Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering

High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique st...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 32; pp. e1800455 - n/a
Main Authors Rajagopal, Adharsh, Yao, Kai, Jen, Alex K.‐Y.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2018
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented. The multifaceted roles of interfacial engineering in the evolution of highly efficient and stable perovskite solar cells are explained. Unique structure–property–processing–performance traits are summarized. Functions of diverse charge transport materials and interfacial modifications are comprehensively discussed. Scalability–durability–sustainability considerations for commercialization are highlighted. Prospective research directions are presented for all developmental fronts.
AbstractList High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented.
Abstract High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented.
High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure-property-processing-performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state-of-the-art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge-transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability-durability-sustainability considerations pivotal for facilitating laboratory to industry translation are presented.High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure-property-processing-performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state-of-the-art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge-transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability-durability-sustainability considerations pivotal for facilitating laboratory to industry translation are presented.
High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented. The multifaceted roles of interfacial engineering in the evolution of highly efficient and stable perovskite solar cells are explained. Unique structure–property–processing–performance traits are summarized. Functions of diverse charge transport materials and interfacial modifications are comprehensively discussed. Scalability–durability–sustainability considerations for commercialization are highlighted. Prospective research directions are presented for all developmental fronts.
Author Rajagopal, Adharsh
Yao, Kai
Jen, Alex K.‐Y.
Author_xml – sequence: 1
  givenname: Adharsh
  surname: Rajagopal
  fullname: Rajagopal, Adharsh
  organization: University of Washington
– sequence: 2
  givenname: Kai
  surname: Yao
  fullname: Yao, Kai
  email: yaokai@ncu.edu.cn
  organization: Nanchang University
– sequence: 3
  givenname: Alex K.‐Y.
  orcidid: 0000-0002-9219-7749
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  email: alexjen@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29883006$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1463192$$D View this record in Osti.gov
BookMark eNqFkcFvFCEUh4mpsdvq1aMhevEyKzDAgrd1rdqkRlPrmQDzpqXOwBZm29S_XtZtNWliPL3L9738fu8doL2YIiD0nJI5JYS9sd1o54xQRQgX4hGaUcFow4kWe2hGdCsaLbnaRwelXBJCtCTyCdpnWqmWEDlD5Szd2Nzhr5DTdfkRJsDf0mAzXsEw4FUaR8g-2CH8tFNI8S1ebtGyBj-Fa8A2dvgUCtjsL_Bp2qZZ43e2QIdTxMdxgtzbrY-P4nmIADnE86focW-HAs_u5iH6_uHobPWpOfny8Xi1PGm8EFo0nBHimGMgReda2XKxcIpRyqTQmkruOOtsR9iC98y2vQfnHZdMur73fc9de4he7vamMgVTfC3nL3yKsYY3lMuWalah1ztondPVBspkxlB8LW8jpE0xjAimiFJMVvTVA_QybXKsFSqlWqnkgi0q9eKO2rgROrPOYbT51tzfvAJ8B_icSsnQm5rs93WnbMNgKDHb15rtMc2f11Zt_kC73_xPQe-EmzDA7X9os3z_efnX_QUI3rVZ
CitedBy_id crossref_primary_10_1021_acsaem_0c01917
crossref_primary_10_3103_S1062873822700678
crossref_primary_10_1002_ente_202000216
crossref_primary_10_1039_D0SE01527J
crossref_primary_10_1002_solr_202000700
crossref_primary_10_1016_j_surfin_2023_103649
crossref_primary_10_1002_solr_202000270
crossref_primary_10_1002_adfm_202303301
crossref_primary_10_1016_j_jechem_2021_01_037
crossref_primary_10_1021_acs_langmuir_3c03610
crossref_primary_10_1002_admi_202201860
crossref_primary_10_1039_D4CC04884A
crossref_primary_10_1016_j_rio_2023_100510
crossref_primary_10_1039_D0CS01272F
crossref_primary_10_1039_D4EE01839G
crossref_primary_10_1021_acsami_1c09642
crossref_primary_10_1039_D4TA05429F
crossref_primary_10_1002_cssc_201900509
crossref_primary_10_1002_pssr_201800505
crossref_primary_10_1016_j_cej_2020_126339
crossref_primary_10_1016_j_mtchem_2022_101362
crossref_primary_10_1016_j_nanoen_2020_104859
crossref_primary_10_1038_s41467_021_21292_3
crossref_primary_10_1021_jacs_8b09532
crossref_primary_10_1039_C8TA07617K
crossref_primary_10_1080_00268976_2024_2316273
crossref_primary_10_1016_j_cej_2024_155100
crossref_primary_10_1002_adma_202101833
crossref_primary_10_1002_adma_202307161
crossref_primary_10_1002_smll_201903613
crossref_primary_10_1016_j_dyepig_2019_107925
crossref_primary_10_1039_D4MH00033A
crossref_primary_10_1063_1_5058166
crossref_primary_10_1002_solr_202300345
crossref_primary_10_1021_acsenergylett_8b01181
crossref_primary_10_1002_adfm_202308428
crossref_primary_10_1016_j_jmst_2024_07_022
crossref_primary_10_1063_5_0013741
crossref_primary_10_1016_j_joule_2018_10_018
crossref_primary_10_1016_j_nanoen_2022_107579
crossref_primary_10_1002_aenm_201903191
crossref_primary_10_1002_aenm_202002882
crossref_primary_10_1007_s12274_021_4056_x
crossref_primary_10_1002_adma_202105635
crossref_primary_10_1016_j_apsusc_2022_153428
crossref_primary_10_1021_acsaem_3c01074
crossref_primary_10_1002_adma_202303139
crossref_primary_10_1038_s41467_021_26754_2
crossref_primary_10_1063_1_5127275
crossref_primary_10_1007_s11664_021_09304_w
crossref_primary_10_1016_j_synthmet_2019_116179
crossref_primary_10_1002_eem2_12089
crossref_primary_10_1016_j_cclet_2021_08_055
crossref_primary_10_3390_nano10020291
crossref_primary_10_1038_s41566_023_01372_0
crossref_primary_10_1016_j_materresbull_2022_111747
crossref_primary_10_1039_C9TA08084H
crossref_primary_10_1016_j_renene_2025_122365
crossref_primary_10_1021_acsami_4c05092
crossref_primary_10_1021_acs_jpclett_1c03099
crossref_primary_10_1039_D3CC01148H
crossref_primary_10_1039_C9NR07475A
crossref_primary_10_1021_acs_jpclett_9b03774
crossref_primary_10_1021_acsami_1c21785
crossref_primary_10_1364_PRJ_398529
crossref_primary_10_1021_acsami_3c13868
crossref_primary_10_1039_D1CS00841B
crossref_primary_10_1016_j_nanoen_2024_109503
crossref_primary_10_1126_sciadv_abb2412
crossref_primary_10_1038_s41893_021_00701_x
crossref_primary_10_1002_aenm_201902529
crossref_primary_10_1016_j_matt_2021_08_012
crossref_primary_10_1021_acsami_2c01654
crossref_primary_10_3390_polym14091853
crossref_primary_10_1016_j_surfin_2024_103954
crossref_primary_10_1016_j_mset_2021_07_003
crossref_primary_10_1002_admi_202001509
crossref_primary_10_1002_adfm_202314408
crossref_primary_10_1021_acsami_0c22993
crossref_primary_10_1016_j_cej_2022_134566
crossref_primary_10_3390_ma15062254
crossref_primary_10_3390_nano13111760
crossref_primary_10_1002_advs_202304733
crossref_primary_10_1016_j_nanoen_2023_108981
crossref_primary_10_1016_j_nanoen_2020_105377
crossref_primary_10_1039_C9TA00398C
crossref_primary_10_1002_adfm_202405414
crossref_primary_10_1016_j_mtsust_2024_100685
crossref_primary_10_1016_j_cej_2020_128328
crossref_primary_10_1016_j_cej_2023_145226
crossref_primary_10_33609_2708_129X_87_08_2021_63_81
crossref_primary_10_1039_D4SE01811G
crossref_primary_10_1002_smll_202103510
crossref_primary_10_1039_D0EE01967D
crossref_primary_10_1016_j_nanoen_2020_104708
crossref_primary_10_1002_advs_201903331
crossref_primary_10_1002_solr_202000589
crossref_primary_10_1021_acs_cgd_1c01494
crossref_primary_10_1016_j_dyepig_2021_109255
crossref_primary_10_1016_j_nanoen_2019_05_072
crossref_primary_10_1016_j_nanoen_2021_106853
crossref_primary_10_1002_adma_202312679
crossref_primary_10_1002_ange_202213560
crossref_primary_10_1002_solr_202300650
crossref_primary_10_3390_nano12071046
crossref_primary_10_1002_adfm_202004652
crossref_primary_10_1039_D1QM00616A
crossref_primary_10_1016_j_apsusc_2022_156229
crossref_primary_10_1134_S0036024422010149
crossref_primary_10_1021_acsnano_4c12107
crossref_primary_10_1002_adom_202100860
crossref_primary_10_1007_s12200_018_0847_4
crossref_primary_10_1021_acsomega_1c01074
crossref_primary_10_1088_1361_6463_ab60ec
crossref_primary_10_1002_adfm_201807661
crossref_primary_10_1016_j_mser_2023_100727
crossref_primary_10_1088_2058_8585_ac8753
crossref_primary_10_1002_aenm_202001869
crossref_primary_10_1021_acs_chemmater_9b01650
crossref_primary_10_1007_s10854_021_07304_4
crossref_primary_10_1016_j_rser_2020_110207
crossref_primary_10_1016_j_cej_2021_133195
crossref_primary_10_1016_j_cej_2024_158496
crossref_primary_10_1063_1_5144101
crossref_primary_10_1021_jacs_1c02118
crossref_primary_10_1021_acsaem_1c03311
crossref_primary_10_3390_ma13184086
crossref_primary_10_1016_j_jpowsour_2019_227362
crossref_primary_10_3390_en16135015
crossref_primary_10_1002_ange_201909291
crossref_primary_10_1021_acsaelm_9b00475
crossref_primary_10_1002_adfm_201902629
crossref_primary_10_1021_acs_nanolett_8b01480
crossref_primary_10_1038_s41893_023_01181_x
crossref_primary_10_1002_aenm_202001610
crossref_primary_10_1007_s11664_024_11345_w
crossref_primary_10_1016_j_isci_2018_10_020
crossref_primary_10_1021_acsami_0c11164
crossref_primary_10_7498_aps_71_20220359
crossref_primary_10_26599_EMD_2024_9370031
crossref_primary_10_1038_s41566_023_01180_6
crossref_primary_10_1002_aenm_202101383
crossref_primary_10_1016_j_apsusc_2020_145638
crossref_primary_10_1002_solr_202000369
crossref_primary_10_1002_cssc_202300257
crossref_primary_10_1063_5_0047616
crossref_primary_10_1002_aenm_201904050
crossref_primary_10_1016_j_dyepig_2020_108786
crossref_primary_10_1016_j_orgel_2019_105598
crossref_primary_10_1002_adfm_202206585
crossref_primary_10_1007_s40843_020_1625_2
crossref_primary_10_1021_acsami_1c22396
crossref_primary_10_1039_D3TA03423B
crossref_primary_10_1021_acs_jpcc_4c01839
crossref_primary_10_1016_j_jpowsour_2020_228665
crossref_primary_10_1021_acsami_3c00358
crossref_primary_10_1088_1361_6528_acd0b6
crossref_primary_10_1002_adfm_202209290
crossref_primary_10_1002_adma_202205143
crossref_primary_10_1021_acsaem_4c02404
crossref_primary_10_1039_D0TC06049F
crossref_primary_10_1021_acsami_0c18108
crossref_primary_10_1002_adts_202200652
crossref_primary_10_1039_D0EE04013D
crossref_primary_10_1016_j_joule_2021_04_003
crossref_primary_10_1021_acsami_1c23115
crossref_primary_10_3788_LOP220429
crossref_primary_10_1039_D1TA10388A
crossref_primary_10_1016_j_inoche_2024_112565
crossref_primary_10_1016_j_nanoen_2020_104480
crossref_primary_10_1039_C8EE03051K
crossref_primary_10_1039_D4TA04233F
crossref_primary_10_1002_adfm_201900221
crossref_primary_10_1002_adma_201805843
crossref_primary_10_1002_solr_201900413
crossref_primary_10_1002_solr_202400736
crossref_primary_10_1016_j_jpowsour_2020_228811
crossref_primary_10_1039_C9TA07349C
crossref_primary_10_33609_0041_6045_85_9_2019_31_41
crossref_primary_10_1039_C9TA05308E
crossref_primary_10_1002_adfm_202300552
crossref_primary_10_1557_s43580_023_00559_5
crossref_primary_10_1021_acsenergylett_2c02060
crossref_primary_10_1021_acsnano_1c02191
crossref_primary_10_1002_aenm_201903106
crossref_primary_10_1038_s43246_022_00327_2
crossref_primary_10_1039_D1TC02726C
crossref_primary_10_1007_s12274_020_2805_x
crossref_primary_10_1016_j_mssp_2024_108793
crossref_primary_10_1016_j_jechem_2020_05_050
crossref_primary_10_1016_j_electacta_2020_136387
crossref_primary_10_1021_acs_energyfuels_0c00485
crossref_primary_10_1002_aenm_202203471
crossref_primary_10_1002_smtd_202400709
crossref_primary_10_1021_acsnano_3c11642
crossref_primary_10_1039_D1TC02685B
crossref_primary_10_1021_acsami_4c09637
crossref_primary_10_1007_s40820_023_01039_z
crossref_primary_10_1039_D2TC02110B
crossref_primary_10_1021_acsaelm_1c00783
crossref_primary_10_1002_smll_202100678
crossref_primary_10_1021_acsenergylett_0c01240
crossref_primary_10_1002_eem2_12696
crossref_primary_10_1002_adfm_201808833
crossref_primary_10_1021_acsami_9b18082
crossref_primary_10_1021_acsaem_1c03485
crossref_primary_10_1021_acssuschemeng_9b03058
crossref_primary_10_1038_s41377_024_01461_x
crossref_primary_10_1021_acsami_1c02728
crossref_primary_10_1021_accountsmr_1c00169
crossref_primary_10_1002_adfm_202006243
crossref_primary_10_1002_adfm_202008300
crossref_primary_10_1039_D4EE04209C
crossref_primary_10_3390_nano14110956
crossref_primary_10_1016_j_nanoen_2023_108326
crossref_primary_10_1039_D0TA12286F
crossref_primary_10_1021_acsaem_3c00264
crossref_primary_10_1002_solr_201900319
crossref_primary_10_1039_D0TA10242C
crossref_primary_10_3389_fchem_2019_00050
crossref_primary_10_1002_adma_201803515
crossref_primary_10_1117_1_JPE_10_042003
crossref_primary_10_1002_aenm_202100493
crossref_primary_10_1002_cphc_201900393
crossref_primary_10_1021_jacs_0c09845
crossref_primary_10_1002_solr_202000205
crossref_primary_10_1002_adma_201804284
crossref_primary_10_1002_anie_201909291
crossref_primary_10_1002_aenm_202200186
crossref_primary_10_1002_adfm_202006213
crossref_primary_10_1021_acsenergylett_4c00961
crossref_primary_10_1021_acsenergylett_9b01356
crossref_primary_10_1016_j_cej_2021_133227
crossref_primary_10_1021_acs_inorgchem_3c01618
crossref_primary_10_1016_j_cej_2019_123677
crossref_primary_10_1016_j_nantod_2021_101164
crossref_primary_10_1016_j_solener_2021_03_036
crossref_primary_10_1016_j_jechem_2020_09_036
crossref_primary_10_1002_admt_201900311
crossref_primary_10_1039_D0TA10581C
crossref_primary_10_1021_acs_jpclett_3c03087
crossref_primary_10_1039_D0NJ04157B
crossref_primary_10_1007_s11664_020_08264_x
crossref_primary_10_1039_C9TA08130E
crossref_primary_10_1002_cssc_202402549
crossref_primary_10_1021_acsaem_0c00756
crossref_primary_10_1016_j_pquantelec_2022_100438
crossref_primary_10_1002_chem_202000005
crossref_primary_10_1007_s11664_020_08249_w
crossref_primary_10_1002_adfm_202103847
crossref_primary_10_1002_solr_202200355
crossref_primary_10_1021_acsami_8b15962
crossref_primary_10_1038_s41377_021_00662_y
crossref_primary_10_1021_acsami_3c07585
crossref_primary_10_1016_j_jechem_2020_08_012
crossref_primary_10_1002_er_7321
crossref_primary_10_1002_adom_202001647
crossref_primary_10_1002_solr_202200224
crossref_primary_10_1021_acsami_8b18307
crossref_primary_10_1039_D1NJ05232B
crossref_primary_10_1002_anie_202213560
crossref_primary_10_1002_adom_202100133
crossref_primary_10_1186_s11671_018_2841_6
crossref_primary_10_1002_adfm_202205289
crossref_primary_10_1016_j_physrep_2024_01_004
crossref_primary_10_3390_nano8110897
crossref_primary_10_1002_advs_202206331
crossref_primary_10_1016_j_xcrp_2021_100450
crossref_primary_10_1002_solr_202100639
crossref_primary_10_1021_acs_chemmater_9b01268
crossref_primary_10_1021_acsenergylett_1c01126
crossref_primary_10_1002_solr_202000502
crossref_primary_10_1021_acs_jpclett_1c00714
crossref_primary_10_1039_D1CC01519B
crossref_primary_10_1016_j_joule_2023_09_007
crossref_primary_10_1016_j_mser_2018_12_001
crossref_primary_10_1002_aelm_202000604
crossref_primary_10_1038_s41560_019_0406_2
crossref_primary_10_1039_C8CC05517C
crossref_primary_10_1039_D1DT02991F
crossref_primary_10_1039_D3NR01390A
crossref_primary_10_1016_j_jechem_2021_09_017
crossref_primary_10_1002_adfm_202000457
crossref_primary_10_1021_acsenergylett_3c02357
crossref_primary_10_3390_polym15030772
crossref_primary_10_2139_ssrn_3995897
crossref_primary_10_1002_smtd_201900831
crossref_primary_10_1016_j_jallcom_2021_161247
crossref_primary_10_1021_acsami_1c23292
crossref_primary_10_1021_acsaem_9b00859
crossref_primary_10_1039_D3DT02930A
crossref_primary_10_1126_sciadv_abi8249
crossref_primary_10_1021_acsenergylett_0c00871
crossref_primary_10_1007_s11664_022_09944_6
crossref_primary_10_3390_inorganics12040123
crossref_primary_10_1016_j_electacta_2022_140602
crossref_primary_10_1002_aenm_202102856
crossref_primary_10_1002_aenm_202102730
crossref_primary_10_1016_j_solmat_2022_112177
crossref_primary_10_1038_s41560_020_00716_2
crossref_primary_10_3390_coatings12020252
crossref_primary_10_3390_nano13091492
crossref_primary_10_1016_j_inoche_2024_113115
crossref_primary_10_1016_j_surfin_2024_105593
crossref_primary_10_1016_j_apsusc_2021_150778
crossref_primary_10_1038_s41598_020_63745_7
crossref_primary_10_1002_solr_202000408
crossref_primary_10_1002_solr_202400476
crossref_primary_10_1039_C8RA08563C
crossref_primary_10_1002_adfm_201900966
crossref_primary_10_3390_ma17184522
crossref_primary_10_1016_j_nanoen_2018_09_037
crossref_primary_10_1002_adom_202202982
crossref_primary_10_6023_cjoc202009033
crossref_primary_10_1002_solr_202200025
crossref_primary_10_34133_2021_9797058
crossref_primary_10_1016_j_solmat_2020_110527
crossref_primary_10_1039_C9TA12188A
crossref_primary_10_1021_acsaelm_0c00825
crossref_primary_10_1016_j_progsolidstchem_2024_100463
crossref_primary_10_1039_C8TC06330C
crossref_primary_10_1016_j_solener_2019_06_042
crossref_primary_10_1039_D4TA03699A
crossref_primary_10_1002_solr_201800177
crossref_primary_10_1021_acs_jpclett_9b00344
crossref_primary_10_1002_cphc_202200919
crossref_primary_10_1016_j_cej_2020_128068
crossref_primary_10_1007_s11082_022_03738_0
crossref_primary_10_1002_nano_202400020
crossref_primary_10_1016_j_expthermflusci_2019_03_021
crossref_primary_10_1021_acsami_9b20402
crossref_primary_10_1063_5_0037307
crossref_primary_10_1002_admt_202000960
crossref_primary_10_1021_acsenergylett_1c02580
crossref_primary_10_1515_revic_2024_0029
crossref_primary_10_1016_j_apsusc_2019_03_164
crossref_primary_10_1002_solr_202201002
crossref_primary_10_1063_5_0086599
crossref_primary_10_3390_ma17164029
crossref_primary_10_1016_j_nanoen_2023_109192
crossref_primary_10_1002_solr_202200156
crossref_primary_10_1021_acsami_9b01587
crossref_primary_10_1063_5_0228001
crossref_primary_10_1016_j_jmat_2021_08_007
crossref_primary_10_3389_fchem_2020_00754
crossref_primary_10_1002_aenm_201902600
crossref_primary_10_1039_D1TC02307A
crossref_primary_10_1088_1361_6463_ac2d63
crossref_primary_10_1021_acssuschemeng_0c05619
crossref_primary_10_1016_j_jlumin_2019_116984
crossref_primary_10_1016_j_rser_2021_111689
crossref_primary_10_1016_j_solener_2019_12_025
crossref_primary_10_1002_adma_201806095
crossref_primary_10_1039_C8TA12028E
crossref_primary_10_1039_D0QM00295J
crossref_primary_10_1039_C9QM00469F
crossref_primary_10_1039_C8TA12060A
Cites_doi 10.1002/adma.201304803
10.1021/nl504168q
10.1126/science.aan2301
10.1016/j.joule.2017.09.007
10.1039/C5EE00615E
10.1002/anie.201500014
10.1107/S0108768108032734
10.1021/acsenergylett.7b00847
10.1038/nenergy.2017.9
10.1002/admi.201700598
10.1039/C4TA04994B
10.1016/j.nanoen.2015.10.010
10.1126/science.aam6620
10.1002/aenm.201602349
10.1021/acs.jpclett.5b00480
10.1002/adma.201404189
10.1021/acs.accounts.5b00455
10.1038/ncomms6784
10.1002/cssc.201700584
10.1063/1.4928535
10.1039/C6EE02941H
10.1039/C7EE01675A
10.1002/aenm.201701640
10.1039/C5NR04250J
10.1038/nchem.2324
10.1002/adma.201600446
10.1002/adfm.201702613
10.1002/aenm.201602610
10.1038/srep37654
10.1021/acsnano.6b01904
10.1039/C6EE01987K
10.1038/nenergy.2015.17
10.1126/science.aah4046
10.1002/aenm.201501534
10.1039/C4EE04073B
10.1002/adma.201703852
10.1021/ja403344s
10.1021/acsenergylett.7b00137
10.1039/C6CS00942E
10.1002/aenm.201701569
10.1021/acsenergylett.7b00278
10.1002/aenm.201500486
10.1021/acs.jpclett.7b02128
10.1146/annurev-physchem-040215-112222
10.1038/nphoton.2013.342
10.1021/acs.jpclett.5b00289
10.1002/adma.201604186
10.1002/aenm.201701136
10.1126/science.1228604
10.1039/C5MH00154D
10.1002/anie.201405176
10.1021/acs.chemmater.6b03852
10.1021/jacs.5b01994
10.1021/acsenergylett.6b00327
10.1039/C6EE02139E
10.1038/nnano.2016.110
10.1021/acs.jpclett.7b00374
10.1002/adma.201505630
10.1021/acs.chemmater.5b01598
10.1002/adma.201505279
10.1002/aenm.201502466
10.1002/aenm.201700228
10.1002/anie.201601757
10.1021/acs.nanolett.7b03179
10.1021/acs.jpclett.7b01466
10.1038/nenergy.2015.16
10.1021/acs.jpcc.5b10728
10.1039/C6CC03740B
10.1002/aenm.201402321
10.1039/C5TA07008B
10.1126/science.aai9081
10.1002/adma.201606806
10.1039/C5CC08156D
10.1126/sciadv.1701293
10.1002/aenm.201602358
10.1002/smll.201601769
10.1002/adma.201602696
10.1038/nmat3011
10.1039/C6EE00612D
10.1002/aenm.201701048
10.1002/adma.201505241
10.1038/natrevmats.2016.100
10.1246/cl.150167
10.1002/adfm.201501264
10.1021/acs.jpcc.6b05667
10.1021/acsenergylett.7b00525
10.1002/admi.201500195
10.1002/adma.201600624
10.1021/acs.nanolett.5b00787
10.1002/adfm.201505215
10.1002/aenm.201500799
10.1002/aenm.201700264
10.1002/aenm.201601165
10.1073/pnas.1607471113
10.1002/adma.201702140
10.1039/C6EE00409A
10.1021/jp509753p
10.1021/acsenergylett.6b00320
10.1039/C5TA05286F
10.1002/admi.201500420
10.1039/C7EE02564E
10.1021/acs.jpclett.5b02651
10.1039/C7NR03507A
10.1002/aenm.201601575
10.1002/admi.201500837
10.1039/C5EE00222B
10.1002/aenm.201600014
10.1038/nmat4795
10.1021/nl500399m
10.1039/C5RA17129F
10.1021/am506672j
10.1021/acsami.7b11977
10.1021/acs.jpclett.6b02847
10.1038/nmat4388
10.1126/science.aam6323
10.1021/acsnano.7b04070
10.1039/C5TA02710A
10.1021/acs.nanolett.7b01092
10.1021/acs.chemmater.5b01933
10.1038/natrevmats.2015.7
10.1002/advs.201500301
10.1021/jacs.7b01439
10.1002/aenm.201700823
10.1021/acs.nanolett.6b03989
10.1021/jacs.5b11740
10.1002/aenm.201702365
10.1002/adma.201603923
10.1016/j.nanoen.2016.06.044
10.1126/sciadv.1700841
10.1016/j.rser.2017.08.077
10.1021/acs.chemmater.6b03564
10.1002/adma.201500523
10.1021/nl501982b
10.1002/aenm.201601055
10.1002/aenm.201600460
10.1002/adma.201600659
10.1021/acsnano.6b01535
10.1039/C6EE02650H
10.1021/acsami.7b13621
10.1038/nenergy.2016.149
10.1002/aenm.201502246
10.1039/C5TA09165A
10.1039/c3ee44174a
10.1063/1.4916345
10.1002/adma.201600619
10.1021/acsami.6b04760
10.1039/C7EE01931A
10.1016/j.nanoen.2016.02.025
10.1021/acsami.5b09442
10.1002/adfm.201401557
10.1021/acs.nanolett.5b00116
10.1016/j.electacta.2014.11.003
10.1021/acsenergylett.6b00236
10.1021/jacs.6b08790
10.1038/ncomms15684
10.1016/j.nanoen.2014.12.004
10.1002/adfm.201703704
10.1021/jacs.6b06291
10.1021/acs.jpclett.5b01406
10.1002/adma.201500465
10.1088/0957-4484/27/8/082001
10.1002/anie.201604399
10.1021/jz501983v
10.1002/pip.2871
10.1021/acs.accounts.5b00411
10.1002/adfm.201504949
10.1039/C5CC05205J
10.1002/pip.2978
10.1002/aenm.201502021
10.1002/adma.201501145
10.1038/nenergy.2016.148
10.1002/aelm.201700158
10.1021/jacs.7b04949
10.1002/aenm.201400812
10.1039/C5TA04239A
10.1038/ncomms8497
10.1038/nmat4014
10.1016/j.nanoen.2016.08.006
10.1021/acs.accounts.5b00433
10.1021/acs.chemmater.6b02583
10.1002/adma.201701221
10.1021/acsenergylett.7b00282
10.1021/jp412627n
10.1039/C6EE03014A
10.1039/C5TA02265G
10.1016/j.nanoen.2016.10.065
10.1002/adfm.201603023
10.1021/acs.nanolett.6b05177
10.1021/acsami.6b11757
10.1039/C7TA05428A
10.1039/C7TA00404D
10.1126/science.aaf9717
10.1002/aenm.201601768
10.1039/C4EE03773A
10.1021/acs.jpclett.6b00058
10.1021/acs.jpcc.6b04233
10.1002/adma.201605900
10.1021/acs.chemmater.6b04327
10.1186/s40508-016-0051-z
10.1002/adma.201504293
10.1039/c3ee40810h
10.1002/adma.201606363
10.1002/aenm.201601193
10.1021/acsenergylett.7b00589
10.1038/nphoton.2013.374
10.1002/anie.201503153
10.1021/acs.chemrev.6b00432
10.1039/C4EE03664F
10.1021/ja4132246
10.1038/ncomms8081
10.1002/adma.201504168
10.1021/acsenergylett.7b01151
10.1002/aenm.201701609
10.1002/aenm.201501453
10.1016/j.nanoen.2014.12.022
10.1021/acs.jpcc.7b02411
10.1021/ja809598r
10.1126/science.aaa9272
10.1002/adma.201501856
10.1039/C7EE00757D
10.1038/ncomms8410
10.1021/jacs.5b03796
10.1002/adma.201604493
10.1002/cssc.201600944
10.1039/C7TA00434F
10.1002/cssc.201701262
10.1021/acs.jpclett.5b02273
10.1002/anie.201600702
10.1002/adma.201700159
10.1039/C5NR08836D
10.1002/adfm.201702180
10.1039/C6CE00813E
10.1002/aenm.201501066
10.1021/nl403997a
10.1039/C5EE01720C
10.1039/C6EE00709K
10.1039/C5TC01856K
10.1038/ncomms11574
10.1002/adfm.201703068
10.1039/C6CS00122J
10.1039/C7TA05004F
10.1002/aenm.201600457
10.1039/C5EE03911H
10.1002/aenm.201500569
10.1021/acs.chemmater.6b02883
10.1039/C7EE00899F
10.1039/C5TA03865K
10.1021/acsenergylett.7b00644
10.1021/acs.nanolett.6b02158
10.1038/nphoton.2016.62
10.1021/nl504349z
10.1021/acsenergylett.7b00239
10.1039/C6EE02100J
10.1021/nn505723h
10.1038/nenergy.2017.38
10.1021/acsami.5b04695
10.1021/acsphotonics.6b00331
10.1002/adma.201704418
10.1021/jp500449z
10.1038/nenergy.2016.190
10.1038/nenergy.2016.195
10.1038/ncomms10214
10.1002/adma.201703737
10.1038/ncomms16045
10.1002/aenm.201700522
10.1038/ncomms11105
10.1002/adma.201606398
10.1021/ja512518r
10.1021/acs.inorgchem.6b01307
10.1002/adma.201604545
10.1021/am503610u
10.1021/acs.chemmater.5b03991
10.1021/nn506864k
10.1039/C6TA06152D
10.1038/s41560-017-0016-9
10.1021/ar600035e
10.1021/jacs.7b04981
10.1021/acs.jpclett.5b01698
10.1038/nenergy.2016.177
10.1016/j.nanoen.2016.10.041
10.1002/adma.201700183
10.1002/adma.201605005
10.1039/C4EE02833C
10.1021/jacs.6b00039
10.1038/ncomms12806
10.1021/acs.jpclett.6b00215
10.1021/acsenergylett.6b00499
10.1039/C6EE02013E
10.1126/science.aai8535
10.1002/adma.201703980
10.1002/admi.201600571
10.1038/nenergy.2017.102
10.1039/C4EE01076K
10.1002/aenm.201602400
10.1016/j.mser.2015.12.002
10.1021/acs.jpclett.7b00712
10.1063/1.4896779
10.1039/C5EE01265A
10.1016/j.eml.2016.06.006
10.1039/C7TA04544A
10.1002/adma.201301327
10.1002/adma.201401685
10.1016/j.nanoen.2017.05.049
10.1021/acsami.7b06001
10.1002/aenm.201500477
10.1021/jacs.5b10723
10.1038/nenergy.2016.142
10.1002/aenm.201600396
10.1021/acsenergylett.6b00116
10.1039/C6EE03352K
10.1038/nmat4473
10.1002/aelm.201700435
10.1002/aenm.201401943
10.1039/C5EE01169H
10.1021/jacs.5b08535
10.1002/aenm.201701038
10.1039/C5EE03806E
10.1002/aenm.201600386
10.1002/aenm.201700491
10.1002/aenm.201602432
10.1039/C7EE01096F
10.1002/cssc.201501659
10.1038/ncomms3885
10.1002/aenm.201602922
10.1002/aenm.201601307
10.1038/nphoton.2014.82
10.1021/acsenergylett.6b00060
10.1038/nenergy.2016.152
10.1002/adma.201700192
10.1039/C4EE03907F
10.1021/acsnano.6b05825
10.1038/ncomms8747
10.1126/science.aam5655
10.1039/C7EE01145H
10.1039/C6TA00577B
10.1002/aenm.201602121
10.1039/C5EE03315B
10.1039/C5EE03560K
10.1039/C6EE02390H
10.1002/adma.201603994
10.1002/aenm.201700763
10.1021/acs.inorgchem.6b01294
10.1021/acs.jpclett.6b00366
10.1002/adfm.201602803
10.1002/aenm.201701688
10.1002/aenm.201700576
10.1021/acs.accounts.5b00420
10.1039/C5EE03522H
10.1021/nl500544c
10.1039/C6EE02373H
10.1039/C6EE01137C
10.1002/anie.201706895
10.1002/aenm.201701883
10.1016/j.chempr.2016.10.002
10.1002/adma.201600969
10.1021/acs.chemmater.5b00129
10.1021/acsenergylett.6b00229
10.1021/acs.inorgchem.7b01094
10.1021/jacs.5b06493
10.1016/j.nanoen.2016.10.036
10.1038/nenergy.2017.18
10.1038/nnano.2015.230
10.1039/C5TA10696F
10.1039/C4CS00458B
10.1021/acs.nanolett.7b00722
10.1021/acs.chemmater.6b00711
10.1038/natrevmats.2017.42
10.1021/nn5036476
10.1038/srep04756
10.1021/acsnano.6b00225
10.1021/acsami.7b06816
10.1016/j.rser.2017.05.095
10.1039/C5CP03995A
10.1002/aenm.201602803
10.1002/admi.201700623
10.1002/smll.201403534
10.1038/ncomms10379
10.1002/solr.201700045
10.1016/j.enpol.2005.06.020
10.1002/adma.201300580
10.1016/j.joule.2017.11.006
10.1021/jacs.5b10614
10.1039/C7TA04225F
10.1002/adma.201600265
10.1021/nl500390f
10.1002/advs.201500353
10.1126/science.aad4424
10.1038/ncomms15330
10.1021/acs.jpclett.6b01951
10.1002/adma.201602785
10.1021/acsenergylett.6b00495
10.1021/acs.jpclett.6b00238
10.1039/C3EE43707H
10.1021/acs.jpclett.5b01696
10.1002/adfm.201703061
10.1039/C5TA09911K
10.1021/acs.nanolett.7b02532
10.1002/ange.201406466
10.1039/C5EE03394B
10.1038/natrevmats.2017.43
10.1002/aenm.201601128
10.1002/aenm.201701349
10.1039/C6EE03182J
10.1002/aenm.201501119
10.1039/C7TA09178H
10.1002/adma.201505140
10.1039/C6EE01037G
10.1039/C5TA09080F
10.1039/C5TA03456F
10.1002/aenm.201501606
10.1021/acs.nanolett.6b03857
10.1021/acs.chemrev.6b00136
10.1021/ic401215x
10.1002/aenm.201500568
10.1021/acsami.6b06164
10.1002/advs.201600027
10.1021/acsnano.6b02613
10.1038/nmat4572
10.1002/aenm.201501056
10.1002/adma.201504144
10.1039/C5EE02608C
10.1021/acsnano.5b07043
10.1038/nature18306
10.1002/aenm.201602599
10.1039/C6EE03397K
10.1016/j.solmat.2016.04.037
10.1021/acsami.5b12740
10.1021/acs.chemmater.5b01909
10.1038/nenergy.2016.93
10.1021/cm504022q
10.1002/adfm.201401658
10.1002/aenm.201601251
10.1002/admi.201700007
10.1063/1.4905932
10.1002/aenm.201501406
10.1038/ncomms9932
10.1038/nature23877
10.1016/j.joule.2017.09.017
10.1002/adma.201604984
10.1002/admi.201600122
10.1039/C4TA04482G
10.1039/C7EE00421D
10.1002/aenm.201600502
10.1021/acs.nanolett.5b04157
10.1126/science.aao5561
10.1021/acs.chemrev.5b00715
10.1002/adma.201504555
10.1002/adma.201306217
10.1021/acsenergylett.6b00672
10.1126/science.aad5891
10.1038/nenergy.2015.12
10.1021/jz500279b
10.1002/adma.201503298
10.1002/aenm.201501320
10.1021/acs.jpcc.6b04642
10.1021/acs.jpclett.5b00504
10.1021/jacs.5b00321
10.1039/C5EE03874J
10.1038/s41598-017-11193-1
10.1002/aenm.201700012
10.1126/science.1254050
10.1021/acsenergylett.6b00657
10.1039/C5TA04695E
10.1002/adfm.201502340
10.1002/aenm.201600401
10.1039/C7TA06163C
10.1038/s41570-017-0095
10.1039/C5TA08963H
10.1002/aenm.201700758
10.1021/acsenergylett.6b00680
10.1002/aenm.201701544
10.1002/cssc.201700635
10.1126/science.aad5845
10.1021/acs.nanolett.7b03225
10.1038/nphoton.2016.3
10.1021/acs.jpclett.6b02309
10.1002/solr.201700082
10.1021/acs.nanolett.7b01500
10.1038/nenergy.2016.48
10.1038/ncomms13422
10.1002/adma.201604056
10.1002/adma.201603062
10.1021/acs.chemmater.5b00660
10.1002/aenm.201701935
10.1002/aenm.201602333
10.1002/adma.201606555
10.1021/acsenergylett.7b00667
10.1038/nenergy.2016.207
10.1021/acs.jpclett.5b00010
10.1021/ja512117e
10.1002/aenm.201602761
10.1016/j.nanoen.2017.08.014
10.1021/jacs.6b04519
10.1109/PVSC.2012.6318129
10.1002/aenm.201700623
10.1002/anie.201606574
10.1039/C6TA05095F
10.1002/adma.201601745
10.1021/acsenergylett.6b00158
10.1016/j.nanoen.2016.08.035
10.1126/science.1254763
10.1039/C5EE02733K
10.1002/cssc.201700271
10.1021/acs.jpclett.5b02888
10.1038/nmat4150
10.1002/admi.201600948
10.1002/adma.201504260
10.1002/adma.201600669
10.1002/admi.201700731
10.1039/C5TC00622H
10.1039/C5GC02734A
10.1021/acs.jpcc.5b11144
10.1021/ja5033259
10.1021/acs.nanolett.6b04015
10.1039/C7EE02185B
10.1021/acsenergylett.7b00357
10.1016/j.nantod.2015.04.009
10.1038/natrevmats.2016.99
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.201800455
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1463192
29883006
10_1002_adma_201800455
ADMA201800455
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1608279
– fundername: Boeing‐Johnson Foundation
– fundername: Natural Science Foundation of Jiangxi Province, China
  funderid: 20161ACB21004
– fundername: National Natural Science Foundation of China
  funderid: 61504053
– fundername: Department of Energy SunShot
  funderid: DE‐EE 0006710
– fundername: Office of Naval Research
  funderid: N00014‐17‐1‐2260
– fundername: Asian Office of Aerospace R&D
  funderid: FA2386‐15‐1‐4106
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c5595-4200b2b2e65db363457b821126599164b42dad0274f2a3fcebcb4626bffcff4b3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Sep 25 05:37:13 EDT 2023
Fri Jul 11 01:40:40 EDT 2025
Fri Jul 25 07:10:29 EDT 2025
Wed Feb 19 02:40:59 EST 2025
Tue Jul 01 00:44:42 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:30:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords interlayers
device architecture
charge-transporting materials
interfaces
device efficiency and stability
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5595-4200b2b2e65db363457b821126599164b42dad0274f2a3fcebcb4626bffcff4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
DE‐EE 0006710
USDOE
ORCID 0000-0002-9219-7749
0000000292197749
OpenAccessLink https://www.osti.gov/biblio/1463192
PMID 29883006
PQID 2083686727
PQPubID 2045203
PageCount 45
ParticipantIDs osti_scitechconnect_1463192
proquest_miscellaneous_2052808826
proquest_journals_2083686727
pubmed_primary_29883006
crossref_citationtrail_10_1002_adma_201800455
crossref_primary_10_1002_adma_201800455
wiley_primary_10_1002_adma_201800455_ADMA201800455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Aug
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References December 2017
2017; 80
2013; 4
2006; 34
2014; 26
2016; 30
2014; 24
2017; 550
2013; 8
2013; 6
2014; 136
2018; 8
2018; 3
2018; 2
2018; 5
2015; 137
2013; 52
2016; 156
2014; 14
2014; 13
2018; 30
2016; 49
2014; 126
2016; 45
2015; 51
2015; 54
2016; 10
2016; 18
2016; 16
2016; 15
2018; 26
2017; 139
2016; 11
2015; 350
2016; 4
2016; 6
2016; 7
2016; 1
2016; 2
2016; 3
2017; 56
2016; 28
2018; 11
2016; 27
2016; 26
2016; 8
2016; 9
2016; 22
2017; 5
2017; 40
2017; 7
2017; 8
2017; 1
2017; 17135
2017; 2
2013; 25
2017; 3
2017; 4
2017; 46
2016; 101
2011; 10
2015; 106
2018; 82
2015; 348
2015; 107
2017; 355
2017; 356
2017; 9
2017; 357
2017; 358
2014; 5
2014; 4
2017; 38
2015; 44
2016; 113
2016; 354
2016; 352
2016; 116
2008; 64
2017; 121
2014; 8
2014; 7
2014; 6
2012; 338
2016; 351
2014; 53
2014; 118
2015; 2
2015; 12
2015; 15
2015; 14
2015; 6
2015; 17
2015; 5
2015; 3
2015; 18
2012
2017; 25
2017; 27
2015; 11
2015; 10
2016; 52
2017; 29
2009; 131
2015; 9
2015; 8
2015; 7
2016; 120
2016; 55
2015; 151
2014; 105
2015; 25
2015; 27
2017; 17
2016; 536
2017; 16
2017; 11
2017; 10
2017; 13
2017
2013; 135
2016; 138
2007; 40
2014; 345
2016; 67
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_469_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_423_1
e_1_2_9_446_1
e_1_2_9_400_1
e_1_2_9_292_1
e_1_2_9_107_1
e_1_2_9_337_1
e_1_2_9_314_1
e_1_2_9_390_1
e_1_2_9_183_1
Rolston N. (e_1_2_9_497_1) 2017
e_1_2_9_160_1
e_1_2_9_521_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_412_1
e_1_2_9_458_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_435_1
e_1_2_9_280_1
e_1_2_9_325_1
e_1_2_9_348_1
e_1_2_9_510_1
e_1_2_9_195_1
e_1_2_9_302_1
e_1_2_9_172_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_217_1
e_1_2_9_401_1
e_1_2_9_447_1
e_1_2_9_270_1
e_1_2_9_293_1
e_1_2_9_129_1
e_1_2_9_106_1
e_1_2_9_338_1
e_1_2_9_522_1
e_1_2_9_315_1
e_1_2_9_391_1
e_1_2_9_182_1
e_1_2_9_46_1
e_1_2_9_228_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_413_1
e_1_2_9_436_1
e_1_2_9_459_1
e_1_2_9_5_1
e_1_2_9_281_1
e_1_2_9_118_1
e_1_2_9_326_1
e_1_2_9_349_1
e_1_2_9_303_1
e_1_2_9_69_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_511_1
e_1_2_9_31_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_339_1
e_1_2_9_402_1
e_1_2_9_425_1
e_1_2_9_448_1
e_1_2_9_294_1
e_1_2_9_109_1
e_1_2_9_271_1
e_1_2_9_316_1
e_1_2_9_392_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_523_1
e_1_2_9_185_1
e_1_2_9_500_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_437_1
e_1_2_9_414_1
e_1_2_9_490_1
e_1_2_9_282_1
e_1_2_9_327_1
e_1_2_9_380_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_304_1
e_1_2_9_229_1
e_1_2_9_174_1
e_1_2_9_512_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_317_1
e_1_2_9_272_1
e_1_2_9_295_1
e_1_2_9_426_1
e_1_2_9_108_1
e_1_2_9_403_1
e_1_2_9_449_1
e_1_2_9_219_1
e_1_2_9_370_1
e_1_2_9_184_1
e_1_2_9_524_1
e_1_2_9_161_1
e_1_2_9_501_1
e_1_2_9_393_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_260_1
e_1_2_9_283_1
e_1_2_9_328_1
e_1_2_9_415_1
e_1_2_9_491_1
e_1_2_9_438_1
e_1_2_9_305_1
e_1_2_9_207_1
e_1_2_9_381_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_513_1
e_1_2_9_150_1
e_1_2_9_318_1
e_1_2_9_90_1
e_1_2_9_273_1
e_1_2_9_480_1
e_1_2_9_296_1
e_1_2_9_250_1
e_1_2_9_427_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_525_1
e_1_2_9_502_1
e_1_2_9_371_1
e_1_2_9_394_1
e_1_2_9_306_1
e_1_2_9_284_1
e_1_2_9_329_1
e_1_2_9_492_1
e_1_2_9_261_1
e_1_2_9_416_1
e_1_2_9_199_1
e_1_2_9_439_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_514_1
e_1_2_9_382_1
e_1_2_9_526_1
e_1_2_9_319_1
e_1_2_9_91_1
e_1_2_9_274_1
e_1_2_9_297_1
e_1_2_9_481_1
e_1_2_9_251_1
e_1_2_9_405_1
e_1_2_9_428_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_503_1
e_1_2_9_395_1
e_1_2_9_372_1
e_1_2_9_515_1
e_1_2_9_307_1
e_1_2_9_80_1
e_1_2_9_285_1
e_1_2_9_470_1
e_1_2_9_493_1
e_1_2_9_262_1
e_1_2_9_417_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_360_1
e_1_2_9_383_1
e_1_2_9_504_1
e_1_2_9_35_1
e_1_2_9_298_1
e_1_2_9_12_1
e_1_2_9_275_1
e_1_2_9_482_1
e_1_2_9_252_1
e_1_2_9_406_1
e_1_2_9_429_1
e_1_2_9_166_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_350_1
e_1_2_9_373_1
e_1_2_9_396_1
e_1_2_9_308_1
e_1_2_9_516_1
e_1_2_9_24_1
e_1_2_9_286_1
e_1_2_9_263_1
e_1_2_9_471_1
e_1_2_9_240_1
e_1_2_9_494_1
Wang Z. (e_1_2_9_424_1) 2017; 17135
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_418_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_384_1
e_1_2_9_361_1
e_1_2_9_505_1
e_1_2_9_276_1
e_1_2_9_299_1
e_1_2_9_13_1
e_1_2_9_230_1
e_1_2_9_460_1
e_1_2_9_483_1
e_1_2_9_397_1
e_1_2_9_188_1
e_1_2_9_407_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_374_1
e_1_2_9_351_1
e_1_2_9_287_1
e_1_2_9_309_1
e_1_2_9_517_1
e_1_2_9_264_1
e_1_2_9_241_1
e_1_2_9_472_1
e_1_2_9_495_1
Verma D. (e_1_2_9_404_1) 2012
e_1_2_9_177_1
e_1_2_9_419_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_362_1
e_1_2_9_385_1
e_1_2_9_506_1
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_277_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_461_1
e_1_2_9_484_1
e_1_2_9_375_1
e_1_2_9_398_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_408_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_352_1
e_1_2_9_450_1
e_1_2_9_496_1
e_1_2_9_265_1
e_1_2_9_83_1
e_1_2_9_288_1
e_1_2_9_518_1
e_1_2_9_60_1
e_1_2_9_242_1
e_1_2_9_473_1
e_1_2_9_111_1
e_1_2_9_386_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_363_1
e_1_2_9_340_1
e_1_2_9_507_1
e_1_2_9_485_1
e_1_2_9_232_1
e_1_2_9_255_1
e_1_2_9_72_1
e_1_2_9_95_1
e_1_2_9_278_1
e_1_2_9_462_1
e_1_2_9_353_1
e_1_2_9_399_1
e_1_2_9_409_1
e_1_2_9_376_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_330_1
e_1_2_9_451_1
e_1_2_9_474_1
e_1_2_9_519_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_84_1
e_1_2_9_266_1
e_1_2_9_289_1
e_1_2_9_220_1
e_1_2_9_364_1
e_1_2_9_387_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_110_1
e_1_2_9_341_1
e_1_2_9_440_1
e_1_2_9_463_1
e_1_2_9_486_1
e_1_2_9_210_1
e_1_2_9_256_1
e_1_2_9_233_1
e_1_2_9_279_1
e_1_2_9_508_1
Remeika M. (e_1_2_9_53_1) 2017
e_1_2_9_92_1
e_1_2_9_331_1
e_1_2_9_354_1
e_1_2_9_377_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_475_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_498_1
e_1_2_9_267_1
e_1_2_9_81_1
e_1_2_9_452_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_342_1
e_1_2_9_388_1
e_1_2_9_365_1
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_257_1
e_1_2_9_464_1
e_1_2_9_487_1
e_1_2_9_509_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_441_1
e_1_2_9_332_1
e_1_2_9_378_1
e_1_2_9_100_1
e_1_2_9_355_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_245_1
e_1_2_9_476_1
e_1_2_9_499_1
e_1_2_9_222_1
e_1_2_9_268_1
e_1_2_9_82_1
e_1_2_9_430_1
e_1_2_9_453_1
e_1_2_9_320_1
e_1_2_9_343_1
e_1_2_9_366_1
e_1_2_9_389_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_29_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_465_1
e_1_2_9_488_1
e_1_2_9_212_1
e_1_2_9_258_1
e_1_2_9_442_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_333_1
e_1_2_9_356_1
e_1_2_9_379_1
e_1_2_9_310_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_246_1
e_1_2_9_269_1
e_1_2_9_477_1
e_1_2_9_454_1
e_1_2_9_2_1
e_1_2_9_431_1
Qiu L. (e_1_2_9_7_1) 2017
e_1_2_9_138_1
e_1_2_9_321_1
e_1_2_9_367_1
e_1_2_9_344_1
e_1_2_9_115_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_466_1
e_1_2_9_489_1
e_1_2_9_236_1
e_1_2_9_259_1
e_1_2_9_76_1
Chen W. (e_1_2_9_253_1) 2015; 350
e_1_2_9_443_1
e_1_2_9_420_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_334_1
e_1_2_9_357_1
e_1_2_9_125_1
e_1_2_9_311_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_478_1
e_1_2_9_65_1
e_1_2_9_247_1
e_1_2_9_432_1
e_1_2_9_455_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_322_1
e_1_2_9_345_1
e_1_2_9_368_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_467_1
e_1_2_9_214_1
e_1_2_9_96_1
e_1_2_9_237_1
e_1_2_9_421_1
e_1_2_9_444_1
e_1_2_9_290_1
e_1_2_9_128_1
e_1_2_9_335_1
e_1_2_9_358_1
e_1_2_9_105_1
e_1_2_9_312_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_479_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_456_1
e_1_2_9_4_1
e_1_2_9_433_1
e_1_2_9_410_1
e_1_2_9_323_1
e_1_2_9_117_1
e_1_2_9_346_1
e_1_2_9_369_1
e_1_2_9_193_1
e_1_2_9_300_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_468_1
e_1_2_9_97_1
e_1_2_9_445_1
e_1_2_9_291_1
e_1_2_9_422_1
e_1_2_9_127_1
e_1_2_9_336_1
e_1_2_9_104_1
e_1_2_9_359_1
e_1_2_9_313_1
e_1_2_9_180_1
e_1_2_9_520_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_434_1
e_1_2_9_457_1
e_1_2_9_3_1
e_1_2_9_411_1
e_1_2_9_139_1
e_1_2_9_324_1
e_1_2_9_347_1
e_1_2_9_116_1
e_1_2_9_301_1
e_1_2_9_192_1
References_xml – volume: 3
  start-page: 19353
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1500569
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1700264
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 9063
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 954
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 1600502
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 16105
  year: 2015
  publication-title: APL Mater.
– volume: 8
  start-page: 1544
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 3434
  year: 2016
  publication-title: Nano Lett.
– volume: 11
  start-page: 9176
  year: 2017
  publication-title: ACS Nano
– volume: 8
  start-page: 1200
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2472
  year: 2015
  publication-title: Small
– volume: 10
  start-page: 2095
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 769
  year: 2017
  publication-title: Joule
– volume: 1
  start-page: 266
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 17018
  year: 2017
  publication-title: Nat. Energy
– volume: 6
  start-page: 755
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 16
  start-page: 7739
  year: 2016
  publication-title: Nano Lett.
– volume: 113
  start-page: 11694
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 5778
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 6693
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 7378
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 242
  year: 2016
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1605005
  year: 2017
  publication-title: Adv. Mater.
– start-page: 1700435
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 7
  start-page: 1602922
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1602121
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 10258
  year: 2016
  publication-title: ACS Nano
– volume: 27
  start-page: 7874
  year: 2015
  publication-title: Adv. Mater.
– volume: 40
  start-page: 793
  year: 2007
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 19847
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 51
  year: 2016
  publication-title: Nano Energy
– volume: 17
  start-page: 5206
  year: 2017
  publication-title: Nano Lett.
– volume: 45
  start-page: 655
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 337
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 7410
  year: 2015
  publication-title: Nat. Commun.
– volume: 26
  start-page: 7443
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 1700045
  year: 2017
  publication-title: Sol. RRL
– volume: 2
  start-page: 1841
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 1700228
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 16207
  year: 2017
  publication-title: Nat. Energy
– volume: 27
  start-page: 4013
  year: 2015
  publication-title: Adv. Mater.
– volume: 54
  start-page: 7905
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 1600457
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1601768
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 387
  year: 2016
  publication-title: Nano Energy
– volume: 14
  start-page: 5561
  year: 2014
  publication-title: Nano Lett.
– volume: 5
  start-page: 1500799
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 290
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 5594
  year: 2016
  publication-title: Nano Lett.
– volume: 26
  start-page: 3
  year: 2018
  publication-title: Prog. Photovoltaics: Res. Appl.
– volume: 1
  start-page: 757
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 1701349
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1507
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 6804
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1700082
  year: 2017
  publication-title: Sol. RRL
– volume: 8
  start-page: 2365
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 44
  start-page: 829
  year: 2015
  publication-title: Chem. Lett.
– volume: 358
  start-page: 768
  year: 2017
  publication-title: Science
– volume: 14
  start-page: 2168
  year: 2014
  publication-title: Nano Lett.
– volume: 10
  start-page: 1297
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1416
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 3466
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  start-page: 1700192
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 905
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 1601128
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 4633
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 16
  start-page: 7786
  year: 2016
  publication-title: Nano Lett.
– volume: 7
  start-page: 1602349
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 354
  start-page: 861
  year: 2016
  publication-title: Science
– volume: 6
  start-page: 1502246
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 107
  start-page: 63901
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 94290
  year: 2015
  publication-title: RSC Adv.
– volume: 2
  start-page: 782
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 204
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 2419
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 776
  year: 2016
  publication-title: Chem
– volume: 1
  start-page: 209
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 3675
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 1073
  year: 2015
  publication-title: Nat. Mater.
– volume: 29
  start-page: 1605900
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 16099
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 3
  start-page: e1700841
  year: 2017
  publication-title: Sci. Adv.
– volume: 2
  start-page: 16190
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 1601165
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 64
  start-page: 702
  year: 2008
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
– volume: 28
  start-page: 440
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1999
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 82
  start-page: 2346
  year: 2018
  publication-title: Renewable Sustainable Energy Rev.
– volume: 138
  start-page: 463
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1701038
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1701221
  year: 2017
  publication-title: Adv. Mater.
– volume: 350
  start-page: 1
  year: 2015
  publication-title: Science
– volume: 34
  start-page: 3218
  year: 2006
  publication-title: Energy Policy
– volume: 7
  start-page: 1148
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  start-page: 1604186
  year: 2017
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1603923
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 17043
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 5
  start-page: 1501320
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 5784
  year: 2014
  publication-title: Nat. Commun.
– volume: 351
  start-page: 151
  year: 2016
  publication-title: Science
– volume: 9
  start-page: 490
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1701609
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1700007
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 19267
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1701544
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1501056
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1700012
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 6385
  year: 2017
  publication-title: Nano Lett.
– volume: 5
  start-page: 11401
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 13130
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1704418
  year: 2017
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1199
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 1258
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 66
  year: 2017
  publication-title: Nano Energy
– volume: 2
  start-page: 846
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1500568
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 118
  start-page: 28494
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 1698
  year: 2015
  publication-title: Nano Lett.
– volume: 17
  start-page: 6863
  year: 2017
  publication-title: Nano Lett.
– volume: 8
  start-page: 1245
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 311
  year: 2016
  publication-title: Nano Energy
– volume: 28
  start-page: 3966
  year: 2016
  publication-title: Adv. Mater.
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 12
  start-page: 96
  year: 2015
  publication-title: Nano Energy
– volume: 6
  start-page: 1600460
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1700576
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 3128
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1601251
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 17038
  year: 2017
  publication-title: Nat. Energy
– volume: 27
  start-page: 2532
  year: 2015
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1701688
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1601307
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 358
  start-page: 1192
  year: 2017
  publication-title: Science
– volume: 8
  start-page: 15330
  year: 2017
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1703068
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 932
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 11851
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1604984
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 279
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 120
  start-page: 13995
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 662
  year: 2015
  publication-title: Nano Lett.
– volume: 137
  start-page: 7843
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1792
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 811
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 15017
  year: 2016
  publication-title: Nat. Energy
– volume: 28
  start-page: 6734
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 196
  year: 2016
  publication-title: Nat. Photonics
– volume: 16
  start-page: 522
  year: 2017
  publication-title: Nat. Mater.
– volume: 10
  start-page: 604
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 156
  start-page: 157
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 7
  start-page: 12806
  year: 2016
  publication-title: Nat. Commun.
– volume: 106
  start-page: 121104
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1700183
  year: 2017
  publication-title: Adv. Mater.
– volume: 17
  start-page: 2328
  year: 2017
  publication-title: Nano Lett.
– volume: 24
  start-page: 6046
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 3760
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 24254
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1860
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 2584
  year: 2014
  publication-title: Nano Lett.
– volume: 4
  start-page: 6185
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 352
  start-page: aad4424
  year: 2016
  publication-title: Science
– volume: 357
  start-page: 306
  year: 2017
  publication-title: Science
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 10786
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 595
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 18
  start-page: 165
  year: 2015
  publication-title: Nano Energy
– start-page: 002608
  year: 2012
  end-page: 002613
– volume: 137
  start-page: 6730
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 8990
  year: 2016
  publication-title: Adv. Mater.
– volume: 51
  start-page: 14917
  year: 2015
  publication-title: Chem. Commun.
– volume: 8
  start-page: 2928
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 19986
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1602610
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 849
  year: 2017
  publication-title: Nat. Energy
– volume: 7
  start-page: 995
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 7385
  year: 2016
  publication-title: Chem. Mater.
– volume: 7
  start-page: 11574
  year: 2016
  publication-title: Nat. Commun.
– volume: 9
  start-page: 30197
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1606363
  year: 2017
  publication-title: Adv. Mater.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– volume: 5
  start-page: 1402321
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16142
  year: 2016
  publication-title: Nat. Energy
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 4405
  year: 2015
  publication-title: Chem. Mater.
– volume: 25
  start-page: 6218
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 7
  start-page: 1602761
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 5056
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 53
  start-page: 12571
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 8631
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1702365
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 970
  year: 2016
  publication-title: Chem. Commun.
– volume: 28
  start-page: 2807
  year: 2016
  publication-title: Adv. Mater.
– volume: 56
  start-page: 3
  year: 2017
  publication-title: Inorg. Chem.
– year: 2017
  publication-title: Mater. Today Energy
– volume: 17
  start-page: 5140
  year: 2017
  publication-title: Nano Lett.
– volume: 356
  start-page: 167
  year: 2017
  publication-title: Science
– volume: 10
  start-page: 145
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 330
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 29
  start-page: 1604493
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 15897
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 95
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 6
  start-page: 1739
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 3727
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  start-page: 19288
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 536
  start-page: 312
  year: 2016
  publication-title: Nature
– volume: 30
  start-page: 417
  year: 2016
  publication-title: Nano Energy
– volume: 7
  start-page: 1700823
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 89
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 6306
  year: 2016
  publication-title: ACS Nano
– volume: 9
  start-page: 2686
  year: 2016
  publication-title: ChemSusChem
– volume: 3
  start-page: 8970
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 6305
  year: 2016
  publication-title: Chem. Mater.
– volume: 4
  start-page: 7
  year: 2016
  publication-title: Sustainable Chem. Processes
– volume: 137
  start-page: 4460
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 25896
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 3131
  year: 2016
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1606398
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 10214
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1601575
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1603994
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1953
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 11483
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2326
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 15016
  year: 2016
  publication-title: Nat. Energy
– volume: 25
  start-page: 4425
  year: 2013
  publication-title: Adv. Mater.
– volume: 8
  start-page: 32068
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1964
  year: 2017
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1700159
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1986
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 133
  year: 2013
  publication-title: Nat. Photonics
– volume: 9
  start-page: 13967
  year: 2017
  publication-title: Nanoscale
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 7
  start-page: 13422
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 17343
  year: 2015
  publication-title: Nanoscale
– volume: 6
  start-page: 852
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 30
  start-page: 1703737
  year: 2018
  publication-title: Adv. Mater.
– volume: 138
  start-page: 2649
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1700731
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 250
  year: 2014
  publication-title: Nat. Photonics
– volume: 80
  start-page: 1321
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 120
  start-page: 19531
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 3794
  year: 2017
  publication-title: ChemSusChem
– volume: 10
  start-page: 5479
  year: 2016
  publication-title: ACS Nano
– volume: 10
  start-page: 3854
  year: 2017
  publication-title: ChemSusChem
– volume: 56
  start-page: 9291
  year: 2017
  publication-title: Inorg. Chem.
– year: 2017
– volume: 350
  start-page: 917
  year: 2015
  publication-title: Science
– volume: 101
  start-page: 1
  year: 2016
  publication-title: Mater. Sci. Eng., R
– volume: 26
  start-page: 2950
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 5377
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 37654
  year: 2016
  publication-title: Sci. Rep.
– volume: 27
  start-page: 3632
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 27863
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 3397
  year: 2015
  publication-title: Chem. Mater.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 55
  start-page: 4280
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 118
  start-page: 16651
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 1600948
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 629
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 354
  start-page: 203
  year: 2016
  publication-title: Science
– volume: 6
  start-page: 7497
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1606806
  year: 2017
  publication-title: Adv. Mater.
– volume: 27
  start-page: 82001
  year: 2016
  publication-title: Nanotechnology
– volume: 28
  start-page: 9986
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 710
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 2885
  year: 2013
  publication-title: Nat. Commun.
– volume: 4
  start-page: 6091
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 3172
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 118
  start-page: 16995
  year: 2014
  publication-title: J. Phys. Chem. C
– year: 2017
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 353
  year: 2016
  publication-title: Extreme Mech. Lett.
– volume: 120
  start-page: 16399
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1701136
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 294
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 1401943
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 17738
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2473
  year: 2017
  publication-title: ChemSusChem
– volume: 2
  start-page: 1500195
  year: 2015
  publication-title: Adv. Mater. Interfaces
– volume: 7
  start-page: 1602333
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1655
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1678
  year: 2016
  publication-title: ACS Photonics
– volume: 138
  start-page: 11833
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1703980
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1601055
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 2118
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 4229
  year: 2015
  publication-title: Chem. Mater.
– volume: 6
  start-page: 1543
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 137
  start-page: 2674
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 16048
  year: 2016
  publication-title: Nat. Energy
– volume: 7
  start-page: 703
  year: 2015
  publication-title: Nat. Chem.
– volume: 1
  start-page: 16093
  year: 2016
  publication-title: Nat. Energy
– volume: 2
  start-page: 613
  year: 2015
  publication-title: Mater. Horiz.
– volume: 9
  start-page: 1955
  year: 2015
  publication-title: ACS Nano
– volume: 29
  start-page: 1606555
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1700763
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 7357
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1700522
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1600027
  year: 2016
  publication-title: Adv. Sci.
– volume: 5
  start-page: 1400812
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 26653
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 2118
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 1891
  year: 2016
  publication-title: Adv. Mater.
– volume: 52
  start-page: 8099
  year: 2016
  publication-title: Chem. Commun.
– volume: 4
  start-page: 4756
  year: 2014
  publication-title: Sci. Rep.
– volume: 28
  start-page: 6478
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604545
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1502021
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 92
  year: 2017
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 75
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 1530
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 120
  start-page: 893
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 15684
  year: 2017
  publication-title: Nat. Commun.
– volume: 1
  start-page: 659
  year: 2017
  publication-title: Joule
– volume: 7
  start-page: 1700623
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 10
  start-page: 382
  year: 2011
  publication-title: Nat. Mater.
– volume: 3
  start-page: 1600122
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 10
  start-page: 355
  year: 2015
  publication-title: Nano Today
– volume: 49
  start-page: 146
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 640
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 16152
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 46
  start-page: 1730
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1700158
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 55
  start-page: 8999
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 4276
  year: 2016
  publication-title: Nanoscale
– volume: 7
  start-page: 11105
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1701935
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 995
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 2531
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 59
  year: 2015
  publication-title: Nano Energy
– volume: 5
  start-page: 1501406
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 358
  start-page: 739
  year: 2017
  publication-title: Science
– volume: 10
  start-page: 516
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1501066
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 138
  start-page: 14998
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1702140
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 144
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 40
  start-page: 155
  year: 2017
  publication-title: Nano Energy
– volume: 17135
  start-page: 1
  year: 2017
  publication-title: Nat. Energy
– volume: 4
  start-page: 11688
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1602400
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 4764
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 3456
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1601193
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1502466
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 16195
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  start-page: 2041
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1700598
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 26
  start-page: 2041
  year: 2014
  publication-title: Adv. Mater.
– volume: 9
  start-page: 461
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 1703061
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 724
  year: 2014
  publication-title: Nano Lett.
– volume: 14
  start-page: 1032
  year: 2015
  publication-title: Nat. Mater.
– volume: 27
  start-page: 562
  year: 2015
  publication-title: Chem. Mater.
– volume: 15
  start-page: 3723
  year: 2015
  publication-title: Nano Lett.
– volume: 8
  start-page: 2298
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 1700623
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 9
  start-page: 41887
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1500486
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 269
  year: 2017
  publication-title: Nano Lett.
– volume: 10
  start-page: 1942
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1602599
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1439
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 323
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 67
  start-page: 65
  year: 2016
  publication-title: Annu. Rev. Phys. Chem.
– volume: 55
  start-page: 14522
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 17135
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 5122
  year: 2015
  publication-title: Chem. Mater.
– volume: 8
  start-page: 16045
  year: 2017
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2500
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2109
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1500301
  year: 2016
  publication-title: Adv. Sci.
– volume: 8
  start-page: 12701
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 1600571
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 2
  start-page: 16100
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 27
  start-page: 695
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 4960
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 151
  start-page: 21
  year: 2015
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 17042
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 2
  start-page: 168
  year: 2018
  publication-title: Joule
– volume: 29
  start-page: 2435
  year: 2017
  publication-title: Chem. Mater.
– volume: 550
  start-page: 92
  year: 2017
  publication-title: Nature
– volume: 28
  start-page: 3937
  year: 2016
  publication-title: Adv. Mater.
– volume: 105
  start-page: 133902
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: 14648
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 2591
  year: 2014
  publication-title: Nano Lett.
– volume: 8
  start-page: 1701883
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 535
  year: 2016
  publication-title: Nano Energy
– volume: 7
  start-page: 1700491
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1681
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 17009
  year: 2017
  publication-title: Nat. Energy
– volume: 27
  start-page: 1702613
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 6985
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 8681
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: 16177
  year: 2016
  publication-title: Nat. Energy
– volume: 27
  start-page: 1703704
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 11117
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 2528
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 13067
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 116
  start-page: 14675
  year: 2016
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1701048
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 15007
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 13
  start-page: 1601769
  year: 2017
  publication-title: Small
– volume: 138
  start-page: 8581
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 687
  year: 2016
  publication-title: ChemSusChem
– volume: 7
  start-page: 1602358
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 621
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 3071
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 4405
  year: 2017
  publication-title: Nano Lett.
– volume: 6
  start-page: 3923
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 5104
  year: 2016
  publication-title: ACS Nano
– volume: 121
  start-page: 13496
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 5999
  year: 2016
  publication-title: ACS Nano
– volume: 137
  start-page: 2350
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 15996
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 390
  year: 2017
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 5
  start-page: 19439
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 16148
  year: 2016
  publication-title: Nat. Energy
– volume: 2
  start-page: 822
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 21604
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1602432
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 7070
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1454
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1207
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 10379
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 489
  year: 2014
  publication-title: Nat. Photonics
– volume: 6
  start-page: 1600401
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1501534
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1600386
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 8208
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3007
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 7081
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 4175
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 18483
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 26859
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 2756
  year: 2015
  publication-title: Nano Lett.
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 1515
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 2166
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 13639
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1503
  year: 2016
  publication-title: ACS Nano
– volume: 3
  start-page: 1500353
  year: 2016
  publication-title: Adv. Sci.
– volume: 9
  start-page: 2262
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2578
  year: 2017
  publication-title: ChemSusChem
– volume: 17
  start-page: 3563
  year: 2017
  publication-title: Nano Lett.
– volume: 49
  start-page: 286
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 10070
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 29
  start-page: 1703852
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 7200
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 667
  year: 2016
  publication-title: Nano Energy
– volume: 8
  start-page: 1701569
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 15540
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2946
  year: 2016
  publication-title: Green Chem.
– volume: 137
  start-page: 10914
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 11414
  year: 2014
  publication-title: Angew. Chem.
– volume: 11
  start-page: 1
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 1500837
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 4
  start-page: 15088
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 4308
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 715
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 16149
  year: 2016
  publication-title: Nat. Energy
– volume: 5
  start-page: 1501119
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 5977
  year: 2016
  publication-title: CrystEngComm
– volume: 1
  start-page: 15012
  year: 2016
  publication-title: Nat. Energy
– volume: 139
  start-page: 12175
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1645
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– start-page: 1702116
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 139
  start-page: 7504
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1177
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 1602803
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 17102
  year: 2017
  publication-title: Nat. Energy
– volume: 28
  start-page: 3159
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3424
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 9815
  year: 2014
  publication-title: ACS Nano
– volume: 46
  start-page: 5714
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 22975
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 917
  year: 2016
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604056
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 295
  year: 2016
  publication-title: Nat. Photonics
– volume: 6
  start-page: 8932
  year: 2015
  publication-title: Nat. Commun.
– volume: 120
  start-page: 4233
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 247
  year: 2016
  publication-title: Nat. Mater.
– volume: 28
  start-page: 5112
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3206
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 1500420
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 3
  start-page: e1701293
  year: 2017
  publication-title: Sci. Adv.
– volume: 8
  start-page: 1701640
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 6503
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1600396
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1500477
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 13533
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 14276
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 4107
  year: 2014
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1233
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 5031
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1142
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 648
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 27
  start-page: 3492
  year: 2015
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1702180
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 223
  year: 2016
  publication-title: Nano Energy
– volume: 1
  start-page: 438
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 4532
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 5206
  year: 2016
  publication-title: Adv. Mater.
– volume: 116
  start-page: 12956
  year: 2016
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1600014
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1700758
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 9668
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1501453
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1096
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 26
  start-page: 2686
  year: 2016
  publication-title: Adv. Funct. Mater.
– year: December 2017
– volume: 9
  start-page: 31357
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1501606
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 10699
  year: 2017
  publication-title: Sci. Rep.
– volume: 14
  start-page: 193
  year: 2014
  publication-title: Nat. Mater.
– volume: 10
  start-page: 361
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 20585
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_9_236_1
  doi: 10.1002/adma.201304803
– ident: e_1_2_9_399_1
  doi: 10.1021/nl504168q
– ident: e_1_2_9_196_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_9_515_1
  doi: 10.1016/j.joule.2017.09.007
– ident: e_1_2_9_18_1
  doi: 10.1039/C5EE00615E
– ident: e_1_2_9_150_1
  doi: 10.1002/anie.201500014
– year: 2017
  ident: e_1_2_9_53_1
  publication-title: J. Energy Chem.
– ident: e_1_2_9_27_1
  doi: 10.1107/S0108768108032734
– ident: e_1_2_9_300_1
  doi: 10.1021/acsenergylett.7b00847
– ident: e_1_2_9_434_1
  doi: 10.1038/nenergy.2017.9
– ident: e_1_2_9_307_1
  doi: 10.1002/admi.201700598
– ident: e_1_2_9_171_1
  doi: 10.1039/C4TA04994B
– ident: e_1_2_9_423_1
  doi: 10.1016/j.nanoen.2015.10.010
– ident: e_1_2_9_214_1
  doi: 10.1126/science.aam6620
– ident: e_1_2_9_133_1
  doi: 10.1002/aenm.201602349
– ident: e_1_2_9_152_1
  doi: 10.1021/acs.jpclett.5b00480
– ident: e_1_2_9_251_1
  doi: 10.1002/adma.201404189
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.accounts.5b00455
– ident: e_1_2_9_111_1
  doi: 10.1038/ncomms6784
– ident: e_1_2_9_334_1
  doi: 10.1002/cssc.201700584
– ident: e_1_2_9_316_1
  doi: 10.1063/1.4928535
– ident: e_1_2_9_73_1
  doi: 10.1039/C6EE02941H
– ident: e_1_2_9_255_1
  doi: 10.1039/C7EE01675A
– ident: e_1_2_9_275_1
  doi: 10.1002/aenm.201701640
– ident: e_1_2_9_311_1
  doi: 10.1039/C5NR04250J
– ident: e_1_2_9_422_1
  doi: 10.1038/nchem.2324
– ident: e_1_2_9_488_1
  doi: 10.1002/adma.201600446
– ident: e_1_2_9_263_1
  doi: 10.1002/adfm.201702613
– ident: e_1_2_9_134_1
  doi: 10.1002/aenm.201602610
– ident: e_1_2_9_175_1
  doi: 10.1038/srep37654
– ident: e_1_2_9_94_1
  doi: 10.1021/acsnano.6b01904
– ident: e_1_2_9_278_1
  doi: 10.1039/C6EE01987K
– ident: e_1_2_9_206_1
  doi: 10.1038/nenergy.2015.17
– ident: e_1_2_9_340_1
  doi: 10.1126/science.aah4046
– ident: e_1_2_9_108_1
  doi: 10.1002/aenm.201501534
– ident: e_1_2_9_3_1
  doi: 10.1039/C4EE04073B
– ident: e_1_2_9_215_1
  doi: 10.1002/adma.201703852
– ident: e_1_2_9_193_1
  doi: 10.1021/ja403344s
– ident: e_1_2_9_12_1
  doi: 10.1021/acsenergylett.7b00137
– ident: e_1_2_9_127_1
  doi: 10.1039/C6CS00942E
– ident: e_1_2_9_491_1
  doi: 10.1002/aenm.201701569
– ident: e_1_2_9_464_1
  doi: 10.1021/acsenergylett.7b00278
– ident: e_1_2_9_272_1
  doi: 10.1002/aenm.201500486
– ident: e_1_2_9_489_1
  doi: 10.1021/acs.jpclett.7b02128
– ident: e_1_2_9_123_1
  doi: 10.1146/annurev-physchem-040215-112222
– ident: e_1_2_9_212_1
  doi: 10.1038/nphoton.2013.342
– ident: e_1_2_9_67_1
  doi: 10.1021/acs.jpclett.5b00289
– ident: e_1_2_9_226_1
  doi: 10.1002/adma.201604186
– ident: e_1_2_9_38_1
  doi: 10.1002/aenm.201701136
– ident: e_1_2_9_203_1
  doi: 10.1126/science.1228604
– ident: e_1_2_9_335_1
  doi: 10.1039/C5MH00154D
– ident: e_1_2_9_267_1
  doi: 10.1002/anie.201405176
– ident: e_1_2_9_66_1
  doi: 10.1021/acs.chemmater.6b03852
– ident: e_1_2_9_221_1
  doi: 10.1021/jacs.5b01994
– ident: e_1_2_9_299_1
  doi: 10.1021/acsenergylett.6b00327
– ident: e_1_2_9_210_1
  doi: 10.1039/C6EE02139E
– ident: e_1_2_9_425_1
  doi: 10.1038/nnano.2016.110
– ident: e_1_2_9_449_1
  doi: 10.1021/acs.jpclett.7b00374
– ident: e_1_2_9_343_1
  doi: 10.1002/adma.201505630
– ident: e_1_2_9_190_1
  doi: 10.1021/acs.chemmater.5b01598
– ident: e_1_2_9_435_1
  doi: 10.1002/adma.201505279
– ident: e_1_2_9_446_1
  doi: 10.1002/aenm.201502466
– ident: e_1_2_9_467_1
  doi: 10.1002/aenm.201700228
– ident: e_1_2_9_235_1
  doi: 10.1002/anie.201601757
– ident: e_1_2_9_468_1
  doi: 10.1021/acs.nanolett.7b03179
– ident: e_1_2_9_349_1
  doi: 10.1021/acs.jpclett.7b01466
– ident: e_1_2_9_308_1
  doi: 10.1038/nenergy.2015.16
– ident: e_1_2_9_477_1
  doi: 10.1021/acs.jpcc.5b10728
– ident: e_1_2_9_274_1
  doi: 10.1039/C6CC03740B
– ident: e_1_2_9_112_1
  doi: 10.1002/aenm.201402321
– ident: e_1_2_9_288_1
  doi: 10.1039/C5TA07008B
– ident: e_1_2_9_148_1
  doi: 10.1126/science.aai9081
– ident: e_1_2_9_120_1
  doi: 10.1002/adma.201606806
– ident: e_1_2_9_202_1
  doi: 10.1039/C5CC08156D
– ident: e_1_2_9_417_1
  doi: 10.1126/sciadv.1701293
– ident: e_1_2_9_36_1
  doi: 10.1002/aenm.201602358
– ident: e_1_2_9_361_1
  doi: 10.1002/smll.201601769
– ident: e_1_2_9_480_1
  doi: 10.1002/adma.201602696
– ident: e_1_2_9_348_1
  doi: 10.1038/nmat3011
– ident: e_1_2_9_185_1
  doi: 10.1039/C6EE00612D
– ident: e_1_2_9_463_1
  doi: 10.1002/aenm.201701048
– ident: e_1_2_9_223_1
  doi: 10.1002/adma.201505241
– ident: e_1_2_9_56_1
  doi: 10.1038/natrevmats.2016.100
– ident: e_1_2_9_224_1
  doi: 10.1246/cl.150167
– ident: e_1_2_9_289_1
  doi: 10.1002/adfm.201501264
– ident: e_1_2_9_387_1
  doi: 10.1021/acs.jpcc.6b05667
– ident: e_1_2_9_474_1
  doi: 10.1021/acsenergylett.7b00525
– ident: e_1_2_9_394_1
  doi: 10.1002/admi.201500195
– ident: e_1_2_9_74_1
  doi: 10.1002/adma.201600624
– ident: e_1_2_9_277_1
  doi: 10.1021/acs.nanolett.5b00787
– ident: e_1_2_9_86_1
  doi: 10.1002/adfm.201505215
– ident: e_1_2_9_455_1
  doi: 10.1002/aenm.201500799
– ident: e_1_2_9_8_1
  doi: 10.1002/aenm.201700264
– ident: e_1_2_9_342_1
  doi: 10.1002/aenm.201601165
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.1607471113
– ident: e_1_2_9_454_1
  doi: 10.1002/adma.201702140
– ident: e_1_2_9_182_1
  doi: 10.1039/C6EE00409A
– ident: e_1_2_9_362_1
  doi: 10.1021/jp509753p
– ident: e_1_2_9_186_1
  doi: 10.1021/acsenergylett.6b00320
– ident: e_1_2_9_273_1
  doi: 10.1039/C5TA05286F
– ident: e_1_2_9_82_1
  doi: 10.1002/admi.201500420
– ident: e_1_2_9_511_1
  doi: 10.1039/C7EE02564E
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.jpclett.5b02651
– ident: e_1_2_9_98_1
  doi: 10.1039/C7NR03507A
– ident: e_1_2_9_166_1
  doi: 10.1002/aenm.201601575
– ident: e_1_2_9_439_1
  doi: 10.1002/admi.201500837
– ident: e_1_2_9_97_1
  doi: 10.1039/C5EE00222B
– ident: e_1_2_9_183_1
  doi: 10.1002/aenm.201600014
– ident: e_1_2_9_456_1
  doi: 10.1038/nmat4795
– ident: e_1_2_9_350_1
  doi: 10.1021/nl500399m
– ident: e_1_2_9_89_1
  doi: 10.1039/C5RA17129F
– ident: e_1_2_9_219_1
  doi: 10.1021/am506672j
– ident: e_1_2_9_485_1
  doi: 10.1021/acsami.7b11977
– ident: e_1_2_9_129_1
  doi: 10.1021/acs.jpclett.6b02847
– ident: e_1_2_9_23_1
  doi: 10.1038/nmat4388
– ident: e_1_2_9_13_1
  doi: 10.1126/science.aam6323
– ident: e_1_2_9_371_1
  doi: 10.1021/acsnano.7b04070
– ident: e_1_2_9_382_1
  doi: 10.1039/C5TA02710A
– ident: e_1_2_9_457_1
  doi: 10.1021/acs.nanolett.7b01092
– ident: e_1_2_9_437_1
  doi: 10.1021/acs.chemmater.5b01933
– ident: e_1_2_9_37_1
  doi: 10.1038/natrevmats.2015.7
– ident: e_1_2_9_465_1
  doi: 10.1002/advs.201500301
– ident: e_1_2_9_101_1
  doi: 10.1021/jacs.7b01439
– ident: e_1_2_9_337_1
  doi: 10.1002/aenm.201700823
– ident: e_1_2_9_320_1
  doi: 10.1021/acs.nanolett.6b03989
– ident: e_1_2_9_428_1
  doi: 10.1021/jacs.5b11740
– ident: e_1_2_9_158_1
  doi: 10.1002/aenm.201702365
– ident: e_1_2_9_318_1
  doi: 10.1002/adma.201603923
– ident: e_1_2_9_258_1
  doi: 10.1016/j.nanoen.2016.06.044
– ident: e_1_2_9_416_1
  doi: 10.1126/sciadv.1700841
– ident: e_1_2_9_5_1
  doi: 10.1016/j.rser.2017.08.077
– ident: e_1_2_9_400_1
  doi: 10.1021/acs.chemmater.6b03564
– ident: e_1_2_9_250_1
  doi: 10.1002/adma.201500523
– ident: e_1_2_9_375_1
  doi: 10.1021/nl501982b
– ident: e_1_2_9_438_1
  doi: 10.1002/aenm.201601055
– ident: e_1_2_9_217_1
  doi: 10.1002/aenm.201600460
– ident: e_1_2_9_372_1
  doi: 10.1002/adma.201600659
– ident: e_1_2_9_302_1
  doi: 10.1021/acsnano.6b01535
– ident: e_1_2_9_490_1
  doi: 10.1039/C6EE02650H
– ident: e_1_2_9_269_1
  doi: 10.1021/acsami.7b13621
– ident: e_1_2_9_35_1
  doi: 10.1038/nenergy.2016.149
– ident: e_1_2_9_184_1
  doi: 10.1002/aenm.201502246
– ident: e_1_2_9_295_1
  doi: 10.1039/C5TA09165A
– ident: e_1_2_9_328_1
  doi: 10.1039/c3ee44174a
– ident: e_1_2_9_356_1
  doi: 10.1063/1.4916345
– ident: e_1_2_9_254_1
  doi: 10.1002/adma.201600619
– ident: e_1_2_9_407_1
  doi: 10.1021/acsami.6b04760
– ident: e_1_2_9_243_1
  doi: 10.1039/C7EE01931A
– ident: e_1_2_9_297_1
  doi: 10.1016/j.nanoen.2016.02.025
– ident: e_1_2_9_366_1
  doi: 10.1021/acsami.5b09442
– ident: e_1_2_9_237_1
  doi: 10.1002/adfm.201401557
– ident: e_1_2_9_257_1
  doi: 10.1021/acs.nanolett.5b00116
– ident: e_1_2_9_322_1
  doi: 10.1016/j.electacta.2014.11.003
– ident: e_1_2_9_298_1
  doi: 10.1021/acsenergylett.6b00236
– ident: e_1_2_9_365_1
  doi: 10.1021/jacs.6b08790
– ident: e_1_2_9_421_1
  doi: 10.1038/ncomms15684
– ident: e_1_2_9_367_1
  doi: 10.1016/j.nanoen.2014.12.004
– ident: e_1_2_9_52_1
  doi: 10.1002/adfm.201703704
– ident: e_1_2_9_264_1
  doi: 10.1021/jacs.6b06291
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.jpclett.5b01406
– ident: e_1_2_9_290_1
  doi: 10.1002/adma.201500465
– ident: e_1_2_9_125_1
  doi: 10.1088/0957-4484/27/8/082001
– ident: e_1_2_9_283_1
  doi: 10.1002/anie.201604399
– ident: e_1_2_9_43_1
  doi: 10.1021/jz501983v
– ident: e_1_2_9_508_1
  doi: 10.1002/pip.2871
– ident: e_1_2_9_124_1
  doi: 10.1021/acs.accounts.5b00411
– ident: e_1_2_9_384_1
  doi: 10.1002/adfm.201504949
– ident: e_1_2_9_154_1
  doi: 10.1039/C5CC05205J
– ident: e_1_2_9_39_1
  doi: 10.1002/pip.2978
– ident: e_1_2_9_81_1
  doi: 10.1002/aenm.201502021
– ident: e_1_2_9_430_1
  doi: 10.1002/adma.201501145
– ident: e_1_2_9_119_1
  doi: 10.1038/nenergy.2016.148
– ident: e_1_2_9_161_1
  doi: 10.1002/aelm.201700158
– ident: e_1_2_9_326_1
  doi: 10.1021/jacs.7b04949
– ident: e_1_2_9_137_1
  doi: 10.1002/aenm.201400812
– ident: e_1_2_9_364_1
  doi: 10.1039/C5TA04239A
– ident: e_1_2_9_151_1
  doi: 10.1038/ncomms8497
– ident: e_1_2_9_204_1
  doi: 10.1038/nmat4014
– ident: e_1_2_9_100_1
  doi: 10.1016/j.nanoen.2016.08.006
– ident: e_1_2_9_126_1
  doi: 10.1021/acs.accounts.5b00433
– ident: e_1_2_9_345_1
  doi: 10.1021/acs.chemmater.6b02583
– ident: e_1_2_9_303_1
  doi: 10.1002/adma.201701221
– ident: e_1_2_9_473_1
  doi: 10.1021/acsenergylett.7b00282
– ident: e_1_2_9_91_1
  doi: 10.1021/jp412627n
– ident: e_1_2_9_472_1
  doi: 10.1039/C6EE03014A
– ident: e_1_2_9_313_1
  doi: 10.1039/C5TA02265G
– ident: e_1_2_9_93_1
  doi: 10.1016/j.nanoen.2016.10.065
– ident: e_1_2_9_83_1
  doi: 10.1002/adfm.201603023
– ident: e_1_2_9_369_1
  doi: 10.1021/acs.nanolett.6b05177
– ident: e_1_2_9_144_1
  doi: 10.1021/acsami.6b11757
– ident: e_1_2_9_405_1
  doi: 10.1039/C7TA05428A
– ident: e_1_2_9_31_1
  doi: 10.1039/C7TA00404D
– ident: e_1_2_9_460_1
  doi: 10.1126/science.aaf9717
– ident: e_1_2_9_357_1
  doi: 10.1002/aenm.201601768
– ident: e_1_2_9_336_1
  doi: 10.1039/C4EE03773A
– ident: e_1_2_9_157_1
  doi: 10.1021/acs.jpclett.6b00058
– ident: e_1_2_9_168_1
  doi: 10.1021/acs.jpcc.6b04233
– ident: e_1_2_9_487_1
  doi: 10.1002/adma.201605900
– ident: e_1_2_9_523_1
  doi: 10.1021/acs.chemmater.6b04327
– ident: e_1_2_9_517_1
  doi: 10.1186/s40508-016-0051-z
– ident: e_1_2_9_329_1
  doi: 10.1002/adma.201504293
– ident: e_1_2_9_354_1
  doi: 10.1039/c3ee40810h
– ident: e_1_2_9_396_1
  doi: 10.1002/adma.201606363
– ident: e_1_2_9_261_1
  doi: 10.1002/aenm.201601193
– ident: e_1_2_9_478_1
  doi: 10.1021/acsenergylett.7b00589
– ident: e_1_2_9_122_1
  doi: 10.1038/nphoton.2013.374
– ident: e_1_2_9_181_1
  doi: 10.1002/anie.201503153
– ident: e_1_2_9_238_1
  doi: 10.1021/acs.chemrev.6b00432
– ident: e_1_2_9_156_1
  doi: 10.1039/C4EE03664F
– ident: e_1_2_9_370_1
  doi: 10.1021/ja4132246
– ident: e_1_2_9_117_1
  doi: 10.1038/ncomms8081
– ident: e_1_2_9_140_1
  doi: 10.1002/adma.201504168
– ident: e_1_2_9_476_1
  doi: 10.1021/acsenergylett.7b01151
– ident: e_1_2_9_461_1
  doi: 10.1002/aenm.201701609
– ident: e_1_2_9_163_1
  doi: 10.1002/aenm.201501453
– ident: e_1_2_9_92_1
  doi: 10.1016/j.nanoen.2014.12.022
– ident: e_1_2_9_141_1
  doi: 10.1021/acs.jpcc.7b02411
– ident: e_1_2_9_195_1
  doi: 10.1021/ja809598r
– ident: e_1_2_9_205_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_9_512_1
  doi: 10.1002/adma.201501856
– ident: e_1_2_9_16_1
  doi: 10.1039/C7EE00757D
– ident: e_1_2_9_225_1
  doi: 10.1038/ncomms8410
– ident: e_1_2_9_415_1
  doi: 10.1021/jacs.5b03796
– ident: e_1_2_9_344_1
  doi: 10.1002/adma.201604493
– ident: e_1_2_9_359_1
  doi: 10.1002/cssc.201600944
– ident: e_1_2_9_21_1
  doi: 10.1039/C7TA00434F
– ident: e_1_2_9_87_1
  doi: 10.1002/cssc.201701262
– ident: e_1_2_9_162_1
  doi: 10.1021/acs.jpclett.5b02273
– ident: e_1_2_9_406_1
  doi: 10.1002/anie.201600702
– ident: e_1_2_9_142_1
  doi: 10.1002/adma.201700159
– ident: e_1_2_9_495_1
  doi: 10.1039/C5NR08836D
– ident: e_1_2_9_95_1
  doi: 10.1002/adfm.201702180
– ident: e_1_2_9_49_1
  doi: 10.1039/C6CE00813E
– ident: e_1_2_9_385_1
  doi: 10.1002/aenm.201501066
– ident: e_1_2_9_379_1
  doi: 10.1021/nl403997a
– ident: e_1_2_9_209_1
  doi: 10.1039/C5EE01720C
– ident: e_1_2_9_325_1
  doi: 10.1039/C6EE00709K
– ident: e_1_2_9_321_1
  doi: 10.1039/C5TC01856K
– ident: e_1_2_9_180_1
  doi: 10.1038/ncomms11574
– ident: e_1_2_9_285_1
  doi: 10.1002/adfm.201703068
– ident: e_1_2_9_346_1
  doi: 10.1039/C6CS00122J
– ident: e_1_2_9_501_1
  doi: 10.1039/C7TA05004F
– ident: e_1_2_9_276_1
  doi: 10.1002/aenm.201600457
– ident: e_1_2_9_507_1
  doi: 10.1039/C5EE03911H
– ident: e_1_2_9_368_1
  doi: 10.1002/aenm.201500569
– ident: e_1_2_9_174_1
  doi: 10.1021/acs.chemmater.6b02883
– ident: e_1_2_9_147_1
  doi: 10.1039/C7EE00899F
– ident: e_1_2_9_331_1
  doi: 10.1039/C5TA03865K
– ident: e_1_2_9_486_1
  doi: 10.1021/acsenergylett.7b00644
– ident: e_1_2_9_233_1
  doi: 10.1021/acs.nanolett.6b02158
– ident: e_1_2_9_34_1
  doi: 10.1038/nphoton.2016.62
– ident: e_1_2_9_510_1
– ident: e_1_2_9_440_1
  doi: 10.1021/nl504349z
– ident: e_1_2_9_59_1
  doi: 10.1021/acsenergylett.7b00239
– ident: e_1_2_9_84_1
  doi: 10.1039/C6EE02100J
– ident: e_1_2_9_208_1
  doi: 10.1021/nn505723h
– ident: e_1_2_9_504_1
  doi: 10.1038/nenergy.2017.38
– ident: e_1_2_9_296_1
  doi: 10.1021/acsami.5b04695
– ident: e_1_2_9_143_1
  doi: 10.1021/acsphotonics.6b00331
– ident: e_1_2_9_483_1
  doi: 10.1002/adma.201704418
– ident: e_1_2_9_189_1
  doi: 10.1021/jp500449z
– ident: e_1_2_9_432_1
  doi: 10.1038/nenergy.2016.190
– ident: e_1_2_9_169_1
  doi: 10.1038/nenergy.2016.195
– ident: e_1_2_9_492_1
  doi: 10.1038/ncomms10214
– ident: e_1_2_9_191_1
  doi: 10.1002/adma.201703737
– ident: e_1_2_9_211_1
  doi: 10.1038/ncomms16045
– ident: e_1_2_9_282_1
  doi: 10.1002/aenm.201700522
– volume: 350
  start-page: 1
  year: 2015
  ident: e_1_2_9_253_1
  publication-title: Science
– ident: e_1_2_9_503_1
  doi: 10.1038/ncomms11105
– ident: e_1_2_9_374_1
  doi: 10.1002/adma.201606398
– ident: e_1_2_9_90_1
  doi: 10.1021/ja512518r
– ident: e_1_2_9_64_1
  doi: 10.1021/acs.inorgchem.6b01307
– ident: e_1_2_9_106_1
  doi: 10.1002/adma.201604545
– ident: e_1_2_9_249_1
  doi: 10.1021/am503610u
– ident: e_1_2_9_317_1
  doi: 10.1021/acs.chemmater.5b03991
– ident: e_1_2_9_177_1
  doi: 10.1021/nn506864k
– ident: e_1_2_9_99_1
  doi: 10.1039/C6TA06152D
– ident: e_1_2_9_429_1
  doi: 10.1038/s41560-017-0016-9
– ident: e_1_2_9_347_1
  doi: 10.1021/ar600035e
– ident: e_1_2_9_482_1
  doi: 10.1021/jacs.7b04981
– ident: e_1_2_9_132_1
  doi: 10.1021/acs.jpclett.5b01698
– ident: e_1_2_9_220_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_9_330_1
  doi: 10.1016/j.nanoen.2016.10.041
– ident: e_1_2_9_323_1
  doi: 10.1002/adma.201700183
– ident: e_1_2_9_32_1
  doi: 10.1002/adma.201605005
– ident: e_1_2_9_247_1
  doi: 10.1039/C4EE02833C
– ident: e_1_2_9_265_1
  doi: 10.1021/jacs.6b00039
– ident: e_1_2_9_281_1
  doi: 10.1038/ncomms12806
– ident: e_1_2_9_62_1
  doi: 10.1021/acs.jpclett.6b00215
– ident: e_1_2_9_516_1
  doi: 10.1021/acsenergylett.6b00499
– ident: e_1_2_9_524_1
  doi: 10.1039/C6EE02013E
– ident: e_1_2_9_57_1
  doi: 10.1126/science.aai8535
– ident: e_1_2_9_402_1
  doi: 10.1002/adma.201703980
– ident: e_1_2_9_244_1
  doi: 10.1002/admi.201600571
– ident: e_1_2_9_262_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_9_199_1
  doi: 10.1039/C4EE01076K
– ident: e_1_2_9_448_1
  doi: 10.1002/aenm.201602400
– ident: e_1_2_9_47_1
  doi: 10.1016/j.mser.2015.12.002
– ident: e_1_2_9_393_1
  doi: 10.1021/acs.jpclett.7b00712
– ident: e_1_2_9_410_1
  doi: 10.1063/1.4896779
– ident: e_1_2_9_63_1
  doi: 10.1039/C5EE01265A
– ident: e_1_2_9_498_1
  doi: 10.1016/j.eml.2016.06.006
– ident: e_1_2_9_509_1
– ident: e_1_2_9_20_1
  doi: 10.1039/C7TA04544A
– ident: e_1_2_9_259_1
  doi: 10.1002/adma.201301327
– ident: e_1_2_9_256_1
  doi: 10.1002/adma.201401685
– ident: e_1_2_9_339_1
  doi: 10.1016/j.nanoen.2017.05.049
– ident: e_1_2_9_30_1
  doi: 10.1021/acsami.7b06001
– ident: e_1_2_9_42_1
  doi: 10.1002/aenm.201500477
– ident: e_1_2_9_46_1
  doi: 10.1021/jacs.5b10723
– ident: e_1_2_9_198_1
  doi: 10.1038/nenergy.2016.142
– ident: e_1_2_9_155_1
  doi: 10.1002/aenm.201600396
– ident: e_1_2_9_159_1
  doi: 10.1021/acsenergylett.6b00116
– ident: e_1_2_9_160_1
  doi: 10.1039/C6EE03352K
– ident: e_1_2_9_69_1
  doi: 10.1038/nmat4473
– ident: e_1_2_9_165_1
  doi: 10.1002/aelm.201700435
– ident: e_1_2_9_376_1
  doi: 10.1002/aenm.201401943
– ident: e_1_2_9_441_1
  doi: 10.1039/C5EE01169H
– ident: e_1_2_9_173_1
  doi: 10.1021/jacs.5b08535
– ident: e_1_2_9_301_1
  doi: 10.1002/aenm.201701038
– ident: e_1_2_9_130_1
  doi: 10.1039/C5EE03806E
– ident: e_1_2_9_521_1
  doi: 10.1002/aenm.201600386
– ident: e_1_2_9_29_1
  doi: 10.1002/aenm.201700491
– ident: e_1_2_9_138_1
  doi: 10.1002/aenm.201602432
– ident: e_1_2_9_146_1
  doi: 10.1039/C7EE01096F
– ident: e_1_2_9_192_1
  doi: 10.1002/cssc.201501659
– ident: e_1_2_9_188_1
  doi: 10.1038/ncomms3885
– ident: e_1_2_9_395_1
  doi: 10.1002/aenm.201602922
– ident: e_1_2_9_426_1
  doi: 10.1002/aenm.201601307
– ident: e_1_2_9_200_1
  doi: 10.1038/nphoton.2014.82
– ident: e_1_2_9_118_1
  doi: 10.1021/acsenergylett.6b00060
– ident: e_1_2_9_60_1
  doi: 10.1038/nenergy.2016.152
– ident: e_1_2_9_71_1
  doi: 10.1002/adma.201700192
– ident: e_1_2_9_341_1
  doi: 10.1039/C4EE03907F
– ident: e_1_2_9_80_1
  doi: 10.1021/acsnano.6b05825
– ident: e_1_2_9_76_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_9_207_1
  doi: 10.1126/science.aam5655
– ident: e_1_2_9_420_1
  doi: 10.1039/C7EE01145H
– ident: e_1_2_9_412_1
  doi: 10.1039/C6TA00577B
– ident: e_1_2_9_459_1
  doi: 10.1002/aenm.201602121
– ident: e_1_2_9_505_1
  doi: 10.1039/C5EE03315B
– ident: e_1_2_9_260_1
  doi: 10.1039/C5EE03560K
– ident: e_1_2_9_222_1
  doi: 10.1039/C6EE02390H
– ident: e_1_2_9_388_1
  doi: 10.1002/adma.201603994
– ident: e_1_2_9_85_1
  doi: 10.1002/aenm.201700763
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.inorgchem.6b01294
– ident: e_1_2_9_105_1
  doi: 10.1021/acs.jpclett.6b00366
– ident: e_1_2_9_381_1
  doi: 10.1002/adfm.201602803
– ident: e_1_2_9_242_1
  doi: 10.1002/aenm.201701688
– ident: e_1_2_9_520_1
  doi: 10.1002/aenm.201700576
– start-page: 1702116
  year: 2017
  ident: e_1_2_9_497_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_9_61_1
  doi: 10.1021/acs.accounts.5b00420
– ident: e_1_2_9_294_1
  doi: 10.1039/C5EE03522H
– ident: e_1_2_9_409_1
  doi: 10.1021/nl500544c
– ident: e_1_2_9_522_1
  doi: 10.1039/C6EE02373H
– ident: e_1_2_9_70_1
  doi: 10.1039/C6EE01137C
– ident: e_1_2_9_284_1
  doi: 10.1002/anie.201706895
– ident: e_1_2_9_271_1
  doi: 10.1002/aenm.201701883
– ident: e_1_2_9_149_1
  doi: 10.1016/j.chempr.2016.10.002
– ident: e_1_2_9_309_1
  doi: 10.1002/adma.201600969
– ident: e_1_2_9_293_1
  doi: 10.1021/acs.chemmater.5b00129
– ident: e_1_2_9_230_1
  doi: 10.1021/acsenergylett.6b00229
– ident: e_1_2_9_58_1
  doi: 10.1021/acs.inorgchem.7b01094
– ident: e_1_2_9_377_1
  doi: 10.1021/jacs.5b06493
– ident: e_1_2_9_96_1
  doi: 10.1016/j.nanoen.2016.10.036
– ident: e_1_2_9_481_1
  doi: 10.1038/nenergy.2017.18
– ident: e_1_2_9_252_1
  doi: 10.1038/nnano.2015.230
– ident: e_1_2_9_338_1
  doi: 10.1039/C5TA10696F
– ident: e_1_2_9_14_1
  doi: 10.1039/C4CS00458B
– ident: e_1_2_9_442_1
  doi: 10.1021/acs.nanolett.7b00722
– ident: e_1_2_9_418_1
  doi: 10.1021/acs.chemmater.6b00711
– ident: e_1_2_9_33_1
  doi: 10.1038/natrevmats.2017.42
– ident: e_1_2_9_110_1
  doi: 10.1021/nn5036476
– ident: e_1_2_9_246_1
  doi: 10.1038/srep04756
– ident: e_1_2_9_445_1
  doi: 10.1021/acsnano.6b00225
– ident: e_1_2_9_471_1
  doi: 10.1021/acsami.7b06816
– ident: e_1_2_9_17_1
  doi: 10.1016/j.rser.2017.05.095
– ident: e_1_2_9_312_1
  doi: 10.1039/C5CP03995A
– ident: e_1_2_9_216_1
  doi: 10.1002/aenm.201602803
– ident: e_1_2_9_232_1
  doi: 10.1002/admi.201700623
– ident: e_1_2_9_411_1
  doi: 10.1002/smll.201403534
– ident: e_1_2_9_355_1
  doi: 10.1038/ncomms10379
– ident: e_1_2_9_451_1
  doi: 10.1002/solr.201700045
– ident: e_1_2_9_6_1
  doi: 10.1016/j.enpol.2005.06.020
– volume: 17135
  start-page: 1
  year: 2017
  ident: e_1_2_9_424_1
  publication-title: Nat. Energy
– ident: e_1_2_9_164_1
  doi: 10.1002/adma.201300580
– ident: e_1_2_9_231_1
  doi: 10.1016/j.joule.2017.11.006
– ident: e_1_2_9_291_1
  doi: 10.1021/jacs.5b10614
– ident: e_1_2_9_494_1
  doi: 10.1039/C7TA04225F
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.201600265
– ident: e_1_2_9_176_1
  doi: 10.1021/nl500390f
– ident: e_1_2_9_389_1
  doi: 10.1002/advs.201500353
– ident: e_1_2_9_15_1
  doi: 10.1126/science.aad4424
– ident: e_1_2_9_378_1
  doi: 10.1038/ncomms15330
– ident: e_1_2_9_413_1
  doi: 10.1021/acs.jpclett.6b01951
– ident: e_1_2_9_102_1
  doi: 10.1002/adma.201602785
– ident: e_1_2_9_470_1
  doi: 10.1021/acsenergylett.6b00495
– ident: e_1_2_9_135_1
  doi: 10.1021/acs.jpclett.6b00238
– ident: e_1_2_9_353_1
  doi: 10.1039/C3EE43707H
– ident: e_1_2_9_128_1
  doi: 10.1021/acs.jpclett.5b01696
– ident: e_1_2_9_502_1
  doi: 10.1002/adfm.201703061
– ident: e_1_2_9_386_1
  doi: 10.1039/C5TA09911K
– ident: e_1_2_9_403_1
  doi: 10.1021/acs.nanolett.7b02532
– ident: e_1_2_9_414_1
  doi: 10.1002/ange.201406466
– ident: e_1_2_9_373_1
  doi: 10.1039/C5EE03394B
– ident: e_1_2_9_453_1
  doi: 10.1038/natrevmats.2017.43
– ident: e_1_2_9_436_1
  doi: 10.1002/aenm.201601128
– ident: e_1_2_9_383_1
  doi: 10.1002/aenm.201701349
– ident: e_1_2_9_304_1
  doi: 10.1039/C6EE03182J
– ident: e_1_2_9_526_1
  doi: 10.1002/aenm.201501119
– ident: e_1_2_9_500_1
  doi: 10.1039/C7TA09178H
– ident: e_1_2_9_292_1
  doi: 10.1002/adma.201505140
– ident: e_1_2_9_227_1
  doi: 10.1039/C6EE01037G
– ident: e_1_2_9_279_1
  doi: 10.1039/C5TA09080F
– ident: e_1_2_9_392_1
  doi: 10.1039/C5TA03456F
– ident: e_1_2_9_314_1
  doi: 10.1002/aenm.201501606
– ident: e_1_2_9_469_1
  doi: 10.1021/acs.nanolett.6b03857
– ident: e_1_2_9_11_1
  doi: 10.1021/acs.chemrev.6b00136
– ident: e_1_2_9_28_1
  doi: 10.1021/ic401215x
– ident: e_1_2_9_201_1
  doi: 10.1002/aenm.201500568
– ident: e_1_2_9_499_1
  doi: 10.1021/acsami.6b06164
– ident: e_1_2_9_319_1
  doi: 10.1002/advs.201600027
– ident: e_1_2_9_1_1
– ident: e_1_2_9_187_1
  doi: 10.1021/acsnano.6b02613
– ident: e_1_2_9_513_1
  doi: 10.1038/nmat4572
– ident: e_1_2_9_287_1
  doi: 10.1002/aenm.201501056
– ident: e_1_2_9_75_1
  doi: 10.1002/adma.201504144
– ident: e_1_2_9_213_1
  doi: 10.1039/C5EE02608C
– ident: e_1_2_9_268_1
  doi: 10.1021/acsnano.5b07043
– ident: e_1_2_9_419_1
  doi: 10.1038/nature18306
– ident: e_1_2_9_433_1
  doi: 10.1002/aenm.201602599
– ident: e_1_2_9_9_1
  doi: 10.1039/C6EE03397K
– ident: e_1_2_9_24_1
  doi: 10.1016/j.solmat.2016.04.037
– ident: e_1_2_9_458_1
  doi: 10.1021/acsami.5b12740
– ident: e_1_2_9_115_1
  doi: 10.1021/acs.chemmater.5b01909
– ident: e_1_2_9_77_1
  doi: 10.1038/nenergy.2016.93
– ident: e_1_2_9_194_1
  doi: 10.1021/cm504022q
– ident: e_1_2_9_358_1
  doi: 10.1002/adfm.201401658
– ident: e_1_2_9_113_1
  doi: 10.1002/aenm.201601251
– ident: e_1_2_9_167_1
  doi: 10.1002/admi.201700007
– ident: e_1_2_9_239_1
  doi: 10.1063/1.4905932
– ident: e_1_2_9_493_1
  doi: 10.1002/aenm.201501406
– ident: e_1_2_9_431_1
  doi: 10.1038/ncomms9932
– ident: e_1_2_9_506_1
  doi: 10.1038/nature23877
– ident: e_1_2_9_2_1
  doi: 10.1016/j.joule.2017.09.017
– ident: e_1_2_9_241_1
  doi: 10.1002/adma.201604984
– ident: e_1_2_9_352_1
  doi: 10.1002/admi.201600122
– ident: e_1_2_9_398_1
  doi: 10.1039/C4TA04482G
– ident: e_1_2_9_145_1
  doi: 10.1039/C7EE00421D
– ident: e_1_2_9_324_1
  doi: 10.1002/aenm.201600502
– ident: e_1_2_9_79_1
  doi: 10.1021/acs.nanolett.5b04157
– ident: e_1_2_9_245_1
  doi: 10.1126/science.aao5561
– ident: e_1_2_9_25_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_9_401_1
  doi: 10.1002/adma.201504555
– ident: e_1_2_9_266_1
  doi: 10.1002/adma.201306217
– ident: e_1_2_9_397_1
  doi: 10.1021/acsenergylett.6b00672
– ident: e_1_2_9_19_1
  doi: 10.1126/science.aad5891
– ident: e_1_2_9_280_1
  doi: 10.1038/nenergy.2015.12
– ident: e_1_2_9_22_1
  doi: 10.1021/jz500279b
– ident: e_1_2_9_270_1
  doi: 10.1002/adma.201503298
– ident: e_1_2_9_234_1
  doi: 10.1002/aenm.201501320
– ident: e_1_2_9_363_1
  doi: 10.1021/acs.jpcc.6b04642
– ident: e_1_2_9_514_1
  doi: 10.1021/acs.jpclett.5b00504
– ident: e_1_2_9_519_1
  doi: 10.1021/jacs.5b00321
– ident: e_1_2_9_197_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_9_447_1
  doi: 10.1038/s41598-017-11193-1
– ident: e_1_2_9_109_1
  doi: 10.1002/aenm.201700012
– ident: e_1_2_9_218_1
  doi: 10.1126/science.1254050
– ident: e_1_2_9_114_1
  doi: 10.1021/acsenergylett.6b00657
– ident: e_1_2_9_390_1
  doi: 10.1039/C5TA04695E
– ident: e_1_2_9_178_1
  doi: 10.1002/adfm.201502340
– ident: e_1_2_9_332_1
  doi: 10.1002/aenm.201600401
– ident: e_1_2_9_462_1
  doi: 10.1039/C7TA06163C
– ident: e_1_2_9_72_1
  doi: 10.1038/s41570-017-0095
– ident: e_1_2_9_45_1
  doi: 10.1039/C5TA08963H
– ident: e_1_2_9_408_1
  doi: 10.1002/aenm.201700758
– ident: e_1_2_9_104_1
  doi: 10.1021/acsenergylett.6b00680
– ident: e_1_2_9_179_1
  doi: 10.1002/aenm.201701544
– ident: e_1_2_9_240_1
  doi: 10.1002/cssc.201700635
– ident: e_1_2_9_466_1
  doi: 10.1126/science.aad5845
– ident: e_1_2_9_380_1
  doi: 10.1021/acs.nanolett.7b03225
– ident: e_1_2_9_116_1
  doi: 10.1038/nphoton.2016.3
– ident: e_1_2_9_131_1
  doi: 10.1021/acs.jpclett.6b02309
– ident: e_1_2_9_310_1
  doi: 10.1002/solr.201700082
– ident: e_1_2_9_427_1
  doi: 10.1021/acs.nanolett.7b01500
– ident: e_1_2_9_44_1
  doi: 10.1038/nenergy.2016.48
– ident: e_1_2_9_172_1
  doi: 10.1038/ncomms13422
– ident: e_1_2_9_121_1
  doi: 10.1002/adma.201604056
– ident: e_1_2_9_306_1
  doi: 10.1002/adma.201603062
– ident: e_1_2_9_170_1
  doi: 10.1021/acs.chemmater.5b00660
– ident: e_1_2_9_327_1
  doi: 10.1002/aenm.201701935
– ident: e_1_2_9_315_1
  doi: 10.1002/aenm.201602333
– ident: e_1_2_9_333_1
  doi: 10.1002/adma.201606555
– ident: e_1_2_9_50_1
  doi: 10.1021/acsenergylett.7b00667
– ident: e_1_2_9_103_1
  doi: 10.1038/nenergy.2016.207
– ident: e_1_2_9_351_1
  doi: 10.1021/acs.jpclett.5b00010
– ident: e_1_2_9_41_1
  doi: 10.1021/ja512117e
– ident: e_1_2_9_450_1
  doi: 10.1002/aenm.201602761
– ident: e_1_2_9_248_1
  doi: 10.1016/j.nanoen.2017.08.014
– ident: e_1_2_9_305_1
  doi: 10.1021/jacs.6b04519
– start-page: 002608
  volume-title: 2012 38th IEEE Photovoltaics Specialists Conference
  year: 2012
  ident: e_1_2_9_404_1
  doi: 10.1109/PVSC.2012.6318129
– ident: e_1_2_9_139_1
  doi: 10.1002/aenm.201700623
– ident: e_1_2_9_136_1
  doi: 10.1002/anie.201606574
– ident: e_1_2_9_228_1
  doi: 10.1039/C6TA05095F
– ident: e_1_2_9_229_1
  doi: 10.1002/adma.201601745
– ident: e_1_2_9_518_1
  doi: 10.1021/acsenergylett.6b00158
– ident: e_1_2_9_360_1
  doi: 10.1016/j.nanoen.2016.08.035
– year: 2017
  ident: e_1_2_9_7_1
  publication-title: Mater. Today Energy
– ident: e_1_2_9_88_1
  doi: 10.1126/science.1254763
– ident: e_1_2_9_65_1
  doi: 10.1039/C5EE02733K
– ident: e_1_2_9_391_1
  doi: 10.1002/cssc.201700271
– ident: e_1_2_9_78_1
  doi: 10.1021/acs.jpclett.5b02888
– ident: e_1_2_9_153_1
  doi: 10.1038/nmat4150
– ident: e_1_2_9_107_1
  doi: 10.1002/admi.201600948
– ident: e_1_2_9_484_1
  doi: 10.1002/adma.201504260
– ident: e_1_2_9_54_1
  doi: 10.1002/adma.201600669
– ident: e_1_2_9_452_1
  doi: 10.1002/admi.201700731
– ident: e_1_2_9_444_1
  doi: 10.1039/C5TC00622H
– ident: e_1_2_9_525_1
  doi: 10.1039/C5GC02734A
– ident: e_1_2_9_443_1
  doi: 10.1021/acs.jpcc.5b11144
– ident: e_1_2_9_479_1
  doi: 10.1021/ja5033259
– ident: e_1_2_9_286_1
  doi: 10.1021/acs.nanolett.6b04015
– ident: e_1_2_9_496_1
  doi: 10.1039/C7EE02185B
– ident: e_1_2_9_475_1
  doi: 10.1021/acsenergylett.7b00357
– ident: e_1_2_9_48_1
  doi: 10.1016/j.nantod.2015.04.009
– ident: e_1_2_9_26_1
  doi: 10.1038/natrevmats.2016.99
SSID ssj0009606
Score 2.667773
SecondaryResourceType review_article
Snippet High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy....
High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy....
Abstract High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800455
SubjectTerms Charge materials
charge‐transporting materials
Commercialization
device architecture
device efficiency and stability
Interface stability
interfaces
interlayers
Materials science
Perovskites
Photovoltaic cells
Solar cells
Stability analysis
Title Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800455
https://www.ncbi.nlm.nih.gov/pubmed/29883006
https://www.proquest.com/docview/2083686727
https://www.proquest.com/docview/2052808826
https://www.osti.gov/biblio/1463192
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6hnpYDsMsrtIuMhMQpkDi2cfbWhUUICYR4SNwi27EvVElFWw78ejx50a5ASHBLlBnFTmbsb-yZzwD7KfMRWmTikNs4DZmm3qUcS0OkVpc-PDjOI6x3vrwS5_fs4oE_zFXx1_wQ3YIbekY1XqODKz05eiMNVXnFGxRLRCVYZY4JW4iKbt74oxCeV2R7CQ9TwWTL2hjRo0X1hVmpV3rveg9xLgLYagY6WwXVtr1OPHk8nE31oXn5j9bxO51bg5UGnpJhbU8_YckWv2B5jrRwHSZ3VaYtubZP5fMEF3_JLcbH5MSORgQLTvAQJzVqCjz_kCGKthWdRBU5adP9yE2JTRiTv34uzUlZkGqB0inUJ3Nv3YD7s393J-dhc3RDaHyIwkPmnU9TTa3guU5EwvixlhTLlTgCUqYZzVWOIbGjKnHGaqOZj620c8Y5ppNN6BVlYbeBpE7ELlZRYjwS4WmktMDqXmWdyLkfQQII21-XmYbXHI_XGGU1IzPNsCdZ9zEDOOjkxzWjx4eSfbSEzGMRJNQ1mHlkphgs-XGLBjBoDSRr_H7idWUiJO5uB7DXPfYei9swqrDlDGU4lRjZiAC2asPqGkJTKRM_EAZAK_P4pIXZ8PRy2N3tfEWpDz_wus5pHEBv-jSzvz3OmurdypdeASwgHJc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V5QA98H6EFjASiFPaxLHTpBKHpUu1pd0Kla3UW2o79qWrpOrugui_6l_hF3Umr3YRCAmpB45J7MROZibfjGc-A7xNBXpogQl9acPUF5qjSjmR-kStnqB7sJEHVO882o-Hh-LzkTxagou2Fqbmh-gCbqQZlb0mBaeA9PoVa6jKK-KgMCFY0uZV7tof39Frm37YGeAnfsf59qfx1tBvNhbwDQJo6QsUDc01t7HMdRRHQm7ohFMxjSS4JLTgucrJYXNcRc5YbbRA5K-dM84JHeF9b8Ft2kac6PoHB1eMVeQQVPR-kfTTWCQtT2TA1xfHu_Af7JWoz7_DuIuQufrnbd-Hn-3bqlNdTtbmM71mzn8hkvyvXucDuNcgcNavVeYhLNniESxf42V8DNNxlUzMvtiz8tuU4tvsK4UA2JadTBjV1NA-VWrS1LBusj41bYtWmSpy1mY0soOSpnzKPiJcyFlZsCoG6xT1Z9ee-gQOb2TWT6FXlIV9Dix1cehCFUQGwZZMA6VjKmBW1sW5RCPpgd_KSmYa6nbaQWSS1aTTPKOZZN3H8-B91_60Ji35Y8sVEr0M4RZxBhtKrjIz8gfRNHMPVluJzBrTNsW-SRQntIDvwZvuMholWmlShS3n1EbyhJy32INntSR3A-FpkkRo6z3glTz-ZYRZfzDqd0cv_qXTa7gzHI_2sr2d_d0VuEvn6xTOVejNzub2JcLKmX5VKTKD45sW9UtpqXox
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VRUJw4P0ILWAkEKe0iWO7CRKHpcuqpbSqSiv1ltqOfWGVrLq7IPhV_BX-ETN5tYtASEg9cExiJ37MTL6xZz4DvMgEemiRjUPp4iwUhqNKeZGFRK2eonuwWUSU77y3r7aPxfsTebIC37tcmIYfol9wI82o7TUp-LTwG-ekobqoeYPilFBJF1a5675-Qadt9mZnhDP8kvPxu6Ot7bA9VyC0iJ9lKFAyDDfcKVmYRCVCbpqUUy6NJLQkjOCFLshf81wn3jpjjUDgb7y33guT4HuvwFWhoowOixgdnhNWkT9Qs_slMsyUSDuayIhvLLd36Tc4qFCdfwdxlxFz_csb34If3WA1kS6f1hdzs26__cIj-T-N5m242eJvNmwU5g6suPIu3LjAyngPZkd1KDE7cGfV5xmtbrOPtADAttxkwiijhk6p0pM2g_U1G1LRLmWV6bJgXTwjO6yoy1P2FsFCwaqS1SuwXlN9duGr9-H4Unr9AAZlVbpHwDKvYh_rKLEItWQWaaMofVk7rwqJJjKAsBOV3LbE7XR-yCRvKKd5Tj3J-8kL4FVfftpQlvyx5CpJXo5gixiDLYVW2Tl5g2iYeQBrnUDmrWGbYd00USlt3wfwvH-MJon2mXTpqgWVkTwl100F8LAR5L4hPEvTBC19ALwWx7-0MB-O9ob91eN_qfQMrh2MxvmHnf3dVbhOt5v4zTUYzM8W7gliyrl5Wqsxg9PLlvSfXst44A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Perovskite+Solar+Cell+Commercialization%3A+A+Perspective+and+Research+Roadmap+Based+on+Interfacial+Engineering&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Rajagopal%2C+Adharsh&rft.au=Yao%2C+Kai&rft.au=Jen%2C+Alex+K.%E2%80%90Y.&rft.date=2018-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=32&rft_id=info:doi/10.1002%2Fadma.201800455&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201800455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon