Estimating a Predator-Prey Dynamical Model with the Parameter Cascades Method

Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subjec...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 64; no. 3; pp. 959 - 967
Main Authors Cao, Jiguo, Fussmann, Gregor F., Ramsay, James O.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.09.2008
Blackwell Publishing
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator-prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator-prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.
AbstractList Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator-prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator-prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.
Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator-prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator-prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator-prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator-prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.
Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator-prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator-prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach. [PUBLICATION ABSTRACT]
Summary Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce “parameter cascades” as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator–prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator–prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of “parameter cascades” to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.
Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator-prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator-prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach. /// Les équations différentielles ordinaires (EDO) sont largement utilisées pour décrire le comportement dynamique des populations en interaction, Cependant les systèmes EDO donnent rarement des solutions quantitatives proches des observations réelles de terrain ou des résultats expérimentaux, parce que les systèmes naturels sont soumis à un bruit environnemental ou démographique et que les écologistes sont dans l'incertitude pour paramétrer correctement leurs données. Dans cet article nous introduisons les "cascades de paramètres" pour améliorer l'estimation des paramètres EDO de manière à bien ajuster les solutions aux données réelles. Cette méthode est basée sur le lissage pénalisé modifié en définissant la pénalité par les EDO et en généralisant l'estimation profilée pour aboutir à une estimation rapide et à une bonne précision des paramètres EDO sur des données affectées de bruit. Cette méthode est appliquée à un ensemble d'EDO prévues à l'origine pour décrire un système prédateur-proie expérimental soumis à des oscillations. Le nouveau paramétrage améliore considérablement l'ajustement du modèle EDO aux données expérimentales. La méthode révèle en outre que d'importantes hypothèses structurales sous-jacentes au modèle EDO originel sont essentiellement correctes. La formulation mathématique des deux termes d'interaction non linéaire (réponses fonctionnelles) qui lient les EDO dans le modèle prédateur-proie est validée par un estimateur non paramétrique des réponses fonctionnelles à partir des données réelles. Nous suggérons deux applications importantes des "cascades de paramètres" à la modélisation écologique. La méthode peut servir à estimer des paramètres quand les données sont soumises à des bruits ou manquantes, ou quand aucune estimée a priori fiable n'est disponible. La méthode peut par ailleurs aider à valider la qualité structurelle du modèle mathématique.
Summary Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce “parameter cascades” as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator–prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator–prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of “parameter cascades” to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.
Author Ramsay, James O.
Cao, Jiguo
Fussmann, Gregor F.
Author_xml – sequence: 1
  givenname: Jiguo
  surname: Cao
  fullname: Cao, Jiguo
– sequence: 2
  givenname: Gregor F.
  surname: Fussmann
  fullname: Fussmann, Gregor F.
– sequence: 3
  givenname: James O.
  surname: Ramsay
  fullname: Ramsay, James O.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18047526$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFRwAiFt0l-D-TBUgwtNNKHVqJFthdeWKnkzSJW9ujzrw9Dimz6KZ4Y1v3O_fK5_gA7fW2NwglBGckro9NRgQnKeYUZxTjPMO44DTbvECTXWEPTTDGMmWc_N5HB9438VoITF-hfTLFPBdUTtDi2Ie6U6HubxKVXDqjVbAujYdt8m3bq64uVZssrDZt8lCHVRJWJrlUTnUmGJfMlC-VNj5ZmLCy-jV6WanWmzeP-yG6Pjm-mp2m5xfzs9mX87QUoqDpkpOcqkrnpJCCcq5zIfCSM1UQKWWltBQlkWVRac4FNqXgkjHMeSW10tgs2SE6GvveOXu_Nj5AV_vStK3qjV17kLHv8PhnQT4YITGO4IcnYGPXro-PAErYNJpISITePULrZWc03LlondvCPzsj8HkESme9d6aCsg7RXNsHp-oWCIYhP2hgiAmGmGDID_7mB5vYYPqkwW7G89JPo_Shbs32v3Xw9exiEU9R_3bUNz7-gJ2exmgoESLW07Fe-2A2u7pytyBzlgv49X0OP0_Z_OpkJoBF_v3IV8qCunG1h-sfFBMWB1POpoT9AdLh0KY
CODEN BIOMA5
CitedBy_id crossref_primary_10_1515_mcma_2018_0010
crossref_primary_10_1214_11_AOAS459
crossref_primary_10_1007_s11538_014_9951_9
crossref_primary_10_1016_j_jmva_2018_09_006
crossref_primary_10_1111_biom_12646
crossref_primary_10_1007_s11222_012_9357_1
crossref_primary_10_1098_rspa_2012_0500
crossref_primary_10_32628_IJSRSET207263
crossref_primary_10_1111_insr_12053
crossref_primary_10_3389_fsysb_2022_1021897
crossref_primary_10_1016_j_jtherbio_2011_10_013
crossref_primary_10_1016_j_enconman_2019_01_032
crossref_primary_10_1111_rssb_12040
crossref_primary_10_1021_acs_jpcb_9b04729
crossref_primary_10_1080_17513758_2016_1258093
crossref_primary_10_1002_2013WR015173
crossref_primary_10_1080_10618600_2016_1265526
crossref_primary_10_1111_2041_210X_12486
crossref_primary_10_1038_s41598_020_73710_z
crossref_primary_10_1214_10_AOAS364
crossref_primary_10_1214_15_AOS1409
crossref_primary_10_1016_j_cmpb_2008_12_001
crossref_primary_10_1016_j_jmva_2018_03_014
crossref_primary_10_1016_j_csda_2019_03_001
crossref_primary_10_1111_biom_12243
crossref_primary_10_1137_22M1499029
crossref_primary_10_1080_03610918_2025_2468342
crossref_primary_10_1111_j_1541_0420_2011_01577_x
crossref_primary_10_1007_s13253_013_0135_0
crossref_primary_10_1007_s13253_021_00446_2
crossref_primary_10_1098_rsif_2016_0156
crossref_primary_10_3389_fevo_2018_00234
crossref_primary_10_1002_wics_1534
crossref_primary_10_1007_s11222_016_9647_0
crossref_primary_10_1142_S0218339015500059
crossref_primary_10_1016_j_chaos_2014_09_004
Cites_doi 10.1038/nature03627
10.1890/0012-9658(2002)083[2256:FPDMTT]2.0.CO;2
10.1098/rsbl.2004.0246
10.1515/9781400847259
10.1080/01621459.1996.10476708
10.1016/S0065-2504(04)37007-8
10.1002/0470013192.bsa239
10.2307/3959
10.4039/Ent91293-5
10.1098/rspb.2000.1186
10.1126/science.290.5495.1358
10.1038/nature01767
10.1007/s00180-007-0044-1
10.1140/epjb/e2004-00122-1
10.1890/04-1107
10.1073/pnas.0603181103
10.1046/j.1365-2656.2002.00645.x
10.1021/i160024a008
10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO;2
10.1890/05-1945
10.1111/j.0030-1299.2004.12930.x
10.1126/science.1079154
10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2
10.1137/0710052
10.1086/282272
10.1016/S0167-2789(97)00123-1
10.1111/j.1467-9868.2007.00610.x
ContentType Journal Article
Copyright Copyright 2008 The International Biometric Society
2008, The International Biometric Society
2008 International Biometric Society
Copyright_xml – notice: Copyright 2008 The International Biometric Society
– notice: 2008, The International Biometric Society
– notice: 2008 International Biometric Society
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7S9
L.6
7X8
DOI 10.1111/j.1541-0420.2007.00942.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic
ProQuest Computer Science Collection
CrossRef



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
Ecology
EISSN 1541-0420
EndPage 967
ExternalDocumentID 1534549561
18047526
10_1111_j_1541_0420_2007_00942_x
BIOM942
25502155
ark_67375_WNG_VH3GTFC5_3
US201300924381
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAPXW
AAUAY
AAZSN
ABEJV
ABMNT
ABXSQ
ABXVV
ADACV
AJAOE
ALIPV
BSCLL
IPSME
KOP
OIG
OJZSN
ROX
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ABDFA
ABGNP
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AIHAF
AJNCP
ALRMG
NU-
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PKN
JQ2
7S9
L.6
7X8
ID FETCH-LOGICAL-c5592-b4172afd71965244d7550b43a91666fad65c16c9fd4450ec54633044f6dad0eb3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Jul 11 02:41:38 EDT 2025
Fri Jul 11 18:35:01 EDT 2025
Fri Jul 25 19:44:07 EDT 2025
Wed Feb 19 02:28:54 EST 2025
Tue Jul 01 00:57:59 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Wed Jan 22 16:27:30 EST 2025
Thu Jul 03 21:22:34 EDT 2025
Wed Oct 30 09:49:04 EDT 2024
Wed Dec 27 19:13:42 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5592-b4172afd71965244d7550b43a91666fad65c16c9fd4450ec54633044f6dad0eb3
Notes http://dx.doi.org/10.1111/j.1541-0420.2007.00942.x
ark:/67375/WNG-VH3GTFC5-3
istex:6B4E3662065C3F50A036A1B1F939DBEE1A0438E6
ArticleID:BIOM942
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1541-0420.2007.00942.x
PMID 18047526
PQID 213834111
PQPubID 35366
PageCount 9
ParticipantIDs proquest_miscellaneous_69650006
proquest_miscellaneous_48047600
proquest_journals_213834111
pubmed_primary_18047526
crossref_citationtrail_10_1111_j_1541_0420_2007_00942_x
crossref_primary_10_1111_j_1541_0420_2007_00942_x
wiley_primary_10_1111_j_1541_0420_2007_00942_x_BIOM942
jstor_primary_25502155
istex_primary_ark_67375_WNG_VH3GTFC5_3
fao_agris_US201300924381
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2008
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: September 2008
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2008
Publisher Blackwell Publishing Inc
Blackwell Publishing
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Publishing
– name: Blackwell Publishing Ltd
References Turchin, P. (2003). Complex Population Dynamics. Princeton , NJ : Princeton University Press.
Ellner, S. P., Seifu, Y., and Smith, R. H. (2002). Fitting population dynamic models to time-series data by gradient matching. Ecology 83, 2256-2270.
Kondoh, M. (2003). Foraging adaptation and the relationship between food-web complexity and stability. Science 299, 1388-1391.
Hassell, M. P., Lawton, J. H., and Beddington, J. R. (1977). Sigmoid functional responses by invertebrate predators and parasitoids. Journal of Animal Ecology 46, 249-262.
Williams, R. J. and Martinez, N. D. (2004). Stabilization of chaotic and non-permanent food-web dynamics. European Physical Journal B 38, 297-303.
Cao, J. and Ramsay, J. O. (2007). Parameter cascades and profiling in functional data analysis. Computational Statistics 22, 335-351.
Ionides, E. L., Breto, C., and King, A. A. (2006). Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences 103, 18438-18443.
Ellner, S. P., Kendall, B. E., Wood, S. N., McCauley, E., and Briggs, C. J. (1997). Inferring mechanism from time-series data: Delay-differential equations. Physics D 110, 182-194.
Fussmann, G. F., Weithoff, G., and Yoshida, T. (2005). A direct, experimental test of resource vs. consumer dependence. Ecology 86, 2924-2930.
Gelman, A., Bois, F., and Jiang, J. (1996). Physiological pharmacokinetic analysis using population modeling and informative prior distributions. Journal of the American Statistical Association 91, 1400-1412.
Rosenzweig, M. L. and MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey interactions. American Naturalist 97, 209.
Wood, S. N. (2001). Partially specified ecological models. Ecological Monographs 71, 1-25.
Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F., and Hairston, N. G. (2003). Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424, 303-306.
Vos, M., Kooi, B. W., DeAngelis, D. L., and Mooij, W. M. (2004). Inducible defences and the paradox of enrichment. Oikos 105, 471-480.
Ivlev, V. S. (1961). Experimental Ecology of the Feeding of Fishes. New Haven , CT : Yale University Press.
Jensen, C. X. J., Jeschke, J. M., and Ginzburg, L. R. (2007). A direct, experimental test of resource vs. consumer dependence: Comment. Ecology 88, 1600-1602.
Fussmann, G. F., Ellner, S. P., Hairston, N. G., Jones, L. E., Shertzer, K. W., and Yoshida, T. (2005). Ecological and evolutionary dynamics of experimental plankton communities. Advances in Ecological Research 37, 221-243.
Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. New York : Springer.
Murdoch, W., Briggs, C., and Nisbet, R. (2003). Consumer-Resource Dynamics. New York : Princeton University Press.
Fussmann, G. F., Ellner, S. P., Shertzer, K. W., and Hairston, N. G. J. (2000). Crossing the Hopf bifurcation in a live predator-prey system. Science 290, 1358-1360.
Holling, C. S. (1959). The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. The Canadian Entomologist 91, 293-320.
Fussmann, G. F. and Blasius, B. (2005). Community response to enrichment is highly sensitive to model structure. Biology Letters 1, 9-12.
Shertzer, K. W., Ellner, S. P., Fussmann, G. F., and Hairston, N. G. (2002). Predator-prey cycles in an aquatic microcosm: Testing hypotheses of mechanism. Journal of Animal Ecology 71, 802-815.
de Boor, C. and Swartz, B. (1973). Collocation at Gaussian points. SIAM Journal on Numerical Analysis 10, 582-606.
Ramsay, J. O., Hooker, G., Campbell, D., and Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). Journal of the Royal Statistical Society, Series B 69, 741-746.
Becks, L., Hilker, F. M., Malchow, H., Jürgens, K., and Arndt, H. (2005). Experimental demonstration of chaos in a microbial food web. Nature 435, 1226.
Himmelblau, D., Jones, C., and Bischoff, K. B. (1967). Determination of rate constants for complex kinetics models. Industrial Engineering Chemistry Fundamentals 6, 539.
Kendall, B. E., Briggs, C. J., Murdoch, W. W., Turchin, P., Ellner, S. P., McCauley, E., Nisbet, R. M., and Wood, S. N. (1999). Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80, 1789-1805.
Bock, H. G. (1983). Recent advances in parameter identification techniques for ordinary differential equations. In Numerical Treatment of Inverse Problems in Differential and Integral Equations, P. Deuflhard and E. Harrier (eds), 95-121. Basel , Switzerland : Birkhäuser.
2001; 71
2004; 105
1973; 10
1997; 110
2005; 435
2005; 86
2005
1977; 46
2003
1996; 91
1999; 80
2003; 299
2000; 290
1967; 6
1963; 97
1959; 91
2003; 424
2000; 267
2002; 83
2004; 38
1983
2005; 1
1961
2002; 71
2005; 37
2007; 22
2007; 88
2007; 69
2006; 103
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Bock H. G. (e_1_2_10_3_1) 1983
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
Ivlev V. S. (e_1_2_10_17_1) 1961
e_1_2_10_29_1
Turchin P. (e_1_2_10_27_1) 2003
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – reference: Bock, H. G. (1983). Recent advances in parameter identification techniques for ordinary differential equations. In Numerical Treatment of Inverse Problems in Differential and Integral Equations, P. Deuflhard and E. Harrier (eds), 95-121. Basel , Switzerland : Birkhäuser.
– reference: Turchin, P. (2003). Complex Population Dynamics. Princeton , NJ : Princeton University Press.
– reference: Vos, M., Kooi, B. W., DeAngelis, D. L., and Mooij, W. M. (2004). Inducible defences and the paradox of enrichment. Oikos 105, 471-480.
– reference: Hassell, M. P., Lawton, J. H., and Beddington, J. R. (1977). Sigmoid functional responses by invertebrate predators and parasitoids. Journal of Animal Ecology 46, 249-262.
– reference: Fussmann, G. F. and Blasius, B. (2005). Community response to enrichment is highly sensitive to model structure. Biology Letters 1, 9-12.
– reference: Murdoch, W., Briggs, C., and Nisbet, R. (2003). Consumer-Resource Dynamics. New York : Princeton University Press.
– reference: Gelman, A., Bois, F., and Jiang, J. (1996). Physiological pharmacokinetic analysis using population modeling and informative prior distributions. Journal of the American Statistical Association 91, 1400-1412.
– reference: Kendall, B. E., Briggs, C. J., Murdoch, W. W., Turchin, P., Ellner, S. P., McCauley, E., Nisbet, R. M., and Wood, S. N. (1999). Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80, 1789-1805.
– reference: Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. New York : Springer.
– reference: Rosenzweig, M. L. and MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey interactions. American Naturalist 97, 209.
– reference: Wood, S. N. (2001). Partially specified ecological models. Ecological Monographs 71, 1-25.
– reference: Ellner, S. P., Seifu, Y., and Smith, R. H. (2002). Fitting population dynamic models to time-series data by gradient matching. Ecology 83, 2256-2270.
– reference: Kondoh, M. (2003). Foraging adaptation and the relationship between food-web complexity and stability. Science 299, 1388-1391.
– reference: Williams, R. J. and Martinez, N. D. (2004). Stabilization of chaotic and non-permanent food-web dynamics. European Physical Journal B 38, 297-303.
– reference: Becks, L., Hilker, F. M., Malchow, H., Jürgens, K., and Arndt, H. (2005). Experimental demonstration of chaos in a microbial food web. Nature 435, 1226.
– reference: Holling, C. S. (1959). The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. The Canadian Entomologist 91, 293-320.
– reference: Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F., and Hairston, N. G. (2003). Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424, 303-306.
– reference: Himmelblau, D., Jones, C., and Bischoff, K. B. (1967). Determination of rate constants for complex kinetics models. Industrial Engineering Chemistry Fundamentals 6, 539.
– reference: de Boor, C. and Swartz, B. (1973). Collocation at Gaussian points. SIAM Journal on Numerical Analysis 10, 582-606.
– reference: Ellner, S. P., Kendall, B. E., Wood, S. N., McCauley, E., and Briggs, C. J. (1997). Inferring mechanism from time-series data: Delay-differential equations. Physics D 110, 182-194.
– reference: Fussmann, G. F., Ellner, S. P., Hairston, N. G., Jones, L. E., Shertzer, K. W., and Yoshida, T. (2005). Ecological and evolutionary dynamics of experimental plankton communities. Advances in Ecological Research 37, 221-243.
– reference: Jensen, C. X. J., Jeschke, J. M., and Ginzburg, L. R. (2007). A direct, experimental test of resource vs. consumer dependence: Comment. Ecology 88, 1600-1602.
– reference: Ivlev, V. S. (1961). Experimental Ecology of the Feeding of Fishes. New Haven , CT : Yale University Press.
– reference: Fussmann, G. F., Ellner, S. P., Shertzer, K. W., and Hairston, N. G. J. (2000). Crossing the Hopf bifurcation in a live predator-prey system. Science 290, 1358-1360.
– reference: Cao, J. and Ramsay, J. O. (2007). Parameter cascades and profiling in functional data analysis. Computational Statistics 22, 335-351.
– reference: Ionides, E. L., Breto, C., and King, A. A. (2006). Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences 103, 18438-18443.
– reference: Fussmann, G. F., Weithoff, G., and Yoshida, T. (2005). A direct, experimental test of resource vs. consumer dependence. Ecology 86, 2924-2930.
– reference: Ramsay, J. O., Hooker, G., Campbell, D., and Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). Journal of the Royal Statistical Society, Series B 69, 741-746.
– reference: Shertzer, K. W., Ellner, S. P., Fussmann, G. F., and Hairston, N. G. (2002). Predator-prey cycles in an aquatic microcosm: Testing hypotheses of mechanism. Journal of Animal Ecology 71, 802-815.
– volume: 103
  start-page: 18438
  year: 2006
  end-page: 18443
  article-title: Inference for nonlinear dynamical systems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 22
  start-page: 335
  year: 2007
  end-page: 351
  article-title: Parameter cascades and profiling in functional data analysis
  publication-title: Computational Statistics
– year: 2005
– year: 2003
– volume: 46
  start-page: 249
  year: 1977
  end-page: 262
  article-title: Sigmoid functional responses by invertebrate predators and parasitoids
  publication-title: Journal of Animal Ecology
– volume: 88
  start-page: 1600
  year: 2007
  end-page: 1602
  article-title: A direct, experimental test of resource vs. consumer dependence: Comment
  publication-title: Ecology
– volume: 424
  start-page: 303
  year: 2003
  end-page: 306
  article-title: Rapid evolution drives ecological dynamics in a predator‐prey system
  publication-title: Nature
– volume: 71
  start-page: 1
  year: 2001
  end-page: 25
  article-title: Partially specified ecological models
  publication-title: Ecological Monographs
– volume: 267
  start-page: 1611
  year: 2000
  end-page: 1620
– volume: 69
  start-page: 741
  year: 2007
  end-page: 746
  article-title: Parameter estimation for differential equations: A generalized smoothing approach (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 1
  start-page: 9
  year: 2005
  end-page: 12
  article-title: Community response to enrichment is highly sensitive to model structure
  publication-title: Biology Letters
– volume: 38
  start-page: 297
  year: 2004
  end-page: 303
  article-title: Stabilization of chaotic and non‐permanent food‐web dynamics
  publication-title: European Physical Journal B
– year: 1961
– volume: 290
  start-page: 1358
  year: 2000
  end-page: 1360
  article-title: Crossing the Hopf bifurcation in a live predator‐prey system
  publication-title: Science
– volume: 110
  start-page: 182
  year: 1997
  end-page: 194
  article-title: Inferring mechanism from time‐series data: Delay‐differential equations
  publication-title: Physics D
– volume: 83
  start-page: 2256
  year: 2002
  end-page: 2270
  article-title: Fitting population dynamic models to time‐series data by gradient matching
  publication-title: Ecology
– volume: 10
  start-page: 582
  year: 1973
  end-page: 606
  article-title: Collocation at Gaussian points
  publication-title: SIAM Journal on Numerical Analysis
– volume: 37
  start-page: 221
  year: 2005
  end-page: 243
  article-title: Ecological and evolutionary dynamics of experimental plankton communities
  publication-title: Advances in Ecological Research
– start-page: 95
  year: 1983
  end-page: 121
– volume: 80
  start-page: 1789
  year: 1999
  end-page: 1805
  article-title: Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches
  publication-title: Ecology
– volume: 6
  start-page: 539
  year: 1967
  article-title: Determination of rate constants for complex kinetics models
  publication-title: Industrial Engineering Chemistry Fundamentals
– volume: 91
  start-page: 1400
  year: 1996
  end-page: 1412
  article-title: Physiological pharmacokinetic analysis using population modeling and informative prior distributions
  publication-title: Journal of the American Statistical Association
– volume: 299
  start-page: 1388
  year: 2003
  end-page: 1391
  article-title: Foraging adaptation and the relationship between food‐web complexity and stability
  publication-title: Science
– volume: 435
  start-page: 1226
  year: 2005
  article-title: Experimental demonstration of chaos in a microbial food web
  publication-title: Nature
– volume: 91
  start-page: 293
  year: 1959
  end-page: 320
  article-title: The components of predation as revealed by a study of small‐mammal predation of the European pine sawfly
  publication-title: The Canadian Entomologist
– volume: 71
  start-page: 802
  year: 2002
  end-page: 815
  article-title: Predator‐prey cycles in an aquatic microcosm: Testing hypotheses of mechanism
  publication-title: Journal of Animal Ecology
– volume: 86
  start-page: 2924
  year: 2005
  end-page: 2930
  article-title: A direct, experimental test of resource vs. consumer dependence
  publication-title: Ecology
– volume: 97
  start-page: 209
  year: 1963
  article-title: Graphical representation and stability conditions of predator‐prey interactions
  publication-title: American Naturalist
– volume: 105
  start-page: 471
  year: 2004
  end-page: 480
  article-title: Inducible defences and the paradox of enrichment
  publication-title: Oikos
– ident: e_1_2_10_2_1
  doi: 10.1038/nature03627
– ident: e_1_2_10_7_1
  doi: 10.1890/0012-9658(2002)083[2256:FPDMTT]2.0.CO;2
– ident: e_1_2_10_8_1
  doi: 10.1098/rsbl.2004.0246
– ident: e_1_2_10_22_1
  doi: 10.1515/9781400847259
– ident: e_1_2_10_12_1
  doi: 10.1080/01621459.1996.10476708
– ident: e_1_2_10_10_1
  doi: 10.1016/S0065-2504(04)37007-8
– ident: e_1_2_10_23_1
  doi: 10.1002/0470013192.bsa239
– ident: e_1_2_10_13_1
  doi: 10.2307/3959
– ident: e_1_2_10_15_1
  doi: 10.4039/Ent91293-5
– ident: e_1_2_10_19_1
  doi: 10.1098/rspb.2000.1186
– ident: e_1_2_10_9_1
  doi: 10.1126/science.290.5495.1358
– ident: e_1_2_10_31_1
  doi: 10.1038/nature01767
– volume-title: Experimental Ecology of the Feeding of Fishes
  year: 1961
  ident: e_1_2_10_17_1
– ident: e_1_2_10_4_1
  doi: 10.1007/s00180-007-0044-1
– ident: e_1_2_10_29_1
  doi: 10.1140/epjb/e2004-00122-1
– ident: e_1_2_10_11_1
  doi: 10.1890/04-1107
– ident: e_1_2_10_16_1
  doi: 10.1073/pnas.0603181103
– ident: e_1_2_10_26_1
  doi: 10.1046/j.1365-2656.2002.00645.x
– volume-title: Complex Population Dynamics
  year: 2003
  ident: e_1_2_10_27_1
– ident: e_1_2_10_14_1
  doi: 10.1021/i160024a008
– ident: e_1_2_10_20_1
  doi: 10.1890/0012-9658(1999)080[1789:WDPCAS]2.0.CO;2
– ident: e_1_2_10_18_1
  doi: 10.1890/05-1945
– start-page: 95
  volume-title: Recent advances in parameter identification techniques for ordinary differential equations
  year: 1983
  ident: e_1_2_10_3_1
– ident: e_1_2_10_28_1
  doi: 10.1111/j.0030-1299.2004.12930.x
– ident: e_1_2_10_21_1
  doi: 10.1126/science.1079154
– ident: e_1_2_10_30_1
  doi: 10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2
– ident: e_1_2_10_5_1
  doi: 10.1137/0710052
– ident: e_1_2_10_25_1
  doi: 10.1086/282272
– ident: e_1_2_10_6_1
  doi: 10.1016/S0167-2789(97)00123-1
– ident: e_1_2_10_24_1
  doi: 10.1111/j.1467-9868.2007.00610.x
SSID ssj0009502
Score 2.0625215
Snippet Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of...
Summary Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However,...
Summary Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However,...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 959
SubjectTerms Animals
Biometric Practice
biometry
Biometry - methods
Chlorella vulgaris - growth & development
Chlorella vulgaris - physiology
data collection
Data smoothing
Datasets
Differential equations
dynamic models
Ecological modeling
ecologists
Ecology
Ecosystem
equations
Estimating techniques
Estimation methods
Food Chain
Functional responses
Inverse problem
Mathematical independent variables
mathematical models
Mathematical vectors
Models, Biological
Models, Statistical
Nitrogen
Nonlinear Dynamics
Nuisance parameters
Odes
Ordinary differential equation
Ordinary differential equations
Penalized smoothing
Predation
Predator-prey system
Profiling method
Rotifera - growth & development
Rotifera - physiology
Statistical analysis
System identification
Title Estimating a Predator-Prey Dynamical Model with the Parameter Cascades Method
URI https://api.istex.fr/ark:/67375/WNG-VH3GTFC5-3/fulltext.pdf
https://www.jstor.org/stable/25502155
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2007.00942.x
https://www.ncbi.nlm.nih.gov/pubmed/18047526
https://www.proquest.com/docview/213834111
https://www.proquest.com/docview/48047600
https://www.proquest.com/docview/69650006
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BJaRyoBBouy0PHxC3jfbhR_YIoaEgpa2ggdws767dQ6oNyiZSw4mfwG_klzCzLxpUpApxs-S1tR6Pvd_Y334D8NIReSFQmW8G1vk8tsI3KjW-FCa2WSKjnNP_zuMTeTzhH6Zi2vCf6F-YWh-iO3CjlVHt17TATVpuLnLBMRTmUdAqESY86hOeJOoW4aOP0TX93aAWDieqFw-nm6SeGzva-FLddWaO-JVMf9VSF28CpZsYt_pIjXZg1g6v5qbM-qtl2s--_aH8-H_G_xAeNFiWva6d7xHcsUUP7tXZLdc9uD_uJGHLHmwTrK1VoR_D6REWqKa4YIadLWxOsf_P7z-wuGZv14WpVAwYZWq7ZHRWzLArdmaISoaewIamJGJ_ycZVBuwnMBkdnQ-P_Sa1g59hCBP5KUfgZFyuSNAQEUauMFJKeWwSusZ0JpciC2WWuJxzEdiMRPvjgHMnc5MHNo13YauYF3YfGIa4NkyckwqRhstUEuYCZ1jJ1A1Sq2IPVDuNOmt0zyn9xqW-Fv-gJTVZkrJy0oU8WlJfeRB2Lb_W2h-3aLOPnqLNBW7RevIpoovhAGNcBEYevKrcp-vLLGZEq1NCfzl5pz_jrnc-GgqNb7xb-Vf3IIZ9BM2EB4etw-lmqyl1FMYDHG-I_b_oanGPoIsfU9j5qtR8EHC6gP37ExKngdaGB3u1H_8eMLUVEdbIyhtvbQn95v3pGEsH_9rwELZbck4QPoWt5WJlnyECXKbPq7X9C9LtRWI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEaIceISWmgLdA-LmyI99xEdIG1Ko0woSyG21tnd7aOSgOJEaTvwEfiO_hBm_aFCRKsRtpfWuvLMz6292xt8Q8spi8oInU1f3jHVZaLirZaJdwXVo0kgEGcP_neORGE7Y-ymf1uWA8F-Yih-ivXBDyyjPazRwvJDetHLOwBdmgddQEUYs6AKgvIMFvpFI__BjcIWB16uowzHZi_nTzbSea2fa-FbdtnoOCBaFf9kkL14HSzdRbvmZGjwks2aBVXbKRXe1TLrptz-4H_-TBB6RBzWcpW8q_XtMbpm8Q-5WBS7XHXI_bllhiw7ZRmRbEUM_IadH0MCe_JxqerYwGbr_P7__gOaaHq5zXRIZUCzWNqN4XUxhKnqmMZsMlIH2dYG5_QWNyyLYO2QyOBr3h25d3cFNwYsJ3IQBdtI2k8hpCCAjk-AsJSzUEUYyrc4ET32RRjZjjHsmRd7-0GPMikxnnknCXbKVz3OzRyh4ucaPrBUSwIZNZeRnHLZYisT2EiNDh8hmH1VaU59jBY6ZuuICgSQVShILc2JMHiSpLh3ityO_VvQfNxizB6qi9Dmc0mryKcDYsAduLmAjh7wu9aedSy8uMLNOcvVl9E59hoNvPOhzBW-8WypY-yB4fojOuEP2G41T9WlTqMAPe7BeH-Y_aHvhmMDYj87NfFUo1vMYxmD__oSAbUDjcMjTSpF_LxjH8gB6RKmON5aEent8GkPr2b8OPCD3huP4RJ0cjz7sk-0mV8fzn5Ot5WJlXgAgXCYvS0P_BTVKSX4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagCFQOPEJLQ4H6gLhttA8_skdIGlogaQQN5GZ513YPqTZVNpEaTvwEfiO_hJl90aAiVYibJa-t9Xhm9ht79htCXjlMXvBl6umudR6LLPe0TLQnuI5sGovQMPzfeTgSRxP2fsqnVf4T_gtT8kM0B25oGYW_RgO_MG7TyDmDUJiFfs1EGLOwA3jyDhN-jGUc-p_CKwS8fskcjrleLJhuZvVcO9PGp-q203MAsCj7yzp38TpUuglyi6_U4CGZ1esrk1NmndUy6aTf_qB-_D8CeEQeVGCWvim17zG5ZbMWuVuWt1y3yP1hwwmbt8g24tqSFvoJOTmEBvZkZ1TT8cIaDP5_fv8BzTXtrzNd0BhQLNV2TvGwmMJUdKwxlwxUgfZ0jpn9OR0WJbB3yGRweNo78qraDl4KMUzoJQyQk3ZGIqMhQAwjIVRKWKRjvMd02gieBiKNnWGM-zZF1v7IZ8wJo41vk2iXbGXzzO4RCjGuDWLnhASo4VIZB4bDDkuRuG5iZdQmst5GlVbE51h_41xdCYBAkgoliWU58UYeJKku2yRoRl6U5B83GLMHmqL0GfhoNfkc4s2wD0EuIKM2eV2oTzOXXswwr05y9XX0Tn0Bt3c66HEFb7xb6FfzIMR9iM14m-zXCqcqX5OrMIi6sN4A5j9oesFJ4M2Pzux8lSvW9RnewP79CQHbgLbRJk9LPf69YBzLQ-gRhTbeWBLq7fHJEFrP_nXgAbk37g_Ux-PRh32yXSfq-MFzsrVcrOwLQIPL5GVh5r8A-PZILQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+a+Predator%E2%80%90Prey+Dynamical+Model+with+the+Parameter+Cascades+Method&rft.jtitle=Biometrics&rft.au=Cao%2C+Jiguo&rft.au=Fussmann%2C+Gregor+F.&rft.au=Ramsay%2C+James+O.&rft.date=2008-09-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=64&rft.issue=3&rft.spage=959&rft.epage=967&rft_id=info:doi/10.1111%2Fj.1541-0420.2007.00942.x&rft.externalDBID=10.1111%252Fj.1541-0420.2007.00942.x&rft.externalDocID=BIOM942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon