The Diverse World of Foldamers: Endless Possibilities of Self-Assembly

Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbo...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 25; no. 14; p. 3276
Main Author Rinaldi, Samuele
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
AbstractList Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Author Rinaldi, Samuele
AuthorAffiliation Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; s.rinaldi@staff.univpm.it ; Tel./Fax: +39-071-2204233
AuthorAffiliation_xml – name: Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; s.rinaldi@staff.univpm.it ; Tel./Fax: +39-071-2204233
Author_xml – sequence: 1
  givenname: Samuele
  surname: Rinaldi
  fullname: Rinaldi, Samuele
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32708440$$D View this record in MEDLINE/PubMed
BookMark eNp1kl1LHTEQhkOx1K_-gN6Uhd54szbfOelFQaynFQQLVXoZstmJ5pDd2GRX8N83p0dFLeYmYfLMOy8zs4u2xjQCQh8IPmRM489DiuDmCIUKwhlV8g3aIZzilmGut568t9FuKSuMKeFEvEPblcULzvEOWl5cQ_Mt3EIu0PxOOfZN8s0yxd4ONfalORn7WqA0P1MpoQsxTAHKmvkF0bdHpcDQxbt99NbbWOD9_b2HLpcnF8c_2rPz76fHR2etE0JPLSFSSqFBYqWxY51VdMGl1Kp6ZJ72lmLPmHM9Ed52TlMnNJdcgZCdJ0yyPXS60e2TXZmbHAab70yywfwLpHxlbJ6Ci2AWtpNYi15JDFwK3HkpoR6Jve9876rW143WzdwN0DsYp2zjM9HnP2O4Nlfp1iimFWGsChzcC-T0Z4YymSEUBzHaEdJcDOVUUb2oeEU_vUBXac5jbdWakqx2h9BKfXzq6NHKw7gqoDaAy3UcGbxxYbJTSGuDIRqCzXoxzH-LUTPJi8wH8ddz_gKGtb08
CitedBy_id crossref_primary_10_1039_D0CC08309G
crossref_primary_10_1002_ejoc_202100943
crossref_primary_10_1002_anie_202012995
crossref_primary_10_1002_cplu_202400218
crossref_primary_10_1002_anie_202313944
crossref_primary_10_1021_acsbiomaterials_4c00456
crossref_primary_10_1021_acs_orglett_1c01592
crossref_primary_10_1021_acs_jpca_2c00112
crossref_primary_10_1021_acsmaterialslett_3c01337
crossref_primary_10_1002_chem_202300753
crossref_primary_10_1039_D1QO00822F
crossref_primary_10_1039_D2BM00775D
crossref_primary_10_1021_acsanm_2c02313
crossref_primary_10_1002_anie_202214583
crossref_primary_10_1021_jacs_0c11204
crossref_primary_10_1039_D3CC04555B
crossref_primary_10_1016_j_molstruc_2024_139185
crossref_primary_10_1021_acs_chemrev_1c00712
crossref_primary_10_1002_cptc_202100160
crossref_primary_10_1002_ange_202012995
crossref_primary_10_1021_acs_jpcb_3c00755
crossref_primary_10_3390_polym14030580
crossref_primary_10_1002_ange_202313944
crossref_primary_10_1002_macp_202400223
crossref_primary_10_1039_D2RA00111J
crossref_primary_10_1002_ange_202307180
crossref_primary_10_1002_chem_202301832
crossref_primary_10_1016_j_eurpolymj_2024_112818
crossref_primary_10_1080_10717544_2022_2058647
crossref_primary_10_1007_s00284_024_03923_2
crossref_primary_10_1039_D2CS00395C
crossref_primary_10_1002_anie_202413629
crossref_primary_10_1007_s13346_024_01665_z
crossref_primary_10_1002_bip_23575
crossref_primary_10_1002_ange_202413629
crossref_primary_10_3390_pr10050924
crossref_primary_10_1039_D4TB01545B
crossref_primary_10_1038_s42004_024_01201_7
crossref_primary_10_1002_anie_202307180
crossref_primary_10_1016_j_ijbiomac_2023_129151
crossref_primary_10_1002_ange_202214583
crossref_primary_10_1002_cplu_202200199
crossref_primary_10_1021_acs_accounts_2c00050
crossref_primary_10_1021_jacs_3c09883
crossref_primary_10_1039_D4NJ02574A
crossref_primary_10_1038_s42004_023_00868_8
crossref_primary_10_1039_D3BM00766A
Cites_doi 10.1021/acs.joc.7b02840
10.1039/C1CS15097A
10.1002/chem.201601804
10.1016/j.fluid.2005.12.022
10.1021/acs.jpclett.8b01040
10.1002/anie.201711124
10.1021/jo060974v
10.1002/adma.201500124
10.1002/anie.200250750
10.1073/pnas.1800397115
10.1002/anie.200501028
10.1002/anie.201303135
10.1021/acsnano.7b08018
10.1021/cr990120t
10.1039/b719712h
10.1021/jo010250d
10.1002/psc.2956
10.1002/anie.201407752
10.1021/cr300116k
10.1529/biophysj.106.084491
10.1002/chem.201403626
10.1002/bkcs.10527
10.1039/B910435F
10.1002/chem.201302009
10.1002/1521-3773(20020517)41:10<1718::AID-ANIE1718>3.0.CO;2-2
10.1021/cm070265d
10.1002/cnma.201800202
10.1038/35037545
10.1039/c002170a
10.1038/s41598-019-57342-6
10.1021/ja204874h
10.1039/C4NJ01926A
10.1039/C6OB00380J
10.1021/nn4015714
10.1021/ja063164+
10.1002/cjoc.201300240
10.1002/9783527611478
10.1002/cbic.200300781
10.1039/C9CC02498K
10.1021/jacs.9b06094
10.1021/ja0361897
10.3390/coatings3020098
10.1038/nchem.2353
10.1021/ja990904o
10.1002/anie.201811561
10.1002/bip.23285
10.1002/chem.200500004
10.1021/ja963290l
10.1021/cr200087r
10.2174/138527211795378227
10.1021/ja025699i
10.1021/acs.orglett.8b02438
10.1021/acs.langmuir.6b02735
10.1021/ar400030e
10.1002/9781118958308
10.1007/s00289-016-1902-1
10.3389/fbioe.2019.00315
10.1016/j.bbamem.2018.12.006
10.1039/b819597h
10.1021/ja0459375
10.1021/acs.jpcc.8b11046
10.3390/gels3040039
10.1021/ar700219m
10.1039/c3cc38261c
10.1021/ja070396f
10.1021/acsnano.9b07498
10.1021/acs.orglett.9b01360
10.1002/cplu.201900027
10.1002/anie.201003302
10.1039/a704933a
10.1039/C7SM00764G
10.1002/ejoc.201801427
10.1021/ja3064364
10.1039/b604462j
10.1021/acs.chemrev.6b00354
10.1021/ar960298r
10.1021/ja068678n
10.1021/ol502259y
10.1039/c3ob40561c
10.1021/ja0475095
10.1002/chem.201101775
10.1002/ejoc.200700444
10.1002/(SICI)1099-0690(199805)1998:5<827::AID-EJOC827>3.0.CO;2-B
10.1002/cplu.201900456
10.1038/ncomms9747
10.1021/ja991185g
10.1021/ol402381n
10.1021/ja0754002
10.1126/science.1948029
10.1039/C6CC05079D
10.1039/C6CC00624H
10.1021/ja801618p
10.1007/s00723-015-0745-5
10.1021/ja00198a084
10.1021/acs.jpcb.8b11752
10.1002/chem.201304448
10.1002/(SICI)1521-3773(20000103)39:1<233::AID-ANIE233>3.0.CO;2-R
10.1016/j.crci.2012.11.015
10.1002/1521-3765(20010702)7:13<2798::AID-CHEM2798>3.0.CO;2-L
10.1039/c2cc16266k
10.1021/ja0424631
10.1016/j.solidstatesciences.2015.07.002
10.1002/bip.22898
10.1021/ja972786f
10.1021/ja0780840
10.1002/bip.21621
10.1002/anie.200704938
10.1038/nmat2742
10.1021/acs.accounts.8b00075
10.1021/acs.jpcb.8b01877
10.1002/bip.23283
10.1021/ja5013849
10.1002/bip.23265
10.1080/10610270600665905
10.1021/ar800009n
10.1002/bip.21623
10.1039/C7SC03341A
10.1021/jacs.7b03635
10.1002/1521-3765(20020802)8:15<3448::AID-CHEM3448>3.0.CO;2-#
10.2533/chimia.2013.891
10.1021/jacs.9b00148
10.1039/b501173f
10.1021/acs.accounts.5b00439
10.1021/ja062412z
10.1002/anie.200906401
10.1021/nn303868q
10.1039/C9CC08380D
10.1002/ejoc.201402877
10.1039/b607660m
10.1002/chem.200701059
10.1002/anie.200704372
10.1021/ja103543s
10.1021/nn403899y
10.1039/B713229H
10.1039/C3BM60269A
10.1038/nchem.693
10.1039/C6CC04502B
10.1038/nchem.2854
10.1021/ja046124j
10.1021/ja106340f
10.1016/j.tet.2012.02.061
10.1016/j.solidstatesciences.2017.05.014
10.1002/ejoc.201100493
10.1039/C5CC07916K
10.1039/c3cc45383a
10.1039/C8CC00728D
10.1039/C6CC01861K
10.1039/C8CC02758G
10.1016/j.tet.2009.10.073
10.1021/ja206199d
10.1039/C6CC01546H
10.1039/c3sm51421h
10.1021/ja510840v
10.1021/jo070525a
10.1021/ja2082476
10.1021/ja990748l
10.1002/1521-3765(20010702)7:13<2810::AID-CHEM2810>3.0.CO;2-5
10.1021/ja071203r
10.1002/adma.201500275
10.1021/acsami.9b09632
10.1002/anie.200804996
10.1038/s41467-017-02059-1
10.1021/ja992109g
10.1002/ejoc.201201633
10.1021/jacs.7b04884
10.1021/ja8099294
10.1002/anie.201101697
10.1039/D0TB00477D
10.1126/science.8248779
10.1021/cg900969n
10.1002/anie.201800583
10.1002/chem.201702730
10.1021/ja0536163
10.1021/ja0574318
10.1002/cphc.201200730
10.1063/1.2955745
10.1021/ja038103f
10.1002/ejic.200600466
10.1038/nchembio876
10.1039/C5OB01093D
10.1016/j.tetlet.2016.11.022
10.1039/C6CC00190D
10.1021/jo702495u
10.1021/acsbiomaterials.8b01065
10.1021/jo101075a
10.1021/ol801677s
10.3389/fchem.2019.00070
10.1073/pnas.95.8.4303
10.1002/chem.200701047
10.1002/chem.200900877
10.1039/C9CC00335E
10.1039/C6CC00502K
10.1021/acsnano.8b03131
10.1021/la203410k
10.1002/ejoc.201901838
10.1002/anie.200500982
10.1039/C4RA11119B
10.1002/bip.23258
10.1002/chem.200700847
10.1021/ja0019225
10.1007/s40843-020-1296-8
10.1016/j.cbpa.2008.08.015
10.1002/anie.201508611
10.1021/ja001142w
10.1039/C6CC01983H
10.1039/C6CE00601A
10.1021/acs.accounts.6b00545
10.1016/j.chembiol.2015.10.005
10.1002/anie.200351871
10.1021/ja0275358
10.1021/ja8043322
10.1021/acs.orglett.8b00283
10.1021/cr000045i
10.1021/ol016868r
10.1039/C6CC00247A
10.1021/ja806194e
10.1002/cbic.201900263
10.1002/anie.201303175
10.1002/ejoc.200900511
10.1021/ol102494m
10.1039/C5SM02902C
10.1002/anie.201806035
10.1021/ja910903c
10.1088/0957-4484/27/13/135606
10.1002/anie.200504158
10.1016/j.nantod.2018.10.008
10.1021/jacs.8b09899
10.1002/chem.201003589
10.1039/C5RA12831E
10.1002/asia.200900713
10.1038/nature15363
10.1021/jacs.6b05063
10.1515/pac-2015-0108
10.1039/C7NR05209J
10.1002/chem.201805783
10.1002/chem.201404961
10.1021/acs.accounts.7b00340
10.1039/c2cc36391g
10.1021/cr000053z
10.1039/B612071G
10.1038/366324a0
10.1016/j.tet.2009.07.097
10.1002/anie.200904566
10.1002/anie.201504248
10.1002/ejoc.200300495
10.1021/ja010701b
10.1073/pnas.0801135105
10.1021/la035497f
10.1021/jacs.5b03933
10.1021/ja3088482
10.1039/C9CC03851E
10.1002/(SICI)1521-3773(19980216)37:3<302::AID-ANIE302>3.0.CO;2-4
10.1039/c2ob26132d
10.1021/jacs.7b00181
10.3934/matersci.2017.5.1029
10.1021/acs.orglett.5b02187
10.1002/chem.201102103
10.1039/C0CC02123G
10.1039/C7BM00882A
10.1063/1.5020105
10.1021/acsomega.8b00832
10.1021/ja9942742
10.1002/mabi.201500023
10.1021/ja00526a084
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the author. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the author. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules25143276
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_8ab6095d760e4650bf66eeee60ffbfdc
PMC7397133
32708440
10_3390_molecules25143276
Genre Journal Article
Review
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IHR
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c559t-1166659e60790c3ba728466970493f2da20f33ccd15fabc92c594647e56bf1363
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:27:38 EDT 2025
Thu Aug 21 14:10:10 EDT 2025
Thu Jul 10 19:02:51 EDT 2025
Fri Jul 25 19:59:42 EDT 2025
Wed Feb 19 02:01:49 EST 2025
Tue Jul 01 01:16:51 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords secondary structure
self-assembly
fibers
helices
monolayers
morphology
structural investigation
higher-order structures
foldamers
vesicles
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c559t-1166659e60790c3ba728466970493f2da20f33ccd15fabc92c594647e56bf1363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Dedicated to Professor Mario Orena on the occasion of his retirement.
OpenAccessLink https://doaj.org/article/8ab6095d760e4650bf66eeee60ffbfdc
PMID 32708440
PQID 2426355912
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_8ab6095d760e4650bf66eeee60ffbfdc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7397133
proquest_miscellaneous_2427298739
proquest_journals_2426355912
pubmed_primary_32708440
crossref_citationtrail_10_3390_molecules25143276
crossref_primary_10_3390_molecules25143276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200718
PublicationDateYYYYMMDD 2020-07-18
PublicationDate_xml – month: 7
  year: 2020
  text: 20200718
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_91
ref_90
Ratjen (ref_191) 2014; 4
Yang (ref_201) 2003; 125
Shen (ref_31) 2012; 112
Zhan (ref_149) 2006; 45
ref_252
Wang (ref_159) 2017; 139
Liu (ref_77) 2018; 140
Chandramouli (ref_157) 2016; 52
Kulkarni (ref_125) 2016; 52
Curtis (ref_93) 2006; 241
Collie (ref_220) 2017; 139
Schuurmans (ref_225) 2004; 126
Bao (ref_153) 2009; 15
Venanzi (ref_34) 2017; 23
De (ref_140) 2018; 10
Rosales (ref_62) 2013; 9
Diederichsen (ref_84) 1998; 37
Ghosh (ref_82) 2018; 57
Li (ref_227) 2011; 27
Windsor (ref_94) 2009; 48
Hill (ref_2) 2001; 101
Shang (ref_165) 2014; 16
Szekely (ref_52) 2013; 16
Acocella (ref_146) 2004; 126
Roberts (ref_243) 2019; 110
Kwon (ref_131) 2010; 49
Cai (ref_183) 2008; 130
Goodman (ref_97) 2007; 129
Ghadiri (ref_105) 1993; 366
Jadhav (ref_267) 2014; 20
Wang (ref_99) 2014; 136
Gellman (ref_1) 1998; 31
Zhang (ref_19) 2012; 112
Kim (ref_235) 2020; 14
Molski (ref_98) 2010; 132
Price (ref_212) 2007; 129
Gan (ref_18) 2011; 15
Clark (ref_104) 1998; 120
Gan (ref_161) 2012; 134
Oshea (ref_116) 1991; 254
ref_152
Azeroual (ref_187) 2012; 48
Martinek (ref_5) 2006; 35
Berni (ref_150) 2007; 13
Zeng (ref_198) 2001; 66
Motamed (ref_130) 2019; 7
Mechler (ref_120) 2013; 52
Kritzer (ref_86) 2005; 127
Kulkarni (ref_24) 2019; 7
Pomerantz (ref_113) 2011; 133
Pomerantz (ref_119) 2007; 19
Escuder (ref_42) 2018; 4
Kale (ref_247) 2012; 10
Kwon (ref_132) 2011; 133
Drexler (ref_59) 2011; 96
Lombardo (ref_218) 2016; 138
Gong (ref_264) 2017; 70
Berl (ref_145) 2001; 7
ref_143
ref_85
Ingole (ref_246) 2016; 52
Borissov (ref_78) 2019; 141
Gange (ref_32) 1980; 102
Bradford (ref_250) 2008; 130
Saraogi (ref_11) 2009; 38
Nam (ref_232) 2010; 9
Nowick (ref_205) 2003; 42
Zhu (ref_170) 2008; 10
Chakraborty (ref_89) 2005; 11
Martinek (ref_103) 2005; 127
Harbury (ref_216) 1993; 262
Vass (ref_107) 2010; 12
Huang (ref_56) 2006; 128
Das (ref_27) 2016; 52
Chan (ref_80) 2017; 139
Li (ref_81) 2007; 13
Li (ref_176) 2005; 44
Galeazzi (ref_14) 2011; 17
Kim (ref_134) 2012; 134
Ferrand (ref_156) 2010; 49
Zhang (ref_199) 2018; 20
Jin (ref_260) 2018; 9
Eom (ref_263) 2015; 36
Daniels (ref_96) 2007; 129
Raguse (ref_92) 2001; 3
Cai (ref_174) 2008; 130
Horne (ref_211) 2007; 129
Appella (ref_118) 1999; 121
Berlicki (ref_9) 2017; 23
Yan (ref_179) 2020; 56
Li (ref_12) 2008; 41
Wang (ref_177) 2009; 65
Adam (ref_167) 2019; 55
Appella (ref_138) 1999; 121
Faour (ref_168) 2019; 55
Petitjean (ref_189) 2008; 73
Gopalan (ref_21) 2015; 22
Shen (ref_172) 2013; 14
Zeng (ref_197) 2000; 122
Martinek (ref_109) 2002; 41
Tsubaki (ref_33) 2006; 71
Battigelli (ref_240) 2018; 12
Gong (ref_196) 1999; 121
Klymchenko (ref_226) 2006; 30
Gan (ref_155) 2010; 46
Salnikov (ref_37) 2019; 20
Liu (ref_72) 2020; 63
Gong (ref_26) 2013; 46
Monsignori (ref_108) 2014; 20
Ferrand (ref_30) 2018; 51
Culf (ref_54) 2019; 110
Muzzi (ref_39) 2018; 122
Pizzey (ref_114) 2008; 129
Yang (ref_206) 2007; 72
Jeon (ref_75) 2018; 54
Campbell (ref_74) 2010; 2
Liu (ref_76) 2019; 58
Cai (ref_67) 2015; 27
Singleton (ref_151) 2014; 53
Venkatraman (ref_193) 2001; 101
Misra (ref_268) 2016; 52
Hebert (ref_241) 2013; 11
ref_102
Yashima (ref_29) 2016; 116
Battigelli (ref_71) 2019; 110
Marafon (ref_249) 2019; 21
Peebles (ref_251) 2013; 19
Xuan (ref_73) 2020; 8
Appella (ref_117) 1996; 118
Horne (ref_16) 2008; 41
Hebert (ref_242) 2013; 3
Pike (ref_192) 2014; 20
Eom (ref_261) 2015; 48
Ganesh (ref_69) 2017; 74
Thiele (ref_112) 2011; 47
Clerici (ref_20) 2016; 57
Eom (ref_262) 2015; 54
ref_10
Sarkar (ref_209) 2015; 5
Motamed (ref_123) 2016; 12
ref_17
Dolain (ref_148) 2005; 127
ref_15
Martinek (ref_106) 2006; 45
Kulkarni (ref_127) 2018; 2
Wang (ref_180) 2018; 83
Percec (ref_61) 2013; Volume 262
You (ref_175) 2009; 65
Jiang (ref_244) 2019; 123
Chakraborty (ref_88) 2003; 42
Yan (ref_178) 2019; 11
Corvi (ref_40) 2019; 84
Puszko (ref_231) 2019; 123
Eddleston (ref_139) 2010; 10
Ikkanda (ref_28) 2016; 52
Christofferson (ref_128) 2018; 12
Berl (ref_142) 2001; 7
Robertson (ref_68) 2016; 49
Sepunaru (ref_230) 2015; 137
Syryamina (ref_38) 2016; 47
Yoo (ref_58) 2008; 12
Debnath (ref_254) 2018; 3
Luo (ref_173) 2016; 22
Hammer (ref_245) 2004; 20
Pomerantz (ref_110) 2006; 128
Yoon (ref_266) 2016; 52
Horne (ref_215) 2008; 105
Gabriel (ref_195) 2002; 124
(ref_229) 2017; 9
Collie (ref_217) 2015; 7
Shi (ref_79) 2013; 49
Luder (ref_124) 2016; 52
Olivier (ref_233) 2013; 7
Mannige (ref_237) 2015; 526
Lutz (ref_63) 2014; Volume 1170
Liu (ref_70) 2018; 23
Castedo (ref_210) 2008; 14
Lim (ref_265) 2019; 25
Segman (ref_221) 2010; 49
Kwon (ref_136) 2015; 6
Yamada (ref_164) 2010; 46
Seoudi (ref_121) 2015; 87
Secker (ref_66) 2015; 15
Nowick (ref_202) 1999; 121
Qiu (ref_95) 2006; 128
Edison (ref_239) 2018; 115
Nowick (ref_204) 2002; 124
Melicher (ref_100) 2013; 15
Zhao (ref_141) 2018; 20
Gobbo (ref_228) 2012; 6
Price (ref_214) 2010; 132
Bolte (ref_253) 2016; 18
Kulkarni (ref_129) 2018; 4
Lau (ref_64) 2014; 2
Kawabata (ref_190) 2018; 54
Cuccia (ref_185) 2002; 8
Dobitz (ref_48) 2017; 50
Collie (ref_219) 2016; 52
Yoo (ref_23) 2017; 50
Gan (ref_154) 2008; 47
Seebach (ref_3) 1997; 21
Wetzler (ref_51) 2011; 96
Gong (ref_137) 2019; 84
Berl (ref_144) 2000; 407
Lee (ref_224) 2011; 17
Kirshenbaum (ref_50) 1998; 95
Baptiste (ref_147) 2010; 5
Martinek (ref_8) 2012; 41
Ferrand (ref_160) 2011; 50
Jin (ref_259) 2019; 110
ref_55
Zhang (ref_207) 2019; 141
Mason (ref_115) 2004; 5
Denisov (ref_158) 2016; 55
Yamato (ref_25) 2012; 48
Rathore (ref_87) 2006; 91
Rapaport (ref_223) 2006; 18
Weiser (ref_53) 2017; 4
Aldilla (ref_44) 2020; 10
Murnen (ref_258) 2010; 132
Pomerantz (ref_111) 2008; 47
Hein (ref_169) 2019; 55
Marafon (ref_248) 2018; 57
Melicher (ref_101) 2015; 17
Ito (ref_163) 2008; 130
Gan (ref_182) 2013; 31
Knight (ref_65) 2015; 27
Seoudi (ref_122) 2015; 39
Afanasyeva (ref_41) 2019; 1861
Sanii (ref_236) 2011; 133
Wang (ref_22) 2016; 52
Zeng (ref_200) 2002; 124
Seoudi (ref_126) 2016; 27
Marafon (ref_255) 2017; 13
Jadhav (ref_257) 2013; 49
Green (ref_184) 1989; 111
Misra (ref_208) 2018; 57
Siebler (ref_49) 2013; 67
Kwon (ref_133) 2012; 68
ref_36
ref_35
Sun (ref_60) 2013; 7
Tanaka (ref_162) 2005; 44
Goodman (ref_7) 2007; 3
Markandeya (ref_166) 2017; 8
Das (ref_43) 2018; 6
Nowick (ref_203) 2000; 122
Robertson (ref_234) 2016; 32
Hudson (ref_238) 2018; 9
Yoo (ref_135) 2015; 137
ref_47
ref_45
Schmitt (ref_222) 2005; 127
Cheng (ref_4) 2001; 101
Shen (ref_171) 2011; 17
ref_188
Menegazzo (ref_13) 2006; 47
Cuccia (ref_186) 2000; 39
Giuliano (ref_213) 2009; 131
Stringer (ref_57) 2010; 75
Tomasini (ref_46) 2017; 108
Pfukwa (ref_181) 2013; 52
Zych (ref_194) 2000; 122
Maayan (ref_83) 2015; 13
Konda (ref_256) 2016; 14
ref_6
References_xml – volume: 83
  start-page: 1898
  year: 2018
  ident: ref_180
  article-title: A switchable helical capsule for encapsulation and release of potassium ion
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b02840
– volume: 41
  start-page: 687
  year: 2012
  ident: ref_8
  article-title: Peptidic foldamers: Ramping up diversity
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15097A
– volume: 22
  start-page: 11028
  year: 2016
  ident: ref_173
  article-title: Helical folding competing with unfolded aggregation in phenylene ethynylene foldamers
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201601804
– volume: 241
  start-page: 354
  year: 2006
  ident: ref_93
  article-title: Monte Carlo simulations of the homopolypeptide pair potential of mean force
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2005.12.022
– volume: 9
  start-page: 2574
  year: 2018
  ident: ref_238
  article-title: Evidence for cis amide bonds in peptoid nanosheets
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01040
– volume: 57
  start-page: 1057
  year: 2018
  ident: ref_208
  article-title: Artificial β-double helices from achiral γ-peptides
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201711124
– volume: 71
  start-page: 6579
  year: 2006
  ident: ref_33
  article-title: Bottom-up synthesis of optically active oligonaphthalenes: Three different pathways for controlling axial chirality
  publication-title: J. Org. Chem.
  doi: 10.1021/jo060974v
– volume: 27
  start-page: 5762
  year: 2015
  ident: ref_67
  article-title: The organic flatland—Recent advances in synthetic 2D organic layers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500124
– volume: 42
  start-page: 1765
  year: 2003
  ident: ref_205
  article-title: Sequence-selective molecular recognition between β sheets
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200250750
– volume: 115
  start-page: 5647
  year: 2018
  ident: ref_239
  article-title: Conformations of peptoids in nanosheets result from the interplay of backbone energetics and intermolecular interactions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1800397115
– volume: 44
  start-page: 3867
  year: 2005
  ident: ref_162
  article-title: A modular strategy to artificial double helices
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200501028
– volume: 52
  start-page: 11040
  year: 2013
  ident: ref_181
  article-title: Templated hierarchical self-assembly of poly(p-aryltriazole) foldamers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201303135
– volume: 12
  start-page: 2455
  year: 2018
  ident: ref_240
  article-title: Glycosylated peptoid nanosheets as a multivalent scaffold for protein recognition
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08018
– volume: 101
  start-page: 3893
  year: 2001
  ident: ref_2
  article-title: A field guide to foldamers
  publication-title: Chem. Rev.
  doi: 10.1021/cr990120t
– ident: ref_152
  doi: 10.1039/b719712h
– volume: 66
  start-page: 3574
  year: 2001
  ident: ref_198
  article-title: Sequence specificity of hydrogen-bonded molecular duplexes
  publication-title: J. Org. Chem.
  doi: 10.1021/jo010250d
– volume: 23
  start-page: 104
  year: 2017
  ident: ref_34
  article-title: The importance of being Aib. Aggregation and self-assembly studies on conformationally constrained oligopeptides
  publication-title: J. Pept. Sci.
  doi: 10.1002/psc.2956
– volume: 53
  start-page: 13140
  year: 2014
  ident: ref_151
  article-title: Increasing the size of an aromatic helical foldamer cavity by strand intercalation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407752
– volume: 112
  start-page: 5271
  year: 2012
  ident: ref_19
  article-title: Aromatic amide foldamers: Structures, properties, and functions
  publication-title: Chem. Rev.
  doi: 10.1021/cr300116k
– volume: 91
  start-page: 3425
  year: 2006
  ident: ref_87
  article-title: Thermodynamic stability of β-peptide helices and the role of cyclic residues
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.084491
– volume: 20
  start-page: 15981
  year: 2014
  ident: ref_192
  article-title: Designing foldamer–foldamer interactions in solution: The roles of helix length and terminus functionality in promoting the self-association of aminoisobutyric acid oligomers
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201403626
– volume: 36
  start-page: 2583
  year: 2015
  ident: ref_263
  article-title: Foldectures from the self-assembly of racemic foldamers
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.1002/bkcs.10527
– volume: 46
  start-page: 297
  year: 2010
  ident: ref_155
  article-title: Heteromeric double helix formation by cross-hybridization of chloro and fluoro-substituted quinoline oligoamides
  publication-title: Chem. Commun.
  doi: 10.1039/B910435F
– volume: 19
  start-page: 11598
  year: 2013
  ident: ref_251
  article-title: More than meets the eyes: Conformational switching of a stacked dialkoxynaphthalene-naphthalenetetra-carboxylic diimide (DAN-NDI) foldamer to an NDIcx-NDI fibril aggregate
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201302009
– volume: 41
  start-page: 1718
  year: 2002
  ident: ref_109
  article-title: cis-2-Aminocyclopentanecarboxylic acid oligomers adopt a sheetlike structure: Switch from helix to nonpolar strand
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020517)41:10<1718::AID-ANIE1718>3.0.CO;2-2
– volume: 19
  start-page: 4436
  year: 2007
  ident: ref_119
  article-title: Sequence dependent behavior of amphiphilic β-peptides on gold surfaces
  publication-title: Chem. Mater.
  doi: 10.1021/cm070265d
– volume: 4
  start-page: 796
  year: 2018
  ident: ref_42
  article-title: Morphology diversity of L-phenylalanine-based short peptide supramolecular aggregates and hydrogels
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201800202
– volume: 407
  start-page: 720
  year: 2000
  ident: ref_144
  article-title: Interconversion of single and double helices formed from synthetic molecular strands
  publication-title: Nature
  doi: 10.1038/35037545
– volume: 46
  start-page: 3487
  year: 2010
  ident: ref_164
  article-title: Complementary double helix formation through template synthesis
  publication-title: Chem. Commun.
  doi: 10.1039/c002170a
– volume: 10
  start-page: 770
  year: 2020
  ident: ref_44
  article-title: Anthranilamide-based short peptides self-assembled hydrogels as antibacterial agents
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-57342-6
– volume: 133
  start-page: 13604
  year: 2011
  ident: ref_113
  article-title: Lyotropic liquid crystals formed from ACHC-rich β-Peptides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204874h
– volume: 39
  start-page: 3280
  year: 2015
  ident: ref_122
  article-title: Supramolecular self-assembly of 14-helical nanorods with tunable linear and dendritic hierarchical morphologies
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ01926A
– volume: 14
  start-page: 4089
  year: 2016
  ident: ref_256
  article-title: Structural and morphological diversity of self-assembled synthetic γ-amino acid containing peptides
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C6OB00380J
– volume: 7
  start-page: 4715
  year: 2013
  ident: ref_60
  article-title: Peptoid polymers: A highly designable bioinspired material
  publication-title: ACS Nano
  doi: 10.1021/nn4015714
– volume: 128
  start-page: 11338
  year: 2006
  ident: ref_95
  article-title: Toward β-amino acid proteins: A cooperatively folded β-peptide quaternary structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063164+
– volume: 31
  start-page: 651
  year: 2013
  ident: ref_182
  article-title: Twisted helical microfibers by hierarchical self-assembly of an aromatic oligoamide foldamer
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201300240
– ident: ref_6
  doi: 10.1002/9783527611478
– volume: 5
  start-page: 170
  year: 2004
  ident: ref_115
  article-title: Coiled coil domains: Stability, specificity, and biological implications
  publication-title: ChemBioChem
  doi: 10.1002/cbic.200300781
– volume: 55
  start-page: 5743
  year: 2019
  ident: ref_168
  article-title: Redox-controlled hybridization of helical foldamers
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02498K
– volume: 141
  start-page: 14239
  year: 2019
  ident: ref_207
  article-title: Folding and assembly of short α, β, γ-hybrid peptides: Minor variations in sequence and drastic differences in higher-level structures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06094
– volume: Volume 1170
  start-page: 35
  year: 2014
  ident: ref_63
  article-title: Precision sequence control in bioinspired peptoid polymers
  publication-title: Sequence-Controlled Polymers: Synthesis, Self-Assembly, and Properties
– volume: 125
  start-page: 9932
  year: 2003
  ident: ref_201
  article-title: Duplex foldamers from assembly induced folding
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0361897
– volume: 3
  start-page: 98
  year: 2013
  ident: ref_242
  article-title: Uniform and robust peptoid microsphere coatings
  publication-title: Coatings
  doi: 10.3390/coatings3020098
– volume: 7
  start-page: 871
  year: 2015
  ident: ref_217
  article-title: Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2353
– volume: 121
  start-page: 5607
  year: 1999
  ident: ref_196
  article-title: A new approach for the design of supramolecular recognition units: Hydrogen-bonded molecular duplexes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja990904o
– volume: 58
  start-page: 226
  year: 2019
  ident: ref_76
  article-title: Halogen bonding-directed supramolecular quadruple and double helices from hydrogen bonded arylamide foldamers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811561
– volume: 110
  start-page: e23285
  year: 2019
  ident: ref_54
  article-title: Peptoids as tools and sensors
  publication-title: Biopolymers
  doi: 10.1002/bip.23285
– volume: 11
  start-page: 3207
  year: 2005
  ident: ref_89
  article-title: Three-dimensional organization of helices: Design principles for nucleobase-functionalized β-peptides
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200500004
– volume: 118
  start-page: 13071
  year: 1996
  ident: ref_117
  article-title: β-Peptide foldamers: Robust helix formation in a new family of β-amino acid oligomers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja963290l
– volume: 112
  start-page: 1463
  year: 2012
  ident: ref_31
  article-title: Helicenes: Synthesis and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr200087r
– volume: 15
  start-page: 1293
  year: 2011
  ident: ref_18
  article-title: Aromatic oligoamide foldamers: A paradigm for structure-property relationship
  publication-title: Curr. Org. Chem.
  doi: 10.2174/138527211795378227
– volume: 124
  start-page: 4972
  year: 2002
  ident: ref_204
  article-title: An unnatural amino acid that induces β-sheet folding and interaction in peptides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025699i
– volume: 20
  start-page: 5486
  year: 2018
  ident: ref_141
  article-title: Effects of oligomer length, solvents, and temperature on the self-association of aromatic oligoamide foldamers
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b02438
– volume: 32
  start-page: 11946
  year: 2016
  ident: ref_234
  article-title: Molecular engineering of the peptoid nanosheet hydrophobic core
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b02735
– volume: 46
  start-page: 2856
  year: 2013
  ident: ref_26
  article-title: Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: Formation and mass transport characteristics
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400030e
– ident: ref_36
  doi: 10.1002/9781118958308
– volume: 74
  start-page: 3455
  year: 2017
  ident: ref_69
  article-title: Peptoids and polypeptoids: Biomimetic and bioinspired materials for biomedical applications
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-016-1902-1
– volume: 7
  start-page: 315
  year: 2019
  ident: ref_130
  article-title: Migration and differentiation of neural stem cells diverted from the subventricular zone by an injectable self-assembling β-peptide hydrogel
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00315
– volume: 1861
  start-page: 524
  year: 2019
  ident: ref_41
  article-title: Peptide antibiotic trichogin in model membranes: Self-association and capture of fatty acids
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2018.12.006
– volume: 38
  start-page: 1726
  year: 2009
  ident: ref_11
  article-title: Recent advances in the development of aryl-based foldamers
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b819597h
– volume: 127
  start-page: 167
  year: 2005
  ident: ref_86
  article-title: Relationship between side chain structure and 14-helix stability of β3-peptides in water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0459375
– volume: 123
  start-page: 1136
  year: 2019
  ident: ref_231
  article-title: Electron transport and a rectifying effect of oligourea foldamer films entrapped within nanoscale junctions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b11046
– ident: ref_45
  doi: 10.3390/gels3040039
– volume: 41
  start-page: 1343
  year: 2008
  ident: ref_12
  article-title: Peptide mimics by linear arylamides: A structural and functional diversity test
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700219m
– volume: 49
  start-page: 2673
  year: 2013
  ident: ref_79
  article-title: Foldamer-based chiral supramolecular alternate block copolymers tuned by ion-pair binding
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc38261c
– volume: 129
  start-page: 4178
  year: 2007
  ident: ref_211
  article-title: Helix bundle quaternary structure from α/β-peptide foldamers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070396f
– volume: 14
  start-page: 185
  year: 2020
  ident: ref_235
  article-title: Discovery of stable and selective antibody mimetics from combinatorial libraries of polyvalent, loop-functionalized peptoid nanosheets
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07498
– volume: 21
  start-page: 4182
  year: 2019
  ident: ref_249
  article-title: Tunable E−Z photoisomerization in α,β-peptide foldamers featuring multiple (E/Z)-3-aminoprop-2-enoic acid units
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01360
– volume: 84
  start-page: 481
  year: 2019
  ident: ref_137
  article-title: Self-assembly of a β-peptide foldamer: The role of the surfactant in three-dimensional shape selection
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201900027
– volume: 49
  start-page: 8232
  year: 2010
  ident: ref_131
  article-title: Unprecedented molecular architectures by the controlled self-assembly of a β-peptide foldamer
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201003302
– volume: 21
  start-page: 2015
  year: 1997
  ident: ref_3
  article-title: β-Peptides: A surprise at every turn
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/a704933a
– volume: 13
  start-page: 4231
  year: 2017
  ident: ref_255
  article-title: Tuning morphological architectures generated through living supramolecular assembly of a helical foldamer end-capped with two complementary nucleobases
  publication-title: Soft Matter
  doi: 10.1039/C7SM00764G
– ident: ref_15
  doi: 10.1002/ejoc.201801427
– volume: 134
  start-page: 15656
  year: 2012
  ident: ref_161
  article-title: Identification of a foldaxane kinetic byproduct during guest-induced single to double helix conversion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3064364
– ident: ref_143
  doi: 10.1039/b604462j
– volume: 116
  start-page: 13752
  year: 2016
  ident: ref_29
  article-title: Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00354
– volume: 31
  start-page: 173
  year: 1998
  ident: ref_1
  article-title: Foldamers: A manifesto
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar960298r
– volume: 129
  start-page: 1532
  year: 2007
  ident: ref_96
  article-title: High-resolution structure of a β-peptide bundle
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja068678n
– volume: 16
  start-page: 4992
  year: 2014
  ident: ref_165
  article-title: Self-association of aromatic oligoamide foldamers into double helices in water
  publication-title: Org. Lett.
  doi: 10.1021/ol502259y
– volume: 11
  start-page: 4459
  year: 2013
  ident: ref_241
  article-title: Tunable peptoid microspheres: Effects of side chain chemistry and sequence
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c3ob40561c
– volume: 127
  start-page: 547
  year: 2005
  ident: ref_103
  article-title: Chain-length-dependent helical motifs and self-association of β-peptides with constrained side chains
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0475095
– volume: 17
  start-page: 14857
  year: 2011
  ident: ref_224
  article-title: Sheet-like assemblies of charged amphiphilic α/β-peptides at the air–water interface
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201101775
– ident: ref_90
  doi: 10.1002/ejoc.200700444
– ident: ref_85
  doi: 10.1002/(SICI)1099-0690(199805)1998:5<827::AID-EJOC827>3.0.CO;2-B
– volume: 84
  start-page: 1688
  year: 2019
  ident: ref_40
  article-title: Controlling the formation of peptide films: Fully-developed helical peptides are required to obtain a homogenous coating over a large area
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201900456
– volume: 6
  start-page: 8747
  year: 2015
  ident: ref_136
  article-title: Magnetotactic molecular architectures from self-assembly of β-peptide foldamers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9747
– volume: 121
  start-page: 7574
  year: 1999
  ident: ref_138
  article-title: Synthesis and structural characterization of helix-forming β-peptides: trans-2-Aminocyclopentanecarboxylic acid oligomers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991185g
– volume: 15
  start-page: 5048
  year: 2013
  ident: ref_100
  article-title: A β-boronopeptide bundle of known structure as a vehicle for polyol recognition
  publication-title: Org. Lett.
  doi: 10.1021/ol402381n
– volume: 129
  start-page: 14746
  year: 2007
  ident: ref_97
  article-title: Biophysical and structural characterization of a robust octameric β-peptide bundle
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0754002
– volume: 254
  start-page: 539
  year: 1991
  ident: ref_116
  article-title: X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil
  publication-title: Science
  doi: 10.1126/science.1948029
– volume: 52
  start-page: 10771
  year: 2016
  ident: ref_246
  article-title: Self-assembled vesicles of urea-tethered foldamer as a hydrophobic drug carrier
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05079D
– volume: 52
  start-page: 5844
  year: 2016
  ident: ref_125
  article-title: Orthogonal strategy for the synthesis of dual-functionalised β3-peptide based hydrogels
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00624H
– volume: 130
  start-page: 6936
  year: 2008
  ident: ref_174
  article-title: Vesicles and organogels from foldamers: A solvent-modulated self-assembling process
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801618p
– volume: 47
  start-page: 309
  year: 2016
  ident: ref_38
  article-title: Peptides on the surface: Spin-label EPR and PELDOR study of adsorption of the antimicrobial peptides Trichogin GA IV and Ampullosporin A on the silica nanoparticles
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/s00723-015-0745-5
– volume: 111
  start-page: 6452
  year: 1989
  ident: ref_184
  article-title: Macromolecular stereochemistry: The out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00198a084
– volume: 123
  start-page: 1195
  year: 2019
  ident: ref_244
  article-title: Resolving the morphology of peptoid vesicles at the 1 nm length scale using cryogenic electron microscopy
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b11752
– volume: 45
  start-page: 4625
  year: 2006
  ident: ref_149
  article-title: Cross-hybridization of pyridinedicarboxamide helical strands and their N-oxides
  publication-title: Chem. Eur. J.
– volume: 20
  start-page: 4591
  year: 2014
  ident: ref_108
  article-title: Exploiting aromatic interactions for β-peptide foldamer helix stabilization: A significant design element
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201304448
– volume: 39
  start-page: 233
  year: 2000
  ident: ref_186
  article-title: Encoded helical self-organization and self-assembly into helical fibers of an oligoheterocyclic pyridine-pyridazine molecular strand
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/(SICI)1521-3773(20000103)39:1<233::AID-ANIE233>3.0.CO;2-R
– volume: 16
  start-page: 318
  year: 2013
  ident: ref_52
  article-title: α-Peptoids and related compounds: Synthesis and control of the conformation
  publication-title: C. R. Chim.
  doi: 10.1016/j.crci.2012.11.015
– volume: 7
  start-page: 2798
  year: 2001
  ident: ref_142
  article-title: Helical molecular programming: Folding of oligopyridine-dicarboxamides into molecular single helices
  publication-title: Chem. Eur. J.
  doi: 10.1002/1521-3765(20010702)7:13<2798::AID-CHEM2798>3.0.CO;2-L
– volume: 48
  start-page: 2292
  year: 2012
  ident: ref_187
  article-title: Mirror symmetry breaking and chiral amplification in foldamer-based supramolecular helical aggregates
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc16266k
– volume: 127
  start-page: 2400
  year: 2005
  ident: ref_148
  article-title: Folding directed N-oxidation of oligopyridine-dicarboxamide strands and hybridization of oxidized oligomers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0424631
– volume: 48
  start-page: 39
  year: 2015
  ident: ref_261
  article-title: Parallelogram plate shaped foldecture from the controlled self-assembly of α/β-peptide foldamer
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2015.07.002
– volume: 108
  start-page: e22898
  year: 2017
  ident: ref_46
  article-title: Oxazolidinone-containing pseudopeptides: Supramolecular materials, fibers, crystals, and gels
  publication-title: Biopolymers
  doi: 10.1002/bip.22898
– volume: 120
  start-page: 651
  year: 1998
  ident: ref_104
  article-title: Self-assembling cyclic β3-peptide nanotubes as artificial transmembrane ion channels
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972786f
– volume: 130
  start-page: 1517
  year: 2008
  ident: ref_250
  article-title: Amyloid-like behavior in abiotic, amphiphilic foldamers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0780840
– volume: 96
  start-page: 556
  year: 2011
  ident: ref_51
  article-title: Progress in the de novo design of structured peptoid protein mimics
  publication-title: Biopolymers
  doi: 10.1002/bip.21621
– volume: 47
  start-page: 1715
  year: 2008
  ident: ref_154
  article-title: Quadruple and double helices of 8-fluoroquinoline oligoamides
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200704938
– volume: 9
  start-page: 454
  year: 2010
  ident: ref_232
  article-title: Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2742
– volume: 51
  start-page: 970
  year: 2018
  ident: ref_30
  article-title: Designing helical molecular capsules based on folded aromatic amide oligomers
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00075
– volume: 122
  start-page: 6305
  year: 2018
  ident: ref_39
  article-title: Tuning the morphology of nanostructured peptide films by introduction of a secondary structure conformational constraint: A case-study of hierarchical self-assembly
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b01877
– volume: 110
  start-page: e23283
  year: 2019
  ident: ref_243
  article-title: Peptoid microsphere coatings: The effects of helicity, temperature, pH, and ionic strength
  publication-title: Biopolymers
  doi: 10.1002/bip.23283
– volume: 136
  start-page: 6810
  year: 2014
  ident: ref_99
  article-title: Design and high-resolution structure of a β3-peptide bundle catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5013849
– volume: 110
  start-page: e23265
  year: 2019
  ident: ref_71
  article-title: Design and preparation of organic nanomaterials using self-assembled peptoids
  publication-title: Biopolymers
  doi: 10.1002/bip.23265
– volume: 18
  start-page: 445
  year: 2006
  ident: ref_223
  article-title: Ordered peptide assemblies at interfaces
  publication-title: Supramol. Chem.
  doi: 10.1080/10610270600665905
– volume: 41
  start-page: 1399
  year: 2008
  ident: ref_16
  article-title: Foldamers with heterogeneous backbones
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800009n
– volume: 96
  start-page: 537
  year: 2011
  ident: ref_59
  article-title: Peptoids at the 7th summit: Toward macromolecular systems engineering
  publication-title: Biopolymers
  doi: 10.1002/bip.21623
– volume: 8
  start-page: 7251
  year: 2017
  ident: ref_166
  article-title: Multi-dimensional charge transport in supramolecular helical foldamer assemblies
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC03341A
– volume: 139
  start-page: 8639
  year: 2017
  ident: ref_80
  article-title: Synthesis of luminescent Platinum(II) 2,6-bis(N-dodecylbenzimidazol-2-yl)pyridine foldamers and their supramolecular assembly and metallogel formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03635
– volume: 8
  start-page: 3448
  year: 2002
  ident: ref_185
  article-title: Helical self-organization and hierarchical self-assembly of an oligoheterocyclic pyridine-pyridazine strand into extended supramolecular fibers
  publication-title: Chem. Eur. J.
  doi: 10.1002/1521-3765(20020802)8:15<3448::AID-CHEM3448>3.0.CO;2-#
– volume: 67
  start-page: 891
  year: 2013
  ident: ref_49
  article-title: From azidoproline to functionalizable collagen
  publication-title: Chimia
  doi: 10.2533/chimia.2013.891
– volume: 141
  start-page: 4119
  year: 2019
  ident: ref_78
  article-title: Anion recognition in water by charge-neutral halogen and chalcogen bonding foldamer receptors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00148
– volume: 35
  start-page: 323
  year: 2006
  ident: ref_5
  article-title: Application of alicyclic β-amino acids in peptide chemistry
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b501173f
– volume: 49
  start-page: 379
  year: 2016
  ident: ref_68
  article-title: Design, synthesis, assembly, and engineering of peptoid nanosheets
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00439
– volume: 128
  start-page: 8730
  year: 2006
  ident: ref_110
  article-title: Lyotropic liquid crystals from designed helical β-peptides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062412z
– volume: 49
  start-page: 1778
  year: 2010
  ident: ref_156
  article-title: Parallel and antiparallel triple helices of naphthyridine oligoamides
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200906401
– volume: 6
  start-page: 10684
  year: 2012
  ident: ref_228
  article-title: Preprogrammed 2D folding of conformationally flexible oligoamides: Foldamers with multiple turn elements
  publication-title: ACS Nano
  doi: 10.1021/nn303868q
– volume: 56
  start-page: 149
  year: 2020
  ident: ref_179
  article-title: Light-responsive vesicles for enantioselective release of chiral drugs prepared from a supra-amphiphilic M-helix
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08380D
– ident: ref_17
  doi: 10.1002/ejoc.201402877
– volume: 30
  start-page: 1420
  year: 2006
  ident: ref_226
  article-title: Scanning tunnelling microscopy of a foldamer prototype at the liquid/solid interface: Water/Au(111) versus 1-octanol/graphite
  publication-title: New J. Chem.
  doi: 10.1039/b607660m
– volume: 14
  start-page: 2100
  year: 2008
  ident: ref_210
  article-title: Folding control in cyclic peptides through N-methylation pattern selection: Formation of antiparallel β-sheet dimers, double reverse turns and supramolecular helices by 3α,γ cyclic peptides
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200701059
– volume: 47
  start-page: 1241
  year: 2008
  ident: ref_111
  article-title: Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200704372
– volume: 132
  start-page: 12378
  year: 2010
  ident: ref_214
  article-title: Structural consequences of β-amino acid preorganization in a self-assembling α/β-peptide: Fundamental studies of foldameric helix bundles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103543s
– volume: 7
  start-page: 9276
  year: 2013
  ident: ref_233
  article-title: Antibody-mimetic peptoid nanosheets for molecular recognition
  publication-title: ACS Nano
  doi: 10.1021/nn403899y
– ident: ref_252
  doi: 10.1039/B713229H
– volume: Volume 262
  start-page: 389
  year: 2013
  ident: ref_61
  article-title: Peptoids for biomimetic hierarchical structures
  publication-title: Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II
– volume: 2
  start-page: 627
  year: 2014
  ident: ref_64
  article-title: Peptoids for biomaterials science
  publication-title: Biomater. Sci.
  doi: 10.1039/C3BM60269A
– volume: 2
  start-page: 684
  year: 2010
  ident: ref_74
  article-title: Cascading transformations within a dynamic self-assembled system
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.693
– volume: 52
  start-page: 9597
  year: 2016
  ident: ref_268
  article-title: Exploring structural features of folded peptide architectures in the construction of nanomaterials
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC04502B
– volume: 10
  start-page: 51
  year: 2018
  ident: ref_140
  article-title: Designing cooperatively folded abiotic uni- and multimolecular helix bundles
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2854
– volume: 126
  start-page: 13884
  year: 2004
  ident: ref_225
  article-title: Design and STM investigation of intramolecular folding in self-assembled monolayers on the surface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046124j
– volume: 132
  start-page: 16112
  year: 2010
  ident: ref_258
  article-title: Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106340f
– volume: 68
  start-page: 4368
  year: 2012
  ident: ref_133
  article-title: Evaporation-induced self-assembly of trans-2-aminocyclopentanecarboxylic acid hexamers
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2012.02.061
– volume: 70
  start-page: 1
  year: 2017
  ident: ref_264
  article-title: Structural analysis of the foldecture derived from racemic peptide foldamers
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2017.05.014
– ident: ref_47
  doi: 10.1002/ejoc.201100493
– volume: 52
  start-page: 1202
  year: 2016
  ident: ref_219
  article-title: In situ iodination and X-ray crystal structure of a foldamer helical bundle
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07916K
– volume: 49
  start-page: 9179
  year: 2013
  ident: ref_257
  article-title: Remarkable thermoresponsive nanofibers from γ-peptides
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45383a
– volume: 54
  start-page: 2417
  year: 2018
  ident: ref_190
  article-title: Allosteric regulation of metal-binding sites inside an optically-active helical foldamer and its tubular assemblies
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00728D
– volume: 52
  start-page: 7752
  year: 2016
  ident: ref_28
  article-title: Exploiting the interactions of aromatic units for folding and assembly in aqueous environments
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01861K
– volume: 54
  start-page: 5740
  year: 2018
  ident: ref_75
  article-title: Foldamer-based helicate displaying reversible switching between two distinct conformers
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02758G
– volume: 65
  start-page: 10544
  year: 2009
  ident: ref_177
  article-title: Self-assembly of vesicles from the stacking of a dipodal F/H–N hydrogen bonded arylamide foldamer
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2009.10.073
– volume: 133
  start-page: 20808
  year: 2011
  ident: ref_236
  article-title: Shaken, not stirred: Collapsing a peptoid monolayer to produce free-floating, stable nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206199d
– volume: 52
  start-page: 7420
  year: 2016
  ident: ref_22
  article-title: β-Peptide bundles: Design. Build. Analyze. Biosynthesize
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01546H
– volume: 9
  start-page: 8400
  year: 2013
  ident: ref_62
  article-title: Polypeptoids: A model system to study the effect of monomer sequence on polymer properties and self-assembly
  publication-title: Soft Matter
  doi: 10.1039/c3sm51421h
– volume: 137
  start-page: 2159
  year: 2015
  ident: ref_135
  article-title: Foldecture as a core material with anisotropic surface characteristics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510840v
– volume: 72
  start-page: 4936
  year: 2007
  ident: ref_206
  article-title: Helical molecular duplex strands: Multiple hydrogen-bond-mediated assembly of self-complementary oligomeric hydrazide derivatives
  publication-title: J. Org. Chem.
  doi: 10.1021/jo070525a
– volume: 133
  start-page: 17618
  year: 2011
  ident: ref_132
  article-title: Self-assembled peptide architecture with a tooth shape: Folding into shape
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2082476
– volume: 121
  start-page: 6206
  year: 1999
  ident: ref_118
  article-title: Synthesis and characterization of trans-2-aminocyclohexanecarboxylic acid oligomers: An unnatural helical secondary structure and implications for β-peptide tertiary structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja990748l
– volume: 7
  start-page: 2810
  year: 2001
  ident: ref_145
  article-title: Helical molecular programming: Supramolecular double helices by dimerization of helical oligopyridine-dicarboxamide strands
  publication-title: Chem. Eur. J.
  doi: 10.1002/1521-3765(20010702)7:13<2810::AID-CHEM2810>3.0.CO;2-5
– volume: 129
  start-page: 6376
  year: 2007
  ident: ref_212
  article-title: Discrete heterogeneous quaternary structure formed by α/β-peptide foldamers and α-peptides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071203r
– volume: 27
  start-page: 5665
  year: 2015
  ident: ref_65
  article-title: Sequence programmable peptoid polymers for diverse materials applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500275
– volume: 11
  start-page: 30566
  year: 2019
  ident: ref_178
  article-title: Biomimetic pulsating vesicles with both pH-tunable membrane permeability and light-triggered disassembly-re-assembly behaviors prepared by supra-amphiphilic helices
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09632
– volume: 48
  start-page: 922
  year: 2009
  ident: ref_94
  article-title: A rationally designed aldolase foldamer
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200804996
– volume: 9
  start-page: 270
  year: 2018
  ident: ref_260
  article-title: Designable and dynamic single-walled stiff nanotubes assembled from sequence-defined peptoids
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02059-1
– volume: 121
  start-page: 8409
  year: 1999
  ident: ref_202
  article-title: A chemical model of a protein β-sheet dimer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja992109g
– ident: ref_102
  doi: 10.1002/ejoc.201201633
– volume: 139
  start-page: 9350
  year: 2017
  ident: ref_159
  article-title: Orchestrating directional molecular motions: Kinetically controlled supramolecular pathways of a helical host on rodlike guests
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04884
– volume: 131
  start-page: 9860
  year: 2009
  ident: ref_213
  article-title: An α/β-peptide helix bundle with a pure β3-amino acid core and a distinctive quaternary structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8099294
– volume: 50
  start-page: 7572
  year: 2011
  ident: ref_160
  article-title: Template-induced screw motions within an aromatic amide foldamer double helix
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101697
– volume: 8
  start-page: 5380
  year: 2020
  ident: ref_73
  article-title: Diblock copolypeptoids: A review of phase separation, self-assembly and biological applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00477D
– volume: 262
  start-page: 1401
  year: 1993
  ident: ref_216
  article-title: A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants
  publication-title: Science
  doi: 10.1126/science.8248779
– volume: 10
  start-page: 365
  year: 2010
  ident: ref_139
  article-title: Formation of tubular crystals of pharmaceutical compounds
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg900969n
– volume: 57
  start-page: 7703
  year: 2018
  ident: ref_82
  article-title: Self-assembled cyclic structures from copper(II) peptoids
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201800583
– volume: 23
  start-page: 14980
  year: 2017
  ident: ref_9
  article-title: Sequence engineering to control the helix handedness of peptide foldamers
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201702730
– volume: 127
  start-page: 13130
  year: 2005
  ident: ref_222
  article-title: Residue requirements for helical folding in short α/β-peptides: Crystallographic characterization of the 11-helix in an optimized sequence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0536163
– volume: 128
  start-page: 1733
  year: 2006
  ident: ref_56
  article-title: A threaded loop conformation adopted by a family of peptoid nonamers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0574318
– volume: 14
  start-page: 92
  year: 2013
  ident: ref_172
  article-title: Assemblies at the liquid-solid interface: Chirality expression from molecular conformers
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201200730
– volume: 129
  start-page: 09B603
  year: 2008
  ident: ref_114
  article-title: Characterization of nanofibers formed by self-assembly of β-peptide oligomers using small angle x-ray scattering
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2955745
– volume: 126
  start-page: 2362
  year: 2004
  ident: ref_146
  article-title: Pyridinedicarboxamide strands form double helices via an activated slippage mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038103f
– ident: ref_188
  doi: 10.1002/ejic.200600466
– volume: 3
  start-page: 252
  year: 2007
  ident: ref_7
  article-title: Foldamers as versatile frameworks for the design and evolution of function
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio876
– volume: 13
  start-page: 8978
  year: 2015
  ident: ref_83
  article-title: Aggregation of inorganic nanoparticles mediated by biomimetic oligomers
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB01093D
– volume: 57
  start-page: 5540
  year: 2016
  ident: ref_20
  article-title: Non-standard amino acids and peptides: From self-assembly to nanomaterials
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2016.11.022
– volume: 52
  start-page: 3939
  year: 2016
  ident: ref_157
  article-title: Citric acid encapsulation by a double-helical foldamer in competitive solvents
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00190D
– volume: 73
  start-page: 2481
  year: 2008
  ident: ref_189
  article-title: Naphthyridine-based helical foldamers and macrocycles: Synthesis, cation binding, and supramolecular assemblies
  publication-title: J. Org. Chem.
  doi: 10.1021/jo702495u
– volume: 4
  start-page: 3843
  year: 2018
  ident: ref_129
  article-title: β3-Tripeptides co-assemble into fluorescent hydrogels for serial monitoring in vivo
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b01065
– volume: 75
  start-page: 6068
  year: 2010
  ident: ref_57
  article-title: Construction of peptoids with all trans-amide backbones and peptoid reverse turns via the tactical incorporation of N-aryl side chains capable of hydrogen bonding
  publication-title: J. Org. Chem.
  doi: 10.1021/jo101075a
– volume: 10
  start-page: 4283
  year: 2008
  ident: ref_170
  article-title: Folding a conjugated chain: Oligo(o-phenyleneethynylene-alt-p-phenyleneethynylene)
  publication-title: Org. Lett.
  doi: 10.1021/ol801677s
– volume: 7
  start-page: 70
  year: 2019
  ident: ref_24
  article-title: Novel materials from the supramolecular self-assembly of short helical β3-peptide foldamers
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00070
– volume: 95
  start-page: 4303
  year: 1998
  ident: ref_50
  article-title: Sequence-specific polypeptoids: A diverse family of heteropolymers with stable secondary structure
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.8.4303
– volume: 13
  start-page: 9990
  year: 2007
  ident: ref_81
  article-title: Strong Stacking between F···H-N hydrogen-bonded foldamers and fullerenes: Formation of supramolecular nano networks
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200701047
– volume: 15
  start-page: 11530
  year: 2009
  ident: ref_153
  article-title: A self-assembled foldamer capsule: Combining single and double helical segments in one aromatic amide sequence
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200900877
– volume: 55
  start-page: 4849
  year: 2019
  ident: ref_169
  article-title: A halogen-bonding foldamer molecular film for selective reagentless anion sensing in water
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00335E
– volume: 52
  start-page: 5250
  year: 2016
  ident: ref_266
  article-title: Unambiguous characterization of anisotropic foldamer packing in a foldecture with an elongated hexagonal plate shape
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00502K
– volume: 12
  start-page: 9101
  year: 2018
  ident: ref_128
  article-title: Identifying the coiled-coil triple helix structure of β-peptide nanofibers at atomic resolution
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03131
– volume: 27
  start-page: 13598
  year: 2011
  ident: ref_227
  article-title: Molecular patterning at a liquid/solid interface: The foldamer approach
  publication-title: Langmuir
  doi: 10.1021/la203410k
– ident: ref_55
  doi: 10.1002/ejoc.201901838
– volume: 44
  start-page: 5725
  year: 2005
  ident: ref_176
  article-title: F···H-N hydrogen bonding driven foldamers: Efficient receptors for dialkylammonium ions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200500982
– volume: 4
  start-page: 50554
  year: 2014
  ident: ref_191
  article-title: Reversible photo-, metallo-and thermo-induced morphological dynamics of bis-acylhydrazones
  publication-title: RSC Adv.
  doi: 10.1039/C4RA11119B
– volume: 110
  start-page: e23258
  year: 2019
  ident: ref_259
  article-title: Solid-phase synthesis of three-armed star-shaped peptoids and their hierarchical self-assembly
  publication-title: Biopolymers
  doi: 10.1002/bip.23258
– volume: 13
  start-page: 8463
  year: 2007
  ident: ref_150
  article-title: Assessing the mechanical properties of a molecular spring
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200700847
– volume: 122
  start-page: 8898
  year: 2000
  ident: ref_194
  article-title: Synthesis and conformational characterization of tethered, self-complexing 1,5-dialkoxynaphthalene/1,4,5,8-naphthalenetetracarboxylic diimide systems
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0019225
– volume: 63
  start-page: 1099
  year: 2020
  ident: ref_72
  article-title: Peptoid-based hierarchically-structured biomimetic nanomaterials: Synthesis, characterization and applications
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1296-8
– volume: 12
  start-page: 714
  year: 2008
  ident: ref_58
  article-title: Peptoid architectures: Elaboration, actuation, and application
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2008.08.015
– volume: 55
  start-page: 1328
  year: 2016
  ident: ref_158
  article-title: Electronic energy transfer modulation in a dynamic foldaxane: Proof-of-principle of a lifetime-based conformation probe
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201508611
– volume: 122
  start-page: 7654
  year: 2000
  ident: ref_203
  article-title: An unnatural amino acid that mimics a tripeptide β-strand and forms β-sheetlike hydrogen-bonded dimers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja001142w
– volume: 52
  start-page: 6860
  year: 2016
  ident: ref_27
  article-title: H-bonding directed programmed supramolecular assembly of naphthalene-diimide (NDI) derivatives
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01983H
– volume: 18
  start-page: 3793
  year: 2016
  ident: ref_253
  article-title: Metal driven assembly of peptidic foldamers: Formation of molecular tapes
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00601A
– volume: 50
  start-page: 832
  year: 2017
  ident: ref_23
  article-title: Foldectures: 3D molecular architectures from self-assembly of peptide foldamers
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00545
– volume: 22
  start-page: 1417
  year: 2015
  ident: ref_21
  article-title: Geometrically precise building blocks: The self-assembly of β-peptides
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2015.10.005
– volume: 42
  start-page: 4395
  year: 2003
  ident: ref_88
  article-title: Molecular architecture with functionalized β-peptide helices
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200351871
– volume: 124
  start-page: 15174
  year: 2002
  ident: ref_195
  article-title: Aromatic oligomers that form hetero duplexes in aqueous solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0275358
– ident: ref_35
– volume: 130
  start-page: 13450
  year: 2008
  ident: ref_183
  article-title: Foldamer organogels: A circular dichroism study of glucose-mediated dynamic helicity induction and amplification
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8043322
– volume: 20
  start-page: 1555
  year: 2018
  ident: ref_199
  article-title: Hydrogen-bonded duplexes with lengthened linkers
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00283
– volume: 101
  start-page: 3219
  year: 2001
  ident: ref_4
  article-title: β-Peptides: From structure to function
  publication-title: Chem. Rev.
  doi: 10.1021/cr000045i
– volume: 3
  start-page: 3963
  year: 2001
  ident: ref_92
  article-title: Toward β-peptide tertiary structure: Self-association of an amphiphilic 14-helix in aqueous solution
  publication-title: Org. Lett.
  doi: 10.1021/ol016868r
– volume: 52
  start-page: 4549
  year: 2016
  ident: ref_124
  article-title: Decorated self-assembling β3-tripeptide foldamers form cell adhesive scaffolds
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00247A
– volume: 130
  start-page: 14008
  year: 2008
  ident: ref_163
  article-title: Sequence-and chain-length-specific complementary double-helix formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806194e
– volume: 20
  start-page: 2141
  year: 2019
  ident: ref_37
  article-title: Trichogin GA IV alignment and oligomerization in phospholipid bilayers
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201900263
– volume: 52
  start-page: 8266
  year: 2013
  ident: ref_120
  article-title: Supramolecular self-assembly of N-acetyl-capped β-peptides leads to nano- to macroscale fiber formation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201303175
– ident: ref_91
  doi: 10.1002/ejoc.200900511
– volume: 12
  start-page: 5584
  year: 2010
  ident: ref_107
  article-title: Building β-peptide H10/12 foldamer helices with six-membered cyclic side-chains: Fine-tuning of folding and self-assembly
  publication-title: Org. Lett.
  doi: 10.1021/ol102494m
– volume: 12
  start-page: 2243
  year: 2016
  ident: ref_123
  article-title: A self-assembling β-peptide hydrogel for neural tissue engineering
  publication-title: Soft Matter
  doi: 10.1039/C5SM02902C
– volume: 57
  start-page: 10217
  year: 2018
  ident: ref_248
  article-title: Intrinsically photoswitchable α/β peptides toward two-state foldamers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806035
– volume: 132
  start-page: 3658
  year: 2010
  ident: ref_98
  article-title: β-Peptide bundles with fluorous cores
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja910903c
– volume: 27
  start-page: 135606
  year: 2016
  ident: ref_126
  article-title: Self-assembled nanomaterials based on beta (β3) tetrapeptides
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/13/135606
– volume: 45
  start-page: 2396
  year: 2006
  ident: ref_106
  article-title: Secondary structure dependent self-assembly of β-peptides into nanosized fibrils and membranes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200504158
– volume: 23
  start-page: 40
  year: 2018
  ident: ref_70
  article-title: Two-dimensional peptide based functional nanomaterials
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.10.008
– volume: 140
  start-page: 15477
  year: 2018
  ident: ref_77
  article-title: Sequence-controlled stimuli-responsive single-double helix conversion between 1:1 and 2:2 chloride-foldamer complexes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09899
– volume: 17
  start-page: 7061
  year: 2011
  ident: ref_171
  article-title: A foldamer at the liquid/graphite interface: The effect of interfacial interactions, solvent, concentration, and temperature
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201003589
– volume: 5
  start-page: 76257
  year: 2015
  ident: ref_209
  article-title: Solvent assisted structural diversity: Supramolecular sheet and double helix of a short aromatic γ-peptide
  publication-title: RSC Adv.
  doi: 10.1039/C5RA12831E
– volume: 5
  start-page: 1364
  year: 2010
  ident: ref_147
  article-title: Hybridization of long pyridine-carboxamide oligomers into multi-turn double helices: Slow strand association and dissociation, solvent dependence, and solid state structures
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.200900713
– volume: 526
  start-page: 415
  year: 2015
  ident: ref_237
  article-title: Peptoid nanosheets exhibit a new secondary-structure motif
  publication-title: Nature
  doi: 10.1038/nature15363
– volume: 138
  start-page: 10522
  year: 2016
  ident: ref_218
  article-title: Anatomy of an oligourea six-helix bundle
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05063
– volume: 87
  start-page: 1021
  year: 2015
  ident: ref_121
  article-title: Amino acid sequence controls the self-assembled superstructure morphology of N-acetylated tri-β3-peptides
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2015-0108
– volume: 9
  start-page: 14913
  year: 2017
  ident: ref_229
  article-title: α-Helicomimetic foldamers as electron transfer mediators
  publication-title: Nanoscale
  doi: 10.1039/C7NR05209J
– volume: 25
  start-page: 2226
  year: 2019
  ident: ref_265
  article-title: Directing foldamer self-assembly with a cyclopropanoyl cap
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201805783
– volume: 20
  start-page: 16523
  year: 2014
  ident: ref_267
  article-title: Foldamers to nanotubes: Influence of amino acid side chains in the hierarchical assembly of α,γ4-hybrid peptide helices
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201404961
– volume: 50
  start-page: 2420
  year: 2017
  ident: ref_48
  article-title: Oligoprolines as molecular entities for controlling distance in biological and material sciences
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00340
– volume: 48
  start-page: 12142
  year: 2012
  ident: ref_25
  article-title: Cavity-containing, backbone-rigidified foldamers and macrocycles
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc36391g
– volume: 101
  start-page: 3131
  year: 2001
  ident: ref_193
  article-title: Design of folded peptides
  publication-title: Chem. Rev.
  doi: 10.1021/cr000053z
– volume: 47
  start-page: 4915
  year: 2006
  ident: ref_13
  article-title: Synthesis and structural characterisation as 12-helix of the hexamer of a β-amino acid tethered to a pyrrolidin-2-one ring
  publication-title: Chem. Commun.
  doi: 10.1039/B612071G
– volume: 366
  start-page: 324
  year: 1993
  ident: ref_105
  article-title: Self-assembling organic nanotubes based on a cyclic peptide architecture
  publication-title: Nature
  doi: 10.1038/366324a0
– volume: 65
  start-page: 9494
  year: 2009
  ident: ref_175
  article-title: Hydrogen bonded aromatic hydrazide foldamers for the self-assembly of vesicles and gels
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2009.07.097
– volume: 49
  start-page: 716
  year: 2010
  ident: ref_221
  article-title: Highly stable pleated-sheet secondary structure in assemblies of amphiphilic α/β-peptides at the air–water interface
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200904566
– volume: 54
  start-page: 13204
  year: 2015
  ident: ref_262
  article-title: A hollow foldecture with truncated trigonal bipyramid shape from the self-assembly of an 11-helical foldamer
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201504248
– ident: ref_10
  doi: 10.1002/ejoc.200300495
– volume: 124
  start-page: 2903
  year: 2002
  ident: ref_200
  article-title: A noncovalent approach to antiparallel β-sheet formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010701b
– volume: 105
  start-page: 9151
  year: 2008
  ident: ref_215
  article-title: Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801135105
– volume: 20
  start-page: 540
  year: 2004
  ident: ref_245
  article-title: Effect of bilayer thickness on membrane bending rigidity
  publication-title: Langmuir
  doi: 10.1021/la035497f
– volume: 137
  start-page: 9617
  year: 2015
  ident: ref_230
  article-title: Electronic transport via homopeptides: The role of side chains and secondary structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03933
– volume: 134
  start-page: 20573
  year: 2012
  ident: ref_134
  article-title: Microtubes with rectangular cross-section by self-assembly of a short β-peptide foldamer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3088482
– volume: 55
  start-page: 8426
  year: 2019
  ident: ref_167
  article-title: Supramolecular chemistry of helical foldamers at the solid-liquid interface: Self-assembled monolayers and anion recognition
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03851E
– volume: 37
  start-page: 302
  year: 1998
  ident: ref_84
  article-title: β-Homoalanyl PNAs: Synthesis and indication of higher ordered structures
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19980216)37:3<302::AID-ANIE302>3.0.CO;2-4
– volume: 10
  start-page: 8426
  year: 2012
  ident: ref_247
  article-title: Conformational modulation of Ant–Pro oligomers using chirality alteration of proline residues
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c2ob26132d
– volume: 139
  start-page: 6128
  year: 2017
  ident: ref_220
  article-title: Molecular recognition within the cavity of a foldamer helix bundle: Encapsulation of primary alcohols in aqueous conditions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00181
– volume: 4
  start-page: 1029
  year: 2017
  ident: ref_53
  article-title: Molecular modeling studies of peptoid polymers
  publication-title: AIMS Mater. Sci.
  doi: 10.3934/matersci.2017.5.1029
– volume: 17
  start-page: 4718
  year: 2015
  ident: ref_101
  article-title: Improved carbohydrate recognition in water with an electrostatically enhanced β-peptide bundle
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b02187
– volume: 17
  start-page: 12564
  year: 2011
  ident: ref_14
  article-title: Quaternary centres as a tool for modulating foldamer conformation
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201102103
– volume: 47
  start-page: 502
  year: 2011
  ident: ref_112
  article-title: Lyotropic liquid crystalline phases from helical β-peptides as alignment media
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC02123G
– volume: 6
  start-page: 38
  year: 2018
  ident: ref_43
  article-title: Phenylalanine and derivatives as versatile low-molecular-weight gelators: Design, structure and tailored function
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00882A
– volume: 2
  start-page: 026104
  year: 2018
  ident: ref_127
  article-title: β3-Tripeptides act as sticky ends to self-assemble into a bioscaffold
  publication-title: APL Bioeng.
  doi: 10.1063/1.5020105
– volume: 3
  start-page: 8760
  year: 2018
  ident: ref_254
  article-title: α,ε-Hybrid peptide foldamers: Self-assembly of peptide with trans carbon−carbon double bonds in the backbone and its saturated analogue
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00832
– volume: 122
  start-page: 2635
  year: 2000
  ident: ref_197
  article-title: A highly stable, six-hydrogen-bonded molecular duplex
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9942742
– volume: 15
  start-page: 881
  year: 2015
  ident: ref_66
  article-title: Poly(α-peptoid)s revisited: Synthesis, properties, and use as biomaterial
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201500023
– volume: 102
  start-page: 2134
  year: 1980
  ident: ref_32
  article-title: Helixanes. The first primary helical molecules: Polyoxapolyspiroalkanones
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00526a084
SSID ssj0021415
Score 2.489888
SecondaryResourceType review_article
Snippet Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3276
SubjectTerms Amino acids
Chemical bonds
foldamers
higher-order structures
Hydrogen bonds
Macromolecular Substances - chemistry
Models, Molecular
morphology
Nanostructures - chemistry
NMR
Nuclear magnetic resonance
Peptide Fragments - chemistry
Peptides
Polymers - chemistry
Protein Conformation, beta-Strand
Review
secondary structure
self-assembly
Spectrum analysis
structural investigation
Tissue engineering
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCyjttQUHihGTVj8SOuVSldFUhgZCg0t4i27Ep0jYpzfbQf8-M4912ATXHZBJZM2PPM98Q8s7ZKhpmBDXeBFpBoEydjJr6BD4FLj7n-Dfyl6_q5LT6PK_nOeE25rbK1ZmYDupu8Jgj30_I4uD-cnFw8Zvi1CisruYRGvfJA4QuQ63W85uAi4N1miqZEkL7_fNp4GwYBXoJAmFGbtmiBNn_Pz_z73bJW_Zntk0eZ8exPJwk_YTcC_1T8vBoNa_tGZmBxMtPqc0ilKlHphxiORsWncXc9IfyGPEUxrH8Noy5JxaiZKT5HhaRYvX33C2un5PT2fGPoxOapyRQD-xYUo6Fv9oExbRhXjqrweIoZTT4_jKKzgoWpfS-43W0zhvha1OpSodaucilki_IVj_04RUpg7CRQ3TtIhB0tnFcBxFrh8I0ynUFYSt-tT5DiOMki0ULoQSyuP2HxQV5v37lYsLPuIv4IwphTYjQ1-nGcPmzzTupbaxDkLxOKxYq8C9dVCrApViMLna-IHsrEbZ5P47tjfYU5O36MQgIyyO2D8NVooFIo9HSFOTlJPH1SmB1rKkqVhC9oQsbS9180v86S2jd8D1MBOzcvaxd8khgJI-Qnc0e2VpeXoXX4O4s3Zuk038A-I0ByA
  priority: 102
  providerName: ProQuest
Title The Diverse World of Foldamers: Endless Possibilities of Self-Assembly
URI https://www.ncbi.nlm.nih.gov/pubmed/32708440
https://www.proquest.com/docview/2426355912
https://www.proquest.com/docview/2427298739
https://pubmed.ncbi.nlm.nih.gov/PMC7397133
https://doaj.org/article/8ab6095d760e4650bf66eeee60ffbfdc
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOcAF8U1ouwoSJ6SosZ3YcW-03VAhUVVApb1FtmOrSNsEke2Bf8-Mk13tAoILOeQQTyJnxs7MsydvAN5YUwSda55pp31WIFDOrAgqc5F8CkN8xuhv5I8X8vyq-LAoF1ulvignbKQHHhV3VBlLnGitkrkvMJywQUqPh8xDsKF19PVFn7cGUxPUYuiXxj1MgaD-6GYsNesHTvEBJ4KRLS8Uyfr_FGH-mii55XnqR_BwChnTd2NXH8Md3z2B-6frSm1PoUZbp2cxwcKnMTsm7UNa98vW0Kr0cTonJoVhSC_7YcqGRXxMMp_9MmS073tjlz-ewVU9_3J6nk31ETKHOGCVMdryKzWqQuncCWsU-hoptcKoXwTeGp4HIZxrWRmMdZq7UheyUL6UNjAhxXPY6_rOv4TUcxMY4mobUKA1lWXK81BaMqOWtk0gX-urcRN5ONWwWDYIIkjFzW8qTuDt5pZvI3PG34RPyAgbQSK9jhdwKDTTUGj-NRQSOFibsJlm4tBERnpUF-MJvN40o4FoY8R0vr-NMogxKiV0Ai9Gi296gr3Lq6LIE1A7Y2Gnq7st3dfryNONz6MlgFf_49324QEnpE-UntUB7K2-3_pDDIdWdgZ31ULhuarfz-Deyfzi8tMszoafFRkPXw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bT9YwFD9BfMAXIl6noDPRF5OFrtu61cQYBeaHXGIiJLzNtWuB5GND9hHDP-Xf6DndRT41vLHH9bRpek7bc-vvALxWZWwlkzyQWpogRkM5UJFNA-3Ap1DFD0N6jby3LyaH8Zej5GgBfg1vYSitcjgT3UFdNZp85OsOWRzV35B_OP8RUNUoiq4OJTQ6sdgxVz_RZGvfb28if99wnm8dbEyCvqpAoLH7LAgpUJZII1gqmY5UmeIJLYRMUVeOLK9KzmwUaV2FiS2VllwnMhZxahKhbBiJCMe9A3fjCG9yepmefx4NvBBvwy5yio1s_awrcGtaTloJJ1iTa3efKxHwP7327_TMa_ddfh-We0XV_9hJ1gosmPoBLG0M9eEeQo4S5m-6tA7ju5wcv7F-3kyrknzh7_wtwm9oW_9r0_Y5uGiVE803M7UBRZvP1PTqERzeyvo9hsW6qc1T8A0vbYjWvLJIUJWZClPDbaJIeKRQlQdsWK9C95DlVDljWqDpQktc_LPEHrwdu5x3eB03EX8iJoyEBLXtfjQXx0W_c4usVATKV6WCmRj1WWWFMPgJZq2ylfZgdWBh0e__tvgjrR68GpuRQRSOKWvTXDoatGyyNJIePOk4Ps4EZ8eyOGYepHOyMDfV-Zb69MShg-N45Hh4dvO0XsLS5GBvt9jd3t95Dvc4eREILjRbhcXZxaVZQ1Vrpl44-fbh-21vqN9JPjy2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBYIEF6RoHTtxYiSEaHdXLYXVCqjUW4gdG5C2SWm2Qv1r_Dpm8qILqLfmmEwsa2Zsz8vfADzXeeQUUzxQRtkgQkc50MIlgWnAp9DED0O6jfxhLncPoneH8eEG_OrvwlBZZb8nNht1URmKkY8bZHE0f0M-dl1ZxGIye3P8I6AOUpRp7dtptCqyb89-ovtWv96boKxfcD6bft7ZDboOA4HBoVZBSEmzWFnJEsWM0HmCu7WUKkG7WThe5Jw5IYwpwtjl2ihuYhXJKLGx1C4UUuC4V2AzIa9oBJvb0_ni4-DuhXg2tnlUIRQbH7Xtbm3NyUbhBHJy7iRsGgb8z8r9u1jz3Ok3uwk3OrPVf9vq2S3YsOVtuLbTd4u7AzPUN3_SFHlYv6nQ8Svnz6plkVNk_JU_JTSHuvYXVd1V5KKPTjSf7NIFlHs-0suzu3BwKRy8B6OyKu0D8C3PXYi-vXZIUOSpDhPLXaxJlZTUhQes51dmOgBz6qOxzNCRIRZn_7DYg5fDL8ctesdFxNskhIGQgLebF9XJ16xbx1maa4LoKxLJbITWrXZSWnwkc067wniw1Ysw63aDOvujux48Gz6jgCg5k5e2Om1o0M9JE6E8uN9KfJgJzo6lUcQ8SNZ0YW2q61_K798arHAcj8IQDy-e1lO4iospe783338E1zmFFAg7NN2C0erk1D5Gu2uln3QK7sOXy15TvwEo10JI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Diverse+World+of+Foldamers%3A+Endless+Possibilities+of+Self-Assembly&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Rinaldi%2C+Samuele&rft.date=2020-07-18&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=25&rft.issue=14&rft.spage=3276&rft_id=info:doi/10.3390%2Fmolecules25143276&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules25143276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon