In silico selection of therapeutic antibodies for development: Viscosity, clearance, and chemical stability
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlat...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 52; pp. 18601 - 18606 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
30.12.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery.
Significance mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and at-home use. To deliver high doses (several hundred milligrams) through a small volume (∼1 mL) into the subcutaneous space, mAb solutions need to have low viscosity. Concomitantly, acceptable chemical stability is required for adequate shelf life, and normal in vivo clearance is needed for less frequent dosing. We propose in silico tools that provide rapid assessment of atypical behavior of mAbs (high viscosity, chemical degradation, and fast plasma clearance), which are simply predicted from sequence and/or structure-derived parameters. Such analysis will greatly improve the probability of success to move mAb-based therapeutics efficiently into clinical development and ultimately benefit patients. |
---|---|
AbstractList | Significance
mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and at-home use. To deliver high doses (several hundred milligrams) through a small volume (∼1 mL) into the subcutaneous space, mAb solutions need to have low viscosity. Concomitantly, acceptable chemical stability is required for adequate shelf life, and normal in vivo clearance is needed for less frequent dosing. We propose in silico tools that provide rapid assessment of atypical behavior of mAbs (high viscosity, chemical degradation, and fast plasma clearance), which are simply predicted from sequence and/or structure-derived parameters. Such analysis will greatly improve the probability of success to move mAb-based therapeutics efficiently into clinical development and ultimately benefit patients.
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. Significance mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and at-home use. To deliver high doses (several hundred milligrams) through a small volume (∼1 mL) into the subcutaneous space, mAb solutions need to have low viscosity. Concomitantly, acceptable chemical stability is required for adequate shelf life, and normal in vivo clearance is needed for less frequent dosing. We propose in silico tools that provide rapid assessment of atypical behavior of mAbs (high viscosity, chemical degradation, and fast plasma clearance), which are simply predicted from sequence and/or structure-derived parameters. Such analysis will greatly improve the probability of success to move mAb-based therapeutics efficiently into clinical development and ultimately benefit patients. mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and at-home use. To deliver high doses (several hundred milligrams) through a small volume (∼1 mL) into the subcutaneous space, mAb solutions need to have low viscosity. Concomitantly, acceptable chemical stability is required for adequate shelf life, and normal in vivo clearance is needed for less frequent dosing. We propose in silico tools that provide rapid assessment of atypical behavior of mAbs (high viscosity, chemical degradation, and fast plasma clearance), which are simply predicted from sequence and/or structure-derived parameters. Such analysis will greatly improve the probability of success to move mAb-based therapeutics efficiently into clinical development and ultimately benefit patients. For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the lgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. |
Author | Swartz, Trevor E. Dill, Ken A. Kabakoff, Bruce Pai, Satyan Borisov, Oleg Zhang, Boyan Patapoff, Thomas W. Chorny, Ilya Sharma, Vikas K. Kelley, Robert F. Hilario, Eric Li, Charlene Zhou, Joe Z. |
Author_xml | – sequence: 1 givenname: Vikas K. surname: Sharma fullname: Sharma, Vikas K. – sequence: 2 givenname: Thomas W. surname: Patapoff fullname: Patapoff, Thomas W. – sequence: 3 givenname: Bruce surname: Kabakoff fullname: Kabakoff, Bruce – sequence: 4 givenname: Satyan surname: Pai fullname: Pai, Satyan – sequence: 5 givenname: Eric surname: Hilario fullname: Hilario, Eric – sequence: 6 givenname: Boyan surname: Zhang fullname: Zhang, Boyan – sequence: 7 givenname: Charlene surname: Li fullname: Li, Charlene – sequence: 8 givenname: Oleg surname: Borisov fullname: Borisov, Oleg – sequence: 9 givenname: Robert F. surname: Kelley fullname: Kelley, Robert F. – sequence: 10 givenname: Ilya surname: Chorny fullname: Chorny, Ilya – sequence: 11 givenname: Joe Z. surname: Zhou fullname: Zhou, Joe Z. – sequence: 12 givenname: Ken A. surname: Dill fullname: Dill, Ken A. – sequence: 13 givenname: Trevor E. surname: Swartz fullname: Swartz, Trevor E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25512516$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtvEzEUhS1URNPCmhVgiQ2LprU9frJAQhWPSpVYQNlajn2ncZiMg-2plH-Po4TwWHlxv3N8zz1n6GRMIyD0nJJLSlR3tRlduaScUaUMpewRmlFi6FxyQ07QjBCm5pozforOSlkRQozQ5Ak6ZUJQJqicoR83Iy5xiD7hAgP4GtOIU4_rErLbwFSjx26scZFChIL7lHGABxjSZg1jfYu_x-JTiXV7gf0ALrvRw0VTBOyXsI7eDbhUt2g_1O1T9Lh3Q4Fnh_cc3X388O368_z2y6eb6_e3cy-ErnPo-37Raw6aB801dzRITUMvmRKqM4J5J1yngRsqg6dSBeaDFhKC4mB62Z2jd3vfzbRYQ_Bt0ewGu8lx7fLWJhftv5MxLu19erCcaS6kagZvDgY5_ZygVLtuMWEY3AhpKpZK3m4uDDMNff0fukpTHlu8HSWU6rThjbraUz6nUjL0x2Uosbsi7a5I-6fIpnj5d4Yj_7u5BuADsFMe7Si1glmqJaENebFHVqWmfGR4x5TWZjd_tZ_3Lll3n2Oxd18ZoZI0sekI634BM_K6nQ |
CitedBy_id | crossref_primary_10_1007_s10928_020_09691_3 crossref_primary_10_1080_07388551_2017_1421899 crossref_primary_10_1021_acs_langmuir_1c02617 crossref_primary_10_1073_pnas_2020577118 crossref_primary_10_1073_pnas_1616408114 crossref_primary_10_1208_s12248_022_00772_4 crossref_primary_10_1080_19420862_2024_2333436 crossref_primary_10_1371_journal_pone_0181347 crossref_primary_10_1002_pro_4812 crossref_primary_10_1007_s12539_024_00613_2 crossref_primary_10_1208_s12248_023_00812_7 crossref_primary_10_1016_j_copbio_2019_01_008 crossref_primary_10_1080_19420862_2020_1743053 crossref_primary_10_1111_cts_12597 crossref_primary_10_1016_j_xphs_2021_06_030 crossref_primary_10_1080_19420862_2021_1932230 crossref_primary_10_1080_19420862_2023_2211185 crossref_primary_10_7717_peerj_8199 crossref_primary_10_1080_19420862_2021_1981805 crossref_primary_10_1016_j_xphs_2023_07_005 crossref_primary_10_1021_acs_analchem_8b03452 crossref_primary_10_1002_prp2_573 crossref_primary_10_1093_bioinformatics_btx519 crossref_primary_10_1073_pnas_2210332120 crossref_primary_10_1016_j_isci_2022_105173 crossref_primary_10_1080_19420862_2016_1215786 crossref_primary_10_1124_dmd_119_086488 crossref_primary_10_1002_pmic_201500412 crossref_primary_10_1021_acs_molpharmaceut_7b00322 crossref_primary_10_3390_healthcare11142075 crossref_primary_10_1021_acs_molpharmaceut_2c00838 crossref_primary_10_1016_j_antiviral_2021_105105 crossref_primary_10_1080_19420862_2018_1556082 crossref_primary_10_1080_19420862_2023_2169440 crossref_primary_10_1002_minf_202100240 crossref_primary_10_1109_TBME_2020_3013519 crossref_primary_10_2174_0929866526666181128141953 crossref_primary_10_1002_bit_27349 crossref_primary_10_1038_srep38644 crossref_primary_10_1093_protein_gzy020 crossref_primary_10_1016_j_cels_2023_04_009 crossref_primary_10_1038_s41551_021_00699_9 crossref_primary_10_1093_abt_tbae012 crossref_primary_10_1002_adhm_202001022 crossref_primary_10_1080_19420862_2018_1518887 crossref_primary_10_3390_ijms21207496 crossref_primary_10_1007_s11095_022_03204_2 crossref_primary_10_1021_acs_molpharmaceut_0c00257 crossref_primary_10_1002_prot_26230 crossref_primary_10_3390_biologics3020005 crossref_primary_10_1080_19420862_2021_1993769 crossref_primary_10_1080_19420862_2021_1993768 crossref_primary_10_1080_19420862_2023_2191301 crossref_primary_10_1093_pnasnexus_pgac172 crossref_primary_10_1021_acs_molpharmaceut_8b00867 crossref_primary_10_1016_j_ijbiomac_2024_129616 crossref_primary_10_1038_s41551_023_01074_6 crossref_primary_10_1016_j_xphs_2020_10_039 crossref_primary_10_1016_j_jpba_2015_02_032 crossref_primary_10_1371_journal_pone_0232713 crossref_primary_10_1080_19420862_2021_1883239 crossref_primary_10_1073_pnas_1810576116 crossref_primary_10_1051_medsci_2019231 crossref_primary_10_1021_acs_jpcb_7b09126 crossref_primary_10_1080_07391102_2022_2095305 crossref_primary_10_1080_19420862_2021_1895540 crossref_primary_10_1093_protein_gzz002 crossref_primary_10_1074_jbc_M115_692434 crossref_primary_10_1080_19420862_2019_1632114 crossref_primary_10_1080_19420862_2017_1290753 crossref_primary_10_1016_j_xphs_2022_09_032 crossref_primary_10_1080_19420862_2015_1043503 crossref_primary_10_3390_antib12040078 crossref_primary_10_1002_bit_27802 crossref_primary_10_1080_19420862_2023_2263926 crossref_primary_10_1021_acs_molpharmaceut_3c00440 crossref_primary_10_1016_j_xphs_2017_10_036 crossref_primary_10_1074_jbc_REV120_010181 crossref_primary_10_1007_s11095_018_2466_6 crossref_primary_10_1080_10837450_2020_1829641 crossref_primary_10_1111_cts_12567 crossref_primary_10_1016_j_bej_2018_06_003 crossref_primary_10_1016_j_tips_2020_12_004 crossref_primary_10_1021_acs_jpcb_7b02183 crossref_primary_10_1080_19420862_2019_1605270 crossref_primary_10_3390_ijms21218037 crossref_primary_10_1080_19420862_2022_2044744 crossref_primary_10_1002_prot_25685 crossref_primary_10_1080_19420862_2017_1323160 crossref_primary_10_1186_s13395_017_0126_x crossref_primary_10_1007_s11095_018_2545_8 crossref_primary_10_1080_19420862_2018_1553476 crossref_primary_10_1016_j_xphs_2023_03_026 crossref_primary_10_1080_07388551_2017_1357002 crossref_primary_10_1080_19420862_2016_1256723 crossref_primary_10_1016_j_xphs_2022_11_020 crossref_primary_10_1021_acs_molpharmaceut_1c00373 crossref_primary_10_1080_19420862_2021_2008790 crossref_primary_10_1080_19420862_2024_2303781 crossref_primary_10_1016_j_bpj_2020_04_022 crossref_primary_10_1016_j_csbj_2022_04_035 crossref_primary_10_1016_j_xphs_2020_01_011 crossref_primary_10_1038_s41598_023_28841_4 crossref_primary_10_1093_bib_bbac267 crossref_primary_10_1016_j_xphs_2019_03_008 crossref_primary_10_1016_j_molimm_2021_10_019 crossref_primary_10_3390_antib10010008 crossref_primary_10_1080_19420862_2022_2026208 crossref_primary_10_7554_eLife_61393 crossref_primary_10_1021_acs_jpca_6b02429 crossref_primary_10_1186_s12951_022_01259_2 crossref_primary_10_1186_s41120_022_00057_2 crossref_primary_10_1016_j_molimm_2019_06_012 crossref_primary_10_1080_19420862_2022_2062807 crossref_primary_10_1080_19420862_2023_2232087 crossref_primary_10_1007_s11095_024_03726_x crossref_primary_10_1080_19420862_2020_1816312 crossref_primary_10_1093_abt_tbac029 crossref_primary_10_1021_acs_jpcb_9b03779 crossref_primary_10_1080_19420862_2016_1171444 crossref_primary_10_1080_19420862_2021_2023938 crossref_primary_10_1126_sciadv_abb0372 crossref_primary_10_1021_acs_molpharmaceut_3c00023 crossref_primary_10_1021_acs_jpcb_6b04907 crossref_primary_10_1080_19420862_2020_1787121 crossref_primary_10_1080_19420862_2017_1285479 crossref_primary_10_1021_acs_jpcb_9b04478 crossref_primary_10_1080_19420862_2015_1099773 crossref_primary_10_1080_19420862_2024_2339582 crossref_primary_10_1016_j_xphs_2024_06_013 crossref_primary_10_1080_19420862_2019_1683432 crossref_primary_10_1080_19420862_2024_2318817 crossref_primary_10_1080_19420862_2020_1815995 crossref_primary_10_1080_19420862_2023_2256745 crossref_primary_10_1002_biot_201800696 crossref_primary_10_1080_19420862_2018_1551676 crossref_primary_10_1111_imr_13064 crossref_primary_10_1021_acs_molpharmaceut_0c01073 crossref_primary_10_1080_19420862_2015_1128606 crossref_primary_10_1080_19420862_2023_2200540 crossref_primary_10_1080_19420862_2022_2138092 crossref_primary_10_1002_btpr_3466 crossref_primary_10_1016_j_xphs_2021_10_039 crossref_primary_10_1080_19420862_2015_1075109 crossref_primary_10_3390_antib8010018 crossref_primary_10_1002_cpdd_1349 crossref_primary_10_1016_j_xphs_2018_12_027 crossref_primary_10_1248_bpb_b22_00263 crossref_primary_10_1007_s10928_015_9444_y crossref_primary_10_1038_s41570_022_00438_x crossref_primary_10_1080_19420862_2024_2362788 crossref_primary_10_1016_j_ddtec_2016_09_004 crossref_primary_10_1016_j_omtm_2021_03_023 crossref_primary_10_1007_s11095_021_03089_7 crossref_primary_10_1021_acs_jpcb_2c07616 crossref_primary_10_1016_j_ejps_2024_106705 crossref_primary_10_4155_bio_2021_0099 crossref_primary_10_1016_j_gpb_2023_03_004 crossref_primary_10_1080_19420862_2023_2171248 crossref_primary_10_1021_acs_molpharmaceut_3c00484 crossref_primary_10_1016_j_celrep_2018_10_062 crossref_primary_10_1007_s10928_023_09899_z crossref_primary_10_1002_jps_24430 crossref_primary_10_1038_s42003_021_01931_7 crossref_primary_10_1016_j_xphs_2018_01_002 crossref_primary_10_3390_antib11010011 crossref_primary_10_1016_j_isci_2021_103447 crossref_primary_10_1021_acs_molpharmaceut_9b00430 crossref_primary_10_1080_19420862_2023_2185924 crossref_primary_10_1080_19420862_2018_1475871 crossref_primary_10_1016_j_xphs_2017_09_022 crossref_primary_10_1016_j_xphs_2020_11_034 crossref_primary_10_1093_protein_gzx035 crossref_primary_10_1016_j_csbj_2024_05_041 |
Cites_doi | 10.1093/protein/gzq009 10.1063/1.445869 10.4161/mabs.22189 10.1038/nbt.1768 10.1016/0022-2836(84)90309-7 10.1002/jps.21746 10.1002/prot.21618 10.1007/978-1-61779-921-1_26 10.1016/j.jmb.2007.02.024 10.1002/jps.23423 10.1038/clpt.2008.170 10.1002/jps.21322 10.1002/bit.22983 10.1002/jps.20079 10.1007/s11095-011-0410-0 10.1021/ja0026814 10.4161/mabs.4.2.19387 10.1016/j.bpj.2012.04.047 10.1007/s11095-014-1409-0 10.1107/S0907444994003112 10.1006/jmbi.1993.1626 10.1002/jps.21898 10.1021/jp500434b 10.1021/bi061500t 10.1021/ac200750u 10.1002/jcc.540160303 10.1002/jps.20347 10.1073/pnas.0904191106 10.4161/mabs.23651 10.1371/journal.pone.0100736 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 30, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 30, 2014 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1421779112 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | In silico selection of therapeutic antibodies |
EISSN | 1091-6490 |
EndPage | 18606 |
ExternalDocumentID | 3558902511 10_1073_pnas_1421779112 25512516 111_52_18601 43278891 US201600139302 |
Genre | Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c558t-efffbf84e84d8484a1d681df627573952ca5a38e4916dc167d2cd856ed74e9f63 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:26:58 EDT 2024 Fri Oct 25 04:56:02 EDT 2024 Thu Oct 10 19:26:54 EDT 2024 Fri Aug 23 03:01:26 EDT 2024 Sat Sep 28 07:56:28 EDT 2024 Wed Nov 11 00:29:53 EST 2020 Fri Feb 02 07:06:03 EST 2024 Wed Dec 27 19:15:53 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | pharmacokinetics prediction viscosity degradation monoclonal antibodies |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-efffbf84e84d8484a1d681df627573952ca5a38e4916dc167d2cd856ed74e9f63 |
Notes | http://dx.doi.org/10.1073/pnas.1421779112 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed by Ken A. Dill, November 17, 2014 (sent for review August 6, 2014) Author contributions: V.K.S., T.W.P., B.K., B.Z., R.F.K., I.C., J.Z.Z., K.A.D., and T.E.S. designed research; V.K.S., S.P., E.H., C.L., O.B., I.C., J.Z.Z., and T.E.S. performed research; V.K.S., T.W.P., R.F.K, I.C., J.Z.Z., and T.E.S. analyzed data; and V.K.S., T.W.P., B.K., and T.E.S. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/52/18601.full.pdf |
PMID | 25512516 |
PQID | 1645773894 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4284567 pubmed_primary_25512516 pnas_primary_111_52_18601 proquest_journals_1645773894 crossref_primary_10_1073_pnas_1421779112 fao_agris_US201600139302 proquest_miscellaneous_1641425929 jstor_primary_43278891 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2014-12-30 |
PublicationDateYYYYMMDD | 2014-12-30 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 17362988 - J Mol Biol. 2007 May 4;368(3):652-65 22735968 - Methods Mol Biol. 2012;899:425-51 21692515 - Anal Chem. 2011 Aug 1;83(15):5912-9 15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 21246510 - Biotechnol Bioeng. 2011 Mar;108(3):632-6 26598676 - Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6719 24959685 - PLoS One. 2014;9(6):e100736 19571001 - Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11937-42 15124199 - J Pharm Sci. 2004 Jun;93(6):1390-402 22453096 - MAbs. 2012 Mar-Apr;4(2):243-55 23778268 - MAbs. 2012 Nov-Dec;4(6):753-60 20159773 - Protein Eng Des Sel. 2010 May;23(5):385-92 19455640 - J Pharm Sci. 2009 Dec;98(12):4485-500 23280575 - J Pharm Sci. 2013 Mar;102(3):947-59 16052543 - J Pharm Sci. 2005 Sep;94(9):1928-40 17876828 - Proteins. 2008 Mar;70(4):1294-312 18240303 - J Pharm Sci. 2008 Oct;97(10):4219-27 11472122 - J Am Chem Soc. 2001 Apr 18;123(15):3499-506 18784655 - Clin Pharmacol Ther. 2008 Nov;84(5):548-58 17279618 - Biochemistry. 2007 Feb 13;46(6):1534-44 21301430 - Nat Biotechnol. 2011 Feb;29(2):107-9 22828333 - Biophys J. 2012 Jul 3;103(1):69-78 6502707 - J Mol Biol. 1984 Oct 15;179(1):125-42 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 23396076 - MAbs. 2013 Mar-Apr;5(2):306-22 24758234 - J Phys Chem B. 2014 May 15;118(19):5044-9 24906598 - Pharm Res. 2014 Nov;31(11):3161-78 19705420 - J Pharm Sci. 2010 Mar;99(3):1152-68 21626060 - Pharm Res. 2011 Jul;28(7):1750-64 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_15_2 doi: 10.1093/protein/gzq009 – ident: e_1_3_3_29_2 doi: 10.1063/1.445869 – ident: e_1_3_3_14_2 doi: 10.4161/mabs.22189 – ident: e_1_3_3_1_2 doi: 10.1038/nbt.1768 – ident: e_1_3_3_23_2 doi: 10.1016/0022-2836(84)90309-7 – ident: e_1_3_3_18_2 doi: 10.1002/jps.21746 – ident: e_1_3_3_27_2 doi: 10.1002/prot.21618 – ident: e_1_3_3_5_2 doi: 10.1007/978-1-61779-921-1_26 – ident: e_1_3_3_16_2 doi: 10.1016/j.jmb.2007.02.024 – ident: e_1_3_3_21_2 doi: 10.1002/jps.23423 – ident: e_1_3_3_22_2 – ident: e_1_3_3_3_2 doi: 10.1038/clpt.2008.170 – ident: e_1_3_3_8_2 doi: 10.1002/jps.21322 – ident: e_1_3_3_10_2 doi: 10.1002/bit.22983 – ident: e_1_3_3_2_2 doi: 10.1002/jps.20079 – ident: e_1_3_3_13_2 doi: 10.1007/s11095-011-0410-0 – ident: e_1_3_3_20_2 doi: 10.1021/ja0026814 – ident: e_1_3_3_4_2 doi: 10.4161/mabs.4.2.19387 – ident: e_1_3_3_24_2 doi: 10.1016/j.bpj.2012.04.047 – ident: e_1_3_3_7_2 doi: 10.1007/s11095-014-1409-0 – ident: e_1_3_3_30_2 doi: 10.1107/S0907444994003112 – ident: e_1_3_3_25_2 doi: 10.1006/jmbi.1993.1626 – ident: e_1_3_3_11_2 doi: 10.1002/jps.21898 – ident: e_1_3_3_12_2 doi: 10.1021/jp500434b – ident: e_1_3_3_19_2 doi: 10.1021/bi061500t – ident: e_1_3_3_31_2 doi: 10.1021/ac200750u – ident: e_1_3_3_26_2 doi: 10.1002/jcc.540160303 – ident: e_1_3_3_9_2 doi: 10.1002/jps.20347 – ident: e_1_3_3_6_2 doi: 10.1073/pnas.0904191106 – ident: e_1_3_3_28_2 doi: 10.4161/mabs.23651 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pone.0100736 |
SSID | ssj0009580 |
Score | 2.587574 |
Snippet | For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored... Significance mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable... mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 18601 |
SubjectTerms | Amino acids Animals Antibodies Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - therapeutic use Biological Sciences CHO Cells Correlation analysis Cricetinae Cricetulus Humans Hydrophobicity Immunoglobulin G - chemistry Immunoglobulin G - therapeutic use Isomerization Isotypes Medical treatment Modeling Molecules Monoclonal antibodies Oxidation Physical properties Protein Stability Recombinant Proteins - chemistry Recombinant Proteins - therapeutic use Viscosity |
Title | In silico selection of therapeutic antibodies for development: Viscosity, clearance, and chemical stability |
URI | https://www.jstor.org/stable/43278891 http://www.pnas.org/content/111/52/18601.abstract https://www.ncbi.nlm.nih.gov/pubmed/25512516 https://www.proquest.com/docview/1645773894 https://search.proquest.com/docview/1641425929 https://pubmed.ncbi.nlm.nih.gov/PMC4284567 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51e-KCKFAaKJWROBSp6W6ccezlhiqqFlSEBIt6ixw_SkSbrNjtof-esfNoF3Hi7Kc8M_Y38ufPAG_R2QK9rlLktkhRGpWqKnOpVlx6yZXyUXbx4ktxtsBPl-JyC8TwFiaS9k1VHzfXN8dN_TNyK5c3ZjrwxKZfL04IMtO5L6cTmJCDDin6qLSruncnnLZf5Djo-ch8umz0irYGQuGSYjx8ZEOAOpzwxcapNPG6HeiJQfOUWv0Lf_5No3xwLp0-gcc9oGQfuonvwJZrnsJOH7IrdtjrSr97Br_OG7aqr8n0bBV_vyGTsNazB0-wGK1zXbWBWcgIzTJ7Tyl6z37UKxMoXndHzITPJoK_HFELy0yvOsAIakay7d1zWJx-_H5ylvZ_LaRGCLVOnfe-8gqdQqtQoc5sQVDWBxHjcJfHjRY6Vw4JTlqTFdJyY5UonJXo5r7Id2G7aRu3B6wip8gN-jkawg6odDXPqF_DhTHCVrMEDoe1LpedpEYZr8JlXoa1Lu8tlMAe2aLUV7ThlYtvPMjhBcyaz6hoNxpo7AJzTun8PEsgib2MXVOGI3iZKUo9E9gfzFj2sUrDFSikJOCGCbwZiynKwtWJblx7G-vQrARhyQRedFYfBxh8KAG54Q9jhaDgvVlCjh2VvHtHfvnfLV_BI1qUTnlytg_b69-37jWhpHV1QPnB-eeDGBt_AD9nD_U |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL1qywI2lAJtUwoYiUWRmpmJY8cedqiimkKnQqJTdRclfkDUNhmRmUX5eq6dRzsVG1j7kcc9vj6Wj48B3jOjE2azPGRUJyETSoYyj0yYSSqsoFJab7s4PUsmM_blkl-uAe_OwnjRvsqLQXl9MyiLn15bOb9Rw04nNvw2PULKjPO-GK7DIxyvI9Yt0nuvXdmcPKGYgBllnaOPiIfzMqsxOSAPFzjK3VU2SKndHJ-szEvrNqs6gaJzPcVWf2OgD4WU92am40246L6pEaRcDZaLfKB-P7B7_OePfgZPW65KPjXFW7Bmyuew1WaDmhy0ltUfXsDVSUnq4hpRRWp_sQ5Gm1SW3DvdRTCERV450SJBokz0nVrpI7koauXUY7eHRLl7LBwUD7GFJqo1NCDIYr2O9_YlzI4_nx9NwvYah1BxLhehsdbmVjIjmZZMsizSCbJk6_yR3TYhVRnPYmkYMlWtokRoqrTkidGCmbFN4m3YKKvS7ALJEW-xYnbMFNISJrN8HGG_inKluM5HARx0QUznjVtH6nfZRZy6IKZ3oQ9gF4OcZj8wl6az79Q57Tk6HI-waNtHvu-CxVRIOY4CCHwvfde4eOI0jSSuagPY7_CRtmkAH5cwLgRyQhbAu74YB7DblclKUy19HXwrjjQ1gJ0GTv0DOnAGIFaA1ldw5uCrJQgfbxLewmXvv1u-hceT8-lpenpy9vUVPMEf1BhcjvZhY_FraV4jGVvkb_zQ-wO1nzD2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIiEuQIHSQAEjcShSs9k4TuzlhgqrFmhVCRZVXCLHHxC1TVZk91B-PWPno7sVp579kc3O8_hZfnkD8JYZnTEri5BRnYWMKxGKIjahFJRbToWw3nbx-CQ7nLHPZ-nZSqkvL9pXRTmqLi5HVfnbayvnlyrqdWLR6fEBUmbc93k01zbagLu4ZsdZf1Af_HZF-_UJxSTMKOtdfXgSzSvZYIJALs5xpbtyNkir3T6fre1NG1bWvUjROZ_iqP-x0JtiypXdafoQfvbv1YpSzkfLRTFSf29YPt7qxR_Bg46zkg9tly24Y6rHsNVlhYbsddbV757A-VFFmvIC0UUaX2AHo05qS1a-8iIYyrKonXiRIGEm-lq19J78KBvlVGRX-0S5ehYOkvs4QhPVGRsQZLNez3v1FGbTT98PDsOunEOo0lQsQmOtLaxgRjAtmGAy1hmyZet8kt11IVUylYkwDBmrVnHGNVVapJnRnJmJzZJt2KzqyuwAKRB3iWJ2whTSEyZkMYlxXkVTpVJdjAPY6wOZz1vXjtzftvMkd4HMr8MfwA4GOpe_MKfms2_UOe45WpyMsWnbR3-YgiWUCzGJAwj8LMPUeIhKaR4LPN0GsNtjJO_SAT4uYynnyA1ZAG-GZlzI7nZGVqZe-j74q1KkqwE8ayE1PKAHaAB8DWxDB2cSvt6CEPJm4R1knt965Gu4d_pxmn89OvnyAu7j_9P6XI53YXPxZ2leIidbFK_86vsHSAIzdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+selection+of+therapeutic+antibodies+for+development%3A+Viscosity%2C+clearance%2C+and+chemical+stability&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vikas+K.+Sharma&rft.au=Thomas+W.+Patapoff&rft.au=Bruce+Kabakoff&rft.au=Satyan+Pai&rft.date=2014-12-30&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=52&rft.spage=18601&rft_id=info:doi/10.1073%2Fpnas.1421779112&rft_id=info%3Apmid%2F25512516&rft.externalDBID=n%2Fa&rft.externalDocID=111_52_18601 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F52.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F52.cover.gif |