Cover

Loading…
Abstract In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH4 emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material.
AbstractList In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH4 emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material.
In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH 4 ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH 4 production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH 4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH 4 emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH 4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH 4 precursors in plant material.
In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material.In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material.
In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material.
Author Bruhn, Dan
Mikkelsen, Teis N.
Ambus, Per
Møller, Ian M.
Author_xml – sequence: 1
  fullname: Bruhn, Dan
– sequence: 2
  fullname: Møller, Ian M
– sequence: 3
  fullname: Mikkelsen, Teis N
– sequence: 4
  fullname: Ambus, Per
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25498836$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22136562$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAUhC3Uim4LfwFyQfSS1M-O7fhAJVTRgroqFbTQm-Ukz5Almyx2Vmz_PQ7ZLhIHVF9sy9-MR28OyV7Xd0hIAjSDuE4WGXCtU05FnjEKkFEQArLNEzLbPeyRGaUcUs1BHZDDEBaUgpTAnpIDxoBLIdmMwA16j2HwjW2TVWu7IVni8N12mKx8X6-roem7xHZ1gssmhHh5RvadbQM-3-5H5Pb83c3Z-3T-8eLD2dt5WgmhIcVSO1UzR6uyUKg5gxxlibwUDvKi1lBT1ELV1hW6zhWzOmZDRSsrtatdwY_I68k35vi5jhFNDFBhGzNivw5GR0cmNJWRPP4vCUwxJkEWOqIvtui6XGJtVr5ZWn9vHgYSgVdbwIbKts7brmrCX07kuij4-GcxcZXvQ_DodghQM3ZkFmaswoxVmLEj86cjs4nS03-kVTPYcc6Dt037GIM3k8GvpsX7R39srq_n4ynq00nfhAE3O731P4xUXAnz9erC3Mm7y09frnKjIv9y4p3tjf3m4zxuP0dnTkFLmkvOfwNc2cEs
CODEN PHPLAI
CitedBy_id crossref_primary_10_1016_j_plaphy_2019_04_030
crossref_primary_10_1038_s41467_022_34105_y
crossref_primary_10_5194_bg_13_3163_2016
crossref_primary_10_5194_bg_18_2609_2021
crossref_primary_10_1007_s10534_017_0040_z
crossref_primary_10_1038_srep46185
crossref_primary_10_1111_gcb_13753
crossref_primary_10_1007_s10534_017_9989_x
crossref_primary_10_1007_s11738_017_2420_y
crossref_primary_10_1016_j_agrformet_2016_05_014
crossref_primary_10_1093_bbb_zbac176
crossref_primary_10_1007_s10533_016_0253_1
crossref_primary_10_1029_2021JG006345
crossref_primary_10_1016_j_scitotenv_2023_162331
crossref_primary_10_1007_s11103_018_00817_3
crossref_primary_10_3390_microorganisms9040809
crossref_primary_10_1007_s00299_019_02478_y
crossref_primary_10_3390_microorganisms3020137
crossref_primary_10_3389_fpls_2023_1268085
crossref_primary_10_4161_15592316_2014_970095
crossref_primary_10_1029_2019JG005154
crossref_primary_10_1007_s00484_013_0662_y
crossref_primary_10_1007_s11027_018_9796_x
crossref_primary_10_5194_bg_17_5209_2020
crossref_primary_10_1515_astro_2020_0019
crossref_primary_10_1016_j_scitotenv_2021_151362
crossref_primary_10_1016_j_agrformet_2017_04_013
crossref_primary_10_5194_bg_12_1907_2015
crossref_primary_10_1016_j_earscirev_2013_10_001
crossref_primary_10_1016_j_phytochem_2014_08_016
crossref_primary_10_1007_s00299_014_1723_3
crossref_primary_10_1186_s13021_024_00283_z
crossref_primary_10_1016_j_molstruc_2016_03_093
crossref_primary_10_1016_j_envexpbot_2015_11_013
crossref_primary_10_1016_j_jbiosc_2019_04_009
crossref_primary_10_1111_ppl_12514
crossref_primary_10_1146_annurev_micro_092412_155614
crossref_primary_10_5194_bg_16_4129_2019
crossref_primary_10_1002_jsfa_8681
crossref_primary_10_3390_antiox12071381
crossref_primary_10_1016_j_scitotenv_2016_09_196
crossref_primary_10_1016_j_agrformet_2015_09_003
crossref_primary_10_1111_nph_15582
crossref_primary_10_1016_j_biortech_2023_129759
crossref_primary_10_1016_j_jplph_2018_12_006
crossref_primary_10_1002_lno_12095
crossref_primary_10_1016_j_ecoenv_2017_09_054
crossref_primary_10_1039_c4pp90034k
crossref_primary_10_1007_s10404_016_1824_0
crossref_primary_10_1016_j_atmosenv_2015_05_019
crossref_primary_10_1139_cjb_2021_0002
crossref_primary_10_3161_15052249PJE2015_63_2_006
crossref_primary_10_1038_ncomms2049
crossref_primary_10_1038_ncomms5205
crossref_primary_10_1038_s41598_019_39663_8
crossref_primary_10_3389_fmicb_2023_1106332
crossref_primary_10_3389_frwa_2023_1332968
crossref_primary_10_1016_j_plaphy_2020_10_016
crossref_primary_10_1088_1752_7155_9_1_014001
crossref_primary_10_5194_bg_11_613_2014
crossref_primary_10_1111_nph_15624
crossref_primary_10_1007_s11356_018_2692_9
crossref_primary_10_3390_biom9090420
crossref_primary_10_1007_s40626_020_00170_1
crossref_primary_10_1016_j_ecoleng_2018_02_025
crossref_primary_10_1111_nph_15452
crossref_primary_10_1139_cjb_2018_0126
crossref_primary_10_1111_gcb_12995
crossref_primary_10_1152_ajpcell_00300_2012
crossref_primary_10_1016_j_atmosenv_2012_08_034
crossref_primary_10_1111_nph_18120
crossref_primary_10_1111_pce_12489
crossref_primary_10_1007_s10533_014_9974_1
crossref_primary_10_1111_plb_12137
crossref_primary_10_1039_c7pp90043k
crossref_primary_10_1093_pcp_pcy241
crossref_primary_10_1007_s10021_022_00751_y
crossref_primary_10_1016_j_pss_2013_08_019
crossref_primary_10_1016_j_atmosenv_2014_09_077
crossref_primary_10_1016_j_ecoleng_2015_09_007
crossref_primary_10_1111_ppl_12531
crossref_primary_10_1007_s11103_019_00914_x
Cites_doi 10.1038/439148a
10.1098/rspb.2008.1731
10.1038/439128a
10.1126/science.184.4142.1181
10.1016/S0021-9258(19)68927-1
10.1111/j.1399-3054.1993.tb01727.x
10.1134/S1021443711020117
10.1016/j.abb.2003.12.016
10.1007/s10535-008-0124-2
10.1146/annurev.arplant.58.032806.103946
10.1034/j.1399-3054.2003.1170104.x
10.1111/j.1469-8137.2007.02114.x
10.1111/j.1365-2389.2010.01272.x
10.1111/j.1469-8137.2010.03259.x
10.1023/A:1004331521059
10.1111/j.1469-8137.2008.02571.x
10.1016/0031-9422(94)00679-N
10.1111/j.1469-8137.2008.02411.x
10.1111/j.1469-8137.2009.02797.x
10.1111/j.1469-8137.2010.03348.x
10.1111/j.1365-2621.1978.tb09738.x
10.1029/2009GL041565
10.1111/j.1399-3054.2009.01268.x
10.1016/j.atmosenv.2009.07.046
10.1021/es071224l
10.1016/j.atmosenv.2011.06.001
10.1111/j.1365-3040.2010.02255.x
10.1016/j.chemosphere.2010.04.004
10.1111/j.1365-2486.2008.01607.x
10.1016/j.porgcoat.2006.08.023
10.1093/aob/mcm329
10.1111/j.1365-2435.2011.01838.x
10.1016/j.tree.2006.05.017
10.1111/j.1365-3040.2008.01892.x
10.1016/0968-0004(80)90051-1
10.5194/bg-5-937-2008
10.3832/ifor0591-004
10.1021/es062404i
10.1111/j.1399-3054.1988.tb09176.x
10.1111/j.1438-8677.2009.00202.x
10.5194/bg-6-1311-2009
10.5194/bg-5-1551-2008
10.1071/FP10119
10.1016/j.mito.2007.10.004
10.1098/rsbl.2008.0373
10.1071/FP06051
10.5194/bgd-6-1403-2009
10.5194/acpd-7-14011-2007
10.5194/acp-9-8365-2009
10.1111/j.1469-8137.2007.02103.x
10.1104/pp.104.3.881
10.1071/EN09137
10.1038/nature04420
10.1098/rsbl.2009.0123
ContentType Journal Article
Copyright Copyright © Physiologia Plantarum 2011
2015 INIST-CNRS
Copyright © Physiologia Plantarum 2011.
Copyright_xml – notice: Copyright © Physiologia Plantarum 2011
– notice: 2015 INIST-CNRS
– notice: Copyright © Physiologia Plantarum 2011.
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1111/j.1399-3054.2011.01551.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1399-3054
EndPage 209
ExternalDocumentID 22136562
25498836
10_1111_j_1399_3054_2011_01551_x
PPL1551
ark_67375_WNG_X6XKRVN4_7
US201301960463
Genre article
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c5591-eb9f7d2f0cb87e93214e6be3b5f148d91d0e957daf89d472a9661e70ca69fdf83
IEDL.DBID DR2
ISSN 0031-9317
1399-3054
IngestDate Fri Jul 11 15:56:51 EDT 2025
Fri Jul 11 18:33:56 EDT 2025
Mon Jul 21 06:05:27 EDT 2025
Mon Jul 21 09:10:47 EDT 2025
Tue Jul 01 03:00:39 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Wed Jan 22 17:04:31 EST 2025
Wed Oct 30 09:53:20 EDT 2024
Wed Dec 27 19:18:07 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Terrestrial environment
Methane
Plant production
Terrestrial plant
Plant physiology
Language English
License CC BY 4.0
Copyright © Physiologia Plantarum 2011.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5591-eb9f7d2f0cb87e93214e6be3b5f148d91d0e957daf89d472a9661e70ca69fdf83
Notes http://dx.doi.org/10.1111/j.1399-3054.2011.01551.x
ark:/67375/WNG-X6XKRVN4-7
ArticleID:PPL1551
istex:DFB227A85EF99B4BB4184C92FD8816882486EB52
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 22136562
PQID 1272261689
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_921425906
proquest_miscellaneous_1272261689
pubmed_primary_22136562
pascalfrancis_primary_25498836
crossref_primary_10_1111_j_1399_3054_2011_01551_x
crossref_citationtrail_10_1111_j_1399_3054_2011_01551_x
wiley_primary_10_1111_j_1399_3054_2011_01551_x_PPL1551
istex_primary_ark_67375_WNG_X6XKRVN4_7
fao_agris_US201301960463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2012
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: Denmark
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plant
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Wiśniewska E, Majewska-Sawka A (2008) The differences in cell wall composition in leaves an regenerating protoplasts of Beta vulgaris and Nicotiana tabacum. Biol Plant 52: 634-641
Rice AL, Butenhoff CL, Shearer MJ, Teama D, Rosenstiel TN, Khalil MAK (2010) Emissions of anaerobically produced methane by trees. Geophys Res Lett 37: L03807
Liakoura V, Bornmann JF, Karabourniotis G (2003) The ability of abaxial and adaxial epidermis of sun and shade leaves to attenuate UV-A and UV-B radiation in relation to the UV absorbing capacity of the whole leaf methanolic extracts. Physiol Plant 117: 33-43
Evans JR (2007) Resolving methane fluxes. New Phytol 175: 1-4
Kirschbaum MUF, Niinemets Ü, Bruhn D, Winthers AJ (2007) How important is aerobic methane release by plants? Funct Plant Sci Biotech 1: 138-145
Wang Z-P, Han X-G, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the Inner Mongolia Steppe. Environ Sci Technol 42: 62-68
Parsons AJ, Newton PCD, Clark H, Kelliher FM (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21: 423-424
Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler JP (2009) Methane formation in aerobic environments. Environ Chem 6: 459-465
Srere PA (1980) The infrastructure of the mitochondrial matrix. Trends Biochem Sci 5: 120-121
Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459-481
Vigano I, van Weelden H, Holzinger R, Keepler F, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5: 937-947
Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, phosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32: 1-9
Paul ND (2010) The sunny side of greenhouse gas emissions - quantifying the contribution of aerobic methane production to global methane budgets. New Phytol 187: 263-265
Wang Z-P, Gulledge J, Zheng J-Q, Liu W, Li L-H, Han X-G (2009b) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosci Discuss 6: 1403-1420
Sinha V, Williams V, Crutzen PJ, Lelieveld J (2007) Methane emissions from boreal and tropical forest ecosystems derived from in-situ measurements. Atmos Chem Phys Discuss 7: 14011-14039
Cao G, Xu X, Long R, Wang Q, Wang C, Du Y, Zhao X (2008) Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biol Lett 4: 681-684
Beerling DJ, Gardiner T, Leggett G, McLeod A, Quick WP (2008) Missing methane emission from leaves of terrestrial plants. Glob Change Biol 14: 1821-1826
Crutzen PJ, Sanhueza E, Brenninkmeijer CAM (2006) Methane production from mixed tropical savanna and forest vegetation in Venezuela. Atmos Chem Phys Discuss 6: 3093-3097
Sharpatyi VA (2007) On the mechanism of methane emission by terrestrial plants. Oxidat Commun 30: 48-50
Qaderi MM, Reid DM (2009) Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress. Physiol Plant 137: 139-147
Rouse AH, Crandall PG (1978) Pectin content of lime and lemon peel as extracted by nitric acid. J Food Sci 43: 72-73
Bowling DR, Miller JB, Rhodes ME, Burns SP, Monson RK, Baer D (2009) Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences 6: 1311-1324
Mukhin VA, Voronin PY (2011) Methane emission from living wood. Russ J Plant Physiol 58: 344-350
Ambus P, Skiba U, Drewer J, Jones SK, Carter MS, Albert KR, Sutton MA (2010) Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes. Euro J Soil Sci 61: 785-792
Brüggemann N, Meier R, Steigner D, Zimmer I, Louis S, Schnitzler J-P (2009) Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol 182: 912-918
Wishkerman A, Greiner S, Ghyczy M, Boros M, Rausch T, Lenhart K, Keppler F (2011) Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. Plant Cell Environ 34: 457-464
Qaderi MM, Reid DM (2011) Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. Funct Plant Biol 38: 97-105
Mikkelsen TN, Bruhn D, Ambus P, Larsen KS, Ibrom I, Pilegaard K (2011) Is methane released from the forest canopy? iForest 4: 200-204
Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Funct Plant Biol 33: 521-530
Inaba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Plant Physiol 104: 881-887
McLeod AR, Fry SC, Loake GJ, Messinger DJ, Reay DS, Smith KA, Yun B-W (2008) Ultraviolet radiation drives methane emissions from terrestrial plants. New Phytol 180: 124-132
Wang S, Yang X, Lin X, Hu Y, Luo C, Xu G, Zhang Z, Su A, Chang X, Chao Z, Duan J (2009a) Methane emission by plant communities in an alpine meadow on the Qingha Tibetan Plateau: a new experimental study of alpine meadows and oat pasture. Biol Lett 5: 535-538
Johnson MTJ (2011) Evolutionary ecology of plant defenses against herbivores. Funct Ecol 25: 305-311
Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Srikantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B 276: 1347-1354
Althoff F, Jugold A, Keppler F (2010) Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. Chemosphere 80: 286-292
Kirschbaum MUF, Walcroft A (2008) No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes. Biogeosciences 5: 1551-1558
Vigano I, Röckmann T, Holzinger R, van Dijk A, Keppler F, Greule M, Brand WA, Geilmann H, van Weelden H (2009) The stable isotope signature emitted from plant material under UV irradiation. Atmos Environ 43: 5637-5646
Jacobs JF, Koper GJM, Ursem WNJ (2007) UV protective coatings: a botanical approach. Prog Org Coat 58: 166-171
Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187-191
Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies. New Phytol 178: 808-814
Keppler F (2006) Interactive comment on "Methane production from mixed tropical savannah and forest vegetation in Venezuela" by P.J. Crutzen et al. Atmos Chem Phys Discuss 6: S757-S761
Schiermeier Q (2006) Methane finding baffles scientist. Nature 439: 128
Solecka D, Żebrowski J, Kacperska A (2008) Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann Bot 101: 521-530
Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41: 4032-4037
Bloom AA, Lee-Taylor J, Madronich S, Messinger DJ, Palmer PI, Reay DS, McLeod AR (2010) Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. New Phytol 187: 417-425
Lowe DC (2006) A green source of surprise. Nature 439: 148-149
Repine JE, Fox RB, Berger EM (1981) Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcus iron to form hydroxyl radical. J Biol Chem 256: 7094-7096
Smeets CJPP, Holzinger R, Vigano I, Goldstein AH, Röckmann T (2009) Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos Chem Phys 9: 8365-8375
Wang Z, Keppler F, Greule M, Hamilton JTG (2011) Non-microbial methane emissions from fresh leaves: effects of physical wounding and anoxia. Atmos Environ 45: 4915-4921
Rusch H, Rennenberg H (1998) Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201: 1-7
Zeikus JG, Ward JC (1974) Methane formation in living trees: a microbial origin. Science 184: 1181-1183
Rasmusson AG, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8: 47-60
Chesson A, Gordon AH, Scobbie L (1995) Pectic polysaccharides of mesophyll cell walls of perennial ryegrass leaves. Phytochemistry 38: 579-583
Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstrappen F, Bouwmeester H, Voesenek LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175: 29-35
Cen YP, Bornman JF (1993) The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic uv-b radiation in leaves of Brassica napus. Physiol Plant 87: 249-255
Møller IM, Bérczi A, van der Plas LHW, Lambers H (1988) Measurement of the activity and capacity of the alternative pathway in intact plant tissues: identification of problems and possible solutions. Physiol Plant 72: 642-649
Jacobsen T, Williamson J, Wasilewski A, Felesik J, Vitello LB, Erman JE (2004) Azide binding to yeast cytochrome c peroxidase and horse metmyoglobin: comparative thermodynamic investigation using isothermal titration calorimetry. Archives Biochem Biophysics 422: 125-136
Bruhn D, Mikkelsen TN, Øbro J, Willats WGT, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol 11(suppl 1): 43-48
2003; 117
2009; 43
2009a; 5
1995; 38
2006; 33
2010; 187
2009; 276
2008; 8
2008; 5
1988; 72
2008; 4
2011; 58
2007; 30
2008; 101
2010; 61
1974; 184
2009; 11
1994; 104
2006; 21
2007; 175
2007; 7
2011; 25
2007; 1
1998; 201
2006; 439
2010; 37
2004; 422
2010
2009; 182
1993; 87
2008; 14
2007
2006; 6
2011; 34
2008; 52
2011; 4
2010; 80
2011; 38
2007; 58
2009; 137
2008; 180
2009; 32
1981; 256
2009b; 6
1978; 43
1980; 5
2009; 9
2009; 6
2011; 45
2007; 41
2008; 42
2008; 178
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
McLeod A (e_1_2_10_30_1) 2010
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_25_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
Repine JE (e_1_2_10_43_1) 1981; 256
Keppler F (e_1_2_10_21_1) 2006; 6
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Sharpatyi VA (e_1_2_10_48_1) 2007; 30
e_1_2_10_50_1
e_1_2_10_60_1
Denman KL (e_1_2_10_14_1) 2007
e_1_2_10_28_1
e_1_2_10_49_1
Kirschbaum MUF (e_1_2_10_27_1) 2007; 1
Crutzen PJ (e_1_2_10_13_1) 2006; 6
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – reference: Bloom AA, Lee-Taylor J, Madronich S, Messinger DJ, Palmer PI, Reay DS, McLeod AR (2010) Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage. New Phytol 187: 417-425
– reference: Lowe DC (2006) A green source of surprise. Nature 439: 148-149
– reference: Repine JE, Fox RB, Berger EM (1981) Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcus iron to form hydroxyl radical. J Biol Chem 256: 7094-7096
– reference: Crutzen PJ, Sanhueza E, Brenninkmeijer CAM (2006) Methane production from mixed tropical savanna and forest vegetation in Venezuela. Atmos Chem Phys Discuss 6: 3093-3097
– reference: Solecka D, Żebrowski J, Kacperska A (2008) Are pectins involved in cold acclimation and de-acclimation of winter oil-seed rape plants? Ann Bot 101: 521-530
– reference: Bruhn D, Mikkelsen TN, Øbro J, Willats WGT, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol 11(suppl 1): 43-48
– reference: Brüggemann N, Meier R, Steigner D, Zimmer I, Louis S, Schnitzler J-P (2009) Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol 182: 912-918
– reference: Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ (2006) A comment on the quantitative significance of aerobic methane release by plants. Funct Plant Biol 33: 521-530
– reference: Mukhin VA, Voronin PY (2011) Methane emission from living wood. Russ J Plant Physiol 58: 344-350
– reference: Jacobsen T, Williamson J, Wasilewski A, Felesik J, Vitello LB, Erman JE (2004) Azide binding to yeast cytochrome c peroxidase and horse metmyoglobin: comparative thermodynamic investigation using isothermal titration calorimetry. Archives Biochem Biophysics 422: 125-136
– reference: Srere PA (1980) The infrastructure of the mitochondrial matrix. Trends Biochem Sci 5: 120-121
– reference: Wiśniewska E, Majewska-Sawka A (2008) The differences in cell wall composition in leaves an regenerating protoplasts of Beta vulgaris and Nicotiana tabacum. Biol Plant 52: 634-641
– reference: Vigano I, van Weelden H, Holzinger R, Keepler F, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5: 937-947
– reference: Wang Z-P, Gulledge J, Zheng J-Q, Liu W, Li L-H, Han X-G (2009b) Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosci Discuss 6: 1403-1420
– reference: Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler JP (2009) Methane formation in aerobic environments. Environ Chem 6: 459-465
– reference: Smeets CJPP, Holzinger R, Vigano I, Goldstein AH, Röckmann T (2009) Eddy covariance methane measurements at a Ponderosa pine plantation in California. Atmos Chem Phys 9: 8365-8375
– reference: Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41: 4032-4037
– reference: Cao G, Xu X, Long R, Wang Q, Wang C, Du Y, Zhao X (2008) Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biol Lett 4: 681-684
– reference: Kirschbaum MUF, Niinemets Ü, Bruhn D, Winthers AJ (2007) How important is aerobic methane release by plants? Funct Plant Sci Biotech 1: 138-145
– reference: Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies. New Phytol 178: 808-814
– reference: Sinha V, Williams V, Crutzen PJ, Lelieveld J (2007) Methane emissions from boreal and tropical forest ecosystems derived from in-situ measurements. Atmos Chem Phys Discuss 7: 14011-14039
– reference: Ambus P, Skiba U, Drewer J, Jones SK, Carter MS, Albert KR, Sutton MA (2010) Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes. Euro J Soil Sci 61: 785-792
– reference: Evans JR (2007) Resolving methane fluxes. New Phytol 175: 1-4
– reference: Schiermeier Q (2006) Methane finding baffles scientist. Nature 439: 128
– reference: Wishkerman A, Greiner S, Ghyczy M, Boros M, Rausch T, Lenhart K, Keppler F (2011) Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. Plant Cell Environ 34: 457-464
– reference: Mikkelsen TN, Bruhn D, Ambus P, Larsen KS, Ibrom I, Pilegaard K (2011) Is methane released from the forest canopy? iForest 4: 200-204
– reference: Chesson A, Gordon AH, Scobbie L (1995) Pectic polysaccharides of mesophyll cell walls of perennial ryegrass leaves. Phytochemistry 38: 579-583
– reference: Keppler F (2006) Interactive comment on "Methane production from mixed tropical savannah and forest vegetation in Venezuela" by P.J. Crutzen et al. Atmos Chem Phys Discuss 6: S757-S761
– reference: Parsons AJ, Newton PCD, Clark H, Kelliher FM (2006) Scaling methane emissions from vegetation. Trends Ecol Evol 21: 423-424
– reference: McLeod AR, Fry SC, Loake GJ, Messinger DJ, Reay DS, Smith KA, Yun B-W (2008) Ultraviolet radiation drives methane emissions from terrestrial plants. New Phytol 180: 124-132
– reference: Paul ND (2010) The sunny side of greenhouse gas emissions - quantifying the contribution of aerobic methane production to global methane budgets. New Phytol 187: 263-265
– reference: Wang Z-P, Han X-G, Wang GG, Song Y, Gulledge J (2008) Aerobic methane emission from plants in the Inner Mongolia Steppe. Environ Sci Technol 42: 62-68
– reference: Zeikus JG, Ward JC (1974) Methane formation in living trees: a microbial origin. Science 184: 1181-1183
– reference: Sharpatyi VA (2007) On the mechanism of methane emission by terrestrial plants. Oxidat Commun 30: 48-50
– reference: Qaderi MM, Reid DM (2009) Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress. Physiol Plant 137: 139-147
– reference: Vigano I, Röckmann T, Holzinger R, van Dijk A, Keppler F, Greule M, Brand WA, Geilmann H, van Weelden H (2009) The stable isotope signature emitted from plant material under UV irradiation. Atmos Environ 43: 5637-5646
– reference: Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Srikantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B 276: 1347-1354
– reference: Rasmusson AG, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8: 47-60
– reference: Møller IM, Bérczi A, van der Plas LHW, Lambers H (1988) Measurement of the activity and capacity of the alternative pathway in intact plant tissues: identification of problems and possible solutions. Physiol Plant 72: 642-649
– reference: Rouse AH, Crandall PG (1978) Pectin content of lime and lemon peel as extracted by nitric acid. J Food Sci 43: 72-73
– reference: Wang Z, Keppler F, Greule M, Hamilton JTG (2011) Non-microbial methane emissions from fresh leaves: effects of physical wounding and anoxia. Atmos Environ 45: 4915-4921
– reference: Wang S, Yang X, Lin X, Hu Y, Luo C, Xu G, Zhang Z, Su A, Chang X, Chao Z, Duan J (2009a) Methane emission by plant communities in an alpine meadow on the Qingha Tibetan Plateau: a new experimental study of alpine meadows and oat pasture. Biol Lett 5: 535-538
– reference: Liakoura V, Bornmann JF, Karabourniotis G (2003) The ability of abaxial and adaxial epidermis of sun and shade leaves to attenuate UV-A and UV-B radiation in relation to the UV absorbing capacity of the whole leaf methanolic extracts. Physiol Plant 117: 33-43
– reference: Cen YP, Bornman JF (1993) The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic uv-b radiation in leaves of Brassica napus. Physiol Plant 87: 249-255
– reference: Rusch H, Rennenberg H (1998) Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201: 1-7
– reference: Rice AL, Butenhoff CL, Shearer MJ, Teama D, Rosenstiel TN, Khalil MAK (2010) Emissions of anaerobically produced methane by trees. Geophys Res Lett 37: L03807
– reference: Beerling DJ, Gardiner T, Leggett G, McLeod A, Quick WP (2008) Missing methane emission from leaves of terrestrial plants. Glob Change Biol 14: 1821-1826
– reference: Inaba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Plant Physiol 104: 881-887
– reference: Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, phosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32: 1-9
– reference: Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439: 187-191
– reference: Bowling DR, Miller JB, Rhodes ME, Burns SP, Monson RK, Baer D (2009) Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences 6: 1311-1324
– reference: Althoff F, Jugold A, Keppler F (2010) Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide. Chemosphere 80: 286-292
– reference: Kirschbaum MUF, Walcroft A (2008) No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes. Biogeosciences 5: 1551-1558
– reference: Jacobs JF, Koper GJM, Ursem WNJ (2007) UV protective coatings: a botanical approach. Prog Org Coat 58: 166-171
– reference: Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstrappen F, Bouwmeester H, Voesenek LACJ, van der Werf A (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach. New Phytol 175: 29-35
– reference: Johnson MTJ (2011) Evolutionary ecology of plant defenses against herbivores. Funct Ecol 25: 305-311
– reference: Qaderi MM, Reid DM (2011) Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. Funct Plant Biol 38: 97-105
– reference: Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459-481
– volume: 43
  start-page: 5637
  year: 2009
  end-page: 5646
  article-title: The stable isotope signature emitted from plant material under UV irradiation.
  publication-title: Atmos Environ
– volume: 201
  start-page: 1
  year: 1998
  end-page: 7
  article-title: Black alder ( (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere.
  publication-title: Plant Soil
– start-page: 74
  year: 2010
  end-page: 96
– volume: 14
  start-page: 1821
  year: 2008
  end-page: 1826
  article-title: Missing methane emission from leaves of terrestrial plants.
  publication-title: Glob Change Biol
– volume: 187
  start-page: 263
  year: 2010
  end-page: 265
  article-title: The sunny side of greenhouse gas emissions – quantifying the contribution of aerobic methane production to global methane budgets.
  publication-title: New Phytol
– volume: 422
  start-page: 125
  year: 2004
  end-page: 136
  article-title: Azide binding to yeast cytochrome peroxidase and horse metmyoglobin: comparative thermodynamic investigation using isothermal titration calorimetry.
  publication-title: Archives Biochem Biophysics
– volume: 6
  start-page: 1311
  year: 2009
  end-page: 1324
  article-title: Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance.
  publication-title: Biogeosciences
– volume: 9
  start-page: 8365
  year: 2009
  end-page: 8375
  article-title: Eddy covariance methane measurements at a Ponderosa pine plantation in California.
  publication-title: Atmos Chem Phys
– volume: 45
  start-page: 4915
  year: 2011
  end-page: 4921
  article-title: Non‐microbial methane emissions from fresh leaves: effects of physical wounding and anoxia.
  publication-title: Atmos Environ
– volume: 439
  start-page: 148
  year: 2006
  end-page: 149
  article-title: A green source of surprise.
  publication-title: Nature
– volume: 34
  start-page: 457
  year: 2011
  end-page: 464
  article-title: Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase.
  publication-title: Plant Cell Environ
– volume: 41
  start-page: 4032
  year: 2007
  end-page: 4037
  article-title: Global methane emissions from terrestrial plants.
  publication-title: Environ Sci Technol
– volume: 21
  start-page: 423
  year: 2006
  end-page: 424
  article-title: Scaling methane emissions from vegetation.
  publication-title: Trends Ecol Evol
– volume: 11
  start-page: 43
  issue: suppl 1
  year: 2009
  end-page: 48
  article-title: Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material.
  publication-title: Plant Biol
– volume: 32
  start-page: 1
  year: 2009
  end-page: 9
  article-title: The role of ultraviolet radiation, phosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin.
  publication-title: Plant Cell Environ
– volume: 25
  start-page: 305
  year: 2011
  end-page: 311
  article-title: Evolutionary ecology of plant defenses against herbivores.
  publication-title: Funct Ecol
– volume: 61
  start-page: 785
  year: 2010
  end-page: 792
  article-title: Development of an accumulation‐based system for cost‐effective chamber measurements of inert trace gas fluxes.
  publication-title: Euro J Soil Sci
– volume: 175
  start-page: 29
  year: 2007
  end-page: 35
  article-title: No evidence for substantial aerobic methane emission by terrestrial plants: a C‐labelling approach.
  publication-title: New Phytol
– volume: 37
  start-page: L03807
  year: 2010
  article-title: Emissions of anaerobically produced methane by trees.
  publication-title: Geophys Res Lett
– volume: 439
  start-page: 128
  year: 2006
  article-title: Methane finding baffles scientist.
  publication-title: Nature
– volume: 38
  start-page: 97
  year: 2011
  end-page: 105
  article-title: Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide.
  publication-title: Funct Plant Biol
– volume: 4
  start-page: 200
  year: 2011
  end-page: 204
  article-title: Is methane released from the forest canopy?
  publication-title: iForest
– volume: 276
  start-page: 1347
  year: 2009
  end-page: 1354
  article-title: Emission of methane from plants.
  publication-title: Proc R Soc B
– volume: 6
  start-page: 3093
  year: 2006
  end-page: 3097
  article-title: Methane production from mixed tropical savanna and forest vegetation in Venezuela.
  publication-title: Atmos Chem Phys Discuss
– volume: 72
  start-page: 642
  year: 1988
  end-page: 649
  article-title: Measurement of the activity and capacity of the alternative pathway in intact plant tissues: identification of problems and possible solutions.
  publication-title: Physiol Plant
– volume: 439
  start-page: 187
  year: 2006
  end-page: 191
  article-title: Methane emissions from terrestrial plants under aerobic conditions.
  publication-title: Nature
– volume: 5
  start-page: 535
  year: 2009a
  end-page: 538
  article-title: Methane emission by plant communities in an alpine meadow on the Qingha Tibetan Plateau: a new experimental study of alpine meadows and oat pasture.
  publication-title: Biol Lett
– volume: 5
  start-page: 937
  year: 2008
  end-page: 947
  article-title: Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components.
  publication-title: Biogeosciences
– volume: 178
  start-page: 808
  year: 2008
  end-page: 814
  article-title: Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labeling studies.
  publication-title: New Phytol
– volume: 30
  start-page: 48
  year: 2007
  end-page: 50
  article-title: On the mechanism of methane emission by terrestrial plants.
  publication-title: Oxidat Commun
– volume: 43
  start-page: 72
  year: 1978
  end-page: 73
  article-title: Pectin content of lime and lemon peel as extracted by nitric acid.
  publication-title: J Food Sci
– volume: 80
  start-page: 286
  year: 2010
  end-page: 292
  article-title: Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide.
  publication-title: Chemosphere
– volume: 52
  start-page: 634
  year: 2008
  end-page: 641
  article-title: The differences in cell wall composition in leaves an regenerating protoplasts of and .
  publication-title: Biol Plant
– volume: 256
  start-page: 7094
  year: 1981
  end-page: 7096
  article-title: Hydrogen peroxide kills by reacting with iron to form hydroxyl radical.
  publication-title: J Biol Chem
– volume: 117
  start-page: 33
  year: 2003
  end-page: 43
  article-title: The ability of abaxial and adaxial epidermis of sun and shade leaves to attenuate UV‐A and UV‐B radiation in relation to the UV absorbing capacity of the whole leaf methanolic extracts.
  publication-title: Physiol Plant
– volume: 101
  start-page: 521
  year: 2008
  end-page: 530
  article-title: Are pectins involved in cold acclimation and de‐acclimation of winter oil‐seed rape plants?
  publication-title: Ann Bot
– volume: 6
  start-page: 1403
  year: 2009b
  end-page: 1420
  article-title: Physical injury stimulates aerobic methane emissions from terrestrial plants.
  publication-title: Biogeosci Discuss
– volume: 175
  start-page: 1
  year: 2007
  end-page: 4
  article-title: Resolving methane fluxes.
  publication-title: New Phytol
– volume: 42
  start-page: 62
  year: 2008
  end-page: 68
  article-title: Aerobic methane emission from plants in the Inner Mongolia Steppe.
  publication-title: Environ Sci Technol
– volume: 58
  start-page: 166
  year: 2007
  end-page: 171
  article-title: UV protective coatings: a botanical approach.
  publication-title: Prog Org Coat
– volume: 4
  start-page: 681
  year: 2008
  end-page: 684
  article-title: Methane emissions by alpine plant communities in the Qinghai‐Tibet Plateau.
  publication-title: Biol Lett
– volume: 6
  start-page: S757
  year: 2006
  end-page: S761
  article-title: Interactive comment on “Methane production from mixed tropical savannah and forest vegetation in Venezuela” by P.J. Crutzen et al.
  publication-title: Atmos Chem Phys Discuss
– volume: 8
  start-page: 47
  year: 2008
  end-page: 60
  article-title: The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria.
  publication-title: Mitochondrion
– volume: 104
  start-page: 881
  year: 1994
  end-page: 887
  article-title: Isolation of an mutant, , that overaccumulates soluble methionine.
  publication-title: Plant Physiol
– volume: 5
  start-page: 1551
  year: 2008
  end-page: 1558
  article-title: No detectable aerobic methane efflux from plant material, nor from adsorption/desorption processes.
  publication-title: Biogeosciences
– volume: 180
  start-page: 124
  year: 2008
  end-page: 132
  article-title: Ultraviolet radiation drives methane emissions from terrestrial plants.
  publication-title: New Phytol
– volume: 182
  start-page: 912
  year: 2009
  end-page: 918
  article-title: Nonmicrobial aerobic methane emission from poplar shoot cultures under low‐light conditions.
  publication-title: New Phytol
– volume: 33
  start-page: 521
  year: 2006
  end-page: 530
  article-title: A comment on the quantitative significance of aerobic methane release by plants.
  publication-title: Funct Plant Biol
– volume: 6
  start-page: 459
  year: 2009
  end-page: 465
  article-title: Methane formation in aerobic environments.
  publication-title: Environ Chem
– start-page: 499
  year: 2007
  end-page: 587
– volume: 1
  start-page: 138
  year: 2007
  end-page: 145
  article-title: How important is aerobic methane release by plants?
  publication-title: Funct Plant Sci Biotech
– volume: 187
  start-page: 417
  year: 2010
  end-page: 425
  article-title: Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage.
  publication-title: New Phytol
– volume: 58
  start-page: 344
  year: 2011
  end-page: 350
  article-title: Methane emission from living wood.
  publication-title: Russ J Plant Physiol
– volume: 87
  start-page: 249
  year: 1993
  end-page: 255
  article-title: The effect of exposure to enhanced UV‐B radiation on the penetration of monochromatic and polychromatic uv‐b radiation in leaves of .
  publication-title: Physiol Plant
– volume: 58
  start-page: 459
  year: 2007
  end-page: 481
  article-title: Oxidative modifications to cellular components in plants.
  publication-title: Annu Rev Plant Biol
– volume: 137
  start-page: 139
  year: 2009
  end-page: 147
  article-title: Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet‐B radiation and water stress.
  publication-title: Physiol Plant
– volume: 38
  start-page: 579
  year: 1995
  end-page: 583
  article-title: Pectic polysaccharides of mesophyll cell walls of perennial ryegrass leaves.
  publication-title: Phytochemistry
– volume: 5
  start-page: 120
  year: 1980
  end-page: 121
  article-title: The infrastructure of the mitochondrial matrix.
  publication-title: Trends Biochem Sci
– volume: 184
  start-page: 1181
  year: 1974
  end-page: 1183
  article-title: Methane formation in living trees: a microbial origin.
  publication-title: Science
– volume: 7
  start-page: 14011
  year: 2007
  end-page: 14039
  article-title: Methane emissions from boreal and tropical forest ecosystems derived from in‐situ measurements.
  publication-title: Atmos Chem Phys Discuss
– ident: e_1_2_10_29_1
  doi: 10.1038/439148a
– ident: e_1_2_10_37_1
  doi: 10.1098/rspb.2008.1731
– ident: e_1_2_10_47_1
  doi: 10.1038/439128a
– ident: e_1_2_10_61_1
  doi: 10.1126/science.184.4142.1181
– volume: 256
  start-page: 7094
  year: 1981
  ident: e_1_2_10_43_1
  article-title: Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcus iron to form hydroxyl radical.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)68927-1
– ident: e_1_2_10_11_1
  doi: 10.1111/j.1399-3054.1993.tb01727.x
– ident: e_1_2_10_34_1
  doi: 10.1134/S1021443711020117
– ident: e_1_2_10_19_1
  doi: 10.1016/j.abb.2003.12.016
– ident: e_1_2_10_60_1
  doi: 10.1007/s10535-008-0124-2
– ident: e_1_2_10_35_1
  doi: 10.1146/annurev.arplant.58.032806.103946
– ident: e_1_2_10_28_1
  doi: 10.1034/j.1399-3054.2003.1170104.x
– ident: e_1_2_10_16_1
  doi: 10.1111/j.1469-8137.2007.02114.x
– ident: e_1_2_10_3_1
  doi: 10.1111/j.1365-2389.2010.01272.x
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1469-8137.2010.03259.x
– ident: e_1_2_10_46_1
  doi: 10.1023/A:1004331521059
– ident: e_1_2_10_31_1
  doi: 10.1111/j.1469-8137.2008.02571.x
– ident: e_1_2_10_12_1
  doi: 10.1016/0031-9422(94)00679-N
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1469-8137.2008.02411.x
– ident: e_1_2_10_8_1
  doi: 10.1111/j.1469-8137.2009.02797.x
– volume: 6
  start-page: 3093
  year: 2006
  ident: e_1_2_10_13_1
  article-title: Methane production from mixed tropical savanna and forest vegetation in Venezuela.
  publication-title: Atmos Chem Phys Discuss
– ident: e_1_2_10_39_1
  doi: 10.1111/j.1469-8137.2010.03348.x
– volume: 30
  start-page: 48
  year: 2007
  ident: e_1_2_10_48_1
  article-title: On the mechanism of methane emission by terrestrial plants.
  publication-title: Oxidat Commun
– ident: e_1_2_10_45_1
  doi: 10.1111/j.1365-2621.1978.tb09738.x
– ident: e_1_2_10_44_1
  doi: 10.1029/2009GL041565
– ident: e_1_2_10_40_1
  doi: 10.1111/j.1399-3054.2009.01268.x
– ident: e_1_2_10_54_1
  doi: 10.1016/j.atmosenv.2009.07.046
– start-page: 74
  volume-title: Methane and Climate Change.
  year: 2010
  ident: e_1_2_10_30_1
– ident: e_1_2_10_55_1
  doi: 10.1021/es071224l
– ident: e_1_2_10_58_1
  doi: 10.1016/j.atmosenv.2011.06.001
– ident: e_1_2_10_59_1
  doi: 10.1111/j.1365-3040.2010.02255.x
– ident: e_1_2_10_2_1
  doi: 10.1016/j.chemosphere.2010.04.004
– ident: e_1_2_10_4_1
  doi: 10.1111/j.1365-2486.2008.01607.x
– ident: e_1_2_10_18_1
  doi: 10.1016/j.porgcoat.2006.08.023
– ident: e_1_2_10_51_1
  doi: 10.1093/aob/mcm329
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1365-2435.2011.01838.x
– ident: e_1_2_10_38_1
  doi: 10.1016/j.tree.2006.05.017
– ident: e_1_2_10_32_1
  doi: 10.1111/j.1365-3040.2008.01892.x
– ident: e_1_2_10_52_1
  doi: 10.1016/0968-0004(80)90051-1
– ident: e_1_2_10_53_1
  doi: 10.5194/bg-5-937-2008
– ident: e_1_2_10_33_1
  doi: 10.3832/ifor0591-004
– ident: e_1_2_10_9_1
  doi: 10.1021/es062404i
– ident: e_1_2_10_36_1
  doi: 10.1111/j.1399-3054.1988.tb09176.x
– ident: e_1_2_10_7_1
  doi: 10.1111/j.1438-8677.2009.00202.x
– ident: e_1_2_10_6_1
  doi: 10.5194/bg-6-1311-2009
– ident: e_1_2_10_25_1
  doi: 10.5194/bg-5-1551-2008
– ident: e_1_2_10_41_1
  doi: 10.1071/FP10119
– ident: e_1_2_10_42_1
  doi: 10.1016/j.mito.2007.10.004
– ident: e_1_2_10_10_1
  doi: 10.1098/rsbl.2008.0373
– volume: 1
  start-page: 138
  year: 2007
  ident: e_1_2_10_27_1
  article-title: How important is aerobic methane release by plants?
  publication-title: Funct Plant Sci Biotech
– ident: e_1_2_10_26_1
  doi: 10.1071/FP06051
– ident: e_1_2_10_57_1
  doi: 10.5194/bgd-6-1403-2009
– ident: e_1_2_10_49_1
  doi: 10.5194/acpd-7-14011-2007
– ident: e_1_2_10_50_1
  doi: 10.5194/acp-9-8365-2009
– ident: e_1_2_10_15_1
  doi: 10.1111/j.1469-8137.2007.02103.x
– ident: e_1_2_10_17_1
  doi: 10.1104/pp.104.3.881
– ident: e_1_2_10_24_1
  doi: 10.1071/EN09137
– start-page: 499
  volume-title: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
  year: 2007
  ident: e_1_2_10_14_1
– volume: 6
  start-page: S757
  year: 2006
  ident: e_1_2_10_21_1
  article-title: Interactive comment on “Methane production from mixed tropical savannah and forest vegetation in Venezuela” by P.J. Crutzen et al.
  publication-title: Atmos Chem Phys Discuss
– ident: e_1_2_10_22_1
  doi: 10.1038/nature04420
– ident: e_1_2_10_56_1
  doi: 10.1098/rsbl.2009.0123
SSID ssj0016612
Score 2.3456225
SecondaryResourceType review_article
Snippet In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly,...
In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH 4 ) generation in terrestrial plants and plant....
In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant....
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms air temperature
Biological and medical sciences
biosynthesis
chemistry
Ecosystem
Fundamental and applied biological sciences. Psychology
gas emissions
global budgets
global warming
mechanical damage
methane
Methane - biosynthesis
methane production
Oxidation-Reduction
pectins
Pectins - chemistry
physiology
Plant Leaves
Plant Leaves - chemistry
Plant Leaves - physiology
Plant Leaves - radiation effects
Plant Physiological Phenomena
Plant physiology and development
plant tissues
Plant Transpiration
Plants
Plants - chemistry
Plants - radiation effects
radiation effects
reactive oxygen species
Reactive Oxygen Species - chemistry
Stress, Physiological
Temperature
ultraviolet radiation
Ultraviolet Rays
uncertainty
Title Terrestrial plant methane production and emission
URI https://api.istex.fr/ark:/67375/WNG-X6XKRVN4-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-3054.2011.01551.x
https://www.ncbi.nlm.nih.gov/pubmed/22136562
https://www.proquest.com/docview/1272261689
https://www.proquest.com/docview/921425906
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BxYELb2h4VEFC3LKKncSPIyBKxWNVlS7szXJim8NW2VV3Vyr8embibCCoSBXiFkWxo8x8k_kcT74BeOFqJW0VWNYg3chK1zQUcyorg6VNLy1zR_8Of5qKo1n5fl7N-_on-hcm6kMMH9woMrr3NQW4rdfjIMfkmiFey16Jk7L_hPgklW4RPzoZlKQYpqEoHF6wTGPOHBf1XDrRKFNdD3aJ_JVMf0H1k3aNJgyx98Vl5HTMdbtkdXgbFrvHjDUqi8l2U0-aH38oQP4fO9yBWz2nTV9FEN6Fa769BzdeL5F3fr8P7NR3DUAI6enqDD2ZUttq2_p0FeVmERqpbV1Krefo490DmB2-PX1zlPWNGrIGFyQs87UO0vGQN-h5r6n3kRe1L2oEQamcZi73upLOBqVdKbnFNRbzMm-s0MEFVTyEvXbZ-n1IheWhZipwhbyB2aBz5Gsq-MJ7jhiqEpA7p5imVzGnZhpn5rfVDNrDkD0M2cN09jAXCbBh5CoqeVxhzD763dhv-MI1s8-ctnkZydmIIoGXHRiGuez5gorkZGW-Tt-ZuZh_OPkyLY1M4GCElmEALc2VKkQCz3fwMWhn2rBBFyy3a8O4RHbMhNIJpH-5RpNmXqVznOZRhN6vG3AKBMETEB2ArvzY5vj4Ix09_teBT-AmnuaxVu8p7G3Ot_4ZkrdNfdCF5U_tBS9X
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BQku5U3NoxgJuDnyrl-7Bw5AKSlJo6okNLdlbe_20MqJmkSk_DX-Cj-GGdsxGBWpQuqBWw67683sN55vd8ffALzIU5HoyDIvQ7rhhXmWkc8JL7SaLr1k4uf07fD-IO6Owo_jaLwG31ffwlT6EM2BG3lG-b4mB6cD6baXY3T1ELBhLcVJ4b-zrDMse-b8K-7fZq_3dnCxX3K--374ruvVJQa8DKk080wqbZJz62c4ZyOpao-JUxOkOP1Q5JLlvpFRkmsrZB4mXOPugJnEz3QsbW5FgOOuwzUqKE7C_TuHjXYVw4aVVHnAPIlRup1GdOHMW7Fx3eoJMmZa7CVlbOoZLpqtqm1cRIfb7LoMj7u34MfKsFVWzElnMU872bc_NCf_U8vfhs2atrtvKj-7A2umuAvX306QWp_fAzY0ZY0TcmZ3eopgdakyty6MO60UdRH9ri5yl6rr0fnkfRhdyXQfwEYxKcwWuLHmNmXCcoHUiGkrfaSkwprAGI5uEjmQrFCgslqoneqFnKrfNmxof0X2V2R_VdpfLR1gTc9pJVZyiT5bCDSljzGmqNEnTjfZjBR74sCBVyX6mrH02QnlASaROhp8UON43Dv8PAhV4sB2C55NBzp9ECKIHXi-wqtCO9OdFC7BZDFTjCe4AWCxkA64f2kjSRYwkj4O87DC-q8HcErTjLkDcYnYS_9tdXDQp1-P_rXjM7jRHe73VX9v0HsMN7EJr1ITn8DG_GxhniJXnafb5TvBhS9X7Qo_Af3GjsI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB21BSEufEOXj7JIwG2jtXfXax84ACG0pERRaSA3413bHFptoiYRKT-Nv8KfYWY3CQQVqULqgVsOttcZv9l5tmffADy1hcxN5llUIt2IUluW5HMySr2hSy-Vx5a-HX7fE7uD9N0wG27A9-W3MI0-xOrAjTyjfl-Tg4-tX3dyDK4R4jVdKHFS9G_NFwmWXXf6Fbdvkxd7bVzrZ5x33hy-3o0WFQaiEpk0i1yhfG65j0ucslNUtMeJwiUFzj6VVjEbO5Xl1nipbJpzg5sD5vK4NEJ562WC427CpVTEispGtA9W0lUMGzZK5QmLFAbp9SyiM2e-Fho3vRkhYaa1nlPCppngmvmm2MZZbHidXNfRsXMdfizt2iTFHLVm06JVfvtDcvL_NPwNuLYg7eHLxstuwoarbsHlVyMk1qe3gR26usIJuXI4PkaohlSX21QuHDd6uoj90FQ2pNp6dDp5BwYXMt27sFWNKrcNoTDcF0x6LpEYMeNVjIRUepc4x9FJsgDyJQh0uZBpp2ohx_q37RraX5P9Ndlf1_bX8wDYque4kSo5R59txJk2XzCi6MEHTvfYjPR6RBLA8xp8q7HMyRFlAeaZ_tR7q4di2D342Et1HsDOGjpXHejsQcpEBPBkCVeNdqYbKVyC0WyiGc-R_jMhVQDhX9ooEgXMVIzD3Gug_usBnJI0BQ9A1IA999_W_f4-_br_rx0fw5V-u6P393rdB3AVW_AmL_EhbE1PZu4REtVpsVO_EUL4fNGe8BOVpY1x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Terrestrial+plant+methane+production+and+emission&rft.jtitle=Physiologia+plantarum&rft.au=Bruhn%2C+Dan&rft.au=M%C3%B8ller%2C+Ian+M.&rft.au=Mikkelsen%2C+Teis+N.&rft.au=Ambus%2C+Per&rft.date=2012-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=144&rft.issue=3&rft.spage=201&rft.epage=209&rft_id=info:doi/10.1111%2Fj.1399-3054.2011.01551.x&rft.externalDBID=10.1111%252Fj.1399-3054.2011.01551.x&rft.externalDocID=PPL1551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon