVNNXr3eR1k-LPW8zFruNtGuv1Le96JevXaPpEXUM1DeMQSwK3DdnZuRZMCVGdK3X8F6ouj9vgah1DqPM_BB8mgUsx54TD78cwanet2V1r9rG1ivNnuAsFSohjzQmbf4neT6LvYfRwF_4X8XaisTI4wBPNOkE7KR4A0_is5g
CitedBy_id crossref_primary_10_1088_2632_2153_ad1436
crossref_primary_10_3390_app112311353
crossref_primary_10_1145_3573200
crossref_primary_10_21015_vtse_v11i2_1439
crossref_primary_10_1109_ACCESS_2023_3339190
crossref_primary_10_22399_ijcesen_1418
crossref_primary_10_1007_s11042_024_18610_4
crossref_primary_10_3389_frai_2025_1510341
crossref_primary_10_1016_j_eswa_2023_121708
crossref_primary_10_31185_wjcms_288
crossref_primary_10_33723_rs_1232231
crossref_primary_10_1016_j_ress_2022_108954
crossref_primary_10_1109_ACCESS_2023_3317953
crossref_primary_10_1109_ACCESS_2022_3179577
crossref_primary_10_1016_j_neucom_2024_128389
crossref_primary_10_1051_itmconf_20224403033
crossref_primary_10_1080_0954898X_2024_2393245
crossref_primary_10_2174_2666255816666220623160821
crossref_primary_10_1021_acsomega_4c07893
crossref_primary_10_1109_ACCESS_2022_3208139
crossref_primary_10_3390_s22166107
crossref_primary_10_1155_jama_7706431
crossref_primary_10_3934_DSFE_2021019
crossref_primary_10_1155_2022_4702095
crossref_primary_10_1002_widm_1519
crossref_primary_10_1109_ACCESS_2023_3309007
crossref_primary_10_1016_j_physa_2022_127686
crossref_primary_10_1007_s11600_022_00875_8
crossref_primary_10_3390_foods11193082
crossref_primary_10_3846_tede_2023_19294
crossref_primary_10_59324_ejtas_2024_2_1__15
crossref_primary_10_1109_JSEN_2024_3475292
crossref_primary_10_1007_s12553_022_00711_5
crossref_primary_10_1155_2022_3174530
crossref_primary_10_1109_ACCESS_2024_3404824
crossref_primary_10_1016_j_eswa_2022_118933
crossref_primary_10_1109_JIOT_2023_3262882
crossref_primary_10_1109_ACCESS_2021_3122140
crossref_primary_10_1142_S0218213023500288
crossref_primary_10_1109_ACCESS_2024_3519556
crossref_primary_10_1155_2021_5360828
crossref_primary_10_3389_fspas_2022_1031407
crossref_primary_10_1111_exsy_13317
crossref_primary_10_1109_ACCESS_2024_3471806
crossref_primary_10_1080_14697688_2023_2181707
crossref_primary_10_1109_ACCESS_2023_3255404
crossref_primary_10_2139_ssrn_4116243
crossref_primary_10_1109_ACCESS_2024_3368034
crossref_primary_10_1109_ACCESS_2022_3140646
crossref_primary_10_1155_2022_7316396
crossref_primary_10_3390_electronics11213513
crossref_primary_10_3390_e27010082
crossref_primary_10_26794_2587_5671_2022_26_4_95_108
crossref_primary_10_32628_IJSRSET229264
crossref_primary_10_3390_jrfm18030120
crossref_primary_10_3390_hydrology10020029
crossref_primary_10_3103_S1060992X24700024
crossref_primary_10_54691_bcpbm_v34i_2861
crossref_primary_10_1016_j_jii_2024_100711
crossref_primary_10_1155_2024_1124822
crossref_primary_10_1007_s10346_023_02104_9
crossref_primary_10_3390_electronics13204111
crossref_primary_10_1155_2021_2446543
crossref_primary_10_3390_w16020289
crossref_primary_10_1109_ACCESS_2023_3296308
crossref_primary_10_1063_5_0082993
crossref_primary_10_47836_pjst_30_4_22
crossref_primary_10_1016_j_asoc_2024_112393
crossref_primary_10_1155_2021_9903518
crossref_primary_10_3390_math12101538
crossref_primary_10_1002_ima_22749
crossref_primary_10_38124_ijisrt_IJISRT24JUN055
crossref_primary_10_1016_j_eswa_2023_121424
crossref_primary_10_3233_JIFS_221919
crossref_primary_10_1109_ACCESS_2025_3536889
crossref_primary_10_1016_j_chaos_2024_114875
crossref_primary_10_2174_1872212118666230303154251
crossref_primary_10_1007_s40031_024_01037_8
crossref_primary_10_1016_j_chaos_2021_111304
crossref_primary_10_3233_JCM_225999
crossref_primary_10_1007_s44273_023_00005_w
crossref_primary_10_1016_j_asoc_2021_107469
crossref_primary_10_3390_biomedinformatics3010014
crossref_primary_10_1016_j_eswa_2023_121191
crossref_primary_10_3390_bdcc7030152
crossref_primary_10_3389_fenrg_2024_1491332
crossref_primary_10_3390_app14135602
crossref_primary_10_1186_s12889_024_19590_8
crossref_primary_10_1007_s10614_024_10769_0
crossref_primary_10_1111_exsy_13454
crossref_primary_10_1002_adem_202401544
crossref_primary_10_1016_j_asoc_2023_110356
crossref_primary_10_1108_AJEB_05_2022_0051
crossref_primary_10_1007_s10614_023_10400_8
crossref_primary_10_3233_IDT_230183
crossref_primary_10_1016_j_energy_2024_131590
crossref_primary_10_1109_JSEN_2023_3334230
crossref_primary_10_3934_era_2024314
crossref_primary_10_1016_j_mlwa_2024_100552
crossref_primary_10_1049_cmu2_12384
crossref_primary_10_4108_eetsis_4585
crossref_primary_10_35784_acs_2023_30
crossref_primary_10_1057_s41283_024_00152_6
crossref_primary_10_3934_math_2024603
crossref_primary_10_48084_etasr_9850
crossref_primary_10_61186_joc_17_2_149
crossref_primary_10_1016_j_eswa_2022_117123
crossref_primary_10_1016_j_knosys_2024_112252
crossref_primary_10_3390_systems12060204
crossref_primary_10_1007_s10614_023_10499_9
crossref_primary_10_1145_3696411
crossref_primary_10_1080_00207543_2022_2128921
crossref_primary_10_1080_08982112_2024_2385920
crossref_primary_10_3390_en14113030
crossref_primary_10_3390_s23249754
crossref_primary_10_54392_irjmt24619
crossref_primary_10_1016_j_envadv_2024_100539
crossref_primary_10_1002_tee_24005
crossref_primary_10_3389_fpsyg_2022_980778
crossref_primary_10_3390_en17112687
crossref_primary_10_21015_vtse_v12i4_1949
crossref_primary_10_1371_journal_pone_0307721
crossref_primary_10_1007_s10614_024_10597_2
crossref_primary_10_1051_shsconf_202419401003
crossref_primary_10_54097_hset_v34i_5380
crossref_primary_10_1007_s12530_022_09481_x
crossref_primary_10_3390_agronomy14020349
crossref_primary_10_1016_j_measen_2022_100657
crossref_primary_10_1016_j_suscom_2023_100869
crossref_primary_10_61453_jods_v2023no04
crossref_primary_10_1016_j_engappai_2023_106550
crossref_primary_10_1007_s11192_022_04286_w
crossref_primary_10_3390_atmos14101568
crossref_primary_10_1155_2022_1967607
crossref_primary_10_1016_j_iswa_2022_200111
crossref_primary_10_1186_s40854_021_00321_6
crossref_primary_10_62762_TIS_2024_300700
crossref_primary_10_3390_s24237745
crossref_primary_10_3390_electronics12214483
crossref_primary_10_20965_jaciii_2023_p0105
crossref_primary_10_31200_makuubd_1164099
crossref_primary_10_1155_jece_4575735
crossref_primary_10_3390_systems11090470
crossref_primary_10_26599_IJCS_2024_9100013
crossref_primary_10_1109_ACCESS_2021_3103903
crossref_primary_10_1007_s11334_022_00481_3
crossref_primary_10_3233_JIFS_231472
crossref_primary_10_1108_JHTI_12_2023_0960
crossref_primary_10_1016_j_eswa_2022_116659
crossref_primary_10_1016_j_jksuci_2024_101959
crossref_primary_10_54691_bcpbm_v44i_4919
crossref_primary_10_1109_JTEHM_2023_3256966
crossref_primary_10_3390_math11030590
crossref_primary_10_3934_QFE_2024007
crossref_primary_10_35193_bseufbd_1037563
Cites_doi 10.24846/v28i1y201904
10.3390/app10020437
10.1007/s00521-004-0439-7
10.1007/s00521-020-04992-7
10.17559/TV-20180419095119
10.24818/18423264/53.2.19.09
10.24818/18423264/53.3.19.01
10.1016/j.eswa.2018.03.002
10.17559/TV-20170206144804
10.1007/s00521-019-04515-z
10.1016/j.eswa.2018.11.028
10.1016/s0925-2312(01)00702-0
10.1007/s00521-013-1386-y
10.1002/for.2585
10.2507/ijsimm18(4)491
10.1007/978-3-540-78246-9_59
10.1007/s00521-017-3296-x
10.1109/5.726791
10.1080/096031096334303
10.1016/j.procs.2020.03.257
10.1007/s00521-019-04504-2
10.24818/18423264/53.2.19.05
ContentType Journal Article
Copyright Copyright © 2020 Wenjie Lu et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Wenjie Lu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2020 Wenjie Lu et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Wenjie Lu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
AHMDM
RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2020/6622927
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
قاعدة العلوم الإنسانية - e-Marefa Humanities
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef



Research Library Prep
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
International Relations
EISSN 1099-0526
Editor Hassanien, Abd E. I.-Baset
Editor_xml – sequence: 1
  givenname: Abd E. I.-Baset
  surname: Hassanien
  fullname: Hassanien, Abd E. I.-Baset
EndPage 10
ExternalDocumentID oai_doaj_org_article_7aee1b40204a487890cd0f6d38fa9b59
A831733890
10_1155_2020_6622927
1143045
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Humanities and Social Science Research Project of Hebei Education Department
  grantid: SD201010
– fundername: Soft Science Project of Hebei Province
  grantid: 205576142D
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3R3
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACBWZ
ACCFJ
ACSCC
ACXQS
ADBBV
ADIZJ
ADJCN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AFBPY
AFKRA
AFPKN
AFZJQ
AHFXO
AHMDM
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
DWQXO
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LH4
LP6
LP7
LW6
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
WYUIH
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
RHU
RHW
AAYXX
ACCMX
AMVHM
CITATION
ICD
PHGZM
PHGZT
PMFND
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c559t-35ae8961858787dc059785b8a7986250dcd550e8afad4c18deaea75efcb75a243
IEDL.DBID RHX
ISSN 1076-2787
IngestDate Wed Aug 27 01:26:34 EDT 2025
Fri Jul 25 20:59:17 EDT 2025
Tue Jun 17 21:58:42 EDT 2025
Tue Jun 10 20:57:44 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Tue Jul 01 02:02:03 EDT 2025
Sun Jun 02 18:54:57 EDT 2024
Thu Nov 28 18:43:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-35ae8961858787dc059785b8a7986250dcd550e8afad4c18deaea75efcb75a243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7751-6924
OpenAccessLink https://dx.doi.org/10.1155/2020/6622927
PQID 2467507680
PQPubID 2029978
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_7aee1b40204a487890cd0f6d38fa9b59
proquest_journals_2467507680
gale_infotracmisc_A831733890
gale_infotracacademiconefile_A831733890
crossref_primary_10_1155_2020_6622927
crossref_citationtrail_10_1155_2020_6622927
hindawi_primary_10_1155_2020_6622927
emarefa_primary_1143045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
23
26
27
28
29
R. Qiao (6) 2019; 28
H. White (14) 1988; 8
J. Sousa (4) 2019; 18
A. Adebiyi (9)
L. Qin (24) 2018; 25
J. Li (13) 2019; 26
30
31
32
33
12
15
16
17
L. Zhang (2) 2020; 10
18
Q. Yang (11) 2019; 36
R. Vanaga (1) 2020; 7
S. Hochreiter (25) 1997; 9
B. Svetlana (34) 2019; 38
3
C. Zhang (10) 2005; 4
5
7
8
Y. Hu (19) 2018; 4
20
21
References_xml – volume: 28
  start-page: 132
  issue: 10
  year: 2019
  ident: 6
  article-title: Stock prediction model based on neural network
  publication-title: Operations Research and Management Science
– ident: 27
  doi: 10.24846/v28i1y201904
– volume: 4
  start-page: 71
  year: 2018
  ident: 19
  article-title: Stock market timing model based on convolutional neural network – a case study of Shanghai composite index
  publication-title: Finance& Economy
– ident: 26
  doi: 10.3390/app10020437
– volume: 4
  start-page: 144
  year: 2005
  ident: 10
  article-title: An empirical research in the stock market of Shanghai by GARCH model
  publication-title: Operations Research and Management Science
– ident: 9
  article-title: Stock price prediction using the ARIMA model
– ident: 16
  doi: 10.1007/s00521-004-0439-7
– ident: 21
  doi: 10.1007/s00521-020-04992-7
– ident: 28
  doi: 10.17559/TV-20180419095119
– ident: 5
  doi: 10.24818/18423264/53.2.19.09
– ident: 3
  doi: 10.24818/18423264/53.3.19.01
– ident: 31
  doi: 10.1016/j.eswa.2018.03.002
– volume: 25
  start-page: 528
  issue: 2
  year: 2018
  ident: 24
  article-title: Applying the convolutional neural network deep learning technology to behavioural recognition in intelligent video
  publication-title: Tehnicki Vjesnik-Technical Gazette
– volume: 18
  start-page: 205
  issue: 2
  year: 2019
  ident: 4
  article-title: Economic lot-size using machine learning, parallelism, metaheuristic and simulation
  publication-title: Journal of Logistics, Informatics and Service Science
– ident: 20
  doi: 10.17559/TV-20170206144804
– volume: 10
  start-page: 82
  issue: 2
  year: 2020
  ident: 2
  article-title: The influence of financial service characteristics on use intention through customer satisfaction with mobile fintech
  publication-title: Journal of System and Management Sciences
– ident: 29
  doi: 10.1007/s00521-019-04515-z
– ident: 32
  doi: 10.1016/j.eswa.2018.11.028
– ident: 15
  doi: 10.1016/s0925-2312(01)00702-0
– volume: 7
  start-page: 17
  issue: 1
  year: 2020
  ident: 1
  article-title: Financial and capital market commission financing: aspects and challenges
  publication-title: Journal of Logistics, Informatics and Service Science
– ident: 17
  doi: 10.1007/s00521-013-1386-y
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 25
  article-title: Long short-term memory
  publication-title: MIT Press
– volume: 38
  start-page: 600
  issue: 6
  year: 2019
  ident: 34
  article-title: An ensemble of LSTM neural networks for high-frequency stock market classification
  publication-title: Journal of Forecasting
  doi: 10.1002/for.2585
– ident: 23
  doi: 10.2507/ijsimm18(4)491
– ident: 8
  doi: 10.1007/978-3-540-78246-9_59
– ident: 18
  doi: 10.1007/s00521-017-3296-x
– volume: 26
  start-page: 1670
  issue: 6
  year: 2019
  ident: 13
  article-title: A machine learning based method for customer behavior prediction
  publication-title: Tehnicki Vjesnik-Technical Gazette
– ident: 22
  doi: 10.1109/5.726791
– ident: 7
  doi: 10.1080/096031096334303
– ident: 30
  doi: 10.1016/j.procs.2020.03.257
– ident: 33
  doi: 10.1007/s00521-019-04504-2
– volume: 36
  start-page: 65
  issue: 6
  year: 2019
  ident: 11
  article-title: A study on forecast of global stock indices based on deep LSTM neural network
  publication-title: Statistical Research
– volume: 8
  start-page: 409
  issue: 5
  year: 1988
  ident: 14
  article-title: Economic prediction using neural networks: the case of IBM daily stock returns
  publication-title: Earth Surface Processes & Landforms
– ident: 12
  doi: 10.24818/18423264/53.2.19.05
SSID ssj0009637
Score 2.5978758
Snippet Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of...
SourceID doaj
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Bias
Computational linguistics
Deep learning
Feature extraction
Forecasting
Forecasts and trends
International relations
Language processing
Machine learning
Mathematical models
Natural language interfaces
Neural networks
Prices and rates
Pricing
Regression analysis
Securities markets
Stock exchanges
Stocks
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUGgPpUlfTrdFh5S2FLFeW5Ll4yYkhNDdSxLITYz1oIWwKbVD_35nZHmbUEouPdoWljSa12dL3zB2UEanpY9S6A6xqqzdQkB0QVSy052S2tWSDjiv1vr0Up5dqas7pb5oT9hIDzwKbt5ACIuOUI4ETK5NWzpfRu1rE6HtVDq6hzFvAlMT3a5ObJmIbbSoUCenLe9KEdov51pXVUuVZO4Eo8TZnw7mAl7D1kc__kbo-Nf3v7x1CkEnz9mznDvy5TjmXfYobPbY09WWeLXfY7vZVnv-KRNKf37B5kt-tF6Lr-cXK3GIUctzqoB2zYcbTpU5HfQDPx_QMfJUBL5_yS5Pji-OTkUulCAcAoJB1AqCodItCgXUeIcpU2NUZ6BpEbCo0juPQCQYiOClWxgfIECjQnRdo6CS9Su2s7nZhDeMxxrfA06D9KVslG4X0RilcQ1wCUKlC_Zlkph1mUWcillc24QmlLIkX5vlW7AP29Y_RvaMf7Q7JOFv2xDndbqBmmCzJtiHNKFgr_PS_ekLs0HMWQv2kZbSks3iYB3kowc4ZWK_skuDWRRi9bYs2OxeS7Q1d-_xQVaGB6YzmzTFZpfQ2wpDkqL_nuX-_5jtW_aEuhy_Bs3YzvDzNrzD_Gjo3idT-A0k6gIq
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Rb9MwED5BJyR4QGzAyCjID0OAkNU0sR3nCbXTpgnRCrFN2pvl2M5AmtqxBO3vc5e6KRUCHh1bjmP7zvc59vcBHKa1U8LXgqsKsarI3Zjb2gWeiUpVUiiXC7rgPJur0wvx6VJexg23Jh6rXPvEzlH7paM98lGGFi3pt1H68eYHJ9Uo-rsaJTTuww66YC0HsDM9nn_5uqHdVR1rJmIcxTOcm-uj71IS6k9HSmVZSYoyvy1KHXd_d0HXYtr2vvrBN0LJd9__8NrdUnTyBB7HGJJNVoO-C_fCYg_2t_b2WH_IbQ8ezXpqVkztRmtu2LtIOf3-KYwm7Gg-55_Pzmd8iuuaZ6SRds3aJSPtTmeblp216DpZJxPfPIOLk-Pzo1MepRS4Q8jQ8lzaoEncRWrsBe8wqCq0rLQtSoQ0MvXOI1QJ2tbWCzfWPthgCxlqVxXSZiJ_DoPFchFeAKtzrMc6ZYVPRSFVOa61lioEhGpZyFQCH9Z9aVzkGSe5i2vT4Q0pDfW8iT2fwJu-9M2KX-Mv5aY0LH0ZYsXuHixvr0w0MlNYbEVFiFhYBGK6TJ1Pa-VzXduykmUC-3FQN-_CeBGj2gTe0iAbsmpsrLPxcgJ-MvFjmYnGOAvRfJkmMNwqidbotrIP4zT5z-cM13PIRKfRmM0UP_h39kt4SJWtdoKGMGhvf4ZXGBu11etoAL8A9McERg
  priority: 102
  providerName: ProQuest
Title A CNN-LSTM-Based Model to Forecast Stock Prices
URI https://search.emarefa.net/detail/BIM-1143045
https://dx.doi.org/10.1155/2020/6622927
https://www.proquest.com/docview/2467507680
https://doaj.org/article/7aee1b40204a487890cd0f6d38fa9b59
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xIST2gNj4CpTKD0OAkLXUsR3nsZ1WKkQrxDapb5bjD4E0dRMJ4t_n7LqdyoTgMYnj2Oc73_3s-HcAx2WwkrvAqWwRq_LKjqgJ1lPGW9kKLm3F4wHn-ULOLvmnpVhmkqTu7hY-ersIz8sTKRlrWL0He6hgEZTPlrfcujJRYyKQkZShAm7-b__j3R3Pkwj60ylcg9dmOyE_-Bah8K_vd6bm5G-mj-FRDhTJeD2yh3DPr47gYL5lWe2O4DAbZkfeZfbo90_gZExOFwv6-fxiTifoohyJ6c6uSH9NYhpOa7qenPc4C5KU8b17CpfTs4vTGc1ZEajF6L-nlTBexTwtQmFfncX4qFaiVaZuEJ2I0lmHqMMrE4zjdqScN97Uwgfb1sIwXj2D_dX1yr8AEiqsx1hpuCt5LWQzCkoJ6T2iLuaZLODDRmLaZsrwmLniSifoIISO8tVZvgW82Za-WVNl_KXcJAp_WyYSXKcbOOg624uuDbaijeCWG8RUqimtK4N0lQqmaUVTwPM8dLffwtAPA9QC3sah1NFAsbHW5HMG2OVIdaXHCkMmBOZNWcBgpyQalt15fJyV4R_dGWw0RWf77zRD_yPiJmf58v9qeQUP4-V6cWcA-_2Pn_41hjt9O0SVn34cwv3J2eLL12FaNBgmA_gND_jyrQ
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amxDwgNiAUSjgh02AUNQ0sR3nAaF2bOpYWyG2SXszju0A0tSONWjiT_EbOSd1WioEPO3RieX4ci7fcezzAezEpZXclTySBcaqPLXdyJTWRwkvZCG4tCmnC86jsRyc8vdn4mwNfjZ3YehYZWMTa0Ptppb2yDsJarSg30bx24tvEbFG0d_VhkJjLhZH_scVhmyzN4fvcH13k-Rg_2RvEAVWgcgieq6iVBiviOdEKBRWZxFfZEoUymQ5onsRO-sQtXtlSuO47SrnjTeZ8KUtMmESnmK7N2ADYUaOWrTR3x9_-LhM8yvrLJ0YU8koweabo_ZC0C5D3JEySXJisPnNCdZcAfWFYINls_ANN79QVH719Q8vUbu-g3twN2BW1psL2Sas-ckWbK_sJbLFobotuDNapILF0mawHjP2MqS4fnUfOj22Nx5Hw-OTUdRHP-oYcbKds2rKiCvUmlnFjis01aympZ89gNNrmeSHsD6ZTvwjYGWK7RgrDXcxz4TMu6VSQnqPoWHiE9mC181cahvymhO9xrmu4xshNM28DjPfgt1F7Yt5Po-_1OvTsizqUBbu-sH08rMOSq0zg70oKALnBgM_lcfWxaV0qSpNXoi8BdthUZffQnyKKLoFL2iRNVkR7Kw14TIEDpnycemeQlyXIpiMW9BeqYnab1de7wQx-c9w2o0M6WCkZnqpUo___fo53BqcjIZ6eDg-egK3qeH5LlQb1qvL7_4p4rKqeBaUgcGn69a_XxbaQa0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-LSTM-Based+Model+to+Forecast+Stock+Prices&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Lu%2C+Wenjie&rft.au=Li%2C+Jiazheng&rft.au=Li%2C+Yifan&rft.au=Sun%2C+Aijun&rft.date=2020&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.volume=2020&rft_id=info:doi/10.1155%2F2020%2F6622927&rft.externalDocID=A831733890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon