Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering
High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique st...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 32; pp. e1800455 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2018
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented.
The multifaceted roles of interfacial engineering in the evolution of highly efficient and stable perovskite solar cells are explained. Unique structure–property–processing–performance traits are summarized. Functions of diverse charge transport materials and interfacial modifications are comprehensively discussed. Scalability–durability–sustainability considerations for commercialization are highlighted. Prospective research directions are presented for all developmental fronts. |
---|---|
AbstractList | High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented. Abstract High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented. High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure-property-processing-performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state-of-the-art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge-transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability-durability-sustainability considerations pivotal for facilitating laboratory to industry translation are presented.High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure-property-processing-performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state-of-the-art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge-transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability-durability-sustainability considerations pivotal for facilitating laboratory to industry translation are presented. High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure–property–processing–performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state‐of‐the‐art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge‐transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability–durability–sustainability considerations pivotal for facilitating laboratory to industry translation are presented. The multifaceted roles of interfacial engineering in the evolution of highly efficient and stable perovskite solar cells are explained. Unique structure–property–processing–performance traits are summarized. Functions of diverse charge transport materials and interfacial modifications are comprehensively discussed. Scalability–durability–sustainability considerations for commercialization are highlighted. Prospective research directions are presented for all developmental fronts. |
Author | Rajagopal, Adharsh Yao, Kai Jen, Alex K.‐Y. |
Author_xml | – sequence: 1 givenname: Adharsh surname: Rajagopal fullname: Rajagopal, Adharsh organization: University of Washington – sequence: 2 givenname: Kai surname: Yao fullname: Yao, Kai email: yaokai@ncu.edu.cn organization: Nanchang University – sequence: 3 givenname: Alex K.‐Y. orcidid: 0000-0002-9219-7749 surname: Jen fullname: Jen, Alex K.‐Y. email: alexjen@cityu.edu.hk organization: City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29883006$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1463192$$D View this record in Osti.gov |
BookMark | eNqFkcFvFCEUh4mpsdvq1aMhevEyKzDAgrd1rdqkRlPrmQDzpqXOwBZm29S_XtZtNWliPL3L9738fu8doL2YIiD0nJI5JYS9sd1o54xQRQgX4hGaUcFow4kWe2hGdCsaLbnaRwelXBJCtCTyCdpnWqmWEDlD5Szd2Nzhr5DTdfkRJsDf0mAzXsEw4FUaR8g-2CH8tFNI8S1ebtGyBj-Fa8A2dvgUCtjsL_Bp2qZZ43e2QIdTxMdxgtzbrY-P4nmIADnE86focW-HAs_u5iH6_uHobPWpOfny8Xi1PGm8EFo0nBHimGMgReda2XKxcIpRyqTQmkruOOtsR9iC98y2vQfnHZdMur73fc9de4he7vamMgVTfC3nL3yKsYY3lMuWalah1ztondPVBspkxlB8LW8jpE0xjAimiFJMVvTVA_QybXKsFSqlWqnkgi0q9eKO2rgROrPOYbT51tzfvAJ8B_icSsnQm5rs93WnbMNgKDHb15rtMc2f11Zt_kC73_xPQe-EmzDA7X9os3z_efnX_QUI3rVZ |
CitedBy_id | crossref_primary_10_1021_acsaem_0c01917 crossref_primary_10_3103_S1062873822700678 crossref_primary_10_1002_ente_202000216 crossref_primary_10_1039_D0SE01527J crossref_primary_10_1002_solr_202000700 crossref_primary_10_1016_j_surfin_2023_103649 crossref_primary_10_1002_solr_202000270 crossref_primary_10_1002_adfm_202303301 crossref_primary_10_1016_j_jechem_2021_01_037 crossref_primary_10_1021_acs_langmuir_3c03610 crossref_primary_10_1002_admi_202201860 crossref_primary_10_1039_D4CC04884A crossref_primary_10_1016_j_rio_2023_100510 crossref_primary_10_1039_D0CS01272F crossref_primary_10_1039_D4EE01839G crossref_primary_10_1021_acsami_1c09642 crossref_primary_10_1039_D4TA05429F crossref_primary_10_1002_cssc_201900509 crossref_primary_10_1002_pssr_201800505 crossref_primary_10_1016_j_cej_2020_126339 crossref_primary_10_1016_j_mtchem_2022_101362 crossref_primary_10_1016_j_nanoen_2020_104859 crossref_primary_10_1038_s41467_021_21292_3 crossref_primary_10_1021_jacs_8b09532 crossref_primary_10_1039_C8TA07617K crossref_primary_10_1080_00268976_2024_2316273 crossref_primary_10_1016_j_cej_2024_155100 crossref_primary_10_1002_adma_202101833 crossref_primary_10_1002_adma_202307161 crossref_primary_10_1002_smll_201903613 crossref_primary_10_1016_j_dyepig_2019_107925 crossref_primary_10_1039_D4MH00033A crossref_primary_10_1063_1_5058166 crossref_primary_10_1002_solr_202300345 crossref_primary_10_1021_acsenergylett_8b01181 crossref_primary_10_1002_adfm_202308428 crossref_primary_10_1016_j_jmst_2024_07_022 crossref_primary_10_1063_5_0013741 crossref_primary_10_1016_j_joule_2018_10_018 crossref_primary_10_1016_j_nanoen_2022_107579 crossref_primary_10_1002_aenm_201903191 crossref_primary_10_1002_aenm_202002882 crossref_primary_10_1007_s12274_021_4056_x crossref_primary_10_1002_adma_202105635 crossref_primary_10_1016_j_apsusc_2022_153428 crossref_primary_10_1021_acsaem_3c01074 crossref_primary_10_1002_adma_202303139 crossref_primary_10_1038_s41467_021_26754_2 crossref_primary_10_1063_1_5127275 crossref_primary_10_1007_s11664_021_09304_w crossref_primary_10_1016_j_synthmet_2019_116179 crossref_primary_10_1002_eem2_12089 crossref_primary_10_1016_j_cclet_2021_08_055 crossref_primary_10_3390_nano10020291 crossref_primary_10_1038_s41566_023_01372_0 crossref_primary_10_1016_j_materresbull_2022_111747 crossref_primary_10_1039_C9TA08084H crossref_primary_10_1016_j_renene_2025_122365 crossref_primary_10_1021_acsami_4c05092 crossref_primary_10_1021_acs_jpclett_1c03099 crossref_primary_10_1039_D3CC01148H crossref_primary_10_1039_C9NR07475A crossref_primary_10_1021_acs_jpclett_9b03774 crossref_primary_10_1021_acsami_1c21785 crossref_primary_10_1364_PRJ_398529 crossref_primary_10_1021_acsami_3c13868 crossref_primary_10_1039_D1CS00841B crossref_primary_10_1016_j_nanoen_2024_109503 crossref_primary_10_1126_sciadv_abb2412 crossref_primary_10_1038_s41893_021_00701_x crossref_primary_10_1002_aenm_201902529 crossref_primary_10_1016_j_matt_2021_08_012 crossref_primary_10_1021_acsami_2c01654 crossref_primary_10_3390_polym14091853 crossref_primary_10_1016_j_surfin_2024_103954 crossref_primary_10_1016_j_mset_2021_07_003 crossref_primary_10_1002_admi_202001509 crossref_primary_10_1002_adfm_202314408 crossref_primary_10_1021_acsami_0c22993 crossref_primary_10_1016_j_cej_2022_134566 crossref_primary_10_3390_ma15062254 crossref_primary_10_3390_nano13111760 crossref_primary_10_1002_advs_202304733 crossref_primary_10_1016_j_nanoen_2023_108981 crossref_primary_10_1016_j_nanoen_2020_105377 crossref_primary_10_1039_C9TA00398C crossref_primary_10_1002_adfm_202405414 crossref_primary_10_1016_j_mtsust_2024_100685 crossref_primary_10_1016_j_cej_2020_128328 crossref_primary_10_1016_j_cej_2023_145226 crossref_primary_10_33609_2708_129X_87_08_2021_63_81 crossref_primary_10_1039_D4SE01811G crossref_primary_10_1002_smll_202103510 crossref_primary_10_1039_D0EE01967D crossref_primary_10_1016_j_nanoen_2020_104708 crossref_primary_10_1002_advs_201903331 crossref_primary_10_1002_solr_202000589 crossref_primary_10_1021_acs_cgd_1c01494 crossref_primary_10_1016_j_dyepig_2021_109255 crossref_primary_10_1016_j_nanoen_2019_05_072 crossref_primary_10_1016_j_nanoen_2021_106853 crossref_primary_10_1002_adma_202312679 crossref_primary_10_1002_ange_202213560 crossref_primary_10_1002_solr_202300650 crossref_primary_10_3390_nano12071046 crossref_primary_10_1002_adfm_202004652 crossref_primary_10_1039_D1QM00616A crossref_primary_10_1016_j_apsusc_2022_156229 crossref_primary_10_1134_S0036024422010149 crossref_primary_10_1021_acsnano_4c12107 crossref_primary_10_1002_adom_202100860 crossref_primary_10_1007_s12200_018_0847_4 crossref_primary_10_1021_acsomega_1c01074 crossref_primary_10_1088_1361_6463_ab60ec crossref_primary_10_1002_adfm_201807661 crossref_primary_10_1016_j_mser_2023_100727 crossref_primary_10_1088_2058_8585_ac8753 crossref_primary_10_1002_aenm_202001869 crossref_primary_10_1021_acs_chemmater_9b01650 crossref_primary_10_1007_s10854_021_07304_4 crossref_primary_10_1016_j_rser_2020_110207 crossref_primary_10_1016_j_cej_2021_133195 crossref_primary_10_1016_j_cej_2024_158496 crossref_primary_10_1063_1_5144101 crossref_primary_10_1021_jacs_1c02118 crossref_primary_10_1021_acsaem_1c03311 crossref_primary_10_3390_ma13184086 crossref_primary_10_1016_j_jpowsour_2019_227362 crossref_primary_10_3390_en16135015 crossref_primary_10_1002_ange_201909291 crossref_primary_10_1021_acsaelm_9b00475 crossref_primary_10_1002_adfm_201902629 crossref_primary_10_1021_acs_nanolett_8b01480 crossref_primary_10_1038_s41893_023_01181_x crossref_primary_10_1002_aenm_202001610 crossref_primary_10_1007_s11664_024_11345_w crossref_primary_10_1016_j_isci_2018_10_020 crossref_primary_10_1021_acsami_0c11164 crossref_primary_10_7498_aps_71_20220359 crossref_primary_10_26599_EMD_2024_9370031 crossref_primary_10_1038_s41566_023_01180_6 crossref_primary_10_1002_aenm_202101383 crossref_primary_10_1016_j_apsusc_2020_145638 crossref_primary_10_1002_solr_202000369 crossref_primary_10_1002_cssc_202300257 crossref_primary_10_1063_5_0047616 crossref_primary_10_1002_aenm_201904050 crossref_primary_10_1016_j_dyepig_2020_108786 crossref_primary_10_1016_j_orgel_2019_105598 crossref_primary_10_1002_adfm_202206585 crossref_primary_10_1007_s40843_020_1625_2 crossref_primary_10_1021_acsami_1c22396 crossref_primary_10_1039_D3TA03423B crossref_primary_10_1021_acs_jpcc_4c01839 crossref_primary_10_1016_j_jpowsour_2020_228665 crossref_primary_10_1021_acsami_3c00358 crossref_primary_10_1088_1361_6528_acd0b6 crossref_primary_10_1002_adfm_202209290 crossref_primary_10_1002_adma_202205143 crossref_primary_10_1021_acsaem_4c02404 crossref_primary_10_1039_D0TC06049F crossref_primary_10_1021_acsami_0c18108 crossref_primary_10_1002_adts_202200652 crossref_primary_10_1039_D0EE04013D crossref_primary_10_1016_j_joule_2021_04_003 crossref_primary_10_1021_acsami_1c23115 crossref_primary_10_3788_LOP220429 crossref_primary_10_1039_D1TA10388A crossref_primary_10_1016_j_inoche_2024_112565 crossref_primary_10_1016_j_nanoen_2020_104480 crossref_primary_10_1039_C8EE03051K crossref_primary_10_1039_D4TA04233F crossref_primary_10_1002_adfm_201900221 crossref_primary_10_1002_adma_201805843 crossref_primary_10_1002_solr_201900413 crossref_primary_10_1002_solr_202400736 crossref_primary_10_1016_j_jpowsour_2020_228811 crossref_primary_10_1039_C9TA07349C crossref_primary_10_33609_0041_6045_85_9_2019_31_41 crossref_primary_10_1039_C9TA05308E crossref_primary_10_1002_adfm_202300552 crossref_primary_10_1557_s43580_023_00559_5 crossref_primary_10_1021_acsenergylett_2c02060 crossref_primary_10_1021_acsnano_1c02191 crossref_primary_10_1002_aenm_201903106 crossref_primary_10_1038_s43246_022_00327_2 crossref_primary_10_1039_D1TC02726C crossref_primary_10_1007_s12274_020_2805_x crossref_primary_10_1016_j_mssp_2024_108793 crossref_primary_10_1016_j_jechem_2020_05_050 crossref_primary_10_1016_j_electacta_2020_136387 crossref_primary_10_1021_acs_energyfuels_0c00485 crossref_primary_10_1002_aenm_202203471 crossref_primary_10_1002_smtd_202400709 crossref_primary_10_1021_acsnano_3c11642 crossref_primary_10_1039_D1TC02685B crossref_primary_10_1021_acsami_4c09637 crossref_primary_10_1007_s40820_023_01039_z crossref_primary_10_1039_D2TC02110B crossref_primary_10_1021_acsaelm_1c00783 crossref_primary_10_1002_smll_202100678 crossref_primary_10_1021_acsenergylett_0c01240 crossref_primary_10_1002_eem2_12696 crossref_primary_10_1002_adfm_201808833 crossref_primary_10_1021_acsami_9b18082 crossref_primary_10_1021_acsaem_1c03485 crossref_primary_10_1021_acssuschemeng_9b03058 crossref_primary_10_1038_s41377_024_01461_x crossref_primary_10_1021_acsami_1c02728 crossref_primary_10_1021_accountsmr_1c00169 crossref_primary_10_1002_adfm_202006243 crossref_primary_10_1002_adfm_202008300 crossref_primary_10_1039_D4EE04209C crossref_primary_10_3390_nano14110956 crossref_primary_10_1016_j_nanoen_2023_108326 crossref_primary_10_1039_D0TA12286F crossref_primary_10_1021_acsaem_3c00264 crossref_primary_10_1002_solr_201900319 crossref_primary_10_1039_D0TA10242C crossref_primary_10_3389_fchem_2019_00050 crossref_primary_10_1002_adma_201803515 crossref_primary_10_1117_1_JPE_10_042003 crossref_primary_10_1002_aenm_202100493 crossref_primary_10_1002_cphc_201900393 crossref_primary_10_1021_jacs_0c09845 crossref_primary_10_1002_solr_202000205 crossref_primary_10_1002_adma_201804284 crossref_primary_10_1002_anie_201909291 crossref_primary_10_1002_aenm_202200186 crossref_primary_10_1002_adfm_202006213 crossref_primary_10_1021_acsenergylett_4c00961 crossref_primary_10_1021_acsenergylett_9b01356 crossref_primary_10_1016_j_cej_2021_133227 crossref_primary_10_1021_acs_inorgchem_3c01618 crossref_primary_10_1016_j_cej_2019_123677 crossref_primary_10_1016_j_nantod_2021_101164 crossref_primary_10_1016_j_solener_2021_03_036 crossref_primary_10_1016_j_jechem_2020_09_036 crossref_primary_10_1002_admt_201900311 crossref_primary_10_1039_D0TA10581C crossref_primary_10_1021_acs_jpclett_3c03087 crossref_primary_10_1039_D0NJ04157B crossref_primary_10_1007_s11664_020_08264_x crossref_primary_10_1039_C9TA08130E crossref_primary_10_1002_cssc_202402549 crossref_primary_10_1021_acsaem_0c00756 crossref_primary_10_1016_j_pquantelec_2022_100438 crossref_primary_10_1002_chem_202000005 crossref_primary_10_1007_s11664_020_08249_w crossref_primary_10_1002_adfm_202103847 crossref_primary_10_1002_solr_202200355 crossref_primary_10_1021_acsami_8b15962 crossref_primary_10_1038_s41377_021_00662_y crossref_primary_10_1021_acsami_3c07585 crossref_primary_10_1016_j_jechem_2020_08_012 crossref_primary_10_1002_er_7321 crossref_primary_10_1002_adom_202001647 crossref_primary_10_1002_solr_202200224 crossref_primary_10_1021_acsami_8b18307 crossref_primary_10_1039_D1NJ05232B crossref_primary_10_1002_anie_202213560 crossref_primary_10_1002_adom_202100133 crossref_primary_10_1186_s11671_018_2841_6 crossref_primary_10_1002_adfm_202205289 crossref_primary_10_1016_j_physrep_2024_01_004 crossref_primary_10_3390_nano8110897 crossref_primary_10_1002_advs_202206331 crossref_primary_10_1016_j_xcrp_2021_100450 crossref_primary_10_1002_solr_202100639 crossref_primary_10_1021_acs_chemmater_9b01268 crossref_primary_10_1021_acsenergylett_1c01126 crossref_primary_10_1002_solr_202000502 crossref_primary_10_1021_acs_jpclett_1c00714 crossref_primary_10_1039_D1CC01519B crossref_primary_10_1016_j_joule_2023_09_007 crossref_primary_10_1016_j_mser_2018_12_001 crossref_primary_10_1002_aelm_202000604 crossref_primary_10_1038_s41560_019_0406_2 crossref_primary_10_1039_C8CC05517C crossref_primary_10_1039_D1DT02991F crossref_primary_10_1039_D3NR01390A crossref_primary_10_1016_j_jechem_2021_09_017 crossref_primary_10_1002_adfm_202000457 crossref_primary_10_1021_acsenergylett_3c02357 crossref_primary_10_3390_polym15030772 crossref_primary_10_2139_ssrn_3995897 crossref_primary_10_1002_smtd_201900831 crossref_primary_10_1016_j_jallcom_2021_161247 crossref_primary_10_1021_acsami_1c23292 crossref_primary_10_1021_acsaem_9b00859 crossref_primary_10_1039_D3DT02930A crossref_primary_10_1126_sciadv_abi8249 crossref_primary_10_1021_acsenergylett_0c00871 crossref_primary_10_1007_s11664_022_09944_6 crossref_primary_10_3390_inorganics12040123 crossref_primary_10_1016_j_electacta_2022_140602 crossref_primary_10_1002_aenm_202102856 crossref_primary_10_1002_aenm_202102730 crossref_primary_10_1016_j_solmat_2022_112177 crossref_primary_10_1038_s41560_020_00716_2 crossref_primary_10_3390_coatings12020252 crossref_primary_10_3390_nano13091492 crossref_primary_10_1016_j_inoche_2024_113115 crossref_primary_10_1016_j_surfin_2024_105593 crossref_primary_10_1016_j_apsusc_2021_150778 crossref_primary_10_1038_s41598_020_63745_7 crossref_primary_10_1002_solr_202000408 crossref_primary_10_1002_solr_202400476 crossref_primary_10_1039_C8RA08563C crossref_primary_10_1002_adfm_201900966 crossref_primary_10_3390_ma17184522 crossref_primary_10_1016_j_nanoen_2018_09_037 crossref_primary_10_1002_adom_202202982 crossref_primary_10_6023_cjoc202009033 crossref_primary_10_1002_solr_202200025 crossref_primary_10_34133_2021_9797058 crossref_primary_10_1016_j_solmat_2020_110527 crossref_primary_10_1039_C9TA12188A crossref_primary_10_1021_acsaelm_0c00825 crossref_primary_10_1016_j_progsolidstchem_2024_100463 crossref_primary_10_1039_C8TC06330C crossref_primary_10_1016_j_solener_2019_06_042 crossref_primary_10_1039_D4TA03699A crossref_primary_10_1002_solr_201800177 crossref_primary_10_1021_acs_jpclett_9b00344 crossref_primary_10_1002_cphc_202200919 crossref_primary_10_1016_j_cej_2020_128068 crossref_primary_10_1007_s11082_022_03738_0 crossref_primary_10_1002_nano_202400020 crossref_primary_10_1016_j_expthermflusci_2019_03_021 crossref_primary_10_1021_acsami_9b20402 crossref_primary_10_1063_5_0037307 crossref_primary_10_1002_admt_202000960 crossref_primary_10_1021_acsenergylett_1c02580 crossref_primary_10_1515_revic_2024_0029 crossref_primary_10_1016_j_apsusc_2019_03_164 crossref_primary_10_1002_solr_202201002 crossref_primary_10_1063_5_0086599 crossref_primary_10_3390_ma17164029 crossref_primary_10_1016_j_nanoen_2023_109192 crossref_primary_10_1002_solr_202200156 crossref_primary_10_1021_acsami_9b01587 crossref_primary_10_1063_5_0228001 crossref_primary_10_1016_j_jmat_2021_08_007 crossref_primary_10_3389_fchem_2020_00754 crossref_primary_10_1002_aenm_201902600 crossref_primary_10_1039_D1TC02307A crossref_primary_10_1088_1361_6463_ac2d63 crossref_primary_10_1021_acssuschemeng_0c05619 crossref_primary_10_1016_j_jlumin_2019_116984 crossref_primary_10_1016_j_rser_2021_111689 crossref_primary_10_1016_j_solener_2019_12_025 crossref_primary_10_1002_adma_201806095 crossref_primary_10_1039_C8TA12028E crossref_primary_10_1039_D0QM00295J crossref_primary_10_1039_C9QM00469F crossref_primary_10_1039_C8TA12060A |
Cites_doi | 10.1002/adma.201304803 10.1021/nl504168q 10.1126/science.aan2301 10.1016/j.joule.2017.09.007 10.1039/C5EE00615E 10.1002/anie.201500014 10.1107/S0108768108032734 10.1021/acsenergylett.7b00847 10.1038/nenergy.2017.9 10.1002/admi.201700598 10.1039/C4TA04994B 10.1016/j.nanoen.2015.10.010 10.1126/science.aam6620 10.1002/aenm.201602349 10.1021/acs.jpclett.5b00480 10.1002/adma.201404189 10.1021/acs.accounts.5b00455 10.1038/ncomms6784 10.1002/cssc.201700584 10.1063/1.4928535 10.1039/C6EE02941H 10.1039/C7EE01675A 10.1002/aenm.201701640 10.1039/C5NR04250J 10.1038/nchem.2324 10.1002/adma.201600446 10.1002/adfm.201702613 10.1002/aenm.201602610 10.1038/srep37654 10.1021/acsnano.6b01904 10.1039/C6EE01987K 10.1038/nenergy.2015.17 10.1126/science.aah4046 10.1002/aenm.201501534 10.1039/C4EE04073B 10.1002/adma.201703852 10.1021/ja403344s 10.1021/acsenergylett.7b00137 10.1039/C6CS00942E 10.1002/aenm.201701569 10.1021/acsenergylett.7b00278 10.1002/aenm.201500486 10.1021/acs.jpclett.7b02128 10.1146/annurev-physchem-040215-112222 10.1038/nphoton.2013.342 10.1021/acs.jpclett.5b00289 10.1002/adma.201604186 10.1002/aenm.201701136 10.1126/science.1228604 10.1039/C5MH00154D 10.1002/anie.201405176 10.1021/acs.chemmater.6b03852 10.1021/jacs.5b01994 10.1021/acsenergylett.6b00327 10.1039/C6EE02139E 10.1038/nnano.2016.110 10.1021/acs.jpclett.7b00374 10.1002/adma.201505630 10.1021/acs.chemmater.5b01598 10.1002/adma.201505279 10.1002/aenm.201502466 10.1002/aenm.201700228 10.1002/anie.201601757 10.1021/acs.nanolett.7b03179 10.1021/acs.jpclett.7b01466 10.1038/nenergy.2015.16 10.1021/acs.jpcc.5b10728 10.1039/C6CC03740B 10.1002/aenm.201402321 10.1039/C5TA07008B 10.1126/science.aai9081 10.1002/adma.201606806 10.1039/C5CC08156D 10.1126/sciadv.1701293 10.1002/aenm.201602358 10.1002/smll.201601769 10.1002/adma.201602696 10.1038/nmat3011 10.1039/C6EE00612D 10.1002/aenm.201701048 10.1002/adma.201505241 10.1038/natrevmats.2016.100 10.1246/cl.150167 10.1002/adfm.201501264 10.1021/acs.jpcc.6b05667 10.1021/acsenergylett.7b00525 10.1002/admi.201500195 10.1002/adma.201600624 10.1021/acs.nanolett.5b00787 10.1002/adfm.201505215 10.1002/aenm.201500799 10.1002/aenm.201700264 10.1002/aenm.201601165 10.1073/pnas.1607471113 10.1002/adma.201702140 10.1039/C6EE00409A 10.1021/jp509753p 10.1021/acsenergylett.6b00320 10.1039/C5TA05286F 10.1002/admi.201500420 10.1039/C7EE02564E 10.1021/acs.jpclett.5b02651 10.1039/C7NR03507A 10.1002/aenm.201601575 10.1002/admi.201500837 10.1039/C5EE00222B 10.1002/aenm.201600014 10.1038/nmat4795 10.1021/nl500399m 10.1039/C5RA17129F 10.1021/am506672j 10.1021/acsami.7b11977 10.1021/acs.jpclett.6b02847 10.1038/nmat4388 10.1126/science.aam6323 10.1021/acsnano.7b04070 10.1039/C5TA02710A 10.1021/acs.nanolett.7b01092 10.1021/acs.chemmater.5b01933 10.1038/natrevmats.2015.7 10.1002/advs.201500301 10.1021/jacs.7b01439 10.1002/aenm.201700823 10.1021/acs.nanolett.6b03989 10.1021/jacs.5b11740 10.1002/aenm.201702365 10.1002/adma.201603923 10.1016/j.nanoen.2016.06.044 10.1126/sciadv.1700841 10.1016/j.rser.2017.08.077 10.1021/acs.chemmater.6b03564 10.1002/adma.201500523 10.1021/nl501982b 10.1002/aenm.201601055 10.1002/aenm.201600460 10.1002/adma.201600659 10.1021/acsnano.6b01535 10.1039/C6EE02650H 10.1021/acsami.7b13621 10.1038/nenergy.2016.149 10.1002/aenm.201502246 10.1039/C5TA09165A 10.1039/c3ee44174a 10.1063/1.4916345 10.1002/adma.201600619 10.1021/acsami.6b04760 10.1039/C7EE01931A 10.1016/j.nanoen.2016.02.025 10.1021/acsami.5b09442 10.1002/adfm.201401557 10.1021/acs.nanolett.5b00116 10.1016/j.electacta.2014.11.003 10.1021/acsenergylett.6b00236 10.1021/jacs.6b08790 10.1038/ncomms15684 10.1016/j.nanoen.2014.12.004 10.1002/adfm.201703704 10.1021/jacs.6b06291 10.1021/acs.jpclett.5b01406 10.1002/adma.201500465 10.1088/0957-4484/27/8/082001 10.1002/anie.201604399 10.1021/jz501983v 10.1002/pip.2871 10.1021/acs.accounts.5b00411 10.1002/adfm.201504949 10.1039/C5CC05205J 10.1002/pip.2978 10.1002/aenm.201502021 10.1002/adma.201501145 10.1038/nenergy.2016.148 10.1002/aelm.201700158 10.1021/jacs.7b04949 10.1002/aenm.201400812 10.1039/C5TA04239A 10.1038/ncomms8497 10.1038/nmat4014 10.1016/j.nanoen.2016.08.006 10.1021/acs.accounts.5b00433 10.1021/acs.chemmater.6b02583 10.1002/adma.201701221 10.1021/acsenergylett.7b00282 10.1021/jp412627n 10.1039/C6EE03014A 10.1039/C5TA02265G 10.1016/j.nanoen.2016.10.065 10.1002/adfm.201603023 10.1021/acs.nanolett.6b05177 10.1021/acsami.6b11757 10.1039/C7TA05428A 10.1039/C7TA00404D 10.1126/science.aaf9717 10.1002/aenm.201601768 10.1039/C4EE03773A 10.1021/acs.jpclett.6b00058 10.1021/acs.jpcc.6b04233 10.1002/adma.201605900 10.1021/acs.chemmater.6b04327 10.1186/s40508-016-0051-z 10.1002/adma.201504293 10.1039/c3ee40810h 10.1002/adma.201606363 10.1002/aenm.201601193 10.1021/acsenergylett.7b00589 10.1038/nphoton.2013.374 10.1002/anie.201503153 10.1021/acs.chemrev.6b00432 10.1039/C4EE03664F 10.1021/ja4132246 10.1038/ncomms8081 10.1002/adma.201504168 10.1021/acsenergylett.7b01151 10.1002/aenm.201701609 10.1002/aenm.201501453 10.1016/j.nanoen.2014.12.022 10.1021/acs.jpcc.7b02411 10.1021/ja809598r 10.1126/science.aaa9272 10.1002/adma.201501856 10.1039/C7EE00757D 10.1038/ncomms8410 10.1021/jacs.5b03796 10.1002/adma.201604493 10.1002/cssc.201600944 10.1039/C7TA00434F 10.1002/cssc.201701262 10.1021/acs.jpclett.5b02273 10.1002/anie.201600702 10.1002/adma.201700159 10.1039/C5NR08836D 10.1002/adfm.201702180 10.1039/C6CE00813E 10.1002/aenm.201501066 10.1021/nl403997a 10.1039/C5EE01720C 10.1039/C6EE00709K 10.1039/C5TC01856K 10.1038/ncomms11574 10.1002/adfm.201703068 10.1039/C6CS00122J 10.1039/C7TA05004F 10.1002/aenm.201600457 10.1039/C5EE03911H 10.1002/aenm.201500569 10.1021/acs.chemmater.6b02883 10.1039/C7EE00899F 10.1039/C5TA03865K 10.1021/acsenergylett.7b00644 10.1021/acs.nanolett.6b02158 10.1038/nphoton.2016.62 10.1021/nl504349z 10.1021/acsenergylett.7b00239 10.1039/C6EE02100J 10.1021/nn505723h 10.1038/nenergy.2017.38 10.1021/acsami.5b04695 10.1021/acsphotonics.6b00331 10.1002/adma.201704418 10.1021/jp500449z 10.1038/nenergy.2016.190 10.1038/nenergy.2016.195 10.1038/ncomms10214 10.1002/adma.201703737 10.1038/ncomms16045 10.1002/aenm.201700522 10.1038/ncomms11105 10.1002/adma.201606398 10.1021/ja512518r 10.1021/acs.inorgchem.6b01307 10.1002/adma.201604545 10.1021/am503610u 10.1021/acs.chemmater.5b03991 10.1021/nn506864k 10.1039/C6TA06152D 10.1038/s41560-017-0016-9 10.1021/ar600035e 10.1021/jacs.7b04981 10.1021/acs.jpclett.5b01698 10.1038/nenergy.2016.177 10.1016/j.nanoen.2016.10.041 10.1002/adma.201700183 10.1002/adma.201605005 10.1039/C4EE02833C 10.1021/jacs.6b00039 10.1038/ncomms12806 10.1021/acs.jpclett.6b00215 10.1021/acsenergylett.6b00499 10.1039/C6EE02013E 10.1126/science.aai8535 10.1002/adma.201703980 10.1002/admi.201600571 10.1038/nenergy.2017.102 10.1039/C4EE01076K 10.1002/aenm.201602400 10.1016/j.mser.2015.12.002 10.1021/acs.jpclett.7b00712 10.1063/1.4896779 10.1039/C5EE01265A 10.1016/j.eml.2016.06.006 10.1039/C7TA04544A 10.1002/adma.201301327 10.1002/adma.201401685 10.1016/j.nanoen.2017.05.049 10.1021/acsami.7b06001 10.1002/aenm.201500477 10.1021/jacs.5b10723 10.1038/nenergy.2016.142 10.1002/aenm.201600396 10.1021/acsenergylett.6b00116 10.1039/C6EE03352K 10.1038/nmat4473 10.1002/aelm.201700435 10.1002/aenm.201401943 10.1039/C5EE01169H 10.1021/jacs.5b08535 10.1002/aenm.201701038 10.1039/C5EE03806E 10.1002/aenm.201600386 10.1002/aenm.201700491 10.1002/aenm.201602432 10.1039/C7EE01096F 10.1002/cssc.201501659 10.1038/ncomms3885 10.1002/aenm.201602922 10.1002/aenm.201601307 10.1038/nphoton.2014.82 10.1021/acsenergylett.6b00060 10.1038/nenergy.2016.152 10.1002/adma.201700192 10.1039/C4EE03907F 10.1021/acsnano.6b05825 10.1038/ncomms8747 10.1126/science.aam5655 10.1039/C7EE01145H 10.1039/C6TA00577B 10.1002/aenm.201602121 10.1039/C5EE03315B 10.1039/C5EE03560K 10.1039/C6EE02390H 10.1002/adma.201603994 10.1002/aenm.201700763 10.1021/acs.inorgchem.6b01294 10.1021/acs.jpclett.6b00366 10.1002/adfm.201602803 10.1002/aenm.201701688 10.1002/aenm.201700576 10.1021/acs.accounts.5b00420 10.1039/C5EE03522H 10.1021/nl500544c 10.1039/C6EE02373H 10.1039/C6EE01137C 10.1002/anie.201706895 10.1002/aenm.201701883 10.1016/j.chempr.2016.10.002 10.1002/adma.201600969 10.1021/acs.chemmater.5b00129 10.1021/acsenergylett.6b00229 10.1021/acs.inorgchem.7b01094 10.1021/jacs.5b06493 10.1016/j.nanoen.2016.10.036 10.1038/nenergy.2017.18 10.1038/nnano.2015.230 10.1039/C5TA10696F 10.1039/C4CS00458B 10.1021/acs.nanolett.7b00722 10.1021/acs.chemmater.6b00711 10.1038/natrevmats.2017.42 10.1021/nn5036476 10.1038/srep04756 10.1021/acsnano.6b00225 10.1021/acsami.7b06816 10.1016/j.rser.2017.05.095 10.1039/C5CP03995A 10.1002/aenm.201602803 10.1002/admi.201700623 10.1002/smll.201403534 10.1038/ncomms10379 10.1002/solr.201700045 10.1016/j.enpol.2005.06.020 10.1002/adma.201300580 10.1016/j.joule.2017.11.006 10.1021/jacs.5b10614 10.1039/C7TA04225F 10.1002/adma.201600265 10.1021/nl500390f 10.1002/advs.201500353 10.1126/science.aad4424 10.1038/ncomms15330 10.1021/acs.jpclett.6b01951 10.1002/adma.201602785 10.1021/acsenergylett.6b00495 10.1021/acs.jpclett.6b00238 10.1039/C3EE43707H 10.1021/acs.jpclett.5b01696 10.1002/adfm.201703061 10.1039/C5TA09911K 10.1021/acs.nanolett.7b02532 10.1002/ange.201406466 10.1039/C5EE03394B 10.1038/natrevmats.2017.43 10.1002/aenm.201601128 10.1002/aenm.201701349 10.1039/C6EE03182J 10.1002/aenm.201501119 10.1039/C7TA09178H 10.1002/adma.201505140 10.1039/C6EE01037G 10.1039/C5TA09080F 10.1039/C5TA03456F 10.1002/aenm.201501606 10.1021/acs.nanolett.6b03857 10.1021/acs.chemrev.6b00136 10.1021/ic401215x 10.1002/aenm.201500568 10.1021/acsami.6b06164 10.1002/advs.201600027 10.1021/acsnano.6b02613 10.1038/nmat4572 10.1002/aenm.201501056 10.1002/adma.201504144 10.1039/C5EE02608C 10.1021/acsnano.5b07043 10.1038/nature18306 10.1002/aenm.201602599 10.1039/C6EE03397K 10.1016/j.solmat.2016.04.037 10.1021/acsami.5b12740 10.1021/acs.chemmater.5b01909 10.1038/nenergy.2016.93 10.1021/cm504022q 10.1002/adfm.201401658 10.1002/aenm.201601251 10.1002/admi.201700007 10.1063/1.4905932 10.1002/aenm.201501406 10.1038/ncomms9932 10.1038/nature23877 10.1016/j.joule.2017.09.017 10.1002/adma.201604984 10.1002/admi.201600122 10.1039/C4TA04482G 10.1039/C7EE00421D 10.1002/aenm.201600502 10.1021/acs.nanolett.5b04157 10.1126/science.aao5561 10.1021/acs.chemrev.5b00715 10.1002/adma.201504555 10.1002/adma.201306217 10.1021/acsenergylett.6b00672 10.1126/science.aad5891 10.1038/nenergy.2015.12 10.1021/jz500279b 10.1002/adma.201503298 10.1002/aenm.201501320 10.1021/acs.jpcc.6b04642 10.1021/acs.jpclett.5b00504 10.1021/jacs.5b00321 10.1039/C5EE03874J 10.1038/s41598-017-11193-1 10.1002/aenm.201700012 10.1126/science.1254050 10.1021/acsenergylett.6b00657 10.1039/C5TA04695E 10.1002/adfm.201502340 10.1002/aenm.201600401 10.1039/C7TA06163C 10.1038/s41570-017-0095 10.1039/C5TA08963H 10.1002/aenm.201700758 10.1021/acsenergylett.6b00680 10.1002/aenm.201701544 10.1002/cssc.201700635 10.1126/science.aad5845 10.1021/acs.nanolett.7b03225 10.1038/nphoton.2016.3 10.1021/acs.jpclett.6b02309 10.1002/solr.201700082 10.1021/acs.nanolett.7b01500 10.1038/nenergy.2016.48 10.1038/ncomms13422 10.1002/adma.201604056 10.1002/adma.201603062 10.1021/acs.chemmater.5b00660 10.1002/aenm.201701935 10.1002/aenm.201602333 10.1002/adma.201606555 10.1021/acsenergylett.7b00667 10.1038/nenergy.2016.207 10.1021/acs.jpclett.5b00010 10.1021/ja512117e 10.1002/aenm.201602761 10.1016/j.nanoen.2017.08.014 10.1021/jacs.6b04519 10.1109/PVSC.2012.6318129 10.1002/aenm.201700623 10.1002/anie.201606574 10.1039/C6TA05095F 10.1002/adma.201601745 10.1021/acsenergylett.6b00158 10.1016/j.nanoen.2016.08.035 10.1126/science.1254763 10.1039/C5EE02733K 10.1002/cssc.201700271 10.1021/acs.jpclett.5b02888 10.1038/nmat4150 10.1002/admi.201600948 10.1002/adma.201504260 10.1002/adma.201600669 10.1002/admi.201700731 10.1039/C5TC00622H 10.1039/C5GC02734A 10.1021/acs.jpcc.5b11144 10.1021/ja5033259 10.1021/acs.nanolett.6b04015 10.1039/C7EE02185B 10.1021/acsenergylett.7b00357 10.1016/j.nantod.2015.04.009 10.1038/natrevmats.2016.99 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.201800455 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1463192 29883006 10_1002_adma_201800455 ADMA201800455 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1608279 – fundername: Boeing‐Johnson Foundation – fundername: Natural Science Foundation of Jiangxi Province, China funderid: 20161ACB21004 – fundername: National Natural Science Foundation of China funderid: 61504053 – fundername: Department of Energy SunShot funderid: DE‐EE 0006710 – fundername: Office of Naval Research funderid: N00014‐17‐1‐2260 – fundername: Asian Office of Aerospace R&D funderid: FA2386‐15‐1‐4106 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c5595-4200b2b2e65db363457b821126599164b42dad0274f2a3fcebcb4626bffcff4b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Sep 25 05:37:13 EDT 2023 Fri Jul 11 01:40:40 EDT 2025 Fri Jul 25 07:10:29 EDT 2025 Wed Feb 19 02:40:59 EST 2025 Tue Jul 01 00:44:42 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:30:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | interlayers device architecture charge-transporting materials interfaces device efficiency and stability |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5595-4200b2b2e65db363457b821126599164b42dad0274f2a3fcebcb4626bffcff4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 DE‐EE 0006710 USDOE |
ORCID | 0000-0002-9219-7749 0000000292197749 |
OpenAccessLink | https://www.osti.gov/biblio/1463192 |
PMID | 29883006 |
PQID | 2083686727 |
PQPubID | 2045203 |
PageCount | 45 |
ParticipantIDs | osti_scitechconnect_1463192 proquest_miscellaneous_2052808826 proquest_journals_2083686727 pubmed_primary_29883006 crossref_citationtrail_10_1002_adma_201800455 crossref_primary_10_1002_adma_201800455 wiley_primary_10_1002_adma_201800455_ADMA201800455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Aug |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-Aug |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | December 2017 2017; 80 2013; 4 2006; 34 2014; 26 2016; 30 2014; 24 2017; 550 2013; 8 2013; 6 2014; 136 2018; 8 2018; 3 2018; 2 2018; 5 2015; 137 2013; 52 2016; 156 2014; 14 2014; 13 2018; 30 2016; 49 2014; 126 2016; 45 2015; 51 2015; 54 2016; 10 2016; 18 2016; 16 2016; 15 2018; 26 2017; 139 2016; 11 2015; 350 2016; 4 2016; 6 2016; 7 2016; 1 2016; 2 2016; 3 2017; 56 2016; 28 2018; 11 2016; 27 2016; 26 2016; 8 2016; 9 2016; 22 2017; 5 2017; 40 2017; 7 2017; 8 2017; 1 2017; 17135 2017; 2 2013; 25 2017; 3 2017; 4 2017; 46 2016; 101 2011; 10 2015; 106 2018; 82 2015; 348 2015; 107 2017; 355 2017; 356 2017; 9 2017; 357 2017; 358 2014; 5 2014; 4 2017; 38 2015; 44 2016; 113 2016; 354 2016; 352 2016; 116 2008; 64 2017; 121 2014; 8 2014; 7 2014; 6 2012; 338 2016; 351 2014; 53 2014; 118 2015; 2 2015; 12 2015; 15 2015; 14 2015; 6 2015; 17 2015; 5 2015; 3 2015; 18 2012 2017; 25 2017; 27 2015; 11 2015; 10 2016; 52 2017; 29 2009; 131 2015; 9 2015; 8 2015; 7 2016; 120 2016; 55 2015; 151 2014; 105 2015; 25 2015; 27 2017; 17 2016; 536 2017; 16 2017; 11 2017; 10 2017; 13 2017 2013; 135 2016; 138 2007; 40 2014; 345 2016; 67 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_469_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_423_1 e_1_2_9_446_1 e_1_2_9_400_1 e_1_2_9_292_1 e_1_2_9_107_1 e_1_2_9_337_1 e_1_2_9_314_1 e_1_2_9_390_1 e_1_2_9_183_1 Rolston N. (e_1_2_9_497_1) 2017 e_1_2_9_160_1 e_1_2_9_521_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_412_1 e_1_2_9_458_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_435_1 e_1_2_9_280_1 e_1_2_9_325_1 e_1_2_9_348_1 e_1_2_9_510_1 e_1_2_9_195_1 e_1_2_9_302_1 e_1_2_9_172_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_217_1 e_1_2_9_401_1 e_1_2_9_447_1 e_1_2_9_270_1 e_1_2_9_293_1 e_1_2_9_129_1 e_1_2_9_106_1 e_1_2_9_338_1 e_1_2_9_522_1 e_1_2_9_315_1 e_1_2_9_391_1 e_1_2_9_182_1 e_1_2_9_46_1 e_1_2_9_228_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_413_1 e_1_2_9_436_1 e_1_2_9_459_1 e_1_2_9_5_1 e_1_2_9_281_1 e_1_2_9_118_1 e_1_2_9_326_1 e_1_2_9_349_1 e_1_2_9_303_1 e_1_2_9_69_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_511_1 e_1_2_9_31_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_339_1 e_1_2_9_402_1 e_1_2_9_425_1 e_1_2_9_448_1 e_1_2_9_294_1 e_1_2_9_109_1 e_1_2_9_271_1 e_1_2_9_316_1 e_1_2_9_392_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_523_1 e_1_2_9_185_1 e_1_2_9_500_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_437_1 e_1_2_9_414_1 e_1_2_9_490_1 e_1_2_9_282_1 e_1_2_9_327_1 e_1_2_9_380_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_304_1 e_1_2_9_229_1 e_1_2_9_174_1 e_1_2_9_512_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_317_1 e_1_2_9_272_1 e_1_2_9_295_1 e_1_2_9_426_1 e_1_2_9_108_1 e_1_2_9_403_1 e_1_2_9_449_1 e_1_2_9_219_1 e_1_2_9_370_1 e_1_2_9_184_1 e_1_2_9_524_1 e_1_2_9_161_1 e_1_2_9_501_1 e_1_2_9_393_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_260_1 e_1_2_9_283_1 e_1_2_9_328_1 e_1_2_9_415_1 e_1_2_9_491_1 e_1_2_9_438_1 e_1_2_9_305_1 e_1_2_9_207_1 e_1_2_9_381_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_513_1 e_1_2_9_150_1 e_1_2_9_318_1 e_1_2_9_90_1 e_1_2_9_273_1 e_1_2_9_480_1 e_1_2_9_296_1 e_1_2_9_250_1 e_1_2_9_427_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_525_1 e_1_2_9_502_1 e_1_2_9_371_1 e_1_2_9_394_1 e_1_2_9_306_1 e_1_2_9_284_1 e_1_2_9_329_1 e_1_2_9_492_1 e_1_2_9_261_1 e_1_2_9_416_1 e_1_2_9_199_1 e_1_2_9_439_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_514_1 e_1_2_9_382_1 e_1_2_9_526_1 e_1_2_9_319_1 e_1_2_9_91_1 e_1_2_9_274_1 e_1_2_9_297_1 e_1_2_9_481_1 e_1_2_9_251_1 e_1_2_9_405_1 e_1_2_9_428_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_503_1 e_1_2_9_395_1 e_1_2_9_372_1 e_1_2_9_515_1 e_1_2_9_307_1 e_1_2_9_80_1 e_1_2_9_285_1 e_1_2_9_470_1 e_1_2_9_493_1 e_1_2_9_262_1 e_1_2_9_417_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_360_1 e_1_2_9_383_1 e_1_2_9_504_1 e_1_2_9_35_1 e_1_2_9_298_1 e_1_2_9_12_1 e_1_2_9_275_1 e_1_2_9_482_1 e_1_2_9_252_1 e_1_2_9_406_1 e_1_2_9_429_1 e_1_2_9_166_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_350_1 e_1_2_9_373_1 e_1_2_9_396_1 e_1_2_9_308_1 e_1_2_9_516_1 e_1_2_9_24_1 e_1_2_9_286_1 e_1_2_9_263_1 e_1_2_9_471_1 e_1_2_9_240_1 e_1_2_9_494_1 Wang Z. (e_1_2_9_424_1) 2017; 17135 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_418_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_384_1 e_1_2_9_361_1 e_1_2_9_505_1 e_1_2_9_276_1 e_1_2_9_299_1 e_1_2_9_13_1 e_1_2_9_230_1 e_1_2_9_460_1 e_1_2_9_483_1 e_1_2_9_397_1 e_1_2_9_188_1 e_1_2_9_407_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_374_1 e_1_2_9_351_1 e_1_2_9_287_1 e_1_2_9_309_1 e_1_2_9_517_1 e_1_2_9_264_1 e_1_2_9_241_1 e_1_2_9_472_1 e_1_2_9_495_1 Verma D. (e_1_2_9_404_1) 2012 e_1_2_9_177_1 e_1_2_9_419_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_362_1 e_1_2_9_385_1 e_1_2_9_506_1 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_277_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_461_1 e_1_2_9_484_1 e_1_2_9_375_1 e_1_2_9_398_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_408_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_352_1 e_1_2_9_450_1 e_1_2_9_496_1 e_1_2_9_265_1 e_1_2_9_83_1 e_1_2_9_288_1 e_1_2_9_518_1 e_1_2_9_60_1 e_1_2_9_242_1 e_1_2_9_473_1 e_1_2_9_111_1 e_1_2_9_386_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_363_1 e_1_2_9_340_1 e_1_2_9_507_1 e_1_2_9_485_1 e_1_2_9_232_1 e_1_2_9_255_1 e_1_2_9_72_1 e_1_2_9_95_1 e_1_2_9_278_1 e_1_2_9_462_1 e_1_2_9_353_1 e_1_2_9_399_1 e_1_2_9_409_1 e_1_2_9_376_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_330_1 e_1_2_9_451_1 e_1_2_9_474_1 e_1_2_9_519_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_84_1 e_1_2_9_266_1 e_1_2_9_289_1 e_1_2_9_220_1 e_1_2_9_364_1 e_1_2_9_387_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_110_1 e_1_2_9_341_1 e_1_2_9_440_1 e_1_2_9_463_1 e_1_2_9_486_1 e_1_2_9_210_1 e_1_2_9_256_1 e_1_2_9_233_1 e_1_2_9_279_1 e_1_2_9_508_1 Remeika M. (e_1_2_9_53_1) 2017 e_1_2_9_92_1 e_1_2_9_331_1 e_1_2_9_354_1 e_1_2_9_377_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_475_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_498_1 e_1_2_9_267_1 e_1_2_9_81_1 e_1_2_9_452_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_342_1 e_1_2_9_388_1 e_1_2_9_365_1 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_257_1 e_1_2_9_464_1 e_1_2_9_487_1 e_1_2_9_509_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_441_1 e_1_2_9_332_1 e_1_2_9_378_1 e_1_2_9_100_1 e_1_2_9_355_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_245_1 e_1_2_9_476_1 e_1_2_9_499_1 e_1_2_9_222_1 e_1_2_9_268_1 e_1_2_9_82_1 e_1_2_9_430_1 e_1_2_9_453_1 e_1_2_9_320_1 e_1_2_9_343_1 e_1_2_9_366_1 e_1_2_9_389_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_29_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_465_1 e_1_2_9_488_1 e_1_2_9_212_1 e_1_2_9_258_1 e_1_2_9_442_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_333_1 e_1_2_9_356_1 e_1_2_9_379_1 e_1_2_9_310_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_246_1 e_1_2_9_269_1 e_1_2_9_477_1 e_1_2_9_454_1 e_1_2_9_2_1 e_1_2_9_431_1 Qiu L. (e_1_2_9_7_1) 2017 e_1_2_9_138_1 e_1_2_9_321_1 e_1_2_9_367_1 e_1_2_9_344_1 e_1_2_9_115_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_466_1 e_1_2_9_489_1 e_1_2_9_236_1 e_1_2_9_259_1 e_1_2_9_76_1 Chen W. (e_1_2_9_253_1) 2015; 350 e_1_2_9_443_1 e_1_2_9_420_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_334_1 e_1_2_9_357_1 e_1_2_9_125_1 e_1_2_9_311_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_478_1 e_1_2_9_65_1 e_1_2_9_247_1 e_1_2_9_432_1 e_1_2_9_455_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_322_1 e_1_2_9_345_1 e_1_2_9_368_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_467_1 e_1_2_9_214_1 e_1_2_9_96_1 e_1_2_9_237_1 e_1_2_9_421_1 e_1_2_9_444_1 e_1_2_9_290_1 e_1_2_9_128_1 e_1_2_9_335_1 e_1_2_9_358_1 e_1_2_9_105_1 e_1_2_9_312_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_479_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_456_1 e_1_2_9_4_1 e_1_2_9_433_1 e_1_2_9_410_1 e_1_2_9_323_1 e_1_2_9_117_1 e_1_2_9_346_1 e_1_2_9_369_1 e_1_2_9_193_1 e_1_2_9_300_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_468_1 e_1_2_9_97_1 e_1_2_9_445_1 e_1_2_9_291_1 e_1_2_9_422_1 e_1_2_9_127_1 e_1_2_9_336_1 e_1_2_9_104_1 e_1_2_9_359_1 e_1_2_9_313_1 e_1_2_9_180_1 e_1_2_9_520_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_434_1 e_1_2_9_457_1 e_1_2_9_3_1 e_1_2_9_411_1 e_1_2_9_139_1 e_1_2_9_324_1 e_1_2_9_347_1 e_1_2_9_116_1 e_1_2_9_301_1 e_1_2_9_192_1 |
References_xml | – volume: 3 start-page: 19353 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1500569 year: 2015 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1700264 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 9063 year: 2015 publication-title: J. Mater. Chem. A – volume: 8 start-page: 954 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 1600502 year: 2016 publication-title: Adv. Energy Mater. – volume: 3 start-page: 16105 year: 2015 publication-title: APL Mater. – volume: 8 start-page: 1544 year: 2015 publication-title: Energy Environ. Sci. – volume: 16 start-page: 3434 year: 2016 publication-title: Nano Lett. – volume: 11 start-page: 9176 year: 2017 publication-title: ACS Nano – volume: 8 start-page: 1200 year: 2015 publication-title: Energy Environ. Sci. – volume: 11 start-page: 2472 year: 2015 publication-title: Small – volume: 10 start-page: 2095 year: 2017 publication-title: Energy Environ. Sci. – volume: 1 start-page: 769 year: 2017 publication-title: Joule – volume: 1 start-page: 266 year: 2016 publication-title: ACS Energy Lett. – volume: 2 start-page: 17018 year: 2017 publication-title: Nat. Energy – volume: 6 start-page: 755 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 16 start-page: 7739 year: 2016 publication-title: Nano Lett. – volume: 113 start-page: 11694 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 5778 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 6693 year: 2016 publication-title: J. Mater. Chem. A – volume: 135 start-page: 7378 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 242 year: 2016 publication-title: Chem. Mater. – volume: 29 start-page: 1605005 year: 2017 publication-title: Adv. Mater. – start-page: 1700435 year: 2017 publication-title: Adv. Electron. Mater. – volume: 7 start-page: 1602922 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1602121 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 10258 year: 2016 publication-title: ACS Nano – volume: 27 start-page: 7874 year: 2015 publication-title: Adv. Mater. – volume: 40 start-page: 793 year: 2007 publication-title: Acc. Chem. Res. – volume: 8 start-page: 19847 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 51 year: 2016 publication-title: Nano Energy – volume: 17 start-page: 5206 year: 2017 publication-title: Nano Lett. – volume: 45 start-page: 655 year: 2016 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 337 year: 2017 publication-title: Energy Environ. Sci. – volume: 6 start-page: 7410 year: 2015 publication-title: Nat. Commun. – volume: 26 start-page: 7443 year: 2016 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 1700045 year: 2017 publication-title: Sol. RRL – volume: 2 start-page: 1841 year: 2017 publication-title: ACS Energy Lett. – volume: 7 start-page: 1700228 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 16207 year: 2017 publication-title: Nat. Energy – volume: 27 start-page: 4013 year: 2015 publication-title: Adv. Mater. – volume: 54 start-page: 7905 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 1600457 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1601768 year: 2017 publication-title: Adv. Energy Mater. – volume: 30 start-page: 387 year: 2016 publication-title: Nano Energy – volume: 14 start-page: 5561 year: 2014 publication-title: Nano Lett. – volume: 5 start-page: 1500799 year: 2015 publication-title: Adv. Energy Mater. – volume: 1 start-page: 290 year: 2016 publication-title: ACS Energy Lett. – volume: 16 start-page: 5594 year: 2016 publication-title: Nano Lett. – volume: 26 start-page: 3 year: 2018 publication-title: Prog. Photovoltaics: Res. Appl. – volume: 1 start-page: 757 year: 2016 publication-title: ACS Energy Lett. – volume: 7 start-page: 1701349 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1507 year: 2017 publication-title: ACS Energy Lett. – volume: 28 start-page: 6804 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 1700082 year: 2017 publication-title: Sol. RRL – volume: 8 start-page: 2365 year: 2015 publication-title: Energy Environ. Sci. – volume: 44 start-page: 829 year: 2015 publication-title: Chem. Lett. – volume: 358 start-page: 768 year: 2017 publication-title: Science – volume: 14 start-page: 2168 year: 2014 publication-title: Nano Lett. – volume: 10 start-page: 1297 year: 2017 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1416 year: 2017 publication-title: ACS Energy Lett. – volume: 6 start-page: 3466 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 29 start-page: 1700192 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 905 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 1601128 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 4633 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 16 start-page: 7786 year: 2016 publication-title: Nano Lett. – volume: 7 start-page: 1602349 year: 2017 publication-title: Adv. Energy Mater. – volume: 354 start-page: 861 year: 2016 publication-title: Science – volume: 6 start-page: 1502246 year: 2016 publication-title: Adv. Energy Mater. – volume: 107 start-page: 63901 year: 2015 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 94290 year: 2015 publication-title: RSC Adv. – volume: 2 start-page: 782 year: 2017 publication-title: ACS Energy Lett. – volume: 3 start-page: 204 year: 2018 publication-title: ACS Energy Lett. – volume: 4 start-page: 2419 year: 2016 publication-title: J. Mater. Chem. A – volume: 1 start-page: 776 year: 2016 publication-title: Chem – volume: 1 start-page: 209 year: 2016 publication-title: ACS Energy Lett. – volume: 6 start-page: 3675 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 1073 year: 2015 publication-title: Nat. Mater. – volume: 29 start-page: 1605900 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 16099 year: 2017 publication-title: Nat. Rev. Mater. – volume: 3 start-page: e1700841 year: 2017 publication-title: Sci. Adv. – volume: 2 start-page: 16190 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 1601165 year: 2016 publication-title: Adv. Energy Mater. – volume: 64 start-page: 702 year: 2008 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. – volume: 28 start-page: 440 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 1999 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 82 start-page: 2346 year: 2018 publication-title: Renewable Sustainable Energy Rev. – volume: 138 start-page: 463 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1701038 year: 2017 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1701221 year: 2017 publication-title: Adv. Mater. – volume: 350 start-page: 1 year: 2015 publication-title: Science – volume: 34 start-page: 3218 year: 2006 publication-title: Energy Policy – volume: 7 start-page: 1148 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 29 start-page: 1604186 year: 2017 publication-title: Adv. Mater. – volume: 29 start-page: 1603923 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 17043 year: 2017 publication-title: Nat. Rev. Mater. – volume: 5 start-page: 1501320 year: 2015 publication-title: Adv. Energy Mater. – volume: 5 start-page: 5784 year: 2014 publication-title: Nat. Commun. – volume: 351 start-page: 151 year: 2016 publication-title: Science – volume: 9 start-page: 490 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 1701609 year: 2018 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1700007 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 19267 year: 2017 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1701544 year: 2018 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1501056 year: 2015 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1700012 year: 2017 publication-title: Adv. Energy Mater. – volume: 17 start-page: 6385 year: 2017 publication-title: Nano Lett. – volume: 5 start-page: 11401 year: 2017 publication-title: J. Mater. Chem. A – volume: 137 start-page: 13130 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1704418 year: 2017 publication-title: Adv. Mater. – volume: 1 start-page: 1199 year: 2016 publication-title: ACS Energy Lett. – volume: 9 start-page: 1258 year: 2016 publication-title: Energy Environ. Sci. – volume: 38 start-page: 66 year: 2017 publication-title: Nano Energy – volume: 2 start-page: 846 year: 2017 publication-title: ACS Energy Lett. – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1500568 year: 2015 publication-title: Adv. Energy Mater. – volume: 118 start-page: 28494 year: 2014 publication-title: J. Phys. Chem. C – volume: 15 start-page: 1698 year: 2015 publication-title: Nano Lett. – volume: 17 start-page: 6863 year: 2017 publication-title: Nano Lett. – volume: 8 start-page: 1245 year: 2015 publication-title: Energy Environ. Sci. – volume: 28 start-page: 311 year: 2016 publication-title: Nano Energy – volume: 28 start-page: 3966 year: 2016 publication-title: Adv. Mater. – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 12 start-page: 96 year: 2015 publication-title: Nano Energy – volume: 6 start-page: 1600460 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1700576 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 3128 year: 2016 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1601251 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 17038 year: 2017 publication-title: Nat. Energy – volume: 27 start-page: 2532 year: 2015 publication-title: Chem. Mater. – volume: 8 start-page: 1701688 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1601307 year: 2017 publication-title: Adv. Energy Mater. – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 358 start-page: 1192 year: 2017 publication-title: Science – volume: 8 start-page: 15330 year: 2017 publication-title: Nat. Commun. – volume: 27 start-page: 1703068 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 932 year: 2016 publication-title: Energy Environ. Sci. – volume: 6 start-page: 11851 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1604984 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 279 year: 2017 publication-title: ACS Energy Lett. – volume: 120 start-page: 13995 year: 2016 publication-title: J. Phys. Chem. C – volume: 15 start-page: 662 year: 2015 publication-title: Nano Lett. – volume: 137 start-page: 7843 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1792 year: 2017 publication-title: Energy Environ. Sci. – volume: 7 start-page: 811 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 15017 year: 2016 publication-title: Nat. Energy – volume: 28 start-page: 6734 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 196 year: 2016 publication-title: Nat. Photonics – volume: 16 start-page: 522 year: 2017 publication-title: Nat. Mater. – volume: 10 start-page: 604 year: 2017 publication-title: Energy Environ. Sci. – volume: 156 start-page: 157 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 7 start-page: 12806 year: 2016 publication-title: Nat. Commun. – volume: 106 start-page: 121104 year: 2015 publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1700183 year: 2017 publication-title: Adv. Mater. – volume: 17 start-page: 2328 year: 2017 publication-title: Nano Lett. – volume: 24 start-page: 6046 year: 2014 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 3760 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 24254 year: 2015 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1860 year: 2017 publication-title: ACS Energy Lett. – volume: 14 start-page: 2584 year: 2014 publication-title: Nano Lett. – volume: 4 start-page: 6185 year: 2016 publication-title: J. Mater. Chem. A – volume: 352 start-page: aad4424 year: 2016 publication-title: Science – volume: 357 start-page: 306 year: 2017 publication-title: Science – volume: 9 start-page: 1989 year: 2016 publication-title: Energy Environ. Sci. – volume: 28 start-page: 10786 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 595 year: 2016 publication-title: ACS Energy Lett. – volume: 18 start-page: 165 year: 2015 publication-title: Nano Energy – start-page: 002608 year: 2012 end-page: 002613 – volume: 137 start-page: 6730 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 51 start-page: 14917 year: 2015 publication-title: Chem. Commun. – volume: 8 start-page: 2928 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 start-page: 19986 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1602610 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 849 year: 2017 publication-title: Nat. Energy – volume: 7 start-page: 995 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 7385 year: 2016 publication-title: Chem. Mater. – volume: 7 start-page: 11574 year: 2016 publication-title: Nat. Commun. – volume: 9 start-page: 30197 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1606363 year: 2017 publication-title: Adv. Mater. – volume: 345 start-page: 295 year: 2014 publication-title: Science – volume: 5 start-page: 1402321 year: 2015 publication-title: Adv. Energy Mater. – volume: 1 start-page: 16142 year: 2016 publication-title: Nat. Energy – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 4405 year: 2015 publication-title: Chem. Mater. – volume: 25 start-page: 6218 year: 2015 publication-title: Adv. Funct. Mater. – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 7 start-page: 1602761 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 5056 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 53 start-page: 12571 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 8631 year: 2016 publication-title: Chem. Mater. – volume: 8 start-page: 1702365 year: 2018 publication-title: Adv. Energy Mater. – volume: 52 start-page: 970 year: 2016 publication-title: Chem. Commun. – volume: 28 start-page: 2807 year: 2016 publication-title: Adv. Mater. – volume: 56 start-page: 3 year: 2017 publication-title: Inorg. Chem. – year: 2017 publication-title: Mater. Today Energy – volume: 17 start-page: 5140 year: 2017 publication-title: Nano Lett. – volume: 356 start-page: 167 year: 2017 publication-title: Science – volume: 10 start-page: 145 year: 2017 publication-title: Energy Environ. Sci. – volume: 49 start-page: 330 year: 2016 publication-title: Acc. Chem. Res. – volume: 29 start-page: 1604493 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 15897 year: 2015 publication-title: J. Mater. Chem. A – volume: 1 start-page: 95 year: 2017 publication-title: Nat. Rev. Chem. – volume: 6 start-page: 1739 year: 2013 publication-title: Energy Environ. Sci. – volume: 25 start-page: 3727 year: 2013 publication-title: Adv. Mater. – volume: 3 start-page: 19288 year: 2015 publication-title: J. Mater. Chem. A – volume: 536 start-page: 312 year: 2016 publication-title: Nature – volume: 30 start-page: 417 year: 2016 publication-title: Nano Energy – volume: 7 start-page: 1700823 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 89 year: 2016 publication-title: Energy Environ. Sci. – volume: 10 start-page: 6306 year: 2016 publication-title: ACS Nano – volume: 9 start-page: 2686 year: 2016 publication-title: ChemSusChem – volume: 3 start-page: 8970 year: 2015 publication-title: J. Mater. Chem. A – volume: 28 start-page: 6305 year: 2016 publication-title: Chem. Mater. – volume: 4 start-page: 7 year: 2016 publication-title: Sustainable Chem. Processes – volume: 137 start-page: 4460 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 25896 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 3131 year: 2016 publication-title: Chem. Mater. – volume: 29 start-page: 1606398 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 10214 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 1601575 year: 2017 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1603994 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 1953 year: 2015 publication-title: Energy Environ. Sci. – volume: 5 start-page: 11483 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2326 year: 2016 publication-title: Energy Environ. Sci. – volume: 1 start-page: 15016 year: 2016 publication-title: Nat. Energy – volume: 25 start-page: 4425 year: 2013 publication-title: Adv. Mater. – volume: 8 start-page: 32068 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1964 year: 2017 publication-title: Chem. Mater. – volume: 29 start-page: 1700159 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 1986 year: 2015 publication-title: Energy Environ. Sci. – volume: 8 start-page: 133 year: 2013 publication-title: Nat. Photonics – volume: 9 start-page: 13967 year: 2017 publication-title: Nanoscale – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 7 start-page: 13422 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 17343 year: 2015 publication-title: Nanoscale – volume: 6 start-page: 852 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 30 start-page: 1703737 year: 2018 publication-title: Adv. Mater. – volume: 138 start-page: 2649 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1700731 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 250 year: 2014 publication-title: Nat. Photonics – volume: 80 start-page: 1321 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 120 start-page: 19531 year: 2016 publication-title: J. Phys. Chem. C – volume: 10 start-page: 3794 year: 2017 publication-title: ChemSusChem – volume: 10 start-page: 5479 year: 2016 publication-title: ACS Nano – volume: 10 start-page: 3854 year: 2017 publication-title: ChemSusChem – volume: 56 start-page: 9291 year: 2017 publication-title: Inorg. Chem. – year: 2017 – volume: 350 start-page: 917 year: 2015 publication-title: Science – volume: 101 start-page: 1 year: 2016 publication-title: Mater. Sci. Eng., R – volume: 26 start-page: 2950 year: 2016 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 5377 year: 2015 publication-title: J. Mater. Chem. C – volume: 6 start-page: 37654 year: 2016 publication-title: Sci. Rep. – volume: 27 start-page: 3632 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 27863 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 3397 year: 2015 publication-title: Chem. Mater. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 55 start-page: 4280 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 118 start-page: 16651 year: 2014 publication-title: J. Phys. Chem. C – volume: 4 start-page: 1600948 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 629 year: 2015 publication-title: Energy Environ. Sci. – volume: 354 start-page: 203 year: 2016 publication-title: Science – volume: 6 start-page: 7497 year: 2015 publication-title: Nat. Commun. – volume: 29 start-page: 1606806 year: 2017 publication-title: Adv. Mater. – volume: 27 start-page: 82001 year: 2016 publication-title: Nanotechnology – volume: 28 start-page: 9986 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 710 year: 2017 publication-title: Energy Environ. Sci. – volume: 4 start-page: 2885 year: 2013 publication-title: Nat. Commun. – volume: 4 start-page: 6091 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 3172 year: 2016 publication-title: Energy Environ. Sci. – volume: 118 start-page: 16995 year: 2014 publication-title: J. Phys. Chem. C – year: 2017 publication-title: J. Energy Chem. – volume: 9 start-page: 353 year: 2016 publication-title: Extreme Mech. Lett. – volume: 120 start-page: 16399 year: 2016 publication-title: J. Phys. Chem. C – volume: 7 start-page: 1701136 year: 2017 publication-title: Adv. Energy Mater. – volume: 49 start-page: 294 year: 2016 publication-title: Acc. Chem. Res. – volume: 5 start-page: 1401943 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 17738 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 2473 year: 2017 publication-title: ChemSusChem – volume: 2 start-page: 1500195 year: 2015 publication-title: Adv. Mater. Interfaces – volume: 7 start-page: 1602333 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1655 year: 2016 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1678 year: 2016 publication-title: ACS Photonics – volume: 138 start-page: 11833 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1703980 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 1601055 year: 2016 publication-title: Adv. Energy Mater. – volume: 8 start-page: 2118 year: 2015 publication-title: Energy Environ. Sci. – volume: 27 start-page: 4229 year: 2015 publication-title: Chem. Mater. – volume: 6 start-page: 1543 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 137 start-page: 2674 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 16048 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 703 year: 2015 publication-title: Nat. Chem. – volume: 1 start-page: 16093 year: 2016 publication-title: Nat. Energy – volume: 2 start-page: 613 year: 2015 publication-title: Mater. Horiz. – volume: 9 start-page: 1955 year: 2015 publication-title: ACS Nano – volume: 29 start-page: 1606555 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 1700763 year: 2017 publication-title: Adv. Energy Mater. – volume: 24 start-page: 7357 year: 2014 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1700522 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1600027 year: 2016 publication-title: Adv. Sci. – volume: 5 start-page: 1400812 year: 2015 publication-title: Adv. Energy Mater. – volume: 17 start-page: 26653 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 2118 year: 2017 publication-title: ACS Energy Lett. – volume: 28 start-page: 1891 year: 2016 publication-title: Adv. Mater. – volume: 52 start-page: 8099 year: 2016 publication-title: Chem. Commun. – volume: 4 start-page: 4756 year: 2014 publication-title: Sci. Rep. – volume: 28 start-page: 6478 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1604545 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 1502021 year: 2016 publication-title: Adv. Energy Mater. – volume: 56 start-page: 92 year: 2017 publication-title: Inorg. Chem. – volume: 11 start-page: 75 year: 2015 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 1530 year: 2017 publication-title: Energy Environ. Sci. – volume: 120 start-page: 893 year: 2016 publication-title: J. Phys. Chem. C – volume: 8 start-page: 15684 year: 2017 publication-title: Nat. Commun. – volume: 1 start-page: 659 year: 2017 publication-title: Joule – volume: 7 start-page: 1700623 year: 2017 publication-title: Adv. Energy Mater. – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 10 start-page: 382 year: 2011 publication-title: Nat. Mater. – volume: 3 start-page: 1600122 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 10 start-page: 355 year: 2015 publication-title: Nano Today – volume: 49 start-page: 146 year: 2016 publication-title: Acc. Chem. Res. – volume: 4 start-page: 640 year: 2016 publication-title: J. Mater. Chem. A – volume: 1 start-page: 16152 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 46 start-page: 1730 year: 2017 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1700158 year: 2017 publication-title: Adv. Electron. Mater. – volume: 55 start-page: 8999 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 4276 year: 2016 publication-title: Nanoscale – volume: 7 start-page: 11105 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 1701935 year: 2018 publication-title: Adv. Energy Mater. – volume: 8 start-page: 995 year: 2015 publication-title: Energy Environ. Sci. – volume: 2 start-page: 2531 year: 2017 publication-title: ACS Energy Lett. – volume: 12 start-page: 59 year: 2015 publication-title: Nano Energy – volume: 5 start-page: 1501406 year: 2015 publication-title: Adv. Energy Mater. – volume: 358 start-page: 739 year: 2017 publication-title: Science – volume: 10 start-page: 516 year: 2017 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1501066 year: 2015 publication-title: Adv. Energy Mater. – volume: 138 start-page: 14998 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1702140 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 144 year: 2018 publication-title: Energy Environ. Sci. – volume: 40 start-page: 155 year: 2017 publication-title: Nano Energy – volume: 17135 start-page: 1 year: 2017 publication-title: Nat. Energy – volume: 4 start-page: 11688 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1602400 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 4764 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 3456 year: 2016 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1601193 year: 2017 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1502466 year: 2016 publication-title: Adv. Energy Mater. – volume: 2 start-page: 16195 year: 2016 publication-title: Nat. Energy – volume: 8 start-page: 2041 year: 2015 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1700598 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 26 start-page: 2041 year: 2014 publication-title: Adv. Mater. – volume: 9 start-page: 461 year: 2016 publication-title: Energy Environ. Sci. – volume: 27 start-page: 1703061 year: 2017 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 724 year: 2014 publication-title: Nano Lett. – volume: 14 start-page: 1032 year: 2015 publication-title: Nat. Mater. – volume: 27 start-page: 562 year: 2015 publication-title: Chem. Mater. – volume: 15 start-page: 3723 year: 2015 publication-title: Nano Lett. – volume: 8 start-page: 2298 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 1700623 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 9 start-page: 41887 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1500486 year: 2015 publication-title: Adv. Energy Mater. – volume: 17 start-page: 269 year: 2017 publication-title: Nano Lett. – volume: 10 start-page: 1942 year: 2017 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1602599 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1439 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 start-page: 323 year: 2015 publication-title: Energy Environ. Sci. – volume: 67 start-page: 65 year: 2016 publication-title: Annu. Rev. Phys. Chem. – volume: 55 start-page: 14522 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 17135 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 start-page: 5122 year: 2015 publication-title: Chem. Mater. – volume: 8 start-page: 16045 year: 2017 publication-title: Nat. Commun. – volume: 10 start-page: 2500 year: 2017 publication-title: Energy Environ. Sci. – volume: 10 start-page: 2109 year: 2017 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1500301 year: 2016 publication-title: Adv. Sci. – volume: 8 start-page: 12701 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 1600571 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 2 start-page: 16100 year: 2017 publication-title: Nat. Rev. Mater. – volume: 27 start-page: 695 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 4960 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 151 start-page: 21 year: 2015 publication-title: Electrochim. Acta – volume: 2 start-page: 17042 year: 2017 publication-title: Nat. Rev. Mater. – volume: 2 start-page: 168 year: 2018 publication-title: Joule – volume: 29 start-page: 2435 year: 2017 publication-title: Chem. Mater. – volume: 550 start-page: 92 year: 2017 publication-title: Nature – volume: 28 start-page: 3937 year: 2016 publication-title: Adv. Mater. – volume: 105 start-page: 133902 year: 2014 publication-title: Appl. Phys. Lett. – volume: 56 start-page: 14648 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 2591 year: 2014 publication-title: Nano Lett. – volume: 8 start-page: 1701883 year: 2018 publication-title: Adv. Energy Mater. – volume: 27 start-page: 535 year: 2016 publication-title: Nano Energy – volume: 7 start-page: 1700491 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1681 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 start-page: 17009 year: 2017 publication-title: Nat. Energy – volume: 27 start-page: 1702613 year: 2017 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 6985 year: 2016 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 8681 year: 2016 publication-title: Adv. Mater. – volume: 2 start-page: 16177 year: 2016 publication-title: Nat. Energy – volume: 27 start-page: 1703704 year: 2017 publication-title: Adv. Funct. Mater. – volume: 139 start-page: 11117 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 2528 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 13067 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 116 start-page: 14675 year: 2016 publication-title: Chem. Rev. – volume: 7 start-page: 1701048 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 start-page: 15007 year: 2016 publication-title: Nat. Rev. Mater. – volume: 13 start-page: 1601769 year: 2017 publication-title: Small – volume: 138 start-page: 8581 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 687 year: 2016 publication-title: ChemSusChem – volume: 7 start-page: 1602358 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 621 year: 2017 publication-title: Energy Environ. Sci. – volume: 9 start-page: 3071 year: 2016 publication-title: Energy Environ. Sci. – volume: 17 start-page: 4405 year: 2017 publication-title: Nano Lett. – volume: 6 start-page: 3923 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 5104 year: 2016 publication-title: ACS Nano – volume: 121 start-page: 13496 year: 2017 publication-title: J. Phys. Chem. C – volume: 10 start-page: 5999 year: 2016 publication-title: ACS Nano – volume: 137 start-page: 2350 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 15996 year: 2015 publication-title: J. Mater. Chem. A – volume: 25 start-page: 390 year: 2017 publication-title: Prog. Photovoltaics Res. Appl. – volume: 5 start-page: 19439 year: 2017 publication-title: J. Mater. Chem. A – volume: 1 start-page: 16148 year: 2016 publication-title: Nat. Energy – volume: 2 start-page: 822 year: 2017 publication-title: ACS Energy Lett. – volume: 5 start-page: 21604 year: 2017 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1602432 year: 2017 publication-title: Adv. Energy Mater. – volume: 8 start-page: 7070 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1454 year: 2014 publication-title: Energy Environ. Sci. – volume: 10 start-page: 1207 year: 2017 publication-title: Energy Environ. Sci. – volume: 7 start-page: 10379 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 489 year: 2014 publication-title: Nat. Photonics – volume: 6 start-page: 1600401 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1501534 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1600386 year: 2016 publication-title: Adv. Energy Mater. – volume: 54 start-page: 8208 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3007 year: 2016 publication-title: Energy Environ. Sci. – volume: 6 start-page: 7081 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 4175 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 18483 year: 2015 publication-title: J. Mater. Chem. A – volume: 9 start-page: 26859 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 2756 year: 2015 publication-title: Nano Lett. – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 1515 year: 2017 publication-title: ACS Energy Lett. – volume: 2 start-page: 2166 year: 2017 publication-title: ACS Energy Lett. – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 5 start-page: 13639 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1503 year: 2016 publication-title: ACS Nano – volume: 3 start-page: 1500353 year: 2016 publication-title: Adv. Sci. – volume: 9 start-page: 2262 year: 2016 publication-title: Energy Environ. Sci. – volume: 10 start-page: 2578 year: 2017 publication-title: ChemSusChem – volume: 17 start-page: 3563 year: 2017 publication-title: Nano Lett. – volume: 49 start-page: 286 year: 2016 publication-title: Acc. Chem. Res. – volume: 3 start-page: 10070 year: 2015 publication-title: J. Mater. Chem. C – volume: 116 start-page: 4558 year: 2016 publication-title: Chem. Rev. – volume: 29 start-page: 1703852 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 7200 year: 2015 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 667 year: 2016 publication-title: Nano Energy – volume: 8 start-page: 1701569 year: 2018 publication-title: Adv. Energy Mater. – volume: 137 start-page: 15540 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2946 year: 2016 publication-title: Green Chem. – volume: 137 start-page: 10914 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 11414 year: 2014 publication-title: Angew. Chem. – volume: 11 start-page: 1 year: 2016 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 1500837 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 4 start-page: 15088 year: 2016 publication-title: J. Mater. Chem. A – volume: 27 start-page: 4308 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 715 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 16149 year: 2016 publication-title: Nat. Energy – volume: 5 start-page: 1501119 year: 2015 publication-title: Adv. Energy Mater. – volume: 18 start-page: 5977 year: 2016 publication-title: CrystEngComm – volume: 1 start-page: 15012 year: 2016 publication-title: Nat. Energy – volume: 139 start-page: 12175 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1645 year: 2015 publication-title: J. Phys. Chem. Lett. – start-page: 1702116 year: 2017 publication-title: Adv. Energy Mater. – volume: 139 start-page: 7504 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1177 year: 2017 publication-title: ACS Energy Lett. – volume: 7 start-page: 1602803 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 17102 year: 2017 publication-title: Nat. Energy – volume: 28 start-page: 3159 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 3424 year: 2016 publication-title: Energy Environ. Sci. – volume: 8 start-page: 9815 year: 2014 publication-title: ACS Nano – volume: 46 start-page: 5714 year: 2017 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 22975 year: 2017 publication-title: J. Mater. Chem. A – volume: 28 start-page: 917 year: 2016 publication-title: Adv. Mater. – volume: 29 start-page: 1604056 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 295 year: 2016 publication-title: Nat. Photonics – volume: 6 start-page: 8932 year: 2015 publication-title: Nat. Commun. – volume: 120 start-page: 4233 year: 2016 publication-title: J. Phys. Chem. C – volume: 15 start-page: 247 year: 2016 publication-title: Nat. Mater. – volume: 28 start-page: 5112 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 3206 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 1500420 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 3 start-page: e1701293 year: 2017 publication-title: Sci. Adv. – volume: 8 start-page: 1701640 year: 2018 publication-title: Adv. Energy Mater. – volume: 26 start-page: 6503 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 1600396 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1500477 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 13533 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 start-page: 14276 year: 2016 publication-title: J. Mater. Chem. A – volume: 26 start-page: 4107 year: 2014 publication-title: Adv. Mater. – volume: 1 start-page: 1233 year: 2016 publication-title: ACS Energy Lett. – volume: 28 start-page: 5031 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 1142 year: 2014 publication-title: Energy Environ. Sci. – volume: 1 start-page: 648 year: 2016 publication-title: ACS Energy Lett. – volume: 27 start-page: 3492 year: 2015 publication-title: Adv. Mater. – volume: 27 start-page: 1702180 year: 2017 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 223 year: 2016 publication-title: Nano Energy – volume: 1 start-page: 438 year: 2016 publication-title: ACS Energy Lett. – volume: 28 start-page: 4532 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 5206 year: 2016 publication-title: Adv. Mater. – volume: 116 start-page: 12956 year: 2016 publication-title: Chem. Rev. – volume: 6 start-page: 1600014 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1700758 year: 2017 publication-title: Adv. Energy Mater. – volume: 28 start-page: 9668 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 1501453 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1096 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 26 start-page: 2686 year: 2016 publication-title: Adv. Funct. Mater. – year: December 2017 – volume: 9 start-page: 31357 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1501606 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 10699 year: 2017 publication-title: Sci. Rep. – volume: 14 start-page: 193 year: 2014 publication-title: Nat. Mater. – volume: 10 start-page: 361 year: 2017 publication-title: Energy Environ. Sci. – volume: 6 start-page: 20585 year: 2014 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_9_236_1 doi: 10.1002/adma.201304803 – ident: e_1_2_9_399_1 doi: 10.1021/nl504168q – ident: e_1_2_9_196_1 doi: 10.1126/science.aan2301 – ident: e_1_2_9_515_1 doi: 10.1016/j.joule.2017.09.007 – ident: e_1_2_9_18_1 doi: 10.1039/C5EE00615E – ident: e_1_2_9_150_1 doi: 10.1002/anie.201500014 – year: 2017 ident: e_1_2_9_53_1 publication-title: J. Energy Chem. – ident: e_1_2_9_27_1 doi: 10.1107/S0108768108032734 – ident: e_1_2_9_300_1 doi: 10.1021/acsenergylett.7b00847 – ident: e_1_2_9_434_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_9_307_1 doi: 10.1002/admi.201700598 – ident: e_1_2_9_171_1 doi: 10.1039/C4TA04994B – ident: e_1_2_9_423_1 doi: 10.1016/j.nanoen.2015.10.010 – ident: e_1_2_9_214_1 doi: 10.1126/science.aam6620 – ident: e_1_2_9_133_1 doi: 10.1002/aenm.201602349 – ident: e_1_2_9_152_1 doi: 10.1021/acs.jpclett.5b00480 – ident: e_1_2_9_251_1 doi: 10.1002/adma.201404189 – ident: e_1_2_9_40_1 doi: 10.1021/acs.accounts.5b00455 – ident: e_1_2_9_111_1 doi: 10.1038/ncomms6784 – ident: e_1_2_9_334_1 doi: 10.1002/cssc.201700584 – ident: e_1_2_9_316_1 doi: 10.1063/1.4928535 – ident: e_1_2_9_73_1 doi: 10.1039/C6EE02941H – ident: e_1_2_9_255_1 doi: 10.1039/C7EE01675A – ident: e_1_2_9_275_1 doi: 10.1002/aenm.201701640 – ident: e_1_2_9_311_1 doi: 10.1039/C5NR04250J – ident: e_1_2_9_422_1 doi: 10.1038/nchem.2324 – ident: e_1_2_9_488_1 doi: 10.1002/adma.201600446 – ident: e_1_2_9_263_1 doi: 10.1002/adfm.201702613 – ident: e_1_2_9_134_1 doi: 10.1002/aenm.201602610 – ident: e_1_2_9_175_1 doi: 10.1038/srep37654 – ident: e_1_2_9_94_1 doi: 10.1021/acsnano.6b01904 – ident: e_1_2_9_278_1 doi: 10.1039/C6EE01987K – ident: e_1_2_9_206_1 doi: 10.1038/nenergy.2015.17 – ident: e_1_2_9_340_1 doi: 10.1126/science.aah4046 – ident: e_1_2_9_108_1 doi: 10.1002/aenm.201501534 – ident: e_1_2_9_3_1 doi: 10.1039/C4EE04073B – ident: e_1_2_9_215_1 doi: 10.1002/adma.201703852 – ident: e_1_2_9_193_1 doi: 10.1021/ja403344s – ident: e_1_2_9_12_1 doi: 10.1021/acsenergylett.7b00137 – ident: e_1_2_9_127_1 doi: 10.1039/C6CS00942E – ident: e_1_2_9_491_1 doi: 10.1002/aenm.201701569 – ident: e_1_2_9_464_1 doi: 10.1021/acsenergylett.7b00278 – ident: e_1_2_9_272_1 doi: 10.1002/aenm.201500486 – ident: e_1_2_9_489_1 doi: 10.1021/acs.jpclett.7b02128 – ident: e_1_2_9_123_1 doi: 10.1146/annurev-physchem-040215-112222 – ident: e_1_2_9_212_1 doi: 10.1038/nphoton.2013.342 – ident: e_1_2_9_67_1 doi: 10.1021/acs.jpclett.5b00289 – ident: e_1_2_9_226_1 doi: 10.1002/adma.201604186 – ident: e_1_2_9_38_1 doi: 10.1002/aenm.201701136 – ident: e_1_2_9_203_1 doi: 10.1126/science.1228604 – ident: e_1_2_9_335_1 doi: 10.1039/C5MH00154D – ident: e_1_2_9_267_1 doi: 10.1002/anie.201405176 – ident: e_1_2_9_66_1 doi: 10.1021/acs.chemmater.6b03852 – ident: e_1_2_9_221_1 doi: 10.1021/jacs.5b01994 – ident: e_1_2_9_299_1 doi: 10.1021/acsenergylett.6b00327 – ident: e_1_2_9_210_1 doi: 10.1039/C6EE02139E – ident: e_1_2_9_425_1 doi: 10.1038/nnano.2016.110 – ident: e_1_2_9_449_1 doi: 10.1021/acs.jpclett.7b00374 – ident: e_1_2_9_343_1 doi: 10.1002/adma.201505630 – ident: e_1_2_9_190_1 doi: 10.1021/acs.chemmater.5b01598 – ident: e_1_2_9_435_1 doi: 10.1002/adma.201505279 – ident: e_1_2_9_446_1 doi: 10.1002/aenm.201502466 – ident: e_1_2_9_467_1 doi: 10.1002/aenm.201700228 – ident: e_1_2_9_235_1 doi: 10.1002/anie.201601757 – ident: e_1_2_9_468_1 doi: 10.1021/acs.nanolett.7b03179 – ident: e_1_2_9_349_1 doi: 10.1021/acs.jpclett.7b01466 – ident: e_1_2_9_308_1 doi: 10.1038/nenergy.2015.16 – ident: e_1_2_9_477_1 doi: 10.1021/acs.jpcc.5b10728 – ident: e_1_2_9_274_1 doi: 10.1039/C6CC03740B – ident: e_1_2_9_112_1 doi: 10.1002/aenm.201402321 – ident: e_1_2_9_288_1 doi: 10.1039/C5TA07008B – ident: e_1_2_9_148_1 doi: 10.1126/science.aai9081 – ident: e_1_2_9_120_1 doi: 10.1002/adma.201606806 – ident: e_1_2_9_202_1 doi: 10.1039/C5CC08156D – ident: e_1_2_9_417_1 doi: 10.1126/sciadv.1701293 – ident: e_1_2_9_36_1 doi: 10.1002/aenm.201602358 – ident: e_1_2_9_361_1 doi: 10.1002/smll.201601769 – ident: e_1_2_9_480_1 doi: 10.1002/adma.201602696 – ident: e_1_2_9_348_1 doi: 10.1038/nmat3011 – ident: e_1_2_9_185_1 doi: 10.1039/C6EE00612D – ident: e_1_2_9_463_1 doi: 10.1002/aenm.201701048 – ident: e_1_2_9_223_1 doi: 10.1002/adma.201505241 – ident: e_1_2_9_56_1 doi: 10.1038/natrevmats.2016.100 – ident: e_1_2_9_224_1 doi: 10.1246/cl.150167 – ident: e_1_2_9_289_1 doi: 10.1002/adfm.201501264 – ident: e_1_2_9_387_1 doi: 10.1021/acs.jpcc.6b05667 – ident: e_1_2_9_474_1 doi: 10.1021/acsenergylett.7b00525 – ident: e_1_2_9_394_1 doi: 10.1002/admi.201500195 – ident: e_1_2_9_74_1 doi: 10.1002/adma.201600624 – ident: e_1_2_9_277_1 doi: 10.1021/acs.nanolett.5b00787 – ident: e_1_2_9_86_1 doi: 10.1002/adfm.201505215 – ident: e_1_2_9_455_1 doi: 10.1002/aenm.201500799 – ident: e_1_2_9_8_1 doi: 10.1002/aenm.201700264 – ident: e_1_2_9_342_1 doi: 10.1002/aenm.201601165 – ident: e_1_2_9_55_1 doi: 10.1073/pnas.1607471113 – ident: e_1_2_9_454_1 doi: 10.1002/adma.201702140 – ident: e_1_2_9_182_1 doi: 10.1039/C6EE00409A – ident: e_1_2_9_362_1 doi: 10.1021/jp509753p – ident: e_1_2_9_186_1 doi: 10.1021/acsenergylett.6b00320 – ident: e_1_2_9_273_1 doi: 10.1039/C5TA05286F – ident: e_1_2_9_82_1 doi: 10.1002/admi.201500420 – ident: e_1_2_9_511_1 doi: 10.1039/C7EE02564E – ident: e_1_2_9_4_1 doi: 10.1021/acs.jpclett.5b02651 – ident: e_1_2_9_98_1 doi: 10.1039/C7NR03507A – ident: e_1_2_9_166_1 doi: 10.1002/aenm.201601575 – ident: e_1_2_9_439_1 doi: 10.1002/admi.201500837 – ident: e_1_2_9_97_1 doi: 10.1039/C5EE00222B – ident: e_1_2_9_183_1 doi: 10.1002/aenm.201600014 – ident: e_1_2_9_456_1 doi: 10.1038/nmat4795 – ident: e_1_2_9_350_1 doi: 10.1021/nl500399m – ident: e_1_2_9_89_1 doi: 10.1039/C5RA17129F – ident: e_1_2_9_219_1 doi: 10.1021/am506672j – ident: e_1_2_9_485_1 doi: 10.1021/acsami.7b11977 – ident: e_1_2_9_129_1 doi: 10.1021/acs.jpclett.6b02847 – ident: e_1_2_9_23_1 doi: 10.1038/nmat4388 – ident: e_1_2_9_13_1 doi: 10.1126/science.aam6323 – ident: e_1_2_9_371_1 doi: 10.1021/acsnano.7b04070 – ident: e_1_2_9_382_1 doi: 10.1039/C5TA02710A – ident: e_1_2_9_457_1 doi: 10.1021/acs.nanolett.7b01092 – ident: e_1_2_9_437_1 doi: 10.1021/acs.chemmater.5b01933 – ident: e_1_2_9_37_1 doi: 10.1038/natrevmats.2015.7 – ident: e_1_2_9_465_1 doi: 10.1002/advs.201500301 – ident: e_1_2_9_101_1 doi: 10.1021/jacs.7b01439 – ident: e_1_2_9_337_1 doi: 10.1002/aenm.201700823 – ident: e_1_2_9_320_1 doi: 10.1021/acs.nanolett.6b03989 – ident: e_1_2_9_428_1 doi: 10.1021/jacs.5b11740 – ident: e_1_2_9_158_1 doi: 10.1002/aenm.201702365 – ident: e_1_2_9_318_1 doi: 10.1002/adma.201603923 – ident: e_1_2_9_258_1 doi: 10.1016/j.nanoen.2016.06.044 – ident: e_1_2_9_416_1 doi: 10.1126/sciadv.1700841 – ident: e_1_2_9_5_1 doi: 10.1016/j.rser.2017.08.077 – ident: e_1_2_9_400_1 doi: 10.1021/acs.chemmater.6b03564 – ident: e_1_2_9_250_1 doi: 10.1002/adma.201500523 – ident: e_1_2_9_375_1 doi: 10.1021/nl501982b – ident: e_1_2_9_438_1 doi: 10.1002/aenm.201601055 – ident: e_1_2_9_217_1 doi: 10.1002/aenm.201600460 – ident: e_1_2_9_372_1 doi: 10.1002/adma.201600659 – ident: e_1_2_9_302_1 doi: 10.1021/acsnano.6b01535 – ident: e_1_2_9_490_1 doi: 10.1039/C6EE02650H – ident: e_1_2_9_269_1 doi: 10.1021/acsami.7b13621 – ident: e_1_2_9_35_1 doi: 10.1038/nenergy.2016.149 – ident: e_1_2_9_184_1 doi: 10.1002/aenm.201502246 – ident: e_1_2_9_295_1 doi: 10.1039/C5TA09165A – ident: e_1_2_9_328_1 doi: 10.1039/c3ee44174a – ident: e_1_2_9_356_1 doi: 10.1063/1.4916345 – ident: e_1_2_9_254_1 doi: 10.1002/adma.201600619 – ident: e_1_2_9_407_1 doi: 10.1021/acsami.6b04760 – ident: e_1_2_9_243_1 doi: 10.1039/C7EE01931A – ident: e_1_2_9_297_1 doi: 10.1016/j.nanoen.2016.02.025 – ident: e_1_2_9_366_1 doi: 10.1021/acsami.5b09442 – ident: e_1_2_9_237_1 doi: 10.1002/adfm.201401557 – ident: e_1_2_9_257_1 doi: 10.1021/acs.nanolett.5b00116 – ident: e_1_2_9_322_1 doi: 10.1016/j.electacta.2014.11.003 – ident: e_1_2_9_298_1 doi: 10.1021/acsenergylett.6b00236 – ident: e_1_2_9_365_1 doi: 10.1021/jacs.6b08790 – ident: e_1_2_9_421_1 doi: 10.1038/ncomms15684 – ident: e_1_2_9_367_1 doi: 10.1016/j.nanoen.2014.12.004 – ident: e_1_2_9_52_1 doi: 10.1002/adfm.201703704 – ident: e_1_2_9_264_1 doi: 10.1021/jacs.6b06291 – ident: e_1_2_9_68_1 doi: 10.1021/acs.jpclett.5b01406 – ident: e_1_2_9_290_1 doi: 10.1002/adma.201500465 – ident: e_1_2_9_125_1 doi: 10.1088/0957-4484/27/8/082001 – ident: e_1_2_9_283_1 doi: 10.1002/anie.201604399 – ident: e_1_2_9_43_1 doi: 10.1021/jz501983v – ident: e_1_2_9_508_1 doi: 10.1002/pip.2871 – ident: e_1_2_9_124_1 doi: 10.1021/acs.accounts.5b00411 – ident: e_1_2_9_384_1 doi: 10.1002/adfm.201504949 – ident: e_1_2_9_154_1 doi: 10.1039/C5CC05205J – ident: e_1_2_9_39_1 doi: 10.1002/pip.2978 – ident: e_1_2_9_81_1 doi: 10.1002/aenm.201502021 – ident: e_1_2_9_430_1 doi: 10.1002/adma.201501145 – ident: e_1_2_9_119_1 doi: 10.1038/nenergy.2016.148 – ident: e_1_2_9_161_1 doi: 10.1002/aelm.201700158 – ident: e_1_2_9_326_1 doi: 10.1021/jacs.7b04949 – ident: e_1_2_9_137_1 doi: 10.1002/aenm.201400812 – ident: e_1_2_9_364_1 doi: 10.1039/C5TA04239A – ident: e_1_2_9_151_1 doi: 10.1038/ncomms8497 – ident: e_1_2_9_204_1 doi: 10.1038/nmat4014 – ident: e_1_2_9_100_1 doi: 10.1016/j.nanoen.2016.08.006 – ident: e_1_2_9_126_1 doi: 10.1021/acs.accounts.5b00433 – ident: e_1_2_9_345_1 doi: 10.1021/acs.chemmater.6b02583 – ident: e_1_2_9_303_1 doi: 10.1002/adma.201701221 – ident: e_1_2_9_473_1 doi: 10.1021/acsenergylett.7b00282 – ident: e_1_2_9_91_1 doi: 10.1021/jp412627n – ident: e_1_2_9_472_1 doi: 10.1039/C6EE03014A – ident: e_1_2_9_313_1 doi: 10.1039/C5TA02265G – ident: e_1_2_9_93_1 doi: 10.1016/j.nanoen.2016.10.065 – ident: e_1_2_9_83_1 doi: 10.1002/adfm.201603023 – ident: e_1_2_9_369_1 doi: 10.1021/acs.nanolett.6b05177 – ident: e_1_2_9_144_1 doi: 10.1021/acsami.6b11757 – ident: e_1_2_9_405_1 doi: 10.1039/C7TA05428A – ident: e_1_2_9_31_1 doi: 10.1039/C7TA00404D – ident: e_1_2_9_460_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_9_357_1 doi: 10.1002/aenm.201601768 – ident: e_1_2_9_336_1 doi: 10.1039/C4EE03773A – ident: e_1_2_9_157_1 doi: 10.1021/acs.jpclett.6b00058 – ident: e_1_2_9_168_1 doi: 10.1021/acs.jpcc.6b04233 – ident: e_1_2_9_487_1 doi: 10.1002/adma.201605900 – ident: e_1_2_9_523_1 doi: 10.1021/acs.chemmater.6b04327 – ident: e_1_2_9_517_1 doi: 10.1186/s40508-016-0051-z – ident: e_1_2_9_329_1 doi: 10.1002/adma.201504293 – ident: e_1_2_9_354_1 doi: 10.1039/c3ee40810h – ident: e_1_2_9_396_1 doi: 10.1002/adma.201606363 – ident: e_1_2_9_261_1 doi: 10.1002/aenm.201601193 – ident: e_1_2_9_478_1 doi: 10.1021/acsenergylett.7b00589 – ident: e_1_2_9_122_1 doi: 10.1038/nphoton.2013.374 – ident: e_1_2_9_181_1 doi: 10.1002/anie.201503153 – ident: e_1_2_9_238_1 doi: 10.1021/acs.chemrev.6b00432 – ident: e_1_2_9_156_1 doi: 10.1039/C4EE03664F – ident: e_1_2_9_370_1 doi: 10.1021/ja4132246 – ident: e_1_2_9_117_1 doi: 10.1038/ncomms8081 – ident: e_1_2_9_140_1 doi: 10.1002/adma.201504168 – ident: e_1_2_9_476_1 doi: 10.1021/acsenergylett.7b01151 – ident: e_1_2_9_461_1 doi: 10.1002/aenm.201701609 – ident: e_1_2_9_163_1 doi: 10.1002/aenm.201501453 – ident: e_1_2_9_92_1 doi: 10.1016/j.nanoen.2014.12.022 – ident: e_1_2_9_141_1 doi: 10.1021/acs.jpcc.7b02411 – ident: e_1_2_9_195_1 doi: 10.1021/ja809598r – ident: e_1_2_9_205_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_9_512_1 doi: 10.1002/adma.201501856 – ident: e_1_2_9_16_1 doi: 10.1039/C7EE00757D – ident: e_1_2_9_225_1 doi: 10.1038/ncomms8410 – ident: e_1_2_9_415_1 doi: 10.1021/jacs.5b03796 – ident: e_1_2_9_344_1 doi: 10.1002/adma.201604493 – ident: e_1_2_9_359_1 doi: 10.1002/cssc.201600944 – ident: e_1_2_9_21_1 doi: 10.1039/C7TA00434F – ident: e_1_2_9_87_1 doi: 10.1002/cssc.201701262 – ident: e_1_2_9_162_1 doi: 10.1021/acs.jpclett.5b02273 – ident: e_1_2_9_406_1 doi: 10.1002/anie.201600702 – ident: e_1_2_9_142_1 doi: 10.1002/adma.201700159 – ident: e_1_2_9_495_1 doi: 10.1039/C5NR08836D – ident: e_1_2_9_95_1 doi: 10.1002/adfm.201702180 – ident: e_1_2_9_49_1 doi: 10.1039/C6CE00813E – ident: e_1_2_9_385_1 doi: 10.1002/aenm.201501066 – ident: e_1_2_9_379_1 doi: 10.1021/nl403997a – ident: e_1_2_9_209_1 doi: 10.1039/C5EE01720C – ident: e_1_2_9_325_1 doi: 10.1039/C6EE00709K – ident: e_1_2_9_321_1 doi: 10.1039/C5TC01856K – ident: e_1_2_9_180_1 doi: 10.1038/ncomms11574 – ident: e_1_2_9_285_1 doi: 10.1002/adfm.201703068 – ident: e_1_2_9_346_1 doi: 10.1039/C6CS00122J – ident: e_1_2_9_501_1 doi: 10.1039/C7TA05004F – ident: e_1_2_9_276_1 doi: 10.1002/aenm.201600457 – ident: e_1_2_9_507_1 doi: 10.1039/C5EE03911H – ident: e_1_2_9_368_1 doi: 10.1002/aenm.201500569 – ident: e_1_2_9_174_1 doi: 10.1021/acs.chemmater.6b02883 – ident: e_1_2_9_147_1 doi: 10.1039/C7EE00899F – ident: e_1_2_9_331_1 doi: 10.1039/C5TA03865K – ident: e_1_2_9_486_1 doi: 10.1021/acsenergylett.7b00644 – ident: e_1_2_9_233_1 doi: 10.1021/acs.nanolett.6b02158 – ident: e_1_2_9_34_1 doi: 10.1038/nphoton.2016.62 – ident: e_1_2_9_510_1 – ident: e_1_2_9_440_1 doi: 10.1021/nl504349z – ident: e_1_2_9_59_1 doi: 10.1021/acsenergylett.7b00239 – ident: e_1_2_9_84_1 doi: 10.1039/C6EE02100J – ident: e_1_2_9_208_1 doi: 10.1021/nn505723h – ident: e_1_2_9_504_1 doi: 10.1038/nenergy.2017.38 – ident: e_1_2_9_296_1 doi: 10.1021/acsami.5b04695 – ident: e_1_2_9_143_1 doi: 10.1021/acsphotonics.6b00331 – ident: e_1_2_9_483_1 doi: 10.1002/adma.201704418 – ident: e_1_2_9_189_1 doi: 10.1021/jp500449z – ident: e_1_2_9_432_1 doi: 10.1038/nenergy.2016.190 – ident: e_1_2_9_169_1 doi: 10.1038/nenergy.2016.195 – ident: e_1_2_9_492_1 doi: 10.1038/ncomms10214 – ident: e_1_2_9_191_1 doi: 10.1002/adma.201703737 – ident: e_1_2_9_211_1 doi: 10.1038/ncomms16045 – ident: e_1_2_9_282_1 doi: 10.1002/aenm.201700522 – volume: 350 start-page: 1 year: 2015 ident: e_1_2_9_253_1 publication-title: Science – ident: e_1_2_9_503_1 doi: 10.1038/ncomms11105 – ident: e_1_2_9_374_1 doi: 10.1002/adma.201606398 – ident: e_1_2_9_90_1 doi: 10.1021/ja512518r – ident: e_1_2_9_64_1 doi: 10.1021/acs.inorgchem.6b01307 – ident: e_1_2_9_106_1 doi: 10.1002/adma.201604545 – ident: e_1_2_9_249_1 doi: 10.1021/am503610u – ident: e_1_2_9_317_1 doi: 10.1021/acs.chemmater.5b03991 – ident: e_1_2_9_177_1 doi: 10.1021/nn506864k – ident: e_1_2_9_99_1 doi: 10.1039/C6TA06152D – ident: e_1_2_9_429_1 doi: 10.1038/s41560-017-0016-9 – ident: e_1_2_9_347_1 doi: 10.1021/ar600035e – ident: e_1_2_9_482_1 doi: 10.1021/jacs.7b04981 – ident: e_1_2_9_132_1 doi: 10.1021/acs.jpclett.5b01698 – ident: e_1_2_9_220_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_9_330_1 doi: 10.1016/j.nanoen.2016.10.041 – ident: e_1_2_9_323_1 doi: 10.1002/adma.201700183 – ident: e_1_2_9_32_1 doi: 10.1002/adma.201605005 – ident: e_1_2_9_247_1 doi: 10.1039/C4EE02833C – ident: e_1_2_9_265_1 doi: 10.1021/jacs.6b00039 – ident: e_1_2_9_281_1 doi: 10.1038/ncomms12806 – ident: e_1_2_9_62_1 doi: 10.1021/acs.jpclett.6b00215 – ident: e_1_2_9_516_1 doi: 10.1021/acsenergylett.6b00499 – ident: e_1_2_9_524_1 doi: 10.1039/C6EE02013E – ident: e_1_2_9_57_1 doi: 10.1126/science.aai8535 – ident: e_1_2_9_402_1 doi: 10.1002/adma.201703980 – ident: e_1_2_9_244_1 doi: 10.1002/admi.201600571 – ident: e_1_2_9_262_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_9_199_1 doi: 10.1039/C4EE01076K – ident: e_1_2_9_448_1 doi: 10.1002/aenm.201602400 – ident: e_1_2_9_47_1 doi: 10.1016/j.mser.2015.12.002 – ident: e_1_2_9_393_1 doi: 10.1021/acs.jpclett.7b00712 – ident: e_1_2_9_410_1 doi: 10.1063/1.4896779 – ident: e_1_2_9_63_1 doi: 10.1039/C5EE01265A – ident: e_1_2_9_498_1 doi: 10.1016/j.eml.2016.06.006 – ident: e_1_2_9_509_1 – ident: e_1_2_9_20_1 doi: 10.1039/C7TA04544A – ident: e_1_2_9_259_1 doi: 10.1002/adma.201301327 – ident: e_1_2_9_256_1 doi: 10.1002/adma.201401685 – ident: e_1_2_9_339_1 doi: 10.1016/j.nanoen.2017.05.049 – ident: e_1_2_9_30_1 doi: 10.1021/acsami.7b06001 – ident: e_1_2_9_42_1 doi: 10.1002/aenm.201500477 – ident: e_1_2_9_46_1 doi: 10.1021/jacs.5b10723 – ident: e_1_2_9_198_1 doi: 10.1038/nenergy.2016.142 – ident: e_1_2_9_155_1 doi: 10.1002/aenm.201600396 – ident: e_1_2_9_159_1 doi: 10.1021/acsenergylett.6b00116 – ident: e_1_2_9_160_1 doi: 10.1039/C6EE03352K – ident: e_1_2_9_69_1 doi: 10.1038/nmat4473 – ident: e_1_2_9_165_1 doi: 10.1002/aelm.201700435 – ident: e_1_2_9_376_1 doi: 10.1002/aenm.201401943 – ident: e_1_2_9_441_1 doi: 10.1039/C5EE01169H – ident: e_1_2_9_173_1 doi: 10.1021/jacs.5b08535 – ident: e_1_2_9_301_1 doi: 10.1002/aenm.201701038 – ident: e_1_2_9_130_1 doi: 10.1039/C5EE03806E – ident: e_1_2_9_521_1 doi: 10.1002/aenm.201600386 – ident: e_1_2_9_29_1 doi: 10.1002/aenm.201700491 – ident: e_1_2_9_138_1 doi: 10.1002/aenm.201602432 – ident: e_1_2_9_146_1 doi: 10.1039/C7EE01096F – ident: e_1_2_9_192_1 doi: 10.1002/cssc.201501659 – ident: e_1_2_9_188_1 doi: 10.1038/ncomms3885 – ident: e_1_2_9_395_1 doi: 10.1002/aenm.201602922 – ident: e_1_2_9_426_1 doi: 10.1002/aenm.201601307 – ident: e_1_2_9_200_1 doi: 10.1038/nphoton.2014.82 – ident: e_1_2_9_118_1 doi: 10.1021/acsenergylett.6b00060 – ident: e_1_2_9_60_1 doi: 10.1038/nenergy.2016.152 – ident: e_1_2_9_71_1 doi: 10.1002/adma.201700192 – ident: e_1_2_9_341_1 doi: 10.1039/C4EE03907F – ident: e_1_2_9_80_1 doi: 10.1021/acsnano.6b05825 – ident: e_1_2_9_76_1 doi: 10.1038/ncomms8747 – ident: e_1_2_9_207_1 doi: 10.1126/science.aam5655 – ident: e_1_2_9_420_1 doi: 10.1039/C7EE01145H – ident: e_1_2_9_412_1 doi: 10.1039/C6TA00577B – ident: e_1_2_9_459_1 doi: 10.1002/aenm.201602121 – ident: e_1_2_9_505_1 doi: 10.1039/C5EE03315B – ident: e_1_2_9_260_1 doi: 10.1039/C5EE03560K – ident: e_1_2_9_222_1 doi: 10.1039/C6EE02390H – ident: e_1_2_9_388_1 doi: 10.1002/adma.201603994 – ident: e_1_2_9_85_1 doi: 10.1002/aenm.201700763 – ident: e_1_2_9_51_1 doi: 10.1021/acs.inorgchem.6b01294 – ident: e_1_2_9_105_1 doi: 10.1021/acs.jpclett.6b00366 – ident: e_1_2_9_381_1 doi: 10.1002/adfm.201602803 – ident: e_1_2_9_242_1 doi: 10.1002/aenm.201701688 – ident: e_1_2_9_520_1 doi: 10.1002/aenm.201700576 – start-page: 1702116 year: 2017 ident: e_1_2_9_497_1 publication-title: Adv. Energy Mater. – ident: e_1_2_9_61_1 doi: 10.1021/acs.accounts.5b00420 – ident: e_1_2_9_294_1 doi: 10.1039/C5EE03522H – ident: e_1_2_9_409_1 doi: 10.1021/nl500544c – ident: e_1_2_9_522_1 doi: 10.1039/C6EE02373H – ident: e_1_2_9_70_1 doi: 10.1039/C6EE01137C – ident: e_1_2_9_284_1 doi: 10.1002/anie.201706895 – ident: e_1_2_9_271_1 doi: 10.1002/aenm.201701883 – ident: e_1_2_9_149_1 doi: 10.1016/j.chempr.2016.10.002 – ident: e_1_2_9_309_1 doi: 10.1002/adma.201600969 – ident: e_1_2_9_293_1 doi: 10.1021/acs.chemmater.5b00129 – ident: e_1_2_9_230_1 doi: 10.1021/acsenergylett.6b00229 – ident: e_1_2_9_58_1 doi: 10.1021/acs.inorgchem.7b01094 – ident: e_1_2_9_377_1 doi: 10.1021/jacs.5b06493 – ident: e_1_2_9_96_1 doi: 10.1016/j.nanoen.2016.10.036 – ident: e_1_2_9_481_1 doi: 10.1038/nenergy.2017.18 – ident: e_1_2_9_252_1 doi: 10.1038/nnano.2015.230 – ident: e_1_2_9_338_1 doi: 10.1039/C5TA10696F – ident: e_1_2_9_14_1 doi: 10.1039/C4CS00458B – ident: e_1_2_9_442_1 doi: 10.1021/acs.nanolett.7b00722 – ident: e_1_2_9_418_1 doi: 10.1021/acs.chemmater.6b00711 – ident: e_1_2_9_33_1 doi: 10.1038/natrevmats.2017.42 – ident: e_1_2_9_110_1 doi: 10.1021/nn5036476 – ident: e_1_2_9_246_1 doi: 10.1038/srep04756 – ident: e_1_2_9_445_1 doi: 10.1021/acsnano.6b00225 – ident: e_1_2_9_471_1 doi: 10.1021/acsami.7b06816 – ident: e_1_2_9_17_1 doi: 10.1016/j.rser.2017.05.095 – ident: e_1_2_9_312_1 doi: 10.1039/C5CP03995A – ident: e_1_2_9_216_1 doi: 10.1002/aenm.201602803 – ident: e_1_2_9_232_1 doi: 10.1002/admi.201700623 – ident: e_1_2_9_411_1 doi: 10.1002/smll.201403534 – ident: e_1_2_9_355_1 doi: 10.1038/ncomms10379 – ident: e_1_2_9_451_1 doi: 10.1002/solr.201700045 – ident: e_1_2_9_6_1 doi: 10.1016/j.enpol.2005.06.020 – volume: 17135 start-page: 1 year: 2017 ident: e_1_2_9_424_1 publication-title: Nat. Energy – ident: e_1_2_9_164_1 doi: 10.1002/adma.201300580 – ident: e_1_2_9_231_1 doi: 10.1016/j.joule.2017.11.006 – ident: e_1_2_9_291_1 doi: 10.1021/jacs.5b10614 – ident: e_1_2_9_494_1 doi: 10.1039/C7TA04225F – ident: e_1_2_9_10_1 doi: 10.1002/adma.201600265 – ident: e_1_2_9_176_1 doi: 10.1021/nl500390f – ident: e_1_2_9_389_1 doi: 10.1002/advs.201500353 – ident: e_1_2_9_15_1 doi: 10.1126/science.aad4424 – ident: e_1_2_9_378_1 doi: 10.1038/ncomms15330 – ident: e_1_2_9_413_1 doi: 10.1021/acs.jpclett.6b01951 – ident: e_1_2_9_102_1 doi: 10.1002/adma.201602785 – ident: e_1_2_9_470_1 doi: 10.1021/acsenergylett.6b00495 – ident: e_1_2_9_135_1 doi: 10.1021/acs.jpclett.6b00238 – ident: e_1_2_9_353_1 doi: 10.1039/C3EE43707H – ident: e_1_2_9_128_1 doi: 10.1021/acs.jpclett.5b01696 – ident: e_1_2_9_502_1 doi: 10.1002/adfm.201703061 – ident: e_1_2_9_386_1 doi: 10.1039/C5TA09911K – ident: e_1_2_9_403_1 doi: 10.1021/acs.nanolett.7b02532 – ident: e_1_2_9_414_1 doi: 10.1002/ange.201406466 – ident: e_1_2_9_373_1 doi: 10.1039/C5EE03394B – ident: e_1_2_9_453_1 doi: 10.1038/natrevmats.2017.43 – ident: e_1_2_9_436_1 doi: 10.1002/aenm.201601128 – ident: e_1_2_9_383_1 doi: 10.1002/aenm.201701349 – ident: e_1_2_9_304_1 doi: 10.1039/C6EE03182J – ident: e_1_2_9_526_1 doi: 10.1002/aenm.201501119 – ident: e_1_2_9_500_1 doi: 10.1039/C7TA09178H – ident: e_1_2_9_292_1 doi: 10.1002/adma.201505140 – ident: e_1_2_9_227_1 doi: 10.1039/C6EE01037G – ident: e_1_2_9_279_1 doi: 10.1039/C5TA09080F – ident: e_1_2_9_392_1 doi: 10.1039/C5TA03456F – ident: e_1_2_9_314_1 doi: 10.1002/aenm.201501606 – ident: e_1_2_9_469_1 doi: 10.1021/acs.nanolett.6b03857 – ident: e_1_2_9_11_1 doi: 10.1021/acs.chemrev.6b00136 – ident: e_1_2_9_28_1 doi: 10.1021/ic401215x – ident: e_1_2_9_201_1 doi: 10.1002/aenm.201500568 – ident: e_1_2_9_499_1 doi: 10.1021/acsami.6b06164 – ident: e_1_2_9_319_1 doi: 10.1002/advs.201600027 – ident: e_1_2_9_1_1 – ident: e_1_2_9_187_1 doi: 10.1021/acsnano.6b02613 – ident: e_1_2_9_513_1 doi: 10.1038/nmat4572 – ident: e_1_2_9_287_1 doi: 10.1002/aenm.201501056 – ident: e_1_2_9_75_1 doi: 10.1002/adma.201504144 – ident: e_1_2_9_213_1 doi: 10.1039/C5EE02608C – ident: e_1_2_9_268_1 doi: 10.1021/acsnano.5b07043 – ident: e_1_2_9_419_1 doi: 10.1038/nature18306 – ident: e_1_2_9_433_1 doi: 10.1002/aenm.201602599 – ident: e_1_2_9_9_1 doi: 10.1039/C6EE03397K – ident: e_1_2_9_24_1 doi: 10.1016/j.solmat.2016.04.037 – ident: e_1_2_9_458_1 doi: 10.1021/acsami.5b12740 – ident: e_1_2_9_115_1 doi: 10.1021/acs.chemmater.5b01909 – ident: e_1_2_9_77_1 doi: 10.1038/nenergy.2016.93 – ident: e_1_2_9_194_1 doi: 10.1021/cm504022q – ident: e_1_2_9_358_1 doi: 10.1002/adfm.201401658 – ident: e_1_2_9_113_1 doi: 10.1002/aenm.201601251 – ident: e_1_2_9_167_1 doi: 10.1002/admi.201700007 – ident: e_1_2_9_239_1 doi: 10.1063/1.4905932 – ident: e_1_2_9_493_1 doi: 10.1002/aenm.201501406 – ident: e_1_2_9_431_1 doi: 10.1038/ncomms9932 – ident: e_1_2_9_506_1 doi: 10.1038/nature23877 – ident: e_1_2_9_2_1 doi: 10.1016/j.joule.2017.09.017 – ident: e_1_2_9_241_1 doi: 10.1002/adma.201604984 – ident: e_1_2_9_352_1 doi: 10.1002/admi.201600122 – ident: e_1_2_9_398_1 doi: 10.1039/C4TA04482G – ident: e_1_2_9_145_1 doi: 10.1039/C7EE00421D – ident: e_1_2_9_324_1 doi: 10.1002/aenm.201600502 – ident: e_1_2_9_79_1 doi: 10.1021/acs.nanolett.5b04157 – ident: e_1_2_9_245_1 doi: 10.1126/science.aao5561 – ident: e_1_2_9_25_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_9_401_1 doi: 10.1002/adma.201504555 – ident: e_1_2_9_266_1 doi: 10.1002/adma.201306217 – ident: e_1_2_9_397_1 doi: 10.1021/acsenergylett.6b00672 – ident: e_1_2_9_19_1 doi: 10.1126/science.aad5891 – ident: e_1_2_9_280_1 doi: 10.1038/nenergy.2015.12 – ident: e_1_2_9_22_1 doi: 10.1021/jz500279b – ident: e_1_2_9_270_1 doi: 10.1002/adma.201503298 – ident: e_1_2_9_234_1 doi: 10.1002/aenm.201501320 – ident: e_1_2_9_363_1 doi: 10.1021/acs.jpcc.6b04642 – ident: e_1_2_9_514_1 doi: 10.1021/acs.jpclett.5b00504 – ident: e_1_2_9_519_1 doi: 10.1021/jacs.5b00321 – ident: e_1_2_9_197_1 doi: 10.1039/C5EE03874J – ident: e_1_2_9_447_1 doi: 10.1038/s41598-017-11193-1 – ident: e_1_2_9_109_1 doi: 10.1002/aenm.201700012 – ident: e_1_2_9_218_1 doi: 10.1126/science.1254050 – ident: e_1_2_9_114_1 doi: 10.1021/acsenergylett.6b00657 – ident: e_1_2_9_390_1 doi: 10.1039/C5TA04695E – ident: e_1_2_9_178_1 doi: 10.1002/adfm.201502340 – ident: e_1_2_9_332_1 doi: 10.1002/aenm.201600401 – ident: e_1_2_9_462_1 doi: 10.1039/C7TA06163C – ident: e_1_2_9_72_1 doi: 10.1038/s41570-017-0095 – ident: e_1_2_9_45_1 doi: 10.1039/C5TA08963H – ident: e_1_2_9_408_1 doi: 10.1002/aenm.201700758 – ident: e_1_2_9_104_1 doi: 10.1021/acsenergylett.6b00680 – ident: e_1_2_9_179_1 doi: 10.1002/aenm.201701544 – ident: e_1_2_9_240_1 doi: 10.1002/cssc.201700635 – ident: e_1_2_9_466_1 doi: 10.1126/science.aad5845 – ident: e_1_2_9_380_1 doi: 10.1021/acs.nanolett.7b03225 – ident: e_1_2_9_116_1 doi: 10.1038/nphoton.2016.3 – ident: e_1_2_9_131_1 doi: 10.1021/acs.jpclett.6b02309 – ident: e_1_2_9_310_1 doi: 10.1002/solr.201700082 – ident: e_1_2_9_427_1 doi: 10.1021/acs.nanolett.7b01500 – ident: e_1_2_9_44_1 doi: 10.1038/nenergy.2016.48 – ident: e_1_2_9_172_1 doi: 10.1038/ncomms13422 – ident: e_1_2_9_121_1 doi: 10.1002/adma.201604056 – ident: e_1_2_9_306_1 doi: 10.1002/adma.201603062 – ident: e_1_2_9_170_1 doi: 10.1021/acs.chemmater.5b00660 – ident: e_1_2_9_327_1 doi: 10.1002/aenm.201701935 – ident: e_1_2_9_315_1 doi: 10.1002/aenm.201602333 – ident: e_1_2_9_333_1 doi: 10.1002/adma.201606555 – ident: e_1_2_9_50_1 doi: 10.1021/acsenergylett.7b00667 – ident: e_1_2_9_103_1 doi: 10.1038/nenergy.2016.207 – ident: e_1_2_9_351_1 doi: 10.1021/acs.jpclett.5b00010 – ident: e_1_2_9_41_1 doi: 10.1021/ja512117e – ident: e_1_2_9_450_1 doi: 10.1002/aenm.201602761 – ident: e_1_2_9_248_1 doi: 10.1016/j.nanoen.2017.08.014 – ident: e_1_2_9_305_1 doi: 10.1021/jacs.6b04519 – start-page: 002608 volume-title: 2012 38th IEEE Photovoltaics Specialists Conference year: 2012 ident: e_1_2_9_404_1 doi: 10.1109/PVSC.2012.6318129 – ident: e_1_2_9_139_1 doi: 10.1002/aenm.201700623 – ident: e_1_2_9_136_1 doi: 10.1002/anie.201606574 – ident: e_1_2_9_228_1 doi: 10.1039/C6TA05095F – ident: e_1_2_9_229_1 doi: 10.1002/adma.201601745 – ident: e_1_2_9_518_1 doi: 10.1021/acsenergylett.6b00158 – ident: e_1_2_9_360_1 doi: 10.1016/j.nanoen.2016.08.035 – year: 2017 ident: e_1_2_9_7_1 publication-title: Mater. Today Energy – ident: e_1_2_9_88_1 doi: 10.1126/science.1254763 – ident: e_1_2_9_65_1 doi: 10.1039/C5EE02733K – ident: e_1_2_9_391_1 doi: 10.1002/cssc.201700271 – ident: e_1_2_9_78_1 doi: 10.1021/acs.jpclett.5b02888 – ident: e_1_2_9_153_1 doi: 10.1038/nmat4150 – ident: e_1_2_9_107_1 doi: 10.1002/admi.201600948 – ident: e_1_2_9_484_1 doi: 10.1002/adma.201504260 – ident: e_1_2_9_54_1 doi: 10.1002/adma.201600669 – ident: e_1_2_9_452_1 doi: 10.1002/admi.201700731 – ident: e_1_2_9_444_1 doi: 10.1039/C5TC00622H – ident: e_1_2_9_525_1 doi: 10.1039/C5GC02734A – ident: e_1_2_9_443_1 doi: 10.1021/acs.jpcc.5b11144 – ident: e_1_2_9_479_1 doi: 10.1021/ja5033259 – ident: e_1_2_9_286_1 doi: 10.1021/acs.nanolett.6b04015 – ident: e_1_2_9_496_1 doi: 10.1039/C7EE02185B – ident: e_1_2_9_475_1 doi: 10.1021/acsenergylett.7b00357 – ident: e_1_2_9_48_1 doi: 10.1016/j.nantod.2015.04.009 – ident: e_1_2_9_26_1 doi: 10.1038/natrevmats.2016.99 |
SSID | ssj0009606 |
Score | 2.667773 |
SecondaryResourceType | review_article |
Snippet | High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable energy.... High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy.... Abstract High‐efficiency and low‐cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar‐based renewable... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800455 |
SubjectTerms | Charge materials charge‐transporting materials Commercialization device architecture device efficiency and stability Interface stability interfaces interlayers Materials science Perovskites Photovoltaic cells Solar cells Stability analysis |
Title | Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800455 https://www.ncbi.nlm.nih.gov/pubmed/29883006 https://www.proquest.com/docview/2083686727 https://www.proquest.com/docview/2052808826 https://www.osti.gov/biblio/1463192 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6hnpYDsMsrtIuMhMQpkDi2cfbWhUUICYR4SNwi27EvVElFWw78ejx50a5ASHBLlBnFTmbsb-yZzwD7KfMRWmTikNs4DZmm3qUcS0OkVpc-PDjOI6x3vrwS5_fs4oE_zFXx1_wQ3YIbekY1XqODKz05eiMNVXnFGxRLRCVYZY4JW4iKbt74oxCeV2R7CQ9TwWTL2hjRo0X1hVmpV3rveg9xLgLYagY6WwXVtr1OPHk8nE31oXn5j9bxO51bg5UGnpJhbU8_YckWv2B5jrRwHSZ3VaYtubZP5fMEF3_JLcbH5MSORgQLTvAQJzVqCjz_kCGKthWdRBU5adP9yE2JTRiTv34uzUlZkGqB0inUJ3Nv3YD7s393J-dhc3RDaHyIwkPmnU9TTa3guU5EwvixlhTLlTgCUqYZzVWOIbGjKnHGaqOZj620c8Y5ppNN6BVlYbeBpE7ELlZRYjwS4WmktMDqXmWdyLkfQQII21-XmYbXHI_XGGU1IzPNsCdZ9zEDOOjkxzWjx4eSfbSEzGMRJNQ1mHlkphgs-XGLBjBoDSRr_H7idWUiJO5uB7DXPfYei9swqrDlDGU4lRjZiAC2asPqGkJTKRM_EAZAK_P4pIXZ8PRy2N3tfEWpDz_wus5pHEBv-jSzvz3OmurdypdeASwgHJc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V5QA98H6EFjASiFPaxLHTpBKHpUu1pd0Kla3UW2o79qWrpOrugui_6l_hF3Umr3YRCAmpB45J7MROZibfjGc-A7xNBXpogQl9acPUF5qjSjmR-kStnqB7sJEHVO882o-Hh-LzkTxagou2Fqbmh-gCbqQZlb0mBaeA9PoVa6jKK-KgMCFY0uZV7tof39Frm37YGeAnfsf59qfx1tBvNhbwDQJo6QsUDc01t7HMdRRHQm7ohFMxjSS4JLTgucrJYXNcRc5YbbRA5K-dM84JHeF9b8Ft2kac6PoHB1eMVeQQVPR-kfTTWCQtT2TA1xfHu_Af7JWoz7_DuIuQufrnbd-Hn-3bqlNdTtbmM71mzn8hkvyvXucDuNcgcNavVeYhLNniESxf42V8DNNxlUzMvtiz8tuU4tvsK4UA2JadTBjV1NA-VWrS1LBusj41bYtWmSpy1mY0soOSpnzKPiJcyFlZsCoG6xT1Z9ee-gQOb2TWT6FXlIV9Dix1cehCFUQGwZZMA6VjKmBW1sW5RCPpgd_KSmYa6nbaQWSS1aTTPKOZZN3H8-B91_60Ji35Y8sVEr0M4RZxBhtKrjIz8gfRNHMPVluJzBrTNsW-SRQntIDvwZvuMholWmlShS3n1EbyhJy32INntSR3A-FpkkRo6z3glTz-ZYRZfzDqd0cv_qXTa7gzHI_2sr2d_d0VuEvn6xTOVejNzub2JcLKmX5VKTKD45sW9UtpqXox |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VRUJw4P0ILWAkEKe0iWO7CRKHpcuqpbSqSiv1ltqOfWGVrLq7IPhV_BX-ETN5tYtASEg9cExiJ37MTL6xZz4DvMgEemiRjUPp4iwUhqNKeZGFRK2eonuwWUSU77y3r7aPxfsTebIC37tcmIYfol9wI82o7TUp-LTwG-ekobqoeYPilFBJF1a5675-Qadt9mZnhDP8kvPxu6Ot7bA9VyC0iJ9lKFAyDDfcKVmYRCVCbpqUUy6NJLQkjOCFLshf81wn3jpjjUDgb7y33guT4HuvwFWhoowOixgdnhNWkT9Qs_slMsyUSDuayIhvLLd36Tc4qFCdfwdxlxFz_csb34If3WA1kS6f1hdzs26__cIj-T-N5m242eJvNmwU5g6suPIu3LjAyngPZkd1KDE7cGfV5xmtbrOPtADAttxkwiijhk6p0pM2g_U1G1LRLmWV6bJgXTwjO6yoy1P2FsFCwaqS1SuwXlN9duGr9-H4Unr9AAZlVbpHwDKvYh_rKLEItWQWaaMofVk7rwqJJjKAsBOV3LbE7XR-yCRvKKd5Tj3J-8kL4FVfftpQlvyx5CpJXo5gixiDLYVW2Tl5g2iYeQBrnUDmrWGbYd00USlt3wfwvH-MJon2mXTpqgWVkTwl100F8LAR5L4hPEvTBC19ALwWx7-0MB-O9ob91eN_qfQMrh2MxvmHnf3dVbhOt5v4zTUYzM8W7gliyrl5Wqsxg9PLlvSfXst44A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Perovskite+Solar+Cell+Commercialization%3A+A+Perspective+and+Research+Roadmap+Based+on+Interfacial+Engineering&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Rajagopal%2C+Adharsh&rft.au=Yao%2C+Kai&rft.au=Jen%2C+Alex+K.%E2%80%90Y.&rft.date=2018-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=32&rft_id=info:doi/10.1002%2Fadma.201800455&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201800455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |