Terrestrial plant methane production and emission
In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aero...
Saved in:
Published in | Physiologia plantarum Vol. 144; no. 3; pp. 201 - 209 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2012
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH4 emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material. |
---|---|
AbstractList | In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH4 emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material. In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH 4 ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH 4 production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH 4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH 4 emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH 4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH 4 precursors in plant material. In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material.In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material. In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material. |
Author | Bruhn, Dan Mikkelsen, Teis N. Ambus, Per Møller, Ian M. |
Author_xml | – sequence: 1 fullname: Bruhn, Dan – sequence: 2 fullname: Møller, Ian M – sequence: 3 fullname: Mikkelsen, Teis N – sequence: 4 fullname: Ambus, Per |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25498836$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22136562$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv1DAUhC3Uim4LfwFyQfSS1M-O7fhAJVTRgroqFbTQm-Ukz5Almyx2Vmz_PQ7ZLhIHVF9sy9-MR28OyV7Xd0hIAjSDuE4WGXCtU05FnjEKkFEQArLNEzLbPeyRGaUcUs1BHZDDEBaUgpTAnpIDxoBLIdmMwA16j2HwjW2TVWu7IVni8N12mKx8X6-roem7xHZ1gssmhHh5RvadbQM-3-5H5Pb83c3Z-3T-8eLD2dt5WgmhIcVSO1UzR6uyUKg5gxxlibwUDvKi1lBT1ELV1hW6zhWzOmZDRSsrtatdwY_I68k35vi5jhFNDFBhGzNivw5GR0cmNJWRPP4vCUwxJkEWOqIvtui6XGJtVr5ZWn9vHgYSgVdbwIbKts7brmrCX07kuij4-GcxcZXvQ_DodghQM3ZkFmaswoxVmLEj86cjs4nS03-kVTPYcc6Dt037GIM3k8GvpsX7R39srq_n4ynq00nfhAE3O731P4xUXAnz9erC3Mm7y09frnKjIv9y4p3tjf3m4zxuP0dnTkFLmkvOfwNc2cEs |
CODEN | PHPLAI |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2019_04_030 crossref_primary_10_1038_s41467_022_34105_y crossref_primary_10_5194_bg_13_3163_2016 crossref_primary_10_5194_bg_18_2609_2021 crossref_primary_10_1007_s10534_017_0040_z crossref_primary_10_1038_srep46185 crossref_primary_10_1111_gcb_13753 crossref_primary_10_1007_s10534_017_9989_x crossref_primary_10_1007_s11738_017_2420_y crossref_primary_10_1016_j_agrformet_2016_05_014 crossref_primary_10_1093_bbb_zbac176 crossref_primary_10_1007_s10533_016_0253_1 crossref_primary_10_1029_2021JG006345 crossref_primary_10_1016_j_scitotenv_2023_162331 crossref_primary_10_1007_s11103_018_00817_3 crossref_primary_10_3390_microorganisms9040809 crossref_primary_10_1007_s00299_019_02478_y crossref_primary_10_3390_microorganisms3020137 crossref_primary_10_3389_fpls_2023_1268085 crossref_primary_10_4161_15592316_2014_970095 crossref_primary_10_1029_2019JG005154 crossref_primary_10_1007_s00484_013_0662_y crossref_primary_10_1007_s11027_018_9796_x crossref_primary_10_5194_bg_17_5209_2020 crossref_primary_10_1515_astro_2020_0019 crossref_primary_10_1016_j_scitotenv_2021_151362 crossref_primary_10_1016_j_agrformet_2017_04_013 crossref_primary_10_5194_bg_12_1907_2015 crossref_primary_10_1016_j_earscirev_2013_10_001 crossref_primary_10_1016_j_phytochem_2014_08_016 crossref_primary_10_1007_s00299_014_1723_3 crossref_primary_10_1186_s13021_024_00283_z crossref_primary_10_1016_j_molstruc_2016_03_093 crossref_primary_10_1016_j_envexpbot_2015_11_013 crossref_primary_10_1016_j_jbiosc_2019_04_009 crossref_primary_10_1111_ppl_12514 crossref_primary_10_1146_annurev_micro_092412_155614 crossref_primary_10_5194_bg_16_4129_2019 crossref_primary_10_1002_jsfa_8681 crossref_primary_10_3390_antiox12071381 crossref_primary_10_1016_j_scitotenv_2016_09_196 crossref_primary_10_1016_j_agrformet_2015_09_003 crossref_primary_10_1111_nph_15582 crossref_primary_10_1016_j_biortech_2023_129759 crossref_primary_10_1016_j_jplph_2018_12_006 crossref_primary_10_1002_lno_12095 crossref_primary_10_1016_j_ecoenv_2017_09_054 crossref_primary_10_1039_c4pp90034k crossref_primary_10_1007_s10404_016_1824_0 crossref_primary_10_1016_j_atmosenv_2015_05_019 crossref_primary_10_1139_cjb_2021_0002 crossref_primary_10_3161_15052249PJE2015_63_2_006 crossref_primary_10_1038_ncomms2049 crossref_primary_10_1038_ncomms5205 crossref_primary_10_1038_s41598_019_39663_8 crossref_primary_10_3389_fmicb_2023_1106332 crossref_primary_10_3389_frwa_2023_1332968 crossref_primary_10_1016_j_plaphy_2020_10_016 crossref_primary_10_1088_1752_7155_9_1_014001 crossref_primary_10_5194_bg_11_613_2014 crossref_primary_10_1111_nph_15624 crossref_primary_10_1007_s11356_018_2692_9 crossref_primary_10_3390_biom9090420 crossref_primary_10_1007_s40626_020_00170_1 crossref_primary_10_1016_j_ecoleng_2018_02_025 crossref_primary_10_1111_nph_15452 crossref_primary_10_1139_cjb_2018_0126 crossref_primary_10_1111_gcb_12995 crossref_primary_10_1152_ajpcell_00300_2012 crossref_primary_10_1016_j_atmosenv_2012_08_034 crossref_primary_10_1111_nph_18120 crossref_primary_10_1111_pce_12489 crossref_primary_10_1007_s10533_014_9974_1 crossref_primary_10_1111_plb_12137 crossref_primary_10_1039_c7pp90043k crossref_primary_10_1093_pcp_pcy241 crossref_primary_10_1007_s10021_022_00751_y crossref_primary_10_1016_j_pss_2013_08_019 crossref_primary_10_1016_j_atmosenv_2014_09_077 crossref_primary_10_1016_j_ecoleng_2015_09_007 crossref_primary_10_1111_ppl_12531 crossref_primary_10_1007_s11103_019_00914_x |
Cites_doi | 10.1038/439148a 10.1098/rspb.2008.1731 10.1038/439128a 10.1126/science.184.4142.1181 10.1016/S0021-9258(19)68927-1 10.1111/j.1399-3054.1993.tb01727.x 10.1134/S1021443711020117 10.1016/j.abb.2003.12.016 10.1007/s10535-008-0124-2 10.1146/annurev.arplant.58.032806.103946 10.1034/j.1399-3054.2003.1170104.x 10.1111/j.1469-8137.2007.02114.x 10.1111/j.1365-2389.2010.01272.x 10.1111/j.1469-8137.2010.03259.x 10.1023/A:1004331521059 10.1111/j.1469-8137.2008.02571.x 10.1016/0031-9422(94)00679-N 10.1111/j.1469-8137.2008.02411.x 10.1111/j.1469-8137.2009.02797.x 10.1111/j.1469-8137.2010.03348.x 10.1111/j.1365-2621.1978.tb09738.x 10.1029/2009GL041565 10.1111/j.1399-3054.2009.01268.x 10.1016/j.atmosenv.2009.07.046 10.1021/es071224l 10.1016/j.atmosenv.2011.06.001 10.1111/j.1365-3040.2010.02255.x 10.1016/j.chemosphere.2010.04.004 10.1111/j.1365-2486.2008.01607.x 10.1016/j.porgcoat.2006.08.023 10.1093/aob/mcm329 10.1111/j.1365-2435.2011.01838.x 10.1016/j.tree.2006.05.017 10.1111/j.1365-3040.2008.01892.x 10.1016/0968-0004(80)90051-1 10.5194/bg-5-937-2008 10.3832/ifor0591-004 10.1021/es062404i 10.1111/j.1399-3054.1988.tb09176.x 10.1111/j.1438-8677.2009.00202.x 10.5194/bg-6-1311-2009 10.5194/bg-5-1551-2008 10.1071/FP10119 10.1016/j.mito.2007.10.004 10.1098/rsbl.2008.0373 10.1071/FP06051 10.5194/bgd-6-1403-2009 10.5194/acpd-7-14011-2007 10.5194/acp-9-8365-2009 10.1111/j.1469-8137.2007.02103.x 10.1104/pp.104.3.881 10.1071/EN09137 10.1038/nature04420 10.1098/rsbl.2009.0123 |
ContentType | Journal Article |
Copyright | Copyright © Physiologia Plantarum 2011 2015 INIST-CNRS Copyright © Physiologia Plantarum 2011. |
Copyright_xml | – notice: Copyright © Physiologia Plantarum 2011 – notice: 2015 INIST-CNRS – notice: Copyright © Physiologia Plantarum 2011. |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1111/j.1399-3054.2011.01551.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Chemistry |
EISSN | 1399-3054 |
EndPage | 209 |
ExternalDocumentID | 22136562 25498836 10_1111_j_1399_3054_2011_01551_x PPL1551 ark_67375_WNG_X6XKRVN4_7 US201301960463 |
Genre | article Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5591-eb9f7d2f0cb87e93214e6be3b5f148d91d0e957daf89d472a9661e70ca69fdf83 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 1399-3054 |
IngestDate | Fri Jul 11 15:56:51 EDT 2025 Fri Jul 11 18:33:56 EDT 2025 Mon Jul 21 06:05:27 EDT 2025 Mon Jul 21 09:10:47 EDT 2025 Tue Jul 01 03:00:39 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Wed Jan 22 17:04:31 EST 2025 Wed Oct 30 09:53:20 EDT 2024 Wed Dec 27 19:18:07 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Terrestrial environment Methane Plant production Terrestrial plant Plant physiology |
Language | English |
License | CC BY 4.0 Copyright © Physiologia Plantarum 2011. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5591-eb9f7d2f0cb87e93214e6be3b5f148d91d0e957daf89d472a9661e70ca69fdf83 |
Notes | http://dx.doi.org/10.1111/j.1399-3054.2011.01551.x ark:/67375/WNG-X6XKRVN4-7 ArticleID:PPL1551 istex:DFB227A85EF99B4BB4184C92FD8816882486EB52 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
PMID | 22136562 |
PQID | 1272261689 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_921425906 proquest_miscellaneous_1272261689 pubmed_primary_22136562 pascalfrancis_primary_25498836 crossref_primary_10_1111_j_1399_3054_2011_01551_x crossref_citationtrail_10_1111_j_1399_3054_2011_01551_x wiley_primary_10_1111_j_1399_3054_2011_01551_x_PPL1551 istex_primary_ark_67375_WNG_X6XKRVN4_7 fao_agris_US201301960463 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2012 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: Denmark |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plant |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Wiśniewska E, Majewska-Sawka A (2008) The differences in cell wall composition in leaves an regenerating protoplasts of Beta vulgaris and Nicotiana tabacum. Biol Plant 52: 634-641 Rice AL, Butenhoff CL, Shearer MJ, Teama D, Rosenstiel TN, Khalil MAK (2010) Emissions of anaerobically produced methane by trees. Geophys Res Lett 37: L03807 Liakoura V, Bornmann JF, Karabourniotis G (2003) The ability of abaxial and adaxial epidermis of sun and shade leaves to attenuate UV-A and UV-B radiation in relation to the UV absorbing capacity of the whole leaf methanolic extracts. Physiol Plant 117: 33-43 Evans JR (2007) Resolving methane fluxes. New Phytol 175: 1-4 Kirschbaum MUF, Niinemets Ü, Bruhn D, Winthers AJ (2007) How important is aerobic methane release by plants? Funct Plant Sci Biotech 1: 138-145 Wang Z-P, Han X-G, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the Inner Mongolia Steppe. Environ Sci Technol 42: 62-68 Parsons AJ, Newton PCD, Clark H, Kelliher FM (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21: 423-424 Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler JP (2009) Methane formation in aerobic environments. Environ Chem 6: 459-465 Srere PA (1980) The infrastructure of the mitochondrial matrix. Trends Biochem Sci 5: 120-121 Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459-481 Vigano I, van Weelden H, Holzinger R, Keepler F, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5: 937-947 Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, phosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32: 1-9 Paul ND (2010) The sunny side of greenhouse gas emissions - quantifying the contribution of aerobic methane production to global methane budgets. New Phytol 187: 263-265 Wang Z-P, Gulledge J, Zheng J-Q, Liu W, Li L-H, Han X-G (2009b) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosci Discuss 6: 1403-1420 Sinha V, Williams V, Crutzen PJ, Lelieveld J (2007) Methane emissions from boreal and tropical forest ecosystems derived from in-situ measurements. Atmos Chem Phys Discuss 7: 14011-14039 Cao G, Xu X, Long R, Wang Q, Wang C, Du Y, Zhao X (2008) Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biol Lett 4: 681-684 Beerling DJ, Gardiner T, Leggett G, McLeod A, Quick WP (2008) Missing methane emission from leaves of terrestrial plants. Glob Change Biol 14: 1821-1826 Crutzen PJ, Sanhueza E, Brenninkmeijer CAM (2006) Methane production from mixed tropical savanna and forest vegetation in Venezuela. Atmos Chem Phys Discuss 6: 3093-3097 Sharpatyi VA (2007) On the mechanism of methane emission by terrestrial plants. Oxidat Commun 30: 48-50 Qaderi MM, Reid DM (2009) Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress. Physiol Plant 137: 139-147 Rouse AH, Crandall PG (1978) Pectin content of lime and lemon peel as extracted by nitric acid. J Food Sci 43: 72-73 Bowling DR, Miller JB, Rhodes ME, Burns SP, Monson RK, Baer D (2009) Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences 6: 1311-1324 Mukhin VA, Voronin PY (2011) Methane emission from living wood. Russ J Plant Physiol 58: 344-350 Ambus P, Skiba U, Drewer J, Jones SK, Carter MS, Albert KR, Sutton MA (2010) Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes. Euro J Soil Sci 61: 785-792 Brüggemann N, Meier R, Steigner D, Zimmer I, Louis S, Schnitzler J-P (2009) Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol 182: 912-918 Wishkerman A, Greiner S, Ghyczy M, Boros M, Rausch T, Lenhart K, Keppler F (2011) Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. Plant Cell Environ 34: 457-464 Qaderi MM, Reid DM (2011) Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. Funct Plant Biol 38: 97-105 Mikkelsen TN, Bruhn D, Ambus P, Larsen KS, Ibrom I, Pilegaard K (2011) Is methane released from the forest canopy? iForest 4: 200-204 Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Funct Plant Biol 33: 521-530 Inaba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Plant Physiol 104: 881-887 McLeod AR, Fry SC, Loake GJ, Messinger DJ, Reay DS, Smith KA, Yun B-W (2008) Ultraviolet radiation drives methane emissions from terrestrial plants. New Phytol 180: 124-132 Wang S, Yang X, Lin X, Hu Y, Luo C, Xu G, Zhang Z, Su A, Chang X, Chao Z, Duan J (2009a) Methane emission by plant communities in an alpine meadow on the Qingha Tibetan Plateau: a new experimental study of alpine meadows and oat pasture. Biol Lett 5: 535-538 Johnson MTJ (2011) Evolutionary ecology of plant defenses against herbivores. Funct Ecol 25: 305-311 Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Srikantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B 276: 1347-1354 Althoff F, Jugold A, Keppler F (2010) Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. Chemosphere 80: 286-292 Kirschbaum MUF, Walcroft A (2008) No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes. Biogeosciences 5: 1551-1558 Vigano I, Röckmann T, Holzinger R, van Dijk A, Keppler F, Greule M, Brand WA, Geilmann H, van Weelden H (2009) The stable isotope signature emitted from plant material under UV irradiation. Atmos Environ 43: 5637-5646 Jacobs JF, Koper GJM, Ursem WNJ (2007) UV protective coatings: a botanical approach. Prog Org Coat 58: 166-171 Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187-191 Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies. New Phytol 178: 808-814 Keppler F (2006) Interactive comment on "Methane production from mixed tropical savannah and forest vegetation in Venezuela" by P.J. Crutzen et al. Atmos Chem Phys Discuss 6: S757-S761 Schiermeier Q (2006) Methane finding baffles scientist. Nature 439: 128 Solecka D, Żebrowski J, Kacperska A (2008) Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann Bot 101: 521-530 Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41: 4032-4037 Bloom AA, Lee-Taylor J, Madronich S, Messinger DJ, Palmer PI, Reay DS, McLeod AR (2010) Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. New Phytol 187: 417-425 Lowe DC (2006) A green source of surprise. Nature 439: 148-149 Repine JE, Fox RB, Berger EM (1981) Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcus iron to form hydroxyl radical. J Biol Chem 256: 7094-7096 Smeets CJPP, Holzinger R, Vigano I, Goldstein AH, Röckmann T (2009) Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos Chem Phys 9: 8365-8375 Wang Z, Keppler F, Greule M, Hamilton JTG (2011) Non-microbial methane emissions from fresh leaves: effects of physical wounding and anoxia. Atmos Environ 45: 4915-4921 Rusch H, Rennenberg H (1998) Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201: 1-7 Zeikus JG, Ward JC (1974) Methane formation in living trees: a microbial origin. Science 184: 1181-1183 Rasmusson AG, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8: 47-60 Chesson A, Gordon AH, Scobbie L (1995) Pectic polysaccharides of mesophyll cell walls of perennial ryegrass leaves. Phytochemistry 38: 579-583 Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstrappen F, Bouwmeester H, Voesenek LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175: 29-35 Cen YP, Bornman JF (1993) The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic uv-b radiation in leaves of Brassica napus. Physiol Plant 87: 249-255 Møller IM, Bérczi A, van der Plas LHW, Lambers H (1988) Measurement of the activity and capacity of the alternative pathway in intact plant tissues: identification of problems and possible solutions. Physiol Plant 72: 642-649 Jacobsen T, Williamson J, Wasilewski A, Felesik J, Vitello LB, Erman JE (2004) Azide binding to yeast cytochrome c peroxidase and horse metmyoglobin: comparative thermodynamic investigation using isothermal titration calorimetry. Archives Biochem Biophysics 422: 125-136 Bruhn D, Mikkelsen TN, Øbro J, Willats WGT, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol 11(suppl 1): 43-48 2003; 117 2009; 43 2009a; 5 1995; 38 2006; 33 2010; 187 2009; 276 2008; 8 2008; 5 1988; 72 2008; 4 2011; 58 2007; 30 2008; 101 2010; 61 1974; 184 2009; 11 1994; 104 2006; 21 2007; 175 2007; 7 2011; 25 2007; 1 1998; 201 2006; 439 2010; 37 2004; 422 2010 2009; 182 1993; 87 2008; 14 2007 2006; 6 2011; 34 2008; 52 2011; 4 2010; 80 2011; 38 2007; 58 2009; 137 2008; 180 2009; 32 1981; 256 2009b; 6 1978; 43 1980; 5 2009; 9 2009; 6 2011; 45 2007; 41 2008; 42 2008; 178 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 McLeod A (e_1_2_10_30_1) 2010 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_25_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 Repine JE (e_1_2_10_43_1) 1981; 256 Keppler F (e_1_2_10_21_1) 2006; 6 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Sharpatyi VA (e_1_2_10_48_1) 2007; 30 e_1_2_10_50_1 e_1_2_10_60_1 Denman KL (e_1_2_10_14_1) 2007 e_1_2_10_28_1 e_1_2_10_49_1 Kirschbaum MUF (e_1_2_10_27_1) 2007; 1 Crutzen PJ (e_1_2_10_13_1) 2006; 6 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – reference: Bloom AA, Lee-Taylor J, Madronich S, Messinger DJ, Palmer PI, Reay DS, McLeod AR (2010) Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. New Phytol 187: 417-425 – reference: Lowe DC (2006) A green source of surprise. Nature 439: 148-149 – reference: Repine JE, Fox RB, Berger EM (1981) Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcus iron to form hydroxyl radical. J Biol Chem 256: 7094-7096 – reference: Crutzen PJ, Sanhueza E, Brenninkmeijer CAM (2006) Methane production from mixed tropical savanna and forest vegetation in Venezuela. Atmos Chem Phys Discuss 6: 3093-3097 – reference: Solecka D, Żebrowski J, Kacperska A (2008) Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann Bot 101: 521-530 – reference: Bruhn D, Mikkelsen TN, Øbro J, Willats WGT, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol 11(suppl 1): 43-48 – reference: Brüggemann N, Meier R, Steigner D, Zimmer I, Louis S, Schnitzler J-P (2009) Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol 182: 912-918 – reference: Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Funct Plant Biol 33: 521-530 – reference: Mukhin VA, Voronin PY (2011) Methane emission from living wood. Russ J Plant Physiol 58: 344-350 – reference: Jacobsen T, Williamson J, Wasilewski A, Felesik J, Vitello LB, Erman JE (2004) Azide binding to yeast cytochrome c peroxidase and horse metmyoglobin: comparative thermodynamic investigation using isothermal titration calorimetry. Archives Biochem Biophysics 422: 125-136 – reference: Srere PA (1980) The infrastructure of the mitochondrial matrix. Trends Biochem Sci 5: 120-121 – reference: Wiśniewska E, Majewska-Sawka A (2008) The differences in cell wall composition in leaves an regenerating protoplasts of Beta vulgaris and Nicotiana tabacum. Biol Plant 52: 634-641 – reference: Vigano I, van Weelden H, Holzinger R, Keepler F, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5: 937-947 – reference: Wang Z-P, Gulledge J, Zheng J-Q, Liu W, Li L-H, Han X-G (2009b) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosci Discuss 6: 1403-1420 – reference: Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler JP (2009) Methane formation in aerobic environments. Environ Chem 6: 459-465 – reference: Smeets CJPP, Holzinger R, Vigano I, Goldstein AH, Röckmann T (2009) Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos Chem Phys 9: 8365-8375 – reference: Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41: 4032-4037 – reference: Cao G, Xu X, Long R, Wang Q, Wang C, Du Y, Zhao X (2008) Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biol Lett 4: 681-684 – reference: Kirschbaum MUF, Niinemets Ü, Bruhn D, Winthers AJ (2007) How important is aerobic methane release by plants? Funct Plant Sci Biotech 1: 138-145 – reference: Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies. New Phytol 178: 808-814 – reference: Sinha V, Williams V, Crutzen PJ, Lelieveld J (2007) Methane emissions from boreal and tropical forest ecosystems derived from in-situ measurements. Atmos Chem Phys Discuss 7: 14011-14039 – reference: Ambus P, Skiba U, Drewer J, Jones SK, Carter MS, Albert KR, Sutton MA (2010) Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes. Euro J Soil Sci 61: 785-792 – reference: Evans JR (2007) Resolving methane fluxes. New Phytol 175: 1-4 – reference: Schiermeier Q (2006) Methane finding baffles scientist. Nature 439: 128 – reference: Wishkerman A, Greiner S, Ghyczy M, Boros M, Rausch T, Lenhart K, Keppler F (2011) Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. Plant Cell Environ 34: 457-464 – reference: Mikkelsen TN, Bruhn D, Ambus P, Larsen KS, Ibrom I, Pilegaard K (2011) Is methane released from the forest canopy? iForest 4: 200-204 – reference: Chesson A, Gordon AH, Scobbie L (1995) Pectic polysaccharides of mesophyll cell walls of perennial ryegrass leaves. Phytochemistry 38: 579-583 – reference: Keppler F (2006) Interactive comment on "Methane production from mixed tropical savannah and forest vegetation in Venezuela" by P.J. Crutzen et al. Atmos Chem Phys Discuss 6: S757-S761 – reference: Parsons AJ, Newton PCD, Clark H, Kelliher FM (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21: 423-424 – reference: McLeod AR, Fry SC, Loake GJ, Messinger DJ, Reay DS, Smith KA, Yun B-W (2008) Ultraviolet radiation drives methane emissions from terrestrial plants. New Phytol 180: 124-132 – reference: Paul ND (2010) The sunny side of greenhouse gas emissions - quantifying the contribution of aerobic methane production to global methane budgets. New Phytol 187: 263-265 – reference: Wang Z-P, Han X-G, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the Inner Mongolia Steppe. Environ Sci Technol 42: 62-68 – reference: Zeikus JG, Ward JC (1974) Methane formation in living trees: a microbial origin. Science 184: 1181-1183 – reference: Sharpatyi VA (2007) On the mechanism of methane emission by terrestrial plants. Oxidat Commun 30: 48-50 – reference: Qaderi MM, Reid DM (2009) Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress. Physiol Plant 137: 139-147 – reference: Vigano I, Röckmann T, Holzinger R, van Dijk A, Keppler F, Greule M, Brand WA, Geilmann H, van Weelden H (2009) The stable isotope signature emitted from plant material under UV irradiation. Atmos Environ 43: 5637-5646 – reference: Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Srikantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B 276: 1347-1354 – reference: Rasmusson AG, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8: 47-60 – reference: Møller IM, Bérczi A, van der Plas LHW, Lambers H (1988) Measurement of the activity and capacity of the alternative pathway in intact plant tissues: identification of problems and possible solutions. Physiol Plant 72: 642-649 – reference: Rouse AH, Crandall PG (1978) Pectin content of lime and lemon peel as extracted by nitric acid. J Food Sci 43: 72-73 – reference: Wang Z, Keppler F, Greule M, Hamilton JTG (2011) Non-microbial methane emissions from fresh leaves: effects of physical wounding and anoxia. Atmos Environ 45: 4915-4921 – reference: Wang S, Yang X, Lin X, Hu Y, Luo C, Xu G, Zhang Z, Su A, Chang X, Chao Z, Duan J (2009a) Methane emission by plant communities in an alpine meadow on the Qingha Tibetan Plateau: a new experimental study of alpine meadows and oat pasture. Biol Lett 5: 535-538 – reference: Liakoura V, Bornmann JF, Karabourniotis G (2003) The ability of abaxial and adaxial epidermis of sun and shade leaves to attenuate UV-A and UV-B radiation in relation to the UV absorbing capacity of the whole leaf methanolic extracts. Physiol Plant 117: 33-43 – reference: Cen YP, Bornman JF (1993) The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic uv-b radiation in leaves of Brassica napus. Physiol Plant 87: 249-255 – reference: Rusch H, Rennenberg H (1998) Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201: 1-7 – reference: Rice AL, Butenhoff CL, Shearer MJ, Teama D, Rosenstiel TN, Khalil MAK (2010) Emissions of anaerobically produced methane by trees. Geophys Res Lett 37: L03807 – reference: Beerling DJ, Gardiner T, Leggett G, McLeod A, Quick WP (2008) Missing methane emission from leaves of terrestrial plants. Glob Change Biol 14: 1821-1826 – reference: Inaba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Plant Physiol 104: 881-887 – reference: Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, phosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32: 1-9 – reference: Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187-191 – reference: Bowling DR, Miller JB, Rhodes ME, Burns SP, Monson RK, Baer D (2009) Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences 6: 1311-1324 – reference: Althoff F, Jugold A, Keppler F (2010) Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. Chemosphere 80: 286-292 – reference: Kirschbaum MUF, Walcroft A (2008) No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes. Biogeosciences 5: 1551-1558 – reference: Jacobs JF, Koper GJM, Ursem WNJ (2007) UV protective coatings: a botanical approach. Prog Org Coat 58: 166-171 – reference: Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstrappen F, Bouwmeester H, Voesenek LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175: 29-35 – reference: Johnson MTJ (2011) Evolutionary ecology of plant defenses against herbivores. Funct Ecol 25: 305-311 – reference: Qaderi MM, Reid DM (2011) Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. Funct Plant Biol 38: 97-105 – reference: Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459-481 – volume: 43 start-page: 5637 year: 2009 end-page: 5646 article-title: The stable isotope signature emitted from plant material under UV irradiation. publication-title: Atmos Environ – volume: 201 start-page: 1 year: 1998 end-page: 7 article-title: Black alder ( (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. publication-title: Plant Soil – start-page: 74 year: 2010 end-page: 96 – volume: 14 start-page: 1821 year: 2008 end-page: 1826 article-title: Missing methane emission from leaves of terrestrial plants. publication-title: Glob Change Biol – volume: 187 start-page: 263 year: 2010 end-page: 265 article-title: The sunny side of greenhouse gas emissions – quantifying the contribution of aerobic methane production to global methane budgets. publication-title: New Phytol – volume: 422 start-page: 125 year: 2004 end-page: 136 article-title: Azide binding to yeast cytochrome peroxidase and horse metmyoglobin: comparative thermodynamic investigation using isothermal titration calorimetry. publication-title: Archives Biochem Biophysics – volume: 6 start-page: 1311 year: 2009 end-page: 1324 article-title: Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. publication-title: Biogeosciences – volume: 9 start-page: 8365 year: 2009 end-page: 8375 article-title: Eddy covariance methane measurements at a Ponderosa pine plantation in California. publication-title: Atmos Chem Phys – volume: 45 start-page: 4915 year: 2011 end-page: 4921 article-title: Non‐microbial methane emissions from fresh leaves: effects of physical wounding and anoxia. publication-title: Atmos Environ – volume: 439 start-page: 148 year: 2006 end-page: 149 article-title: A green source of surprise. publication-title: Nature – volume: 34 start-page: 457 year: 2011 end-page: 464 article-title: Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. publication-title: Plant Cell Environ – volume: 41 start-page: 4032 year: 2007 end-page: 4037 article-title: Global methane emissions from terrestrial plants. publication-title: Environ Sci Technol – volume: 21 start-page: 423 year: 2006 end-page: 424 article-title: Scaling methane emissions from vegetation. publication-title: Trends Ecol Evol – volume: 11 start-page: 43 issue: suppl 1 year: 2009 end-page: 48 article-title: Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. publication-title: Plant Biol – volume: 32 start-page: 1 year: 2009 end-page: 9 article-title: The role of ultraviolet radiation, phosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. publication-title: Plant Cell Environ – volume: 25 start-page: 305 year: 2011 end-page: 311 article-title: Evolutionary ecology of plant defenses against herbivores. publication-title: Funct Ecol – volume: 61 start-page: 785 year: 2010 end-page: 792 article-title: Development of an accumulation‐based system for cost‐effective chamber measurements of inert trace gas fluxes. publication-title: Euro J Soil Sci – volume: 175 start-page: 29 year: 2007 end-page: 35 article-title: No evidence for substantial aerobic methane emission by terrestrial plants: a C‐labelling approach. publication-title: New Phytol – volume: 37 start-page: L03807 year: 2010 article-title: Emissions of anaerobically produced methane by trees. publication-title: Geophys Res Lett – volume: 439 start-page: 128 year: 2006 article-title: Methane finding baffles scientist. publication-title: Nature – volume: 38 start-page: 97 year: 2011 end-page: 105 article-title: Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. publication-title: Funct Plant Biol – volume: 4 start-page: 200 year: 2011 end-page: 204 article-title: Is methane released from the forest canopy? publication-title: iForest – volume: 276 start-page: 1347 year: 2009 end-page: 1354 article-title: Emission of methane from plants. publication-title: Proc R Soc B – volume: 6 start-page: 3093 year: 2006 end-page: 3097 article-title: Methane production from mixed tropical savanna and forest vegetation in Venezuela. publication-title: Atmos Chem Phys Discuss – volume: 72 start-page: 642 year: 1988 end-page: 649 article-title: Measurement of the activity and capacity of the alternative pathway in intact plant tissues: identification of problems and possible solutions. publication-title: Physiol Plant – volume: 439 start-page: 187 year: 2006 end-page: 191 article-title: Methane emissions from terrestrial plants under aerobic conditions. publication-title: Nature – volume: 5 start-page: 535 year: 2009a end-page: 538 article-title: Methane emission by plant communities in an alpine meadow on the Qingha Tibetan Plateau: a new experimental study of alpine meadows and oat pasture. publication-title: Biol Lett – volume: 5 start-page: 937 year: 2008 end-page: 947 article-title: Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. publication-title: Biogeosciences – volume: 178 start-page: 808 year: 2008 end-page: 814 article-title: Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies. publication-title: New Phytol – volume: 30 start-page: 48 year: 2007 end-page: 50 article-title: On the mechanism of methane emission by terrestrial plants. publication-title: Oxidat Commun – volume: 43 start-page: 72 year: 1978 end-page: 73 article-title: Pectin content of lime and lemon peel as extracted by nitric acid. publication-title: J Food Sci – volume: 80 start-page: 286 year: 2010 end-page: 292 article-title: Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. publication-title: Chemosphere – volume: 52 start-page: 634 year: 2008 end-page: 641 article-title: The differences in cell wall composition in leaves an regenerating protoplasts of and . publication-title: Biol Plant – volume: 256 start-page: 7094 year: 1981 end-page: 7096 article-title: Hydrogen peroxide kills by reacting with iron to form hydroxyl radical. publication-title: J Biol Chem – volume: 117 start-page: 33 year: 2003 end-page: 43 article-title: The ability of abaxial and adaxial epidermis of sun and shade leaves to attenuate UV‐A and UV‐B radiation in relation to the UV absorbing capacity of the whole leaf methanolic extracts. publication-title: Physiol Plant – volume: 101 start-page: 521 year: 2008 end-page: 530 article-title: Are pectins involved in cold acclimation and de‐acclimation of winter oil‐seed rape plants? publication-title: Ann Bot – volume: 6 start-page: 1403 year: 2009b end-page: 1420 article-title: Physical injury stimulates aerobic methane emissions from terrestrial plants. publication-title: Biogeosci Discuss – volume: 175 start-page: 1 year: 2007 end-page: 4 article-title: Resolving methane fluxes. publication-title: New Phytol – volume: 42 start-page: 62 year: 2008 end-page: 68 article-title: Aerobic methane emission from plants in the Inner Mongolia Steppe. publication-title: Environ Sci Technol – volume: 58 start-page: 166 year: 2007 end-page: 171 article-title: UV protective coatings: a botanical approach. publication-title: Prog Org Coat – volume: 4 start-page: 681 year: 2008 end-page: 684 article-title: Methane emissions by alpine plant communities in the Qinghai‐Tibet Plateau. publication-title: Biol Lett – volume: 6 start-page: S757 year: 2006 end-page: S761 article-title: Interactive comment on “Methane production from mixed tropical savannah and forest vegetation in Venezuela” by P.J. Crutzen et al. publication-title: Atmos Chem Phys Discuss – volume: 8 start-page: 47 year: 2008 end-page: 60 article-title: The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. publication-title: Mitochondrion – volume: 104 start-page: 881 year: 1994 end-page: 887 article-title: Isolation of an mutant, , that overaccumulates soluble methionine. publication-title: Plant Physiol – volume: 5 start-page: 1551 year: 2008 end-page: 1558 article-title: No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes. publication-title: Biogeosciences – volume: 180 start-page: 124 year: 2008 end-page: 132 article-title: Ultraviolet radiation drives methane emissions from terrestrial plants. publication-title: New Phytol – volume: 182 start-page: 912 year: 2009 end-page: 918 article-title: Nonmicrobial aerobic methane emission from poplar shoot cultures under low‐light conditions. publication-title: New Phytol – volume: 33 start-page: 521 year: 2006 end-page: 530 article-title: A comment on the quantitative significance of aerobic methane release by plants. publication-title: Funct Plant Biol – volume: 6 start-page: 459 year: 2009 end-page: 465 article-title: Methane formation in aerobic environments. publication-title: Environ Chem – start-page: 499 year: 2007 end-page: 587 – volume: 1 start-page: 138 year: 2007 end-page: 145 article-title: How important is aerobic methane release by plants? publication-title: Funct Plant Sci Biotech – volume: 187 start-page: 417 year: 2010 end-page: 425 article-title: Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. publication-title: New Phytol – volume: 58 start-page: 344 year: 2011 end-page: 350 article-title: Methane emission from living wood. publication-title: Russ J Plant Physiol – volume: 87 start-page: 249 year: 1993 end-page: 255 article-title: The effect of exposure to enhanced UV‐B radiation on the penetration of monochromatic and polychromatic uv‐b radiation in leaves of . publication-title: Physiol Plant – volume: 58 start-page: 459 year: 2007 end-page: 481 article-title: Oxidative modifications to cellular components in plants. publication-title: Annu Rev Plant Biol – volume: 137 start-page: 139 year: 2009 end-page: 147 article-title: Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet‐B radiation and water stress. publication-title: Physiol Plant – volume: 38 start-page: 579 year: 1995 end-page: 583 article-title: Pectic polysaccharides of mesophyll cell walls of perennial ryegrass leaves. publication-title: Phytochemistry – volume: 5 start-page: 120 year: 1980 end-page: 121 article-title: The infrastructure of the mitochondrial matrix. publication-title: Trends Biochem Sci – volume: 184 start-page: 1181 year: 1974 end-page: 1183 article-title: Methane formation in living trees: a microbial origin. publication-title: Science – volume: 7 start-page: 14011 year: 2007 end-page: 14039 article-title: Methane emissions from boreal and tropical forest ecosystems derived from in‐situ measurements. publication-title: Atmos Chem Phys Discuss – ident: e_1_2_10_29_1 doi: 10.1038/439148a – ident: e_1_2_10_37_1 doi: 10.1098/rspb.2008.1731 – ident: e_1_2_10_47_1 doi: 10.1038/439128a – ident: e_1_2_10_61_1 doi: 10.1126/science.184.4142.1181 – volume: 256 start-page: 7094 year: 1981 ident: e_1_2_10_43_1 article-title: Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcus iron to form hydroxyl radical. publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)68927-1 – ident: e_1_2_10_11_1 doi: 10.1111/j.1399-3054.1993.tb01727.x – ident: e_1_2_10_34_1 doi: 10.1134/S1021443711020117 – ident: e_1_2_10_19_1 doi: 10.1016/j.abb.2003.12.016 – ident: e_1_2_10_60_1 doi: 10.1007/s10535-008-0124-2 – ident: e_1_2_10_35_1 doi: 10.1146/annurev.arplant.58.032806.103946 – ident: e_1_2_10_28_1 doi: 10.1034/j.1399-3054.2003.1170104.x – ident: e_1_2_10_16_1 doi: 10.1111/j.1469-8137.2007.02114.x – ident: e_1_2_10_3_1 doi: 10.1111/j.1365-2389.2010.01272.x – ident: e_1_2_10_5_1 doi: 10.1111/j.1469-8137.2010.03259.x – ident: e_1_2_10_46_1 doi: 10.1023/A:1004331521059 – ident: e_1_2_10_31_1 doi: 10.1111/j.1469-8137.2008.02571.x – ident: e_1_2_10_12_1 doi: 10.1016/0031-9422(94)00679-N – ident: e_1_2_10_23_1 doi: 10.1111/j.1469-8137.2008.02411.x – ident: e_1_2_10_8_1 doi: 10.1111/j.1469-8137.2009.02797.x – volume: 6 start-page: 3093 year: 2006 ident: e_1_2_10_13_1 article-title: Methane production from mixed tropical savanna and forest vegetation in Venezuela. publication-title: Atmos Chem Phys Discuss – ident: e_1_2_10_39_1 doi: 10.1111/j.1469-8137.2010.03348.x – volume: 30 start-page: 48 year: 2007 ident: e_1_2_10_48_1 article-title: On the mechanism of methane emission by terrestrial plants. publication-title: Oxidat Commun – ident: e_1_2_10_45_1 doi: 10.1111/j.1365-2621.1978.tb09738.x – ident: e_1_2_10_44_1 doi: 10.1029/2009GL041565 – ident: e_1_2_10_40_1 doi: 10.1111/j.1399-3054.2009.01268.x – ident: e_1_2_10_54_1 doi: 10.1016/j.atmosenv.2009.07.046 – start-page: 74 volume-title: Methane and Climate Change. year: 2010 ident: e_1_2_10_30_1 – ident: e_1_2_10_55_1 doi: 10.1021/es071224l – ident: e_1_2_10_58_1 doi: 10.1016/j.atmosenv.2011.06.001 – ident: e_1_2_10_59_1 doi: 10.1111/j.1365-3040.2010.02255.x – ident: e_1_2_10_2_1 doi: 10.1016/j.chemosphere.2010.04.004 – ident: e_1_2_10_4_1 doi: 10.1111/j.1365-2486.2008.01607.x – ident: e_1_2_10_18_1 doi: 10.1016/j.porgcoat.2006.08.023 – ident: e_1_2_10_51_1 doi: 10.1093/aob/mcm329 – ident: e_1_2_10_20_1 doi: 10.1111/j.1365-2435.2011.01838.x – ident: e_1_2_10_38_1 doi: 10.1016/j.tree.2006.05.017 – ident: e_1_2_10_32_1 doi: 10.1111/j.1365-3040.2008.01892.x – ident: e_1_2_10_52_1 doi: 10.1016/0968-0004(80)90051-1 – ident: e_1_2_10_53_1 doi: 10.5194/bg-5-937-2008 – ident: e_1_2_10_33_1 doi: 10.3832/ifor0591-004 – ident: e_1_2_10_9_1 doi: 10.1021/es062404i – ident: e_1_2_10_36_1 doi: 10.1111/j.1399-3054.1988.tb09176.x – ident: e_1_2_10_7_1 doi: 10.1111/j.1438-8677.2009.00202.x – ident: e_1_2_10_6_1 doi: 10.5194/bg-6-1311-2009 – ident: e_1_2_10_25_1 doi: 10.5194/bg-5-1551-2008 – ident: e_1_2_10_41_1 doi: 10.1071/FP10119 – ident: e_1_2_10_42_1 doi: 10.1016/j.mito.2007.10.004 – ident: e_1_2_10_10_1 doi: 10.1098/rsbl.2008.0373 – volume: 1 start-page: 138 year: 2007 ident: e_1_2_10_27_1 article-title: How important is aerobic methane release by plants? publication-title: Funct Plant Sci Biotech – ident: e_1_2_10_26_1 doi: 10.1071/FP06051 – ident: e_1_2_10_57_1 doi: 10.5194/bgd-6-1403-2009 – ident: e_1_2_10_49_1 doi: 10.5194/acpd-7-14011-2007 – ident: e_1_2_10_50_1 doi: 10.5194/acp-9-8365-2009 – ident: e_1_2_10_15_1 doi: 10.1111/j.1469-8137.2007.02103.x – ident: e_1_2_10_17_1 doi: 10.1104/pp.104.3.881 – ident: e_1_2_10_24_1 doi: 10.1071/EN09137 – start-page: 499 volume-title: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. year: 2007 ident: e_1_2_10_14_1 – volume: 6 start-page: S757 year: 2006 ident: e_1_2_10_21_1 article-title: Interactive comment on “Methane production from mixed tropical savannah and forest vegetation in Venezuela” by P.J. Crutzen et al. publication-title: Atmos Chem Phys Discuss – ident: e_1_2_10_22_1 doi: 10.1038/nature04420 – ident: e_1_2_10_56_1 doi: 10.1098/rsbl.2009.0123 |
SSID | ssj0016612 |
Score | 2.3456225 |
SecondaryResourceType | review_article |
Snippet | In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly,... In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH 4 ) generation in terrestrial plants and plant.... In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant.... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 201 |
SubjectTerms | air temperature Biological and medical sciences biosynthesis chemistry Ecosystem Fundamental and applied biological sciences. Psychology gas emissions global budgets global warming mechanical damage methane Methane - biosynthesis methane production Oxidation-Reduction pectins Pectins - chemistry physiology Plant Leaves Plant Leaves - chemistry Plant Leaves - physiology Plant Leaves - radiation effects Plant Physiological Phenomena Plant physiology and development plant tissues Plant Transpiration Plants Plants - chemistry Plants - radiation effects radiation effects reactive oxygen species Reactive Oxygen Species - chemistry Stress, Physiological Temperature ultraviolet radiation Ultraviolet Rays uncertainty |
Title | Terrestrial plant methane production and emission |
URI | https://api.istex.fr/ark:/67375/WNG-X6XKRVN4-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-3054.2011.01551.x https://www.ncbi.nlm.nih.gov/pubmed/22136562 https://www.proquest.com/docview/1272261689 https://www.proquest.com/docview/921425906 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BxYELb2h4VEFC3LKKncSPIyBKxWNVlS7szXJim8NW2VV3Vyr8embibCCoSBXiFkWxo8x8k_kcT74BeOFqJW0VWNYg3chK1zQUcyorg6VNLy1zR_8Of5qKo1n5fl7N-_on-hcm6kMMH9woMrr3NQW4rdfjIMfkmiFey16Jk7L_hPgklW4RPzoZlKQYpqEoHF6wTGPOHBf1XDrRKFNdD3aJ_JVMf0H1k3aNJgyx98Vl5HTMdbtkdXgbFrvHjDUqi8l2U0-aH38oQP4fO9yBWz2nTV9FEN6Fa769BzdeL5F3fr8P7NR3DUAI6enqDD2ZUttq2_p0FeVmERqpbV1Krefo490DmB2-PX1zlPWNGrIGFyQs87UO0vGQN-h5r6n3kRe1L2oEQamcZi73upLOBqVdKbnFNRbzMm-s0MEFVTyEvXbZ-n1IheWhZipwhbyB2aBz5Gsq-MJ7jhiqEpA7p5imVzGnZhpn5rfVDNrDkD0M2cN09jAXCbBh5CoqeVxhzD763dhv-MI1s8-ctnkZydmIIoGXHRiGuez5gorkZGW-Tt-ZuZh_OPkyLY1M4GCElmEALc2VKkQCz3fwMWhn2rBBFyy3a8O4RHbMhNIJpH-5RpNmXqVznOZRhN6vG3AKBMETEB2ArvzY5vj4Ix09_teBT-AmnuaxVu8p7G3Ot_4ZkrdNfdCF5U_tBS9X |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BQku5U3NoxgJuDnyrl-7Bw5AKSlJo6okNLdlbe_20MqJmkSk_DX-Cj-GGdsxGBWpQuqBWw67683sN55vd8ffALzIU5HoyDIvQ7rhhXmWkc8JL7SaLr1k4uf07fD-IO6Owo_jaLwG31ffwlT6EM2BG3lG-b4mB6cD6baXY3T1ELBhLcVJ4b-zrDMse-b8K-7fZq_3dnCxX3K--374ruvVJQa8DKk080wqbZJz62c4ZyOpao-JUxOkOP1Q5JLlvpFRkmsrZB4mXOPugJnEz3QsbW5FgOOuwzUqKE7C_TuHjXYVw4aVVHnAPIlRup1GdOHMW7Fx3eoJMmZa7CVlbOoZLpqtqm1cRIfb7LoMj7u34MfKsFVWzElnMU872bc_NCf_U8vfhs2atrtvKj-7A2umuAvX306QWp_fAzY0ZY0TcmZ3eopgdakyty6MO60UdRH9ri5yl6rr0fnkfRhdyXQfwEYxKcwWuLHmNmXCcoHUiGkrfaSkwprAGI5uEjmQrFCgslqoneqFnKrfNmxof0X2V2R_VdpfLR1gTc9pJVZyiT5bCDSljzGmqNEnTjfZjBR74sCBVyX6mrH02QnlASaROhp8UON43Dv8PAhV4sB2C55NBzp9ECKIHXi-wqtCO9OdFC7BZDFTjCe4AWCxkA64f2kjSRYwkj4O87DC-q8HcErTjLkDcYnYS_9tdXDQp1-P_rXjM7jRHe73VX9v0HsMN7EJr1ITn8DG_GxhniJXnafb5TvBhS9X7Qo_Af3GjsI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB21BSEufEOXj7JIwG2jtXfXax84ACG0pERRaSA3413bHFptoiYRKT-Nv8KfYWY3CQQVqULqgVsOttcZv9l5tmffADy1hcxN5llUIt2IUluW5HMySr2hSy-Vx5a-HX7fE7uD9N0wG27A9-W3MI0-xOrAjTyjfl-Tg4-tX3dyDK4R4jVdKHFS9G_NFwmWXXf6Fbdvkxd7bVzrZ5x33hy-3o0WFQaiEpk0i1yhfG65j0ucslNUtMeJwiUFzj6VVjEbO5Xl1nipbJpzg5sD5vK4NEJ562WC427CpVTEispGtA9W0lUMGzZK5QmLFAbp9SyiM2e-Fho3vRkhYaa1nlPCppngmvmm2MZZbHidXNfRsXMdfizt2iTFHLVm06JVfvtDcvL_NPwNuLYg7eHLxstuwoarbsHlVyMk1qe3gR26usIJuXI4PkaohlSX21QuHDd6uoj90FQ2pNp6dDp5BwYXMt27sFWNKrcNoTDcF0x6LpEYMeNVjIRUepc4x9FJsgDyJQh0uZBpp2ohx_q37RraX5P9Ndlf1_bX8wDYque4kSo5R59txJk2XzCi6MEHTvfYjPR6RBLA8xp8q7HMyRFlAeaZ_tR7q4di2D342Et1HsDOGjpXHejsQcpEBPBkCVeNdqYbKVyC0WyiGc-R_jMhVQDhX9ooEgXMVIzD3Gug_usBnJI0BQ9A1IA999_W_f4-_br_rx0fw5V-u6P393rdB3AVW_AmL_EhbE1PZu4REtVpsVO_EUL4fNGe8BOVpY1x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terrestrial+plant+methane+production+and+emission&rft.jtitle=Physiologia+plantarum&rft.au=Bruhn%2C+Dan&rft.au=M%C3%B8ller%2C+Ian+M.&rft.au=Mikkelsen%2C+Teis+N.&rft.au=Ambus%2C+Per&rft.date=2012-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=144&rft.issue=3&rft.spage=201&rft.epage=209&rft_id=info:doi/10.1111%2Fj.1399-3054.2011.01551.x&rft.externalDBID=10.1111%252Fj.1399-3054.2011.01551.x&rft.externalDocID=PPL1551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |