The Diverse World of Foldamers: Endless Possibilities of Self-Assembly
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbo...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 25; no. 14; p. 3276 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described. |
---|---|
AbstractList | Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described. Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described. |
Author | Rinaldi, Samuele |
AuthorAffiliation | Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; s.rinaldi@staff.univpm.it ; Tel./Fax: +39-071-2204233 |
AuthorAffiliation_xml | – name: Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; s.rinaldi@staff.univpm.it ; Tel./Fax: +39-071-2204233 |
Author_xml | – sequence: 1 givenname: Samuele surname: Rinaldi fullname: Rinaldi, Samuele |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32708440$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl1LHTEQhkOx1K_-gN6Uhd54szbfOelFQaynFQQLVXoZstmJ5pDd2GRX8N83p0dFLeYmYfLMOy8zs4u2xjQCQh8IPmRM489DiuDmCIUKwhlV8g3aIZzilmGut568t9FuKSuMKeFEvEPblcULzvEOWl5cQ_Mt3EIu0PxOOfZN8s0yxd4ONfalORn7WqA0P1MpoQsxTAHKmvkF0bdHpcDQxbt99NbbWOD9_b2HLpcnF8c_2rPz76fHR2etE0JPLSFSSqFBYqWxY51VdMGl1Kp6ZJ72lmLPmHM9Ed52TlMnNJdcgZCdJ0yyPXS60e2TXZmbHAab70yywfwLpHxlbJ6Ci2AWtpNYi15JDFwK3HkpoR6Jve9876rW143WzdwN0DsYp2zjM9HnP2O4Nlfp1iimFWGsChzcC-T0Z4YymSEUBzHaEdJcDOVUUb2oeEU_vUBXac5jbdWakqx2h9BKfXzq6NHKw7gqoDaAy3UcGbxxYbJTSGuDIRqCzXoxzH-LUTPJi8wH8ddz_gKGtb08 |
CitedBy_id | crossref_primary_10_1039_D0CC08309G crossref_primary_10_1002_ejoc_202100943 crossref_primary_10_1002_anie_202012995 crossref_primary_10_1002_cplu_202400218 crossref_primary_10_1002_anie_202313944 crossref_primary_10_1021_acsbiomaterials_4c00456 crossref_primary_10_1021_acs_orglett_1c01592 crossref_primary_10_1021_acs_jpca_2c00112 crossref_primary_10_1021_acsmaterialslett_3c01337 crossref_primary_10_1002_chem_202300753 crossref_primary_10_1039_D1QO00822F crossref_primary_10_1039_D2BM00775D crossref_primary_10_1021_acsanm_2c02313 crossref_primary_10_1002_anie_202214583 crossref_primary_10_1021_jacs_0c11204 crossref_primary_10_1039_D3CC04555B crossref_primary_10_1016_j_molstruc_2024_139185 crossref_primary_10_1021_acs_chemrev_1c00712 crossref_primary_10_1002_cptc_202100160 crossref_primary_10_1002_ange_202012995 crossref_primary_10_1021_acs_jpcb_3c00755 crossref_primary_10_3390_polym14030580 crossref_primary_10_1002_ange_202313944 crossref_primary_10_1002_macp_202400223 crossref_primary_10_1039_D2RA00111J crossref_primary_10_1002_ange_202307180 crossref_primary_10_1002_chem_202301832 crossref_primary_10_1016_j_eurpolymj_2024_112818 crossref_primary_10_1080_10717544_2022_2058647 crossref_primary_10_1007_s00284_024_03923_2 crossref_primary_10_1039_D2CS00395C crossref_primary_10_1002_anie_202413629 crossref_primary_10_1007_s13346_024_01665_z crossref_primary_10_1002_bip_23575 crossref_primary_10_1002_ange_202413629 crossref_primary_10_3390_pr10050924 crossref_primary_10_1039_D4TB01545B crossref_primary_10_1038_s42004_024_01201_7 crossref_primary_10_1002_anie_202307180 crossref_primary_10_1016_j_ijbiomac_2023_129151 crossref_primary_10_1002_ange_202214583 crossref_primary_10_1002_cplu_202200199 crossref_primary_10_1021_acs_accounts_2c00050 crossref_primary_10_1021_jacs_3c09883 crossref_primary_10_1039_D4NJ02574A crossref_primary_10_1038_s42004_023_00868_8 crossref_primary_10_1039_D3BM00766A |
Cites_doi | 10.1021/acs.joc.7b02840 10.1039/C1CS15097A 10.1002/chem.201601804 10.1016/j.fluid.2005.12.022 10.1021/acs.jpclett.8b01040 10.1002/anie.201711124 10.1021/jo060974v 10.1002/adma.201500124 10.1002/anie.200250750 10.1073/pnas.1800397115 10.1002/anie.200501028 10.1002/anie.201303135 10.1021/acsnano.7b08018 10.1021/cr990120t 10.1039/b719712h 10.1021/jo010250d 10.1002/psc.2956 10.1002/anie.201407752 10.1021/cr300116k 10.1529/biophysj.106.084491 10.1002/chem.201403626 10.1002/bkcs.10527 10.1039/B910435F 10.1002/chem.201302009 10.1002/1521-3773(20020517)41:10<1718::AID-ANIE1718>3.0.CO;2-2 10.1021/cm070265d 10.1002/cnma.201800202 10.1038/35037545 10.1039/c002170a 10.1038/s41598-019-57342-6 10.1021/ja204874h 10.1039/C4NJ01926A 10.1039/C6OB00380J 10.1021/nn4015714 10.1021/ja063164+ 10.1002/cjoc.201300240 10.1002/9783527611478 10.1002/cbic.200300781 10.1039/C9CC02498K 10.1021/jacs.9b06094 10.1021/ja0361897 10.3390/coatings3020098 10.1038/nchem.2353 10.1021/ja990904o 10.1002/anie.201811561 10.1002/bip.23285 10.1002/chem.200500004 10.1021/ja963290l 10.1021/cr200087r 10.2174/138527211795378227 10.1021/ja025699i 10.1021/acs.orglett.8b02438 10.1021/acs.langmuir.6b02735 10.1021/ar400030e 10.1002/9781118958308 10.1007/s00289-016-1902-1 10.3389/fbioe.2019.00315 10.1016/j.bbamem.2018.12.006 10.1039/b819597h 10.1021/ja0459375 10.1021/acs.jpcc.8b11046 10.3390/gels3040039 10.1021/ar700219m 10.1039/c3cc38261c 10.1021/ja070396f 10.1021/acsnano.9b07498 10.1021/acs.orglett.9b01360 10.1002/cplu.201900027 10.1002/anie.201003302 10.1039/a704933a 10.1039/C7SM00764G 10.1002/ejoc.201801427 10.1021/ja3064364 10.1039/b604462j 10.1021/acs.chemrev.6b00354 10.1021/ar960298r 10.1021/ja068678n 10.1021/ol502259y 10.1039/c3ob40561c 10.1021/ja0475095 10.1002/chem.201101775 10.1002/ejoc.200700444 10.1002/(SICI)1099-0690(199805)1998:5<827::AID-EJOC827>3.0.CO;2-B 10.1002/cplu.201900456 10.1038/ncomms9747 10.1021/ja991185g 10.1021/ol402381n 10.1021/ja0754002 10.1126/science.1948029 10.1039/C6CC05079D 10.1039/C6CC00624H 10.1021/ja801618p 10.1007/s00723-015-0745-5 10.1021/ja00198a084 10.1021/acs.jpcb.8b11752 10.1002/chem.201304448 10.1002/(SICI)1521-3773(20000103)39:1<233::AID-ANIE233>3.0.CO;2-R 10.1016/j.crci.2012.11.015 10.1002/1521-3765(20010702)7:13<2798::AID-CHEM2798>3.0.CO;2-L 10.1039/c2cc16266k 10.1021/ja0424631 10.1016/j.solidstatesciences.2015.07.002 10.1002/bip.22898 10.1021/ja972786f 10.1021/ja0780840 10.1002/bip.21621 10.1002/anie.200704938 10.1038/nmat2742 10.1021/acs.accounts.8b00075 10.1021/acs.jpcb.8b01877 10.1002/bip.23283 10.1021/ja5013849 10.1002/bip.23265 10.1080/10610270600665905 10.1021/ar800009n 10.1002/bip.21623 10.1039/C7SC03341A 10.1021/jacs.7b03635 10.1002/1521-3765(20020802)8:15<3448::AID-CHEM3448>3.0.CO;2-# 10.2533/chimia.2013.891 10.1021/jacs.9b00148 10.1039/b501173f 10.1021/acs.accounts.5b00439 10.1021/ja062412z 10.1002/anie.200906401 10.1021/nn303868q 10.1039/C9CC08380D 10.1002/ejoc.201402877 10.1039/b607660m 10.1002/chem.200701059 10.1002/anie.200704372 10.1021/ja103543s 10.1021/nn403899y 10.1039/B713229H 10.1039/C3BM60269A 10.1038/nchem.693 10.1039/C6CC04502B 10.1038/nchem.2854 10.1021/ja046124j 10.1021/ja106340f 10.1016/j.tet.2012.02.061 10.1016/j.solidstatesciences.2017.05.014 10.1002/ejoc.201100493 10.1039/C5CC07916K 10.1039/c3cc45383a 10.1039/C8CC00728D 10.1039/C6CC01861K 10.1039/C8CC02758G 10.1016/j.tet.2009.10.073 10.1021/ja206199d 10.1039/C6CC01546H 10.1039/c3sm51421h 10.1021/ja510840v 10.1021/jo070525a 10.1021/ja2082476 10.1021/ja990748l 10.1002/1521-3765(20010702)7:13<2810::AID-CHEM2810>3.0.CO;2-5 10.1021/ja071203r 10.1002/adma.201500275 10.1021/acsami.9b09632 10.1002/anie.200804996 10.1038/s41467-017-02059-1 10.1021/ja992109g 10.1002/ejoc.201201633 10.1021/jacs.7b04884 10.1021/ja8099294 10.1002/anie.201101697 10.1039/D0TB00477D 10.1126/science.8248779 10.1021/cg900969n 10.1002/anie.201800583 10.1002/chem.201702730 10.1021/ja0536163 10.1021/ja0574318 10.1002/cphc.201200730 10.1063/1.2955745 10.1021/ja038103f 10.1002/ejic.200600466 10.1038/nchembio876 10.1039/C5OB01093D 10.1016/j.tetlet.2016.11.022 10.1039/C6CC00190D 10.1021/jo702495u 10.1021/acsbiomaterials.8b01065 10.1021/jo101075a 10.1021/ol801677s 10.3389/fchem.2019.00070 10.1073/pnas.95.8.4303 10.1002/chem.200701047 10.1002/chem.200900877 10.1039/C9CC00335E 10.1039/C6CC00502K 10.1021/acsnano.8b03131 10.1021/la203410k 10.1002/ejoc.201901838 10.1002/anie.200500982 10.1039/C4RA11119B 10.1002/bip.23258 10.1002/chem.200700847 10.1021/ja0019225 10.1007/s40843-020-1296-8 10.1016/j.cbpa.2008.08.015 10.1002/anie.201508611 10.1021/ja001142w 10.1039/C6CC01983H 10.1039/C6CE00601A 10.1021/acs.accounts.6b00545 10.1016/j.chembiol.2015.10.005 10.1002/anie.200351871 10.1021/ja0275358 10.1021/ja8043322 10.1021/acs.orglett.8b00283 10.1021/cr000045i 10.1021/ol016868r 10.1039/C6CC00247A 10.1021/ja806194e 10.1002/cbic.201900263 10.1002/anie.201303175 10.1002/ejoc.200900511 10.1021/ol102494m 10.1039/C5SM02902C 10.1002/anie.201806035 10.1021/ja910903c 10.1088/0957-4484/27/13/135606 10.1002/anie.200504158 10.1016/j.nantod.2018.10.008 10.1021/jacs.8b09899 10.1002/chem.201003589 10.1039/C5RA12831E 10.1002/asia.200900713 10.1038/nature15363 10.1021/jacs.6b05063 10.1515/pac-2015-0108 10.1039/C7NR05209J 10.1002/chem.201805783 10.1002/chem.201404961 10.1021/acs.accounts.7b00340 10.1039/c2cc36391g 10.1021/cr000053z 10.1039/B612071G 10.1038/366324a0 10.1016/j.tet.2009.07.097 10.1002/anie.200904566 10.1002/anie.201504248 10.1002/ejoc.200300495 10.1021/ja010701b 10.1073/pnas.0801135105 10.1021/la035497f 10.1021/jacs.5b03933 10.1021/ja3088482 10.1039/C9CC03851E 10.1002/(SICI)1521-3773(19980216)37:3<302::AID-ANIE302>3.0.CO;2-4 10.1039/c2ob26132d 10.1021/jacs.7b00181 10.3934/matersci.2017.5.1029 10.1021/acs.orglett.5b02187 10.1002/chem.201102103 10.1039/C0CC02123G 10.1039/C7BM00882A 10.1063/1.5020105 10.1021/acsomega.8b00832 10.1021/ja9942742 10.1002/mabi.201500023 10.1021/ja00526a084 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the author. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the author. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules25143276 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_8ab6095d760e4650bf66eeee60ffbfdc PMC7397133 32708440 10_3390_molecules25143276 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IHR KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c559t-1166659e60790c3ba728466970493f2da20f33ccd15fabc92c594647e56bf1363 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:27:38 EDT 2025 Thu Aug 21 14:10:10 EDT 2025 Thu Jul 10 19:02:51 EDT 2025 Fri Jul 25 19:59:42 EDT 2025 Wed Feb 19 02:01:49 EST 2025 Tue Jul 01 01:16:51 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | secondary structure self-assembly fibers helices monolayers morphology structural investigation higher-order structures foldamers vesicles |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c559t-1166659e60790c3ba728466970493f2da20f33ccd15fabc92c594647e56bf1363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Dedicated to Professor Mario Orena on the occasion of his retirement. |
OpenAccessLink | https://doaj.org/article/8ab6095d760e4650bf66eeee60ffbfdc |
PMID | 32708440 |
PQID | 2426355912 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8ab6095d760e4650bf66eeee60ffbfdc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7397133 proquest_miscellaneous_2427298739 proquest_journals_2426355912 pubmed_primary_32708440 crossref_citationtrail_10_3390_molecules25143276 crossref_primary_10_3390_molecules25143276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200718 |
PublicationDateYYYYMMDD | 2020-07-18 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200718 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_91 ref_90 Ratjen (ref_191) 2014; 4 Yang (ref_201) 2003; 125 Shen (ref_31) 2012; 112 Zhan (ref_149) 2006; 45 ref_252 Wang (ref_159) 2017; 139 Liu (ref_77) 2018; 140 Chandramouli (ref_157) 2016; 52 Kulkarni (ref_125) 2016; 52 Curtis (ref_93) 2006; 241 Collie (ref_220) 2017; 139 Schuurmans (ref_225) 2004; 126 Bao (ref_153) 2009; 15 Venanzi (ref_34) 2017; 23 De (ref_140) 2018; 10 Rosales (ref_62) 2013; 9 Diederichsen (ref_84) 1998; 37 Ghosh (ref_82) 2018; 57 Li (ref_227) 2011; 27 Windsor (ref_94) 2009; 48 Hill (ref_2) 2001; 101 Shang (ref_165) 2014; 16 Szekely (ref_52) 2013; 16 Acocella (ref_146) 2004; 126 Roberts (ref_243) 2019; 110 Kwon (ref_131) 2010; 49 Cai (ref_183) 2008; 130 Goodman (ref_97) 2007; 129 Ghadiri (ref_105) 1993; 366 Jadhav (ref_267) 2014; 20 Wang (ref_99) 2014; 136 Gellman (ref_1) 1998; 31 Zhang (ref_19) 2012; 112 Kim (ref_235) 2020; 14 Molski (ref_98) 2010; 132 Price (ref_212) 2007; 129 Gan (ref_18) 2011; 15 Clark (ref_104) 1998; 120 Gan (ref_161) 2012; 134 Oshea (ref_116) 1991; 254 ref_152 Azeroual (ref_187) 2012; 48 Martinek (ref_5) 2006; 35 Berni (ref_150) 2007; 13 Zeng (ref_198) 2001; 66 Motamed (ref_130) 2019; 7 Mechler (ref_120) 2013; 52 Kritzer (ref_86) 2005; 127 Kulkarni (ref_24) 2019; 7 Pomerantz (ref_113) 2011; 133 Pomerantz (ref_119) 2007; 19 Escuder (ref_42) 2018; 4 Kale (ref_247) 2012; 10 Kwon (ref_132) 2011; 133 Drexler (ref_59) 2011; 96 Lombardo (ref_218) 2016; 138 Gong (ref_264) 2017; 70 Berl (ref_145) 2001; 7 ref_143 ref_85 Ingole (ref_246) 2016; 52 Borissov (ref_78) 2019; 141 Gange (ref_32) 1980; 102 Bradford (ref_250) 2008; 130 Saraogi (ref_11) 2009; 38 Nam (ref_232) 2010; 9 Nowick (ref_205) 2003; 42 Zhu (ref_170) 2008; 10 Chakraborty (ref_89) 2005; 11 Martinek (ref_103) 2005; 127 Harbury (ref_216) 1993; 262 Vass (ref_107) 2010; 12 Huang (ref_56) 2006; 128 Das (ref_27) 2016; 52 Chan (ref_80) 2017; 139 Li (ref_81) 2007; 13 Li (ref_176) 2005; 44 Galeazzi (ref_14) 2011; 17 Kim (ref_134) 2012; 134 Ferrand (ref_156) 2010; 49 Zhang (ref_199) 2018; 20 Jin (ref_260) 2018; 9 Eom (ref_263) 2015; 36 Daniels (ref_96) 2007; 129 Raguse (ref_92) 2001; 3 Cai (ref_174) 2008; 130 Horne (ref_211) 2007; 129 Appella (ref_118) 1999; 121 Berlicki (ref_9) 2017; 23 Yan (ref_179) 2020; 56 Li (ref_12) 2008; 41 Wang (ref_177) 2009; 65 Adam (ref_167) 2019; 55 Appella (ref_138) 1999; 121 Faour (ref_168) 2019; 55 Petitjean (ref_189) 2008; 73 Gopalan (ref_21) 2015; 22 Shen (ref_172) 2013; 14 Zeng (ref_197) 2000; 122 Martinek (ref_109) 2002; 41 Tsubaki (ref_33) 2006; 71 Battigelli (ref_240) 2018; 12 Gong (ref_196) 1999; 121 Klymchenko (ref_226) 2006; 30 Gan (ref_155) 2010; 46 Salnikov (ref_37) 2019; 20 Liu (ref_72) 2020; 63 Gong (ref_26) 2013; 46 Monsignori (ref_108) 2014; 20 Ferrand (ref_30) 2018; 51 Culf (ref_54) 2019; 110 Muzzi (ref_39) 2018; 122 Pizzey (ref_114) 2008; 129 Yang (ref_206) 2007; 72 Jeon (ref_75) 2018; 54 Campbell (ref_74) 2010; 2 Liu (ref_76) 2019; 58 Cai (ref_67) 2015; 27 Singleton (ref_151) 2014; 53 Venkatraman (ref_193) 2001; 101 Misra (ref_268) 2016; 52 Hebert (ref_241) 2013; 11 ref_102 Yashima (ref_29) 2016; 116 Battigelli (ref_71) 2019; 110 Marafon (ref_249) 2019; 21 Peebles (ref_251) 2013; 19 Xuan (ref_73) 2020; 8 Appella (ref_117) 1996; 118 Horne (ref_16) 2008; 41 Hebert (ref_242) 2013; 3 Pike (ref_192) 2014; 20 Eom (ref_261) 2015; 48 Ganesh (ref_69) 2017; 74 Thiele (ref_112) 2011; 47 Clerici (ref_20) 2016; 57 Eom (ref_262) 2015; 54 ref_10 Sarkar (ref_209) 2015; 5 Motamed (ref_123) 2016; 12 ref_17 Dolain (ref_148) 2005; 127 ref_15 Martinek (ref_106) 2006; 45 Kulkarni (ref_127) 2018; 2 Wang (ref_180) 2018; 83 Percec (ref_61) 2013; Volume 262 You (ref_175) 2009; 65 Jiang (ref_244) 2019; 123 Chakraborty (ref_88) 2003; 42 Yan (ref_178) 2019; 11 Corvi (ref_40) 2019; 84 Puszko (ref_231) 2019; 123 Eddleston (ref_139) 2010; 10 Ikkanda (ref_28) 2016; 52 Christofferson (ref_128) 2018; 12 Berl (ref_142) 2001; 7 Robertson (ref_68) 2016; 49 Sepunaru (ref_230) 2015; 137 Syryamina (ref_38) 2016; 47 Yoo (ref_58) 2008; 12 Debnath (ref_254) 2018; 3 Luo (ref_173) 2016; 22 Hammer (ref_245) 2004; 20 Pomerantz (ref_110) 2006; 128 Yoon (ref_266) 2016; 52 Horne (ref_215) 2008; 105 Gabriel (ref_195) 2002; 124 (ref_229) 2017; 9 Collie (ref_217) 2015; 7 Shi (ref_79) 2013; 49 Luder (ref_124) 2016; 52 Olivier (ref_233) 2013; 7 Mannige (ref_237) 2015; 526 Lutz (ref_63) 2014; Volume 1170 Liu (ref_70) 2018; 23 Castedo (ref_210) 2008; 14 Lim (ref_265) 2019; 25 Segman (ref_221) 2010; 49 Kwon (ref_136) 2015; 6 Yamada (ref_164) 2010; 46 Seoudi (ref_121) 2015; 87 Secker (ref_66) 2015; 15 Nowick (ref_202) 1999; 121 Qiu (ref_95) 2006; 128 Edison (ref_239) 2018; 115 Nowick (ref_204) 2002; 124 Melicher (ref_100) 2013; 15 Zhao (ref_141) 2018; 20 Gobbo (ref_228) 2012; 6 Price (ref_214) 2010; 132 Bolte (ref_253) 2016; 18 Kulkarni (ref_129) 2018; 4 Lau (ref_64) 2014; 2 Kawabata (ref_190) 2018; 54 Cuccia (ref_185) 2002; 8 Dobitz (ref_48) 2017; 50 Collie (ref_219) 2016; 52 Yoo (ref_23) 2017; 50 Gan (ref_154) 2008; 47 Seebach (ref_3) 1997; 21 Wetzler (ref_51) 2011; 96 Gong (ref_137) 2019; 84 Berl (ref_144) 2000; 407 Lee (ref_224) 2011; 17 Kirshenbaum (ref_50) 1998; 95 Baptiste (ref_147) 2010; 5 Martinek (ref_8) 2012; 41 Ferrand (ref_160) 2011; 50 Jin (ref_259) 2019; 110 ref_55 Zhang (ref_207) 2019; 141 Mason (ref_115) 2004; 5 Denisov (ref_158) 2016; 55 Yamato (ref_25) 2012; 48 Rathore (ref_87) 2006; 91 Rapaport (ref_223) 2006; 18 Weiser (ref_53) 2017; 4 Aldilla (ref_44) 2020; 10 Murnen (ref_258) 2010; 132 Pomerantz (ref_111) 2008; 47 Hein (ref_169) 2019; 55 Marafon (ref_248) 2018; 57 Melicher (ref_101) 2015; 17 Ito (ref_163) 2008; 130 Gan (ref_182) 2013; 31 Knight (ref_65) 2015; 27 Seoudi (ref_122) 2015; 39 Afanasyeva (ref_41) 2019; 1861 Sanii (ref_236) 2011; 133 Wang (ref_22) 2016; 52 Zeng (ref_200) 2002; 124 Seoudi (ref_126) 2016; 27 Marafon (ref_255) 2017; 13 Jadhav (ref_257) 2013; 49 Green (ref_184) 1989; 111 Misra (ref_208) 2018; 57 Siebler (ref_49) 2013; 67 Kwon (ref_133) 2012; 68 ref_36 ref_35 Sun (ref_60) 2013; 7 Tanaka (ref_162) 2005; 44 Goodman (ref_7) 2007; 3 Markandeya (ref_166) 2017; 8 Das (ref_43) 2018; 6 Nowick (ref_203) 2000; 122 Robertson (ref_234) 2016; 32 Hudson (ref_238) 2018; 9 Yoo (ref_135) 2015; 137 ref_47 ref_45 Schmitt (ref_222) 2005; 127 Cheng (ref_4) 2001; 101 Shen (ref_171) 2011; 17 ref_188 Menegazzo (ref_13) 2006; 47 Cuccia (ref_186) 2000; 39 Giuliano (ref_213) 2009; 131 Stringer (ref_57) 2010; 75 Tomasini (ref_46) 2017; 108 Pfukwa (ref_181) 2013; 52 Zych (ref_194) 2000; 122 Maayan (ref_83) 2015; 13 Konda (ref_256) 2016; 14 ref_6 |
References_xml | – volume: 83 start-page: 1898 year: 2018 ident: ref_180 article-title: A switchable helical capsule for encapsulation and release of potassium ion publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b02840 – volume: 41 start-page: 687 year: 2012 ident: ref_8 article-title: Peptidic foldamers: Ramping up diversity publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15097A – volume: 22 start-page: 11028 year: 2016 ident: ref_173 article-title: Helical folding competing with unfolded aggregation in phenylene ethynylene foldamers publication-title: Chem. Eur. J. doi: 10.1002/chem.201601804 – volume: 241 start-page: 354 year: 2006 ident: ref_93 article-title: Monte Carlo simulations of the homopolypeptide pair potential of mean force publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2005.12.022 – volume: 9 start-page: 2574 year: 2018 ident: ref_238 article-title: Evidence for cis amide bonds in peptoid nanosheets publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01040 – volume: 57 start-page: 1057 year: 2018 ident: ref_208 article-title: Artificial β-double helices from achiral γ-peptides publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711124 – volume: 71 start-page: 6579 year: 2006 ident: ref_33 article-title: Bottom-up synthesis of optically active oligonaphthalenes: Three different pathways for controlling axial chirality publication-title: J. Org. Chem. doi: 10.1021/jo060974v – volume: 27 start-page: 5762 year: 2015 ident: ref_67 article-title: The organic flatland—Recent advances in synthetic 2D organic layers publication-title: Adv. Mater. doi: 10.1002/adma.201500124 – volume: 42 start-page: 1765 year: 2003 ident: ref_205 article-title: Sequence-selective molecular recognition between β sheets publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200250750 – volume: 115 start-page: 5647 year: 2018 ident: ref_239 article-title: Conformations of peptoids in nanosheets result from the interplay of backbone energetics and intermolecular interactions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1800397115 – volume: 44 start-page: 3867 year: 2005 ident: ref_162 article-title: A modular strategy to artificial double helices publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200501028 – volume: 52 start-page: 11040 year: 2013 ident: ref_181 article-title: Templated hierarchical self-assembly of poly(p-aryltriazole) foldamers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201303135 – volume: 12 start-page: 2455 year: 2018 ident: ref_240 article-title: Glycosylated peptoid nanosheets as a multivalent scaffold for protein recognition publication-title: ACS Nano doi: 10.1021/acsnano.7b08018 – volume: 101 start-page: 3893 year: 2001 ident: ref_2 article-title: A field guide to foldamers publication-title: Chem. Rev. doi: 10.1021/cr990120t – ident: ref_152 doi: 10.1039/b719712h – volume: 66 start-page: 3574 year: 2001 ident: ref_198 article-title: Sequence specificity of hydrogen-bonded molecular duplexes publication-title: J. Org. Chem. doi: 10.1021/jo010250d – volume: 23 start-page: 104 year: 2017 ident: ref_34 article-title: The importance of being Aib. Aggregation and self-assembly studies on conformationally constrained oligopeptides publication-title: J. Pept. Sci. doi: 10.1002/psc.2956 – volume: 53 start-page: 13140 year: 2014 ident: ref_151 article-title: Increasing the size of an aromatic helical foldamer cavity by strand intercalation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407752 – volume: 112 start-page: 5271 year: 2012 ident: ref_19 article-title: Aromatic amide foldamers: Structures, properties, and functions publication-title: Chem. Rev. doi: 10.1021/cr300116k – volume: 91 start-page: 3425 year: 2006 ident: ref_87 article-title: Thermodynamic stability of β-peptide helices and the role of cyclic residues publication-title: Biophys. J. doi: 10.1529/biophysj.106.084491 – volume: 20 start-page: 15981 year: 2014 ident: ref_192 article-title: Designing foldamer–foldamer interactions in solution: The roles of helix length and terminus functionality in promoting the self-association of aminoisobutyric acid oligomers publication-title: Chem. Eur. J. doi: 10.1002/chem.201403626 – volume: 36 start-page: 2583 year: 2015 ident: ref_263 article-title: Foldectures from the self-assembly of racemic foldamers publication-title: Bull. Korean Chem. Soc. doi: 10.1002/bkcs.10527 – volume: 46 start-page: 297 year: 2010 ident: ref_155 article-title: Heteromeric double helix formation by cross-hybridization of chloro and fluoro-substituted quinoline oligoamides publication-title: Chem. Commun. doi: 10.1039/B910435F – volume: 19 start-page: 11598 year: 2013 ident: ref_251 article-title: More than meets the eyes: Conformational switching of a stacked dialkoxynaphthalene-naphthalenetetra-carboxylic diimide (DAN-NDI) foldamer to an NDIcx-NDI fibril aggregate publication-title: Chem. Eur. J. doi: 10.1002/chem.201302009 – volume: 41 start-page: 1718 year: 2002 ident: ref_109 article-title: cis-2-Aminocyclopentanecarboxylic acid oligomers adopt a sheetlike structure: Switch from helix to nonpolar strand publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020517)41:10<1718::AID-ANIE1718>3.0.CO;2-2 – volume: 19 start-page: 4436 year: 2007 ident: ref_119 article-title: Sequence dependent behavior of amphiphilic β-peptides on gold surfaces publication-title: Chem. Mater. doi: 10.1021/cm070265d – volume: 4 start-page: 796 year: 2018 ident: ref_42 article-title: Morphology diversity of L-phenylalanine-based short peptide supramolecular aggregates and hydrogels publication-title: ChemNanoMat doi: 10.1002/cnma.201800202 – volume: 407 start-page: 720 year: 2000 ident: ref_144 article-title: Interconversion of single and double helices formed from synthetic molecular strands publication-title: Nature doi: 10.1038/35037545 – volume: 46 start-page: 3487 year: 2010 ident: ref_164 article-title: Complementary double helix formation through template synthesis publication-title: Chem. Commun. doi: 10.1039/c002170a – volume: 10 start-page: 770 year: 2020 ident: ref_44 article-title: Anthranilamide-based short peptides self-assembled hydrogels as antibacterial agents publication-title: Sci. Rep. doi: 10.1038/s41598-019-57342-6 – volume: 133 start-page: 13604 year: 2011 ident: ref_113 article-title: Lyotropic liquid crystals formed from ACHC-rich β-Peptides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204874h – volume: 39 start-page: 3280 year: 2015 ident: ref_122 article-title: Supramolecular self-assembly of 14-helical nanorods with tunable linear and dendritic hierarchical morphologies publication-title: New J. Chem. doi: 10.1039/C4NJ01926A – volume: 14 start-page: 4089 year: 2016 ident: ref_256 article-title: Structural and morphological diversity of self-assembled synthetic γ-amino acid containing peptides publication-title: Org. Biomol. Chem. doi: 10.1039/C6OB00380J – volume: 7 start-page: 4715 year: 2013 ident: ref_60 article-title: Peptoid polymers: A highly designable bioinspired material publication-title: ACS Nano doi: 10.1021/nn4015714 – volume: 128 start-page: 11338 year: 2006 ident: ref_95 article-title: Toward β-amino acid proteins: A cooperatively folded β-peptide quaternary structure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063164+ – volume: 31 start-page: 651 year: 2013 ident: ref_182 article-title: Twisted helical microfibers by hierarchical self-assembly of an aromatic oligoamide foldamer publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201300240 – ident: ref_6 doi: 10.1002/9783527611478 – volume: 5 start-page: 170 year: 2004 ident: ref_115 article-title: Coiled coil domains: Stability, specificity, and biological implications publication-title: ChemBioChem doi: 10.1002/cbic.200300781 – volume: 55 start-page: 5743 year: 2019 ident: ref_168 article-title: Redox-controlled hybridization of helical foldamers publication-title: Chem. Commun. doi: 10.1039/C9CC02498K – volume: 141 start-page: 14239 year: 2019 ident: ref_207 article-title: Folding and assembly of short α, β, γ-hybrid peptides: Minor variations in sequence and drastic differences in higher-level structures publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06094 – volume: Volume 1170 start-page: 35 year: 2014 ident: ref_63 article-title: Precision sequence control in bioinspired peptoid polymers publication-title: Sequence-Controlled Polymers: Synthesis, Self-Assembly, and Properties – volume: 125 start-page: 9932 year: 2003 ident: ref_201 article-title: Duplex foldamers from assembly induced folding publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0361897 – volume: 3 start-page: 98 year: 2013 ident: ref_242 article-title: Uniform and robust peptoid microsphere coatings publication-title: Coatings doi: 10.3390/coatings3020098 – volume: 7 start-page: 871 year: 2015 ident: ref_217 article-title: Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation publication-title: Nat. Chem. doi: 10.1038/nchem.2353 – volume: 121 start-page: 5607 year: 1999 ident: ref_196 article-title: A new approach for the design of supramolecular recognition units: Hydrogen-bonded molecular duplexes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja990904o – volume: 58 start-page: 226 year: 2019 ident: ref_76 article-title: Halogen bonding-directed supramolecular quadruple and double helices from hydrogen bonded arylamide foldamers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811561 – volume: 110 start-page: e23285 year: 2019 ident: ref_54 article-title: Peptoids as tools and sensors publication-title: Biopolymers doi: 10.1002/bip.23285 – volume: 11 start-page: 3207 year: 2005 ident: ref_89 article-title: Three-dimensional organization of helices: Design principles for nucleobase-functionalized β-peptides publication-title: Chem. Eur. J. doi: 10.1002/chem.200500004 – volume: 118 start-page: 13071 year: 1996 ident: ref_117 article-title: β-Peptide foldamers: Robust helix formation in a new family of β-amino acid oligomers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja963290l – volume: 112 start-page: 1463 year: 2012 ident: ref_31 article-title: Helicenes: Synthesis and applications publication-title: Chem. Rev. doi: 10.1021/cr200087r – volume: 15 start-page: 1293 year: 2011 ident: ref_18 article-title: Aromatic oligoamide foldamers: A paradigm for structure-property relationship publication-title: Curr. Org. Chem. doi: 10.2174/138527211795378227 – volume: 124 start-page: 4972 year: 2002 ident: ref_204 article-title: An unnatural amino acid that induces β-sheet folding and interaction in peptides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja025699i – volume: 20 start-page: 5486 year: 2018 ident: ref_141 article-title: Effects of oligomer length, solvents, and temperature on the self-association of aromatic oligoamide foldamers publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b02438 – volume: 32 start-page: 11946 year: 2016 ident: ref_234 article-title: Molecular engineering of the peptoid nanosheet hydrophobic core publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02735 – volume: 46 start-page: 2856 year: 2013 ident: ref_26 article-title: Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: Formation and mass transport characteristics publication-title: Acc. Chem. Res. doi: 10.1021/ar400030e – ident: ref_36 doi: 10.1002/9781118958308 – volume: 74 start-page: 3455 year: 2017 ident: ref_69 article-title: Peptoids and polypeptoids: Biomimetic and bioinspired materials for biomedical applications publication-title: Polym. Bull. doi: 10.1007/s00289-016-1902-1 – volume: 7 start-page: 315 year: 2019 ident: ref_130 article-title: Migration and differentiation of neural stem cells diverted from the subventricular zone by an injectable self-assembling β-peptide hydrogel publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00315 – volume: 1861 start-page: 524 year: 2019 ident: ref_41 article-title: Peptide antibiotic trichogin in model membranes: Self-association and capture of fatty acids publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2018.12.006 – volume: 38 start-page: 1726 year: 2009 ident: ref_11 article-title: Recent advances in the development of aryl-based foldamers publication-title: Chem. Soc. Rev. doi: 10.1039/b819597h – volume: 127 start-page: 167 year: 2005 ident: ref_86 article-title: Relationship between side chain structure and 14-helix stability of β3-peptides in water publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0459375 – volume: 123 start-page: 1136 year: 2019 ident: ref_231 article-title: Electron transport and a rectifying effect of oligourea foldamer films entrapped within nanoscale junctions publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b11046 – ident: ref_45 doi: 10.3390/gels3040039 – volume: 41 start-page: 1343 year: 2008 ident: ref_12 article-title: Peptide mimics by linear arylamides: A structural and functional diversity test publication-title: Acc. Chem. Res. doi: 10.1021/ar700219m – volume: 49 start-page: 2673 year: 2013 ident: ref_79 article-title: Foldamer-based chiral supramolecular alternate block copolymers tuned by ion-pair binding publication-title: Chem. Commun. doi: 10.1039/c3cc38261c – volume: 129 start-page: 4178 year: 2007 ident: ref_211 article-title: Helix bundle quaternary structure from α/β-peptide foldamers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja070396f – volume: 14 start-page: 185 year: 2020 ident: ref_235 article-title: Discovery of stable and selective antibody mimetics from combinatorial libraries of polyvalent, loop-functionalized peptoid nanosheets publication-title: ACS Nano doi: 10.1021/acsnano.9b07498 – volume: 21 start-page: 4182 year: 2019 ident: ref_249 article-title: Tunable E−Z photoisomerization in α,β-peptide foldamers featuring multiple (E/Z)-3-aminoprop-2-enoic acid units publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01360 – volume: 84 start-page: 481 year: 2019 ident: ref_137 article-title: Self-assembly of a β-peptide foldamer: The role of the surfactant in three-dimensional shape selection publication-title: ChemPlusChem doi: 10.1002/cplu.201900027 – volume: 49 start-page: 8232 year: 2010 ident: ref_131 article-title: Unprecedented molecular architectures by the controlled self-assembly of a β-peptide foldamer publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201003302 – volume: 21 start-page: 2015 year: 1997 ident: ref_3 article-title: β-Peptides: A surprise at every turn publication-title: J. Chem. Soc. Chem. Commun. doi: 10.1039/a704933a – volume: 13 start-page: 4231 year: 2017 ident: ref_255 article-title: Tuning morphological architectures generated through living supramolecular assembly of a helical foldamer end-capped with two complementary nucleobases publication-title: Soft Matter doi: 10.1039/C7SM00764G – ident: ref_15 doi: 10.1002/ejoc.201801427 – volume: 134 start-page: 15656 year: 2012 ident: ref_161 article-title: Identification of a foldaxane kinetic byproduct during guest-induced single to double helix conversion publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3064364 – ident: ref_143 doi: 10.1039/b604462j – volume: 116 start-page: 13752 year: 2016 ident: ref_29 article-title: Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00354 – volume: 31 start-page: 173 year: 1998 ident: ref_1 article-title: Foldamers: A manifesto publication-title: Acc. Chem. Res. doi: 10.1021/ar960298r – volume: 129 start-page: 1532 year: 2007 ident: ref_96 article-title: High-resolution structure of a β-peptide bundle publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068678n – volume: 16 start-page: 4992 year: 2014 ident: ref_165 article-title: Self-association of aromatic oligoamide foldamers into double helices in water publication-title: Org. Lett. doi: 10.1021/ol502259y – volume: 11 start-page: 4459 year: 2013 ident: ref_241 article-title: Tunable peptoid microspheres: Effects of side chain chemistry and sequence publication-title: Org. Biomol. Chem. doi: 10.1039/c3ob40561c – volume: 127 start-page: 547 year: 2005 ident: ref_103 article-title: Chain-length-dependent helical motifs and self-association of β-peptides with constrained side chains publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0475095 – volume: 17 start-page: 14857 year: 2011 ident: ref_224 article-title: Sheet-like assemblies of charged amphiphilic α/β-peptides at the air–water interface publication-title: Chem. Eur. J. doi: 10.1002/chem.201101775 – ident: ref_90 doi: 10.1002/ejoc.200700444 – ident: ref_85 doi: 10.1002/(SICI)1099-0690(199805)1998:5<827::AID-EJOC827>3.0.CO;2-B – volume: 84 start-page: 1688 year: 2019 ident: ref_40 article-title: Controlling the formation of peptide films: Fully-developed helical peptides are required to obtain a homogenous coating over a large area publication-title: ChemPlusChem doi: 10.1002/cplu.201900456 – volume: 6 start-page: 8747 year: 2015 ident: ref_136 article-title: Magnetotactic molecular architectures from self-assembly of β-peptide foldamers publication-title: Nat. Commun. doi: 10.1038/ncomms9747 – volume: 121 start-page: 7574 year: 1999 ident: ref_138 article-title: Synthesis and structural characterization of helix-forming β-peptides: trans-2-Aminocyclopentanecarboxylic acid oligomers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991185g – volume: 15 start-page: 5048 year: 2013 ident: ref_100 article-title: A β-boronopeptide bundle of known structure as a vehicle for polyol recognition publication-title: Org. Lett. doi: 10.1021/ol402381n – volume: 129 start-page: 14746 year: 2007 ident: ref_97 article-title: Biophysical and structural characterization of a robust octameric β-peptide bundle publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0754002 – volume: 254 start-page: 539 year: 1991 ident: ref_116 article-title: X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil publication-title: Science doi: 10.1126/science.1948029 – volume: 52 start-page: 10771 year: 2016 ident: ref_246 article-title: Self-assembled vesicles of urea-tethered foldamer as a hydrophobic drug carrier publication-title: Chem. Commun. doi: 10.1039/C6CC05079D – volume: 52 start-page: 5844 year: 2016 ident: ref_125 article-title: Orthogonal strategy for the synthesis of dual-functionalised β3-peptide based hydrogels publication-title: Chem. Commun. doi: 10.1039/C6CC00624H – volume: 130 start-page: 6936 year: 2008 ident: ref_174 article-title: Vesicles and organogels from foldamers: A solvent-modulated self-assembling process publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801618p – volume: 47 start-page: 309 year: 2016 ident: ref_38 article-title: Peptides on the surface: Spin-label EPR and PELDOR study of adsorption of the antimicrobial peptides Trichogin GA IV and Ampullosporin A on the silica nanoparticles publication-title: Appl. Magn. Reson. doi: 10.1007/s00723-015-0745-5 – volume: 111 start-page: 6452 year: 1989 ident: ref_184 article-title: Macromolecular stereochemistry: The out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00198a084 – volume: 123 start-page: 1195 year: 2019 ident: ref_244 article-title: Resolving the morphology of peptoid vesicles at the 1 nm length scale using cryogenic electron microscopy publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b11752 – volume: 45 start-page: 4625 year: 2006 ident: ref_149 article-title: Cross-hybridization of pyridinedicarboxamide helical strands and their N-oxides publication-title: Chem. Eur. J. – volume: 20 start-page: 4591 year: 2014 ident: ref_108 article-title: Exploiting aromatic interactions for β-peptide foldamer helix stabilization: A significant design element publication-title: Chem. Eur. J. doi: 10.1002/chem.201304448 – volume: 39 start-page: 233 year: 2000 ident: ref_186 article-title: Encoded helical self-organization and self-assembly into helical fibers of an oligoheterocyclic pyridine-pyridazine molecular strand publication-title: Angew. Chem. Int. Ed. doi: 10.1002/(SICI)1521-3773(20000103)39:1<233::AID-ANIE233>3.0.CO;2-R – volume: 16 start-page: 318 year: 2013 ident: ref_52 article-title: α-Peptoids and related compounds: Synthesis and control of the conformation publication-title: C. R. Chim. doi: 10.1016/j.crci.2012.11.015 – volume: 7 start-page: 2798 year: 2001 ident: ref_142 article-title: Helical molecular programming: Folding of oligopyridine-dicarboxamides into molecular single helices publication-title: Chem. Eur. J. doi: 10.1002/1521-3765(20010702)7:13<2798::AID-CHEM2798>3.0.CO;2-L – volume: 48 start-page: 2292 year: 2012 ident: ref_187 article-title: Mirror symmetry breaking and chiral amplification in foldamer-based supramolecular helical aggregates publication-title: Chem. Commun. doi: 10.1039/c2cc16266k – volume: 127 start-page: 2400 year: 2005 ident: ref_148 article-title: Folding directed N-oxidation of oligopyridine-dicarboxamide strands and hybridization of oxidized oligomers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0424631 – volume: 48 start-page: 39 year: 2015 ident: ref_261 article-title: Parallelogram plate shaped foldecture from the controlled self-assembly of α/β-peptide foldamer publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2015.07.002 – volume: 108 start-page: e22898 year: 2017 ident: ref_46 article-title: Oxazolidinone-containing pseudopeptides: Supramolecular materials, fibers, crystals, and gels publication-title: Biopolymers doi: 10.1002/bip.22898 – volume: 120 start-page: 651 year: 1998 ident: ref_104 article-title: Self-assembling cyclic β3-peptide nanotubes as artificial transmembrane ion channels publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972786f – volume: 130 start-page: 1517 year: 2008 ident: ref_250 article-title: Amyloid-like behavior in abiotic, amphiphilic foldamers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0780840 – volume: 96 start-page: 556 year: 2011 ident: ref_51 article-title: Progress in the de novo design of structured peptoid protein mimics publication-title: Biopolymers doi: 10.1002/bip.21621 – volume: 47 start-page: 1715 year: 2008 ident: ref_154 article-title: Quadruple and double helices of 8-fluoroquinoline oligoamides publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200704938 – volume: 9 start-page: 454 year: 2010 ident: ref_232 article-title: Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers publication-title: Nat. Mater. doi: 10.1038/nmat2742 – volume: 51 start-page: 970 year: 2018 ident: ref_30 article-title: Designing helical molecular capsules based on folded aromatic amide oligomers publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00075 – volume: 122 start-page: 6305 year: 2018 ident: ref_39 article-title: Tuning the morphology of nanostructured peptide films by introduction of a secondary structure conformational constraint: A case-study of hierarchical self-assembly publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b01877 – volume: 110 start-page: e23283 year: 2019 ident: ref_243 article-title: Peptoid microsphere coatings: The effects of helicity, temperature, pH, and ionic strength publication-title: Biopolymers doi: 10.1002/bip.23283 – volume: 136 start-page: 6810 year: 2014 ident: ref_99 article-title: Design and high-resolution structure of a β3-peptide bundle catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5013849 – volume: 110 start-page: e23265 year: 2019 ident: ref_71 article-title: Design and preparation of organic nanomaterials using self-assembled peptoids publication-title: Biopolymers doi: 10.1002/bip.23265 – volume: 18 start-page: 445 year: 2006 ident: ref_223 article-title: Ordered peptide assemblies at interfaces publication-title: Supramol. Chem. doi: 10.1080/10610270600665905 – volume: 41 start-page: 1399 year: 2008 ident: ref_16 article-title: Foldamers with heterogeneous backbones publication-title: Acc. Chem. Res. doi: 10.1021/ar800009n – volume: 96 start-page: 537 year: 2011 ident: ref_59 article-title: Peptoids at the 7th summit: Toward macromolecular systems engineering publication-title: Biopolymers doi: 10.1002/bip.21623 – volume: 8 start-page: 7251 year: 2017 ident: ref_166 article-title: Multi-dimensional charge transport in supramolecular helical foldamer assemblies publication-title: Chem. Sci. doi: 10.1039/C7SC03341A – volume: 139 start-page: 8639 year: 2017 ident: ref_80 article-title: Synthesis of luminescent Platinum(II) 2,6-bis(N-dodecylbenzimidazol-2-yl)pyridine foldamers and their supramolecular assembly and metallogel formation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03635 – volume: 8 start-page: 3448 year: 2002 ident: ref_185 article-title: Helical self-organization and hierarchical self-assembly of an oligoheterocyclic pyridine-pyridazine strand into extended supramolecular fibers publication-title: Chem. Eur. J. doi: 10.1002/1521-3765(20020802)8:15<3448::AID-CHEM3448>3.0.CO;2-# – volume: 67 start-page: 891 year: 2013 ident: ref_49 article-title: From azidoproline to functionalizable collagen publication-title: Chimia doi: 10.2533/chimia.2013.891 – volume: 141 start-page: 4119 year: 2019 ident: ref_78 article-title: Anion recognition in water by charge-neutral halogen and chalcogen bonding foldamer receptors publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00148 – volume: 35 start-page: 323 year: 2006 ident: ref_5 article-title: Application of alicyclic β-amino acids in peptide chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/b501173f – volume: 49 start-page: 379 year: 2016 ident: ref_68 article-title: Design, synthesis, assembly, and engineering of peptoid nanosheets publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00439 – volume: 128 start-page: 8730 year: 2006 ident: ref_110 article-title: Lyotropic liquid crystals from designed helical β-peptides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062412z – volume: 49 start-page: 1778 year: 2010 ident: ref_156 article-title: Parallel and antiparallel triple helices of naphthyridine oligoamides publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906401 – volume: 6 start-page: 10684 year: 2012 ident: ref_228 article-title: Preprogrammed 2D folding of conformationally flexible oligoamides: Foldamers with multiple turn elements publication-title: ACS Nano doi: 10.1021/nn303868q – volume: 56 start-page: 149 year: 2020 ident: ref_179 article-title: Light-responsive vesicles for enantioselective release of chiral drugs prepared from a supra-amphiphilic M-helix publication-title: Chem. Commun. doi: 10.1039/C9CC08380D – ident: ref_17 doi: 10.1002/ejoc.201402877 – volume: 30 start-page: 1420 year: 2006 ident: ref_226 article-title: Scanning tunnelling microscopy of a foldamer prototype at the liquid/solid interface: Water/Au(111) versus 1-octanol/graphite publication-title: New J. Chem. doi: 10.1039/b607660m – volume: 14 start-page: 2100 year: 2008 ident: ref_210 article-title: Folding control in cyclic peptides through N-methylation pattern selection: Formation of antiparallel β-sheet dimers, double reverse turns and supramolecular helices by 3α,γ cyclic peptides publication-title: Chem. Eur. J. doi: 10.1002/chem.200701059 – volume: 47 start-page: 1241 year: 2008 ident: ref_111 article-title: Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200704372 – volume: 132 start-page: 12378 year: 2010 ident: ref_214 article-title: Structural consequences of β-amino acid preorganization in a self-assembling α/β-peptide: Fundamental studies of foldameric helix bundles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103543s – volume: 7 start-page: 9276 year: 2013 ident: ref_233 article-title: Antibody-mimetic peptoid nanosheets for molecular recognition publication-title: ACS Nano doi: 10.1021/nn403899y – ident: ref_252 doi: 10.1039/B713229H – volume: Volume 262 start-page: 389 year: 2013 ident: ref_61 article-title: Peptoids for biomimetic hierarchical structures publication-title: Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II – volume: 2 start-page: 627 year: 2014 ident: ref_64 article-title: Peptoids for biomaterials science publication-title: Biomater. Sci. doi: 10.1039/C3BM60269A – volume: 2 start-page: 684 year: 2010 ident: ref_74 article-title: Cascading transformations within a dynamic self-assembled system publication-title: Nat. Chem. doi: 10.1038/nchem.693 – volume: 52 start-page: 9597 year: 2016 ident: ref_268 article-title: Exploring structural features of folded peptide architectures in the construction of nanomaterials publication-title: Chem. Commun. doi: 10.1039/C6CC04502B – volume: 10 start-page: 51 year: 2018 ident: ref_140 article-title: Designing cooperatively folded abiotic uni- and multimolecular helix bundles publication-title: Nat. Chem. doi: 10.1038/nchem.2854 – volume: 126 start-page: 13884 year: 2004 ident: ref_225 article-title: Design and STM investigation of intramolecular folding in self-assembled monolayers on the surface publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046124j – volume: 132 start-page: 16112 year: 2010 ident: ref_258 article-title: Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106340f – volume: 68 start-page: 4368 year: 2012 ident: ref_133 article-title: Evaporation-induced self-assembly of trans-2-aminocyclopentanecarboxylic acid hexamers publication-title: Tetrahedron doi: 10.1016/j.tet.2012.02.061 – volume: 70 start-page: 1 year: 2017 ident: ref_264 article-title: Structural analysis of the foldecture derived from racemic peptide foldamers publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2017.05.014 – ident: ref_47 doi: 10.1002/ejoc.201100493 – volume: 52 start-page: 1202 year: 2016 ident: ref_219 article-title: In situ iodination and X-ray crystal structure of a foldamer helical bundle publication-title: Chem. Commun. doi: 10.1039/C5CC07916K – volume: 49 start-page: 9179 year: 2013 ident: ref_257 article-title: Remarkable thermoresponsive nanofibers from γ-peptides publication-title: Chem. Commun. doi: 10.1039/c3cc45383a – volume: 54 start-page: 2417 year: 2018 ident: ref_190 article-title: Allosteric regulation of metal-binding sites inside an optically-active helical foldamer and its tubular assemblies publication-title: Chem. Commun. doi: 10.1039/C8CC00728D – volume: 52 start-page: 7752 year: 2016 ident: ref_28 article-title: Exploiting the interactions of aromatic units for folding and assembly in aqueous environments publication-title: Chem. Commun. doi: 10.1039/C6CC01861K – volume: 54 start-page: 5740 year: 2018 ident: ref_75 article-title: Foldamer-based helicate displaying reversible switching between two distinct conformers publication-title: Chem. Commun. doi: 10.1039/C8CC02758G – volume: 65 start-page: 10544 year: 2009 ident: ref_177 article-title: Self-assembly of vesicles from the stacking of a dipodal F/H–N hydrogen bonded arylamide foldamer publication-title: Tetrahedron doi: 10.1016/j.tet.2009.10.073 – volume: 133 start-page: 20808 year: 2011 ident: ref_236 article-title: Shaken, not stirred: Collapsing a peptoid monolayer to produce free-floating, stable nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206199d – volume: 52 start-page: 7420 year: 2016 ident: ref_22 article-title: β-Peptide bundles: Design. Build. Analyze. Biosynthesize publication-title: Chem. Commun. doi: 10.1039/C6CC01546H – volume: 9 start-page: 8400 year: 2013 ident: ref_62 article-title: Polypeptoids: A model system to study the effect of monomer sequence on polymer properties and self-assembly publication-title: Soft Matter doi: 10.1039/c3sm51421h – volume: 137 start-page: 2159 year: 2015 ident: ref_135 article-title: Foldecture as a core material with anisotropic surface characteristics publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510840v – volume: 72 start-page: 4936 year: 2007 ident: ref_206 article-title: Helical molecular duplex strands: Multiple hydrogen-bond-mediated assembly of self-complementary oligomeric hydrazide derivatives publication-title: J. Org. Chem. doi: 10.1021/jo070525a – volume: 133 start-page: 17618 year: 2011 ident: ref_132 article-title: Self-assembled peptide architecture with a tooth shape: Folding into shape publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2082476 – volume: 121 start-page: 6206 year: 1999 ident: ref_118 article-title: Synthesis and characterization of trans-2-aminocyclohexanecarboxylic acid oligomers: An unnatural helical secondary structure and implications for β-peptide tertiary structure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja990748l – volume: 7 start-page: 2810 year: 2001 ident: ref_145 article-title: Helical molecular programming: Supramolecular double helices by dimerization of helical oligopyridine-dicarboxamide strands publication-title: Chem. Eur. J. doi: 10.1002/1521-3765(20010702)7:13<2810::AID-CHEM2810>3.0.CO;2-5 – volume: 129 start-page: 6376 year: 2007 ident: ref_212 article-title: Discrete heterogeneous quaternary structure formed by α/β-peptide foldamers and α-peptides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071203r – volume: 27 start-page: 5665 year: 2015 ident: ref_65 article-title: Sequence programmable peptoid polymers for diverse materials applications publication-title: Adv. Mater. doi: 10.1002/adma.201500275 – volume: 11 start-page: 30566 year: 2019 ident: ref_178 article-title: Biomimetic pulsating vesicles with both pH-tunable membrane permeability and light-triggered disassembly-re-assembly behaviors prepared by supra-amphiphilic helices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09632 – volume: 48 start-page: 922 year: 2009 ident: ref_94 article-title: A rationally designed aldolase foldamer publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200804996 – volume: 9 start-page: 270 year: 2018 ident: ref_260 article-title: Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids publication-title: Nat. Commun. doi: 10.1038/s41467-017-02059-1 – volume: 121 start-page: 8409 year: 1999 ident: ref_202 article-title: A chemical model of a protein β-sheet dimer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja992109g – ident: ref_102 doi: 10.1002/ejoc.201201633 – volume: 139 start-page: 9350 year: 2017 ident: ref_159 article-title: Orchestrating directional molecular motions: Kinetically controlled supramolecular pathways of a helical host on rodlike guests publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04884 – volume: 131 start-page: 9860 year: 2009 ident: ref_213 article-title: An α/β-peptide helix bundle with a pure β3-amino acid core and a distinctive quaternary structure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8099294 – volume: 50 start-page: 7572 year: 2011 ident: ref_160 article-title: Template-induced screw motions within an aromatic amide foldamer double helix publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101697 – volume: 8 start-page: 5380 year: 2020 ident: ref_73 article-title: Diblock copolypeptoids: A review of phase separation, self-assembly and biological applications publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00477D – volume: 262 start-page: 1401 year: 1993 ident: ref_216 article-title: A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants publication-title: Science doi: 10.1126/science.8248779 – volume: 10 start-page: 365 year: 2010 ident: ref_139 article-title: Formation of tubular crystals of pharmaceutical compounds publication-title: Cryst. Growth Des. doi: 10.1021/cg900969n – volume: 57 start-page: 7703 year: 2018 ident: ref_82 article-title: Self-assembled cyclic structures from copper(II) peptoids publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800583 – volume: 23 start-page: 14980 year: 2017 ident: ref_9 article-title: Sequence engineering to control the helix handedness of peptide foldamers publication-title: Chem. Eur. J. doi: 10.1002/chem.201702730 – volume: 127 start-page: 13130 year: 2005 ident: ref_222 article-title: Residue requirements for helical folding in short α/β-peptides: Crystallographic characterization of the 11-helix in an optimized sequence publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0536163 – volume: 128 start-page: 1733 year: 2006 ident: ref_56 article-title: A threaded loop conformation adopted by a family of peptoid nonamers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0574318 – volume: 14 start-page: 92 year: 2013 ident: ref_172 article-title: Assemblies at the liquid-solid interface: Chirality expression from molecular conformers publication-title: ChemPhysChem doi: 10.1002/cphc.201200730 – volume: 129 start-page: 09B603 year: 2008 ident: ref_114 article-title: Characterization of nanofibers formed by self-assembly of β-peptide oligomers using small angle x-ray scattering publication-title: J. Chem. Phys. doi: 10.1063/1.2955745 – volume: 126 start-page: 2362 year: 2004 ident: ref_146 article-title: Pyridinedicarboxamide strands form double helices via an activated slippage mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038103f – ident: ref_188 doi: 10.1002/ejic.200600466 – volume: 3 start-page: 252 year: 2007 ident: ref_7 article-title: Foldamers as versatile frameworks for the design and evolution of function publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio876 – volume: 13 start-page: 8978 year: 2015 ident: ref_83 article-title: Aggregation of inorganic nanoparticles mediated by biomimetic oligomers publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB01093D – volume: 57 start-page: 5540 year: 2016 ident: ref_20 article-title: Non-standard amino acids and peptides: From self-assembly to nanomaterials publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2016.11.022 – volume: 52 start-page: 3939 year: 2016 ident: ref_157 article-title: Citric acid encapsulation by a double-helical foldamer in competitive solvents publication-title: Chem. Commun. doi: 10.1039/C6CC00190D – volume: 73 start-page: 2481 year: 2008 ident: ref_189 article-title: Naphthyridine-based helical foldamers and macrocycles: Synthesis, cation binding, and supramolecular assemblies publication-title: J. Org. Chem. doi: 10.1021/jo702495u – volume: 4 start-page: 3843 year: 2018 ident: ref_129 article-title: β3-Tripeptides co-assemble into fluorescent hydrogels for serial monitoring in vivo publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b01065 – volume: 75 start-page: 6068 year: 2010 ident: ref_57 article-title: Construction of peptoids with all trans-amide backbones and peptoid reverse turns via the tactical incorporation of N-aryl side chains capable of hydrogen bonding publication-title: J. Org. Chem. doi: 10.1021/jo101075a – volume: 10 start-page: 4283 year: 2008 ident: ref_170 article-title: Folding a conjugated chain: Oligo(o-phenyleneethynylene-alt-p-phenyleneethynylene) publication-title: Org. Lett. doi: 10.1021/ol801677s – volume: 7 start-page: 70 year: 2019 ident: ref_24 article-title: Novel materials from the supramolecular self-assembly of short helical β3-peptide foldamers publication-title: Front. Chem. doi: 10.3389/fchem.2019.00070 – volume: 95 start-page: 4303 year: 1998 ident: ref_50 article-title: Sequence-specific polypeptoids: A diverse family of heteropolymers with stable secondary structure publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.8.4303 – volume: 13 start-page: 9990 year: 2007 ident: ref_81 article-title: Strong Stacking between F···H-N hydrogen-bonded foldamers and fullerenes: Formation of supramolecular nano networks publication-title: Chem. Eur. J. doi: 10.1002/chem.200701047 – volume: 15 start-page: 11530 year: 2009 ident: ref_153 article-title: A self-assembled foldamer capsule: Combining single and double helical segments in one aromatic amide sequence publication-title: Chem. Eur. J. doi: 10.1002/chem.200900877 – volume: 55 start-page: 4849 year: 2019 ident: ref_169 article-title: A halogen-bonding foldamer molecular film for selective reagentless anion sensing in water publication-title: Chem. Commun. doi: 10.1039/C9CC00335E – volume: 52 start-page: 5250 year: 2016 ident: ref_266 article-title: Unambiguous characterization of anisotropic foldamer packing in a foldecture with an elongated hexagonal plate shape publication-title: Chem. Commun. doi: 10.1039/C6CC00502K – volume: 12 start-page: 9101 year: 2018 ident: ref_128 article-title: Identifying the coiled-coil triple helix structure of β-peptide nanofibers at atomic resolution publication-title: ACS Nano doi: 10.1021/acsnano.8b03131 – volume: 27 start-page: 13598 year: 2011 ident: ref_227 article-title: Molecular patterning at a liquid/solid interface: The foldamer approach publication-title: Langmuir doi: 10.1021/la203410k – ident: ref_55 doi: 10.1002/ejoc.201901838 – volume: 44 start-page: 5725 year: 2005 ident: ref_176 article-title: F···H-N hydrogen bonding driven foldamers: Efficient receptors for dialkylammonium ions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200500982 – volume: 4 start-page: 50554 year: 2014 ident: ref_191 article-title: Reversible photo-, metallo-and thermo-induced morphological dynamics of bis-acylhydrazones publication-title: RSC Adv. doi: 10.1039/C4RA11119B – volume: 110 start-page: e23258 year: 2019 ident: ref_259 article-title: Solid-phase synthesis of three-armed star-shaped peptoids and their hierarchical self-assembly publication-title: Biopolymers doi: 10.1002/bip.23258 – volume: 13 start-page: 8463 year: 2007 ident: ref_150 article-title: Assessing the mechanical properties of a molecular spring publication-title: Chem. Eur. J. doi: 10.1002/chem.200700847 – volume: 122 start-page: 8898 year: 2000 ident: ref_194 article-title: Synthesis and conformational characterization of tethered, self-complexing 1,5-dialkoxynaphthalene/1,4,5,8-naphthalenetetracarboxylic diimide systems publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0019225 – volume: 63 start-page: 1099 year: 2020 ident: ref_72 article-title: Peptoid-based hierarchically-structured biomimetic nanomaterials: Synthesis, characterization and applications publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1296-8 – volume: 12 start-page: 714 year: 2008 ident: ref_58 article-title: Peptoid architectures: Elaboration, actuation, and application publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2008.08.015 – volume: 55 start-page: 1328 year: 2016 ident: ref_158 article-title: Electronic energy transfer modulation in a dynamic foldaxane: Proof-of-principle of a lifetime-based conformation probe publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201508611 – volume: 122 start-page: 7654 year: 2000 ident: ref_203 article-title: An unnatural amino acid that mimics a tripeptide β-strand and forms β-sheetlike hydrogen-bonded dimers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja001142w – volume: 52 start-page: 6860 year: 2016 ident: ref_27 article-title: H-bonding directed programmed supramolecular assembly of naphthalene-diimide (NDI) derivatives publication-title: Chem. Commun. doi: 10.1039/C6CC01983H – volume: 18 start-page: 3793 year: 2016 ident: ref_253 article-title: Metal driven assembly of peptidic foldamers: Formation of molecular tapes publication-title: CrystEngComm doi: 10.1039/C6CE00601A – volume: 50 start-page: 832 year: 2017 ident: ref_23 article-title: Foldectures: 3D molecular architectures from self-assembly of peptide foldamers publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00545 – volume: 22 start-page: 1417 year: 2015 ident: ref_21 article-title: Geometrically precise building blocks: The self-assembly of β-peptides publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2015.10.005 – volume: 42 start-page: 4395 year: 2003 ident: ref_88 article-title: Molecular architecture with functionalized β-peptide helices publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200351871 – volume: 124 start-page: 15174 year: 2002 ident: ref_195 article-title: Aromatic oligomers that form hetero duplexes in aqueous solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0275358 – ident: ref_35 – volume: 130 start-page: 13450 year: 2008 ident: ref_183 article-title: Foldamer organogels: A circular dichroism study of glucose-mediated dynamic helicity induction and amplification publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8043322 – volume: 20 start-page: 1555 year: 2018 ident: ref_199 article-title: Hydrogen-bonded duplexes with lengthened linkers publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00283 – volume: 101 start-page: 3219 year: 2001 ident: ref_4 article-title: β-Peptides: From structure to function publication-title: Chem. Rev. doi: 10.1021/cr000045i – volume: 3 start-page: 3963 year: 2001 ident: ref_92 article-title: Toward β-peptide tertiary structure: Self-association of an amphiphilic 14-helix in aqueous solution publication-title: Org. Lett. doi: 10.1021/ol016868r – volume: 52 start-page: 4549 year: 2016 ident: ref_124 article-title: Decorated self-assembling β3-tripeptide foldamers form cell adhesive scaffolds publication-title: Chem. Commun. doi: 10.1039/C6CC00247A – volume: 130 start-page: 14008 year: 2008 ident: ref_163 article-title: Sequence-and chain-length-specific complementary double-helix formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806194e – volume: 20 start-page: 2141 year: 2019 ident: ref_37 article-title: Trichogin GA IV alignment and oligomerization in phospholipid bilayers publication-title: ChemBioChem doi: 10.1002/cbic.201900263 – volume: 52 start-page: 8266 year: 2013 ident: ref_120 article-title: Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201303175 – ident: ref_91 doi: 10.1002/ejoc.200900511 – volume: 12 start-page: 5584 year: 2010 ident: ref_107 article-title: Building β-peptide H10/12 foldamer helices with six-membered cyclic side-chains: Fine-tuning of folding and self-assembly publication-title: Org. Lett. doi: 10.1021/ol102494m – volume: 12 start-page: 2243 year: 2016 ident: ref_123 article-title: A self-assembling β-peptide hydrogel for neural tissue engineering publication-title: Soft Matter doi: 10.1039/C5SM02902C – volume: 57 start-page: 10217 year: 2018 ident: ref_248 article-title: Intrinsically photoswitchable α/β peptides toward two-state foldamers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806035 – volume: 132 start-page: 3658 year: 2010 ident: ref_98 article-title: β-Peptide bundles with fluorous cores publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910903c – volume: 27 start-page: 135606 year: 2016 ident: ref_126 article-title: Self-assembled nanomaterials based on beta (β3) tetrapeptides publication-title: Nanotechnology doi: 10.1088/0957-4484/27/13/135606 – volume: 45 start-page: 2396 year: 2006 ident: ref_106 article-title: Secondary structure dependent self-assembly of β-peptides into nanosized fibrils and membranes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200504158 – volume: 23 start-page: 40 year: 2018 ident: ref_70 article-title: Two-dimensional peptide based functional nanomaterials publication-title: Nano Today doi: 10.1016/j.nantod.2018.10.008 – volume: 140 start-page: 15477 year: 2018 ident: ref_77 article-title: Sequence-controlled stimuli-responsive single-double helix conversion between 1:1 and 2:2 chloride-foldamer complexes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09899 – volume: 17 start-page: 7061 year: 2011 ident: ref_171 article-title: A foldamer at the liquid/graphite interface: The effect of interfacial interactions, solvent, concentration, and temperature publication-title: Chem. Eur. J. doi: 10.1002/chem.201003589 – volume: 5 start-page: 76257 year: 2015 ident: ref_209 article-title: Solvent assisted structural diversity: Supramolecular sheet and double helix of a short aromatic γ-peptide publication-title: RSC Adv. doi: 10.1039/C5RA12831E – volume: 5 start-page: 1364 year: 2010 ident: ref_147 article-title: Hybridization of long pyridine-carboxamide oligomers into multi-turn double helices: Slow strand association and dissociation, solvent dependence, and solid state structures publication-title: Chem. Asian J. doi: 10.1002/asia.200900713 – volume: 526 start-page: 415 year: 2015 ident: ref_237 article-title: Peptoid nanosheets exhibit a new secondary-structure motif publication-title: Nature doi: 10.1038/nature15363 – volume: 138 start-page: 10522 year: 2016 ident: ref_218 article-title: Anatomy of an oligourea six-helix bundle publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05063 – volume: 87 start-page: 1021 year: 2015 ident: ref_121 article-title: Amino acid sequence controls the self-assembled superstructure morphology of N-acetylated tri-β3-peptides publication-title: Pure Appl. Chem. doi: 10.1515/pac-2015-0108 – volume: 9 start-page: 14913 year: 2017 ident: ref_229 article-title: α-Helicomimetic foldamers as electron transfer mediators publication-title: Nanoscale doi: 10.1039/C7NR05209J – volume: 25 start-page: 2226 year: 2019 ident: ref_265 article-title: Directing foldamer self-assembly with a cyclopropanoyl cap publication-title: Chem. Eur. J. doi: 10.1002/chem.201805783 – volume: 20 start-page: 16523 year: 2014 ident: ref_267 article-title: Foldamers to nanotubes: Influence of amino acid side chains in the hierarchical assembly of α,γ4-hybrid peptide helices publication-title: Chem. Eur. J. doi: 10.1002/chem.201404961 – volume: 50 start-page: 2420 year: 2017 ident: ref_48 article-title: Oligoprolines as molecular entities for controlling distance in biological and material sciences publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00340 – volume: 48 start-page: 12142 year: 2012 ident: ref_25 article-title: Cavity-containing, backbone-rigidified foldamers and macrocycles publication-title: Chem. Commun. doi: 10.1039/c2cc36391g – volume: 101 start-page: 3131 year: 2001 ident: ref_193 article-title: Design of folded peptides publication-title: Chem. Rev. doi: 10.1021/cr000053z – volume: 47 start-page: 4915 year: 2006 ident: ref_13 article-title: Synthesis and structural characterisation as 12-helix of the hexamer of a β-amino acid tethered to a pyrrolidin-2-one ring publication-title: Chem. Commun. doi: 10.1039/B612071G – volume: 366 start-page: 324 year: 1993 ident: ref_105 article-title: Self-assembling organic nanotubes based on a cyclic peptide architecture publication-title: Nature doi: 10.1038/366324a0 – volume: 65 start-page: 9494 year: 2009 ident: ref_175 article-title: Hydrogen bonded aromatic hydrazide foldamers for the self-assembly of vesicles and gels publication-title: Tetrahedron doi: 10.1016/j.tet.2009.07.097 – volume: 49 start-page: 716 year: 2010 ident: ref_221 article-title: Highly stable pleated-sheet secondary structure in assemblies of amphiphilic α/β-peptides at the air–water interface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200904566 – volume: 54 start-page: 13204 year: 2015 ident: ref_262 article-title: A hollow foldecture with truncated trigonal bipyramid shape from the self-assembly of an 11-helical foldamer publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201504248 – ident: ref_10 doi: 10.1002/ejoc.200300495 – volume: 124 start-page: 2903 year: 2002 ident: ref_200 article-title: A noncovalent approach to antiparallel β-sheet formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010701b – volume: 105 start-page: 9151 year: 2008 ident: ref_215 article-title: Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0801135105 – volume: 20 start-page: 540 year: 2004 ident: ref_245 article-title: Effect of bilayer thickness on membrane bending rigidity publication-title: Langmuir doi: 10.1021/la035497f – volume: 137 start-page: 9617 year: 2015 ident: ref_230 article-title: Electronic transport via homopeptides: The role of side chains and secondary structure publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03933 – volume: 134 start-page: 20573 year: 2012 ident: ref_134 article-title: Microtubes with rectangular cross-section by self-assembly of a short β-peptide foldamer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3088482 – volume: 55 start-page: 8426 year: 2019 ident: ref_167 article-title: Supramolecular chemistry of helical foldamers at the solid-liquid interface: Self-assembled monolayers and anion recognition publication-title: Chem. Commun. doi: 10.1039/C9CC03851E – volume: 37 start-page: 302 year: 1998 ident: ref_84 article-title: β-Homoalanyl PNAs: Synthesis and indication of higher ordered structures publication-title: Angew. Chem. Int. Ed. doi: 10.1002/(SICI)1521-3773(19980216)37:3<302::AID-ANIE302>3.0.CO;2-4 – volume: 10 start-page: 8426 year: 2012 ident: ref_247 article-title: Conformational modulation of Ant–Pro oligomers using chirality alteration of proline residues publication-title: Org. Biomol. Chem. doi: 10.1039/c2ob26132d – volume: 139 start-page: 6128 year: 2017 ident: ref_220 article-title: Molecular recognition within the cavity of a foldamer helix bundle: Encapsulation of primary alcohols in aqueous conditions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00181 – volume: 4 start-page: 1029 year: 2017 ident: ref_53 article-title: Molecular modeling studies of peptoid polymers publication-title: AIMS Mater. Sci. doi: 10.3934/matersci.2017.5.1029 – volume: 17 start-page: 4718 year: 2015 ident: ref_101 article-title: Improved carbohydrate recognition in water with an electrostatically enhanced β-peptide bundle publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b02187 – volume: 17 start-page: 12564 year: 2011 ident: ref_14 article-title: Quaternary centres as a tool for modulating foldamer conformation publication-title: Chem. Eur. J. doi: 10.1002/chem.201102103 – volume: 47 start-page: 502 year: 2011 ident: ref_112 article-title: Lyotropic liquid crystalline phases from helical β-peptides as alignment media publication-title: Chem. Commun. doi: 10.1039/C0CC02123G – volume: 6 start-page: 38 year: 2018 ident: ref_43 article-title: Phenylalanine and derivatives as versatile low-molecular-weight gelators: Design, structure and tailored function publication-title: Biomater. Sci. doi: 10.1039/C7BM00882A – volume: 2 start-page: 026104 year: 2018 ident: ref_127 article-title: β3-Tripeptides act as sticky ends to self-assemble into a bioscaffold publication-title: APL Bioeng. doi: 10.1063/1.5020105 – volume: 3 start-page: 8760 year: 2018 ident: ref_254 article-title: α,ε-Hybrid peptide foldamers: Self-assembly of peptide with trans carbon−carbon double bonds in the backbone and its saturated analogue publication-title: ACS Omega doi: 10.1021/acsomega.8b00832 – volume: 122 start-page: 2635 year: 2000 ident: ref_197 article-title: A highly stable, six-hydrogen-bonded molecular duplex publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9942742 – volume: 15 start-page: 881 year: 2015 ident: ref_66 article-title: Poly(α-peptoid)s revisited: Synthesis, properties, and use as biomaterial publication-title: Macromol. Biosci. doi: 10.1002/mabi.201500023 – volume: 102 start-page: 2134 year: 1980 ident: ref_32 article-title: Helixanes. The first primary helical molecules: Polyoxapolyspiroalkanones publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00526a084 |
SSID | ssj0021415 |
Score | 2.489888 |
SecondaryResourceType | review_article |
Snippet | Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3276 |
SubjectTerms | Amino acids Chemical bonds foldamers higher-order structures Hydrogen bonds Macromolecular Substances - chemistry Models, Molecular morphology Nanostructures - chemistry NMR Nuclear magnetic resonance Peptide Fragments - chemistry Peptides Polymers - chemistry Protein Conformation, beta-Strand Review secondary structure self-assembly Spectrum analysis structural investigation Tissue engineering |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCyjttQUHihGTVj8SOuVSldFUhgZCg0t4i27Ep0jYpzfbQf8-M4912ATXHZBJZM2PPM98Q8s7ZKhpmBDXeBFpBoEydjJr6BD4FLj7n-Dfyl6_q5LT6PK_nOeE25rbK1ZmYDupu8Jgj30_I4uD-cnFw8Zvi1CisruYRGvfJA4QuQ63W85uAi4N1miqZEkL7_fNp4GwYBXoJAmFGbtmiBNn_Pz_z73bJW_Zntk0eZ8exPJwk_YTcC_1T8vBoNa_tGZmBxMtPqc0ilKlHphxiORsWncXc9IfyGPEUxrH8Noy5JxaiZKT5HhaRYvX33C2un5PT2fGPoxOapyRQD-xYUo6Fv9oExbRhXjqrweIoZTT4_jKKzgoWpfS-43W0zhvha1OpSodaucilki_IVj_04RUpg7CRQ3TtIhB0tnFcBxFrh8I0ynUFYSt-tT5DiOMki0ULoQSyuP2HxQV5v37lYsLPuIv4IwphTYjQ1-nGcPmzzTupbaxDkLxOKxYq8C9dVCrApViMLna-IHsrEbZ5P47tjfYU5O36MQgIyyO2D8NVooFIo9HSFOTlJPH1SmB1rKkqVhC9oQsbS9180v86S2jd8D1MBOzcvaxd8khgJI-Qnc0e2VpeXoXX4O4s3Zuk038A-I0ByA priority: 102 providerName: ProQuest |
Title | The Diverse World of Foldamers: Endless Possibilities of Self-Assembly |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32708440 https://www.proquest.com/docview/2426355912 https://www.proquest.com/docview/2427298739 https://pubmed.ncbi.nlm.nih.gov/PMC7397133 https://doaj.org/article/8ab6095d760e4650bf66eeee60ffbfdc |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOcAF8U1ouwoSJ6SosZ3YcW-03VAhUVVApb1FtmOrSNsEke2Bf8-Mk13tAoILOeQQTyJnxs7MsydvAN5YUwSda55pp31WIFDOrAgqc5F8CkN8xuhv5I8X8vyq-LAoF1ulvignbKQHHhV3VBlLnGitkrkvMJywQUqPh8xDsKF19PVFn7cGUxPUYuiXxj1MgaD-6GYsNesHTvEBJ4KRLS8Uyfr_FGH-mii55XnqR_BwChnTd2NXH8Md3z2B-6frSm1PoUZbp2cxwcKnMTsm7UNa98vW0Kr0cTonJoVhSC_7YcqGRXxMMp_9MmS073tjlz-ewVU9_3J6nk31ETKHOGCVMdryKzWqQuncCWsU-hoptcKoXwTeGp4HIZxrWRmMdZq7UheyUL6UNjAhxXPY6_rOv4TUcxMY4mobUKA1lWXK81BaMqOWtk0gX-urcRN5ONWwWDYIIkjFzW8qTuDt5pZvI3PG34RPyAgbQSK9jhdwKDTTUGj-NRQSOFibsJlm4tBERnpUF-MJvN40o4FoY8R0vr-NMogxKiV0Ai9Gi296gr3Lq6LIE1A7Y2Gnq7st3dfryNONz6MlgFf_49324QEnpE-UntUB7K2-3_pDDIdWdgZ31ULhuarfz-Deyfzi8tMszoafFRkPXw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bT9YwFD9BfMAXIl6noDPRF5OFrtu61cQYBeaHXGIiJLzNtWuB5GND9hHDP-Xf6DndRT41vLHH9bRpek7bc-vvALxWZWwlkzyQWpogRkM5UJFNA-3Ap1DFD0N6jby3LyaH8Zej5GgBfg1vYSitcjgT3UFdNZp85OsOWRzV35B_OP8RUNUoiq4OJTQ6sdgxVz_RZGvfb28if99wnm8dbEyCvqpAoLH7LAgpUJZII1gqmY5UmeIJLYRMUVeOLK9KzmwUaV2FiS2VllwnMhZxahKhbBiJCMe9A3fjCG9yepmefx4NvBBvwy5yio1s_awrcGtaTloJJ1iTa3efKxHwP7327_TMa_ddfh-We0XV_9hJ1gosmPoBLG0M9eEeQo4S5m-6tA7ju5wcv7F-3kyrknzh7_wtwm9oW_9r0_Y5uGiVE803M7UBRZvP1PTqERzeyvo9hsW6qc1T8A0vbYjWvLJIUJWZClPDbaJIeKRQlQdsWK9C95DlVDljWqDpQktc_LPEHrwdu5x3eB03EX8iJoyEBLXtfjQXx0W_c4usVATKV6WCmRj1WWWFMPgJZq2ylfZgdWBh0e__tvgjrR68GpuRQRSOKWvTXDoatGyyNJIePOk4Ps4EZ8eyOGYepHOyMDfV-Zb69MShg-N45Hh4dvO0XsLS5GBvt9jd3t95Dvc4eREILjRbhcXZxaVZQ1Vrpl44-fbh-21vqN9JPjy2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBYIEF6RoHTtxYiSEaHdXLYXVCqjUW4gdG5C2SWm2Qv1r_Dpm8qILqLfmmEwsa2Zsz8vfADzXeeQUUzxQRtkgQkc50MIlgWnAp9DED0O6jfxhLncPoneH8eEG_OrvwlBZZb8nNht1URmKkY8bZHE0f0M-dl1ZxGIye3P8I6AOUpRp7dtptCqyb89-ovtWv96boKxfcD6bft7ZDboOA4HBoVZBSEmzWFnJEsWM0HmCu7WUKkG7WThe5Jw5IYwpwtjl2ihuYhXJKLGx1C4UUuC4V2AzIa9oBJvb0_ni4-DuhXg2tnlUIRQbH7Xtbm3NyUbhBHJy7iRsGgb8z8r9u1jz3Ok3uwk3OrPVf9vq2S3YsOVtuLbTd4u7AzPUN3_SFHlYv6nQ8Svnz6plkVNk_JU_JTSHuvYXVd1V5KKPTjSf7NIFlHs-0suzu3BwKRy8B6OyKu0D8C3PXYi-vXZIUOSpDhPLXaxJlZTUhQes51dmOgBz6qOxzNCRIRZn_7DYg5fDL8ctesdFxNskhIGQgLebF9XJ16xbx1maa4LoKxLJbITWrXZSWnwkc067wniw1Ysw63aDOvujux48Gz6jgCg5k5e2Om1o0M9JE6E8uN9KfJgJzo6lUcQ8SNZ0YW2q61_K798arHAcj8IQDy-e1lO4iospe783338E1zmFFAg7NN2C0erk1D5Gu2uln3QK7sOXy15TvwEo10JI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Diverse+World+of+Foldamers%3A+Endless+Possibilities+of+Self-Assembly&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Rinaldi%2C+Samuele&rft.date=2020-07-18&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=25&rft.issue=14&rft.spage=3276&rft_id=info:doi/10.3390%2Fmolecules25143276&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules25143276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |