In silico selection of therapeutic antibodies for development: Viscosity, clearance, and chemical stability

For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlat...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 52; pp. 18601 - 18606
Main Authors Sharma, Vikas K., Patapoff, Thomas W., Kabakoff, Bruce, Pai, Satyan, Hilario, Eric, Zhang, Boyan, Li, Charlene, Borisov, Oleg, Kelley, Robert F., Chorny, Ilya, Zhou, Joe Z., Dill, Ken A., Swartz, Trevor E.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 30.12.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. Significance mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and at-home use. To deliver high doses (several hundred milligrams) through a small volume (∼1 mL) into the subcutaneous space, mAb solutions need to have low viscosity. Concomitantly, acceptable chemical stability is required for adequate shelf life, and normal in vivo clearance is needed for less frequent dosing. We propose in silico tools that provide rapid assessment of atypical behavior of mAbs (high viscosity, chemical degradation, and fast plasma clearance), which are simply predicted from sequence and/or structure-derived parameters. Such analysis will greatly improve the probability of success to move mAb-based therapeutics efficiently into clinical development and ultimately benefit patients.
AbstractList Significance mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and at-home use. To deliver high doses (several hundred milligrams) through a small volume (∼1 mL) into the subcutaneous space, mAb solutions need to have low viscosity. Concomitantly, acceptable chemical stability is required for adequate shelf life, and normal in vivo clearance is needed for less frequent dosing. We propose in silico tools that provide rapid assessment of atypical behavior of mAbs (high viscosity, chemical degradation, and fast plasma clearance), which are simply predicted from sequence and/or structure-derived parameters. Such analysis will greatly improve the probability of success to move mAb-based therapeutics efficiently into clinical development and ultimately benefit patients. For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery.
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery.
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. Significance mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and at-home use. To deliver high doses (several hundred milligrams) through a small volume (∼1 mL) into the subcutaneous space, mAb solutions need to have low viscosity. Concomitantly, acceptable chemical stability is required for adequate shelf life, and normal in vivo clearance is needed for less frequent dosing. We propose in silico tools that provide rapid assessment of atypical behavior of mAbs (high viscosity, chemical degradation, and fast plasma clearance), which are simply predicted from sequence and/or structure-derived parameters. Such analysis will greatly improve the probability of success to move mAb-based therapeutics efficiently into clinical development and ultimately benefit patients.
mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and at-home use. To deliver high doses (several hundred milligrams) through a small volume (∼1 mL) into the subcutaneous space, mAb solutions need to have low viscosity. Concomitantly, acceptable chemical stability is required for adequate shelf life, and normal in vivo clearance is needed for less frequent dosing. We propose in silico tools that provide rapid assessment of atypical behavior of mAbs (high viscosity, chemical degradation, and fast plasma clearance), which are simply predicted from sequence and/or structure-derived parameters. Such analysis will greatly improve the probability of success to move mAb-based therapeutics efficiently into clinical development and ultimately benefit patients. For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery.
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the lgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery.
Author Swartz, Trevor E.
Dill, Ken A.
Kabakoff, Bruce
Pai, Satyan
Borisov, Oleg
Zhang, Boyan
Patapoff, Thomas W.
Chorny, Ilya
Sharma, Vikas K.
Kelley, Robert F.
Hilario, Eric
Li, Charlene
Zhou, Joe Z.
Author_xml – sequence: 1
  givenname: Vikas K.
  surname: Sharma
  fullname: Sharma, Vikas K.
– sequence: 2
  givenname: Thomas W.
  surname: Patapoff
  fullname: Patapoff, Thomas W.
– sequence: 3
  givenname: Bruce
  surname: Kabakoff
  fullname: Kabakoff, Bruce
– sequence: 4
  givenname: Satyan
  surname: Pai
  fullname: Pai, Satyan
– sequence: 5
  givenname: Eric
  surname: Hilario
  fullname: Hilario, Eric
– sequence: 6
  givenname: Boyan
  surname: Zhang
  fullname: Zhang, Boyan
– sequence: 7
  givenname: Charlene
  surname: Li
  fullname: Li, Charlene
– sequence: 8
  givenname: Oleg
  surname: Borisov
  fullname: Borisov, Oleg
– sequence: 9
  givenname: Robert F.
  surname: Kelley
  fullname: Kelley, Robert F.
– sequence: 10
  givenname: Ilya
  surname: Chorny
  fullname: Chorny, Ilya
– sequence: 11
  givenname: Joe Z.
  surname: Zhou
  fullname: Zhou, Joe Z.
– sequence: 12
  givenname: Ken A.
  surname: Dill
  fullname: Dill, Ken A.
– sequence: 13
  givenname: Trevor E.
  surname: Swartz
  fullname: Swartz, Trevor E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25512516$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtvEzEUhS1URNPCmhVgiQ2LprU9frJAQhWPSpVYQNlajn2ncZiMg-2plH-Po4TwWHlxv3N8zz1n6GRMIyD0nJJLSlR3tRlduaScUaUMpewRmlFi6FxyQ07QjBCm5pozforOSlkRQozQ5Ak6ZUJQJqicoR83Iy5xiD7hAgP4GtOIU4_rErLbwFSjx26scZFChIL7lHGABxjSZg1jfYu_x-JTiXV7gf0ALrvRw0VTBOyXsI7eDbhUt2g_1O1T9Lh3Q4Fnh_cc3X388O368_z2y6eb6_e3cy-ErnPo-37Raw6aB801dzRITUMvmRKqM4J5J1yngRsqg6dSBeaDFhKC4mB62Z2jd3vfzbRYQ_Bt0ewGu8lx7fLWJhftv5MxLu19erCcaS6kagZvDgY5_ZygVLtuMWEY3AhpKpZK3m4uDDMNff0fukpTHlu8HSWU6rThjbraUz6nUjL0x2Uosbsi7a5I-6fIpnj5d4Yj_7u5BuADsFMe7Si1glmqJaENebFHVqWmfGR4x5TWZjd_tZ_3Lll3n2Oxd18ZoZI0sekI634BM_K6nQ
CitedBy_id crossref_primary_10_1007_s10928_020_09691_3
crossref_primary_10_1080_07388551_2017_1421899
crossref_primary_10_1021_acs_langmuir_1c02617
crossref_primary_10_1073_pnas_2020577118
crossref_primary_10_1073_pnas_1616408114
crossref_primary_10_1208_s12248_022_00772_4
crossref_primary_10_1080_19420862_2024_2333436
crossref_primary_10_1371_journal_pone_0181347
crossref_primary_10_1002_pro_4812
crossref_primary_10_1007_s12539_024_00613_2
crossref_primary_10_1208_s12248_023_00812_7
crossref_primary_10_1016_j_copbio_2019_01_008
crossref_primary_10_1080_19420862_2020_1743053
crossref_primary_10_1111_cts_12597
crossref_primary_10_1016_j_xphs_2021_06_030
crossref_primary_10_1080_19420862_2021_1932230
crossref_primary_10_1080_19420862_2023_2211185
crossref_primary_10_7717_peerj_8199
crossref_primary_10_1080_19420862_2021_1981805
crossref_primary_10_1016_j_xphs_2023_07_005
crossref_primary_10_1021_acs_analchem_8b03452
crossref_primary_10_1002_prp2_573
crossref_primary_10_1093_bioinformatics_btx519
crossref_primary_10_1073_pnas_2210332120
crossref_primary_10_1016_j_isci_2022_105173
crossref_primary_10_1080_19420862_2016_1215786
crossref_primary_10_1124_dmd_119_086488
crossref_primary_10_1002_pmic_201500412
crossref_primary_10_1021_acs_molpharmaceut_7b00322
crossref_primary_10_3390_healthcare11142075
crossref_primary_10_1021_acs_molpharmaceut_2c00838
crossref_primary_10_1016_j_antiviral_2021_105105
crossref_primary_10_1080_19420862_2018_1556082
crossref_primary_10_1080_19420862_2023_2169440
crossref_primary_10_1002_minf_202100240
crossref_primary_10_1109_TBME_2020_3013519
crossref_primary_10_2174_0929866526666181128141953
crossref_primary_10_1002_bit_27349
crossref_primary_10_1038_srep38644
crossref_primary_10_1093_protein_gzy020
crossref_primary_10_1016_j_cels_2023_04_009
crossref_primary_10_1038_s41551_021_00699_9
crossref_primary_10_1093_abt_tbae012
crossref_primary_10_1002_adhm_202001022
crossref_primary_10_1080_19420862_2018_1518887
crossref_primary_10_3390_ijms21207496
crossref_primary_10_1007_s11095_022_03204_2
crossref_primary_10_1021_acs_molpharmaceut_0c00257
crossref_primary_10_1002_prot_26230
crossref_primary_10_3390_biologics3020005
crossref_primary_10_1080_19420862_2021_1993769
crossref_primary_10_1080_19420862_2021_1993768
crossref_primary_10_1080_19420862_2023_2191301
crossref_primary_10_1093_pnasnexus_pgac172
crossref_primary_10_1021_acs_molpharmaceut_8b00867
crossref_primary_10_1016_j_ijbiomac_2024_129616
crossref_primary_10_1038_s41551_023_01074_6
crossref_primary_10_1016_j_xphs_2020_10_039
crossref_primary_10_1016_j_jpba_2015_02_032
crossref_primary_10_1371_journal_pone_0232713
crossref_primary_10_1080_19420862_2021_1883239
crossref_primary_10_1073_pnas_1810576116
crossref_primary_10_1051_medsci_2019231
crossref_primary_10_1021_acs_jpcb_7b09126
crossref_primary_10_1080_07391102_2022_2095305
crossref_primary_10_1080_19420862_2021_1895540
crossref_primary_10_1093_protein_gzz002
crossref_primary_10_1074_jbc_M115_692434
crossref_primary_10_1080_19420862_2019_1632114
crossref_primary_10_1080_19420862_2017_1290753
crossref_primary_10_1016_j_xphs_2022_09_032
crossref_primary_10_1080_19420862_2015_1043503
crossref_primary_10_3390_antib12040078
crossref_primary_10_1002_bit_27802
crossref_primary_10_1080_19420862_2023_2263926
crossref_primary_10_1021_acs_molpharmaceut_3c00440
crossref_primary_10_1016_j_xphs_2017_10_036
crossref_primary_10_1074_jbc_REV120_010181
crossref_primary_10_1007_s11095_018_2466_6
crossref_primary_10_1080_10837450_2020_1829641
crossref_primary_10_1111_cts_12567
crossref_primary_10_1016_j_bej_2018_06_003
crossref_primary_10_1016_j_tips_2020_12_004
crossref_primary_10_1021_acs_jpcb_7b02183
crossref_primary_10_1080_19420862_2019_1605270
crossref_primary_10_3390_ijms21218037
crossref_primary_10_1080_19420862_2022_2044744
crossref_primary_10_1002_prot_25685
crossref_primary_10_1080_19420862_2017_1323160
crossref_primary_10_1186_s13395_017_0126_x
crossref_primary_10_1007_s11095_018_2545_8
crossref_primary_10_1080_19420862_2018_1553476
crossref_primary_10_1016_j_xphs_2023_03_026
crossref_primary_10_1080_07388551_2017_1357002
crossref_primary_10_1080_19420862_2016_1256723
crossref_primary_10_1016_j_xphs_2022_11_020
crossref_primary_10_1021_acs_molpharmaceut_1c00373
crossref_primary_10_1080_19420862_2021_2008790
crossref_primary_10_1080_19420862_2024_2303781
crossref_primary_10_1016_j_bpj_2020_04_022
crossref_primary_10_1016_j_csbj_2022_04_035
crossref_primary_10_1016_j_xphs_2020_01_011
crossref_primary_10_1038_s41598_023_28841_4
crossref_primary_10_1093_bib_bbac267
crossref_primary_10_1016_j_xphs_2019_03_008
crossref_primary_10_1016_j_molimm_2021_10_019
crossref_primary_10_3390_antib10010008
crossref_primary_10_1080_19420862_2022_2026208
crossref_primary_10_7554_eLife_61393
crossref_primary_10_1021_acs_jpca_6b02429
crossref_primary_10_1186_s12951_022_01259_2
crossref_primary_10_1186_s41120_022_00057_2
crossref_primary_10_1016_j_molimm_2019_06_012
crossref_primary_10_1080_19420862_2022_2062807
crossref_primary_10_1080_19420862_2023_2232087
crossref_primary_10_1007_s11095_024_03726_x
crossref_primary_10_1080_19420862_2020_1816312
crossref_primary_10_1093_abt_tbac029
crossref_primary_10_1021_acs_jpcb_9b03779
crossref_primary_10_1080_19420862_2016_1171444
crossref_primary_10_1080_19420862_2021_2023938
crossref_primary_10_1126_sciadv_abb0372
crossref_primary_10_1021_acs_molpharmaceut_3c00023
crossref_primary_10_1021_acs_jpcb_6b04907
crossref_primary_10_1080_19420862_2020_1787121
crossref_primary_10_1080_19420862_2017_1285479
crossref_primary_10_1021_acs_jpcb_9b04478
crossref_primary_10_1080_19420862_2015_1099773
crossref_primary_10_1080_19420862_2024_2339582
crossref_primary_10_1016_j_xphs_2024_06_013
crossref_primary_10_1080_19420862_2019_1683432
crossref_primary_10_1080_19420862_2024_2318817
crossref_primary_10_1080_19420862_2020_1815995
crossref_primary_10_1080_19420862_2023_2256745
crossref_primary_10_1002_biot_201800696
crossref_primary_10_1080_19420862_2018_1551676
crossref_primary_10_1111_imr_13064
crossref_primary_10_1021_acs_molpharmaceut_0c01073
crossref_primary_10_1080_19420862_2015_1128606
crossref_primary_10_1080_19420862_2023_2200540
crossref_primary_10_1080_19420862_2022_2138092
crossref_primary_10_1002_btpr_3466
crossref_primary_10_1016_j_xphs_2021_10_039
crossref_primary_10_1080_19420862_2015_1075109
crossref_primary_10_3390_antib8010018
crossref_primary_10_1002_cpdd_1349
crossref_primary_10_1016_j_xphs_2018_12_027
crossref_primary_10_1248_bpb_b22_00263
crossref_primary_10_1007_s10928_015_9444_y
crossref_primary_10_1038_s41570_022_00438_x
crossref_primary_10_1080_19420862_2024_2362788
crossref_primary_10_1016_j_ddtec_2016_09_004
crossref_primary_10_1016_j_omtm_2021_03_023
crossref_primary_10_1007_s11095_021_03089_7
crossref_primary_10_1021_acs_jpcb_2c07616
crossref_primary_10_1016_j_ejps_2024_106705
crossref_primary_10_4155_bio_2021_0099
crossref_primary_10_1016_j_gpb_2023_03_004
crossref_primary_10_1080_19420862_2023_2171248
crossref_primary_10_1021_acs_molpharmaceut_3c00484
crossref_primary_10_1016_j_celrep_2018_10_062
crossref_primary_10_1007_s10928_023_09899_z
crossref_primary_10_1002_jps_24430
crossref_primary_10_1038_s42003_021_01931_7
crossref_primary_10_1016_j_xphs_2018_01_002
crossref_primary_10_3390_antib11010011
crossref_primary_10_1016_j_isci_2021_103447
crossref_primary_10_1021_acs_molpharmaceut_9b00430
crossref_primary_10_1080_19420862_2023_2185924
crossref_primary_10_1080_19420862_2018_1475871
crossref_primary_10_1016_j_xphs_2017_09_022
crossref_primary_10_1016_j_xphs_2020_11_034
crossref_primary_10_1093_protein_gzx035
crossref_primary_10_1016_j_csbj_2024_05_041
Cites_doi 10.1093/protein/gzq009
10.1063/1.445869
10.4161/mabs.22189
10.1038/nbt.1768
10.1016/0022-2836(84)90309-7
10.1002/jps.21746
10.1002/prot.21618
10.1007/978-1-61779-921-1_26
10.1016/j.jmb.2007.02.024
10.1002/jps.23423
10.1038/clpt.2008.170
10.1002/jps.21322
10.1002/bit.22983
10.1002/jps.20079
10.1007/s11095-011-0410-0
10.1021/ja0026814
10.4161/mabs.4.2.19387
10.1016/j.bpj.2012.04.047
10.1007/s11095-014-1409-0
10.1107/S0907444994003112
10.1006/jmbi.1993.1626
10.1002/jps.21898
10.1021/jp500434b
10.1021/bi061500t
10.1021/ac200750u
10.1002/jcc.540160303
10.1002/jps.20347
10.1073/pnas.0904191106
10.4161/mabs.23651
10.1371/journal.pone.0100736
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 30, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 30, 2014
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1421779112
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


MEDLINE

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate In silico selection of therapeutic antibodies
EISSN 1091-6490
EndPage 18606
ExternalDocumentID 3558902511
10_1073_pnas_1421779112
25512516
111_52_18601
43278891
US201600139302
Genre Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c558t-efffbf84e84d8484a1d681df627573952ca5a38e4916dc167d2cd856ed74e9f63
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:26:58 EDT 2024
Fri Oct 25 04:56:02 EDT 2024
Thu Oct 10 19:26:54 EDT 2024
Fri Aug 23 03:01:26 EDT 2024
Sat Sep 28 07:56:28 EDT 2024
Wed Nov 11 00:29:53 EST 2020
Fri Feb 02 07:06:03 EST 2024
Wed Dec 27 19:15:53 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords pharmacokinetics
prediction
viscosity
degradation
monoclonal antibodies
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-efffbf84e84d8484a1d681df627573952ca5a38e4916dc167d2cd856ed74e9f63
Notes http://dx.doi.org/10.1073/pnas.1421779112
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by Ken A. Dill, November 17, 2014 (sent for review August 6, 2014)
Author contributions: V.K.S., T.W.P., B.K., B.Z., R.F.K., I.C., J.Z.Z., K.A.D., and T.E.S. designed research; V.K.S., S.P., E.H., C.L., O.B., I.C., J.Z.Z., and T.E.S. performed research; V.K.S., T.W.P., R.F.K, I.C., J.Z.Z., and T.E.S. analyzed data; and V.K.S., T.W.P., B.K., and T.E.S. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/111/52/18601.full.pdf
PMID 25512516
PQID 1645773894
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4284567
pubmed_primary_25512516
pnas_primary_111_52_18601
proquest_journals_1645773894
crossref_primary_10_1073_pnas_1421779112
fao_agris_US201600139302
proquest_miscellaneous_1641425929
jstor_primary_43278891
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2014-12-30
PublicationDateYYYYMMDD 2014-12-30
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 17362988 - J Mol Biol. 2007 May 4;368(3):652-65
22735968 - Methods Mol Biol. 2012;899:425-51
21692515 - Anal Chem. 2011 Aug 1;83(15):5912-9
15299374 - Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3
21246510 - Biotechnol Bioeng. 2011 Mar;108(3):632-6
26598676 - Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6719
24959685 - PLoS One. 2014;9(6):e100736
19571001 - Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11937-42
15124199 - J Pharm Sci. 2004 Jun;93(6):1390-402
22453096 - MAbs. 2012 Mar-Apr;4(2):243-55
23778268 - MAbs. 2012 Nov-Dec;4(6):753-60
20159773 - Protein Eng Des Sel. 2010 May;23(5):385-92
19455640 - J Pharm Sci. 2009 Dec;98(12):4485-500
23280575 - J Pharm Sci. 2013 Mar;102(3):947-59
16052543 - J Pharm Sci. 2005 Sep;94(9):1928-40
17876828 - Proteins. 2008 Mar;70(4):1294-312
18240303 - J Pharm Sci. 2008 Oct;97(10):4219-27
11472122 - J Am Chem Soc. 2001 Apr 18;123(15):3499-506
18784655 - Clin Pharmacol Ther. 2008 Nov;84(5):548-58
17279618 - Biochemistry. 2007 Feb 13;46(6):1534-44
21301430 - Nat Biotechnol. 2011 Feb;29(2):107-9
22828333 - Biophys J. 2012 Jul 3;103(1):69-78
6502707 - J Mol Biol. 1984 Oct 15;179(1):125-42
8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
23396076 - MAbs. 2013 Mar-Apr;5(2):306-22
24758234 - J Phys Chem B. 2014 May 15;118(19):5044-9
24906598 - Pharm Res. 2014 Nov;31(11):3161-78
19705420 - J Pharm Sci. 2010 Mar;99(3):1152-68
21626060 - Pharm Res. 2011 Jul;28(7):1750-64
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_15_2
  doi: 10.1093/protein/gzq009
– ident: e_1_3_3_29_2
  doi: 10.1063/1.445869
– ident: e_1_3_3_14_2
  doi: 10.4161/mabs.22189
– ident: e_1_3_3_1_2
  doi: 10.1038/nbt.1768
– ident: e_1_3_3_23_2
  doi: 10.1016/0022-2836(84)90309-7
– ident: e_1_3_3_18_2
  doi: 10.1002/jps.21746
– ident: e_1_3_3_27_2
  doi: 10.1002/prot.21618
– ident: e_1_3_3_5_2
  doi: 10.1007/978-1-61779-921-1_26
– ident: e_1_3_3_16_2
  doi: 10.1016/j.jmb.2007.02.024
– ident: e_1_3_3_21_2
  doi: 10.1002/jps.23423
– ident: e_1_3_3_22_2
– ident: e_1_3_3_3_2
  doi: 10.1038/clpt.2008.170
– ident: e_1_3_3_8_2
  doi: 10.1002/jps.21322
– ident: e_1_3_3_10_2
  doi: 10.1002/bit.22983
– ident: e_1_3_3_2_2
  doi: 10.1002/jps.20079
– ident: e_1_3_3_13_2
  doi: 10.1007/s11095-011-0410-0
– ident: e_1_3_3_20_2
  doi: 10.1021/ja0026814
– ident: e_1_3_3_4_2
  doi: 10.4161/mabs.4.2.19387
– ident: e_1_3_3_24_2
  doi: 10.1016/j.bpj.2012.04.047
– ident: e_1_3_3_7_2
  doi: 10.1007/s11095-014-1409-0
– ident: e_1_3_3_30_2
  doi: 10.1107/S0907444994003112
– ident: e_1_3_3_25_2
  doi: 10.1006/jmbi.1993.1626
– ident: e_1_3_3_11_2
  doi: 10.1002/jps.21898
– ident: e_1_3_3_12_2
  doi: 10.1021/jp500434b
– ident: e_1_3_3_19_2
  doi: 10.1021/bi061500t
– ident: e_1_3_3_31_2
  doi: 10.1021/ac200750u
– ident: e_1_3_3_26_2
  doi: 10.1002/jcc.540160303
– ident: e_1_3_3_9_2
  doi: 10.1002/jps.20347
– ident: e_1_3_3_6_2
  doi: 10.1073/pnas.0904191106
– ident: e_1_3_3_28_2
  doi: 10.4161/mabs.23651
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pone.0100736
SSID ssj0009580
Score 2.587574
Snippet For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored...
Significance mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable...
mAbs are increasingly being used for treatment of chronic diseases wherein the subcutaneous delivery route is preferred to enable self-administration and...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 18601
SubjectTerms Amino acids
Animals
Antibodies
Antibodies, Monoclonal - chemistry
Antibodies, Monoclonal - therapeutic use
Biological Sciences
CHO Cells
Correlation analysis
Cricetinae
Cricetulus
Humans
Hydrophobicity
Immunoglobulin G - chemistry
Immunoglobulin G - therapeutic use
Isomerization
Isotypes
Medical treatment
Modeling
Molecules
Monoclonal antibodies
Oxidation
Physical properties
Protein Stability
Recombinant Proteins - chemistry
Recombinant Proteins - therapeutic use
Viscosity
Title In silico selection of therapeutic antibodies for development: Viscosity, clearance, and chemical stability
URI https://www.jstor.org/stable/43278891
http://www.pnas.org/content/111/52/18601.abstract
https://www.ncbi.nlm.nih.gov/pubmed/25512516
https://www.proquest.com/docview/1645773894
https://search.proquest.com/docview/1641425929
https://pubmed.ncbi.nlm.nih.gov/PMC4284567
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51e-KCKFAaKJWROBSp6W6ccezlhiqqFlSEBIt6ixw_SkSbrNjtof-esfNoF3Hi7Kc8M_Y38ufPAG_R2QK9rlLktkhRGpWqKnOpVlx6yZXyUXbx4ktxtsBPl-JyC8TwFiaS9k1VHzfXN8dN_TNyK5c3ZjrwxKZfL04IMtO5L6cTmJCDDin6qLSruncnnLZf5Djo-ch8umz0irYGQuGSYjx8ZEOAOpzwxcapNPG6HeiJQfOUWv0Lf_5No3xwLp0-gcc9oGQfuonvwJZrnsJOH7IrdtjrSr97Br_OG7aqr8n0bBV_vyGTsNazB0-wGK1zXbWBWcgIzTJ7Tyl6z37UKxMoXndHzITPJoK_HFELy0yvOsAIakay7d1zWJx-_H5ylvZ_LaRGCLVOnfe-8gqdQqtQoc5sQVDWBxHjcJfHjRY6Vw4JTlqTFdJyY5UonJXo5r7Id2G7aRu3B6wip8gN-jkawg6odDXPqF_DhTHCVrMEDoe1LpedpEYZr8JlXoa1Lu8tlMAe2aLUV7ThlYtvPMjhBcyaz6hoNxpo7AJzTun8PEsgib2MXVOGI3iZKUo9E9gfzFj2sUrDFSikJOCGCbwZiynKwtWJblx7G-vQrARhyQRedFYfBxh8KAG54Q9jhaDgvVlCjh2VvHtHfvnfLV_BI1qUTnlytg_b69-37jWhpHV1QPnB-eeDGBt_AD9nD_U
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL1qywI2lAJtUwoYiUWRmpmJY8cedqiimkKnQqJTdRclfkDUNhmRmUX5eq6dRzsVG1j7kcc9vj6Wj48B3jOjE2azPGRUJyETSoYyj0yYSSqsoFJab7s4PUsmM_blkl-uAe_OwnjRvsqLQXl9MyiLn15bOb9Rw04nNvw2PULKjPO-GK7DIxyvI9Yt0nuvXdmcPKGYgBllnaOPiIfzMqsxOSAPFzjK3VU2SKndHJ-szEvrNqs6gaJzPcVWf2OgD4WU92am40246L6pEaRcDZaLfKB-P7B7_OePfgZPW65KPjXFW7Bmyuew1WaDmhy0ltUfXsDVSUnq4hpRRWp_sQ5Gm1SW3DvdRTCERV450SJBokz0nVrpI7koauXUY7eHRLl7LBwUD7GFJqo1NCDIYr2O9_YlzI4_nx9NwvYah1BxLhehsdbmVjIjmZZMsizSCbJk6_yR3TYhVRnPYmkYMlWtokRoqrTkidGCmbFN4m3YKKvS7ALJEW-xYnbMFNISJrN8HGG_inKluM5HARx0QUznjVtH6nfZRZy6IKZ3oQ9gF4OcZj8wl6az79Q57Tk6HI-waNtHvu-CxVRIOY4CCHwvfde4eOI0jSSuagPY7_CRtmkAH5cwLgRyQhbAu74YB7DblclKUy19HXwrjjQ1gJ0GTv0DOnAGIFaA1ldw5uCrJQgfbxLewmXvv1u-hceT8-lpenpy9vUVPMEf1BhcjvZhY_FraV4jGVvkb_zQ-wO1nzD2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RIiEuQIHSQAEjcShSs9k4TuzlhgqrFmhVCRZVXCLHHxC1TVZk91B-PWPno7sVp579kc3O8_hZfnkD8JYZnTEri5BRnYWMKxGKIjahFJRbToWw3nbx-CQ7nLHPZ-nZSqkvL9pXRTmqLi5HVfnbayvnlyrqdWLR6fEBUmbc93k01zbagLu4ZsdZf1Af_HZF-_UJxSTMKOtdfXgSzSvZYIJALs5xpbtyNkir3T6fre1NG1bWvUjROZ_iqP-x0JtiypXdafoQfvbv1YpSzkfLRTFSf29YPt7qxR_Bg46zkg9tly24Y6rHsNVlhYbsddbV757A-VFFmvIC0UUaX2AHo05qS1a-8iIYyrKonXiRIGEm-lq19J78KBvlVGRX-0S5ehYOkvs4QhPVGRsQZLNez3v1FGbTT98PDsOunEOo0lQsQmOtLaxgRjAtmGAy1hmyZet8kt11IVUylYkwDBmrVnHGNVVapJnRnJmJzZJt2KzqyuwAKRB3iWJ2whTSEyZkMYlxXkVTpVJdjAPY6wOZz1vXjtzftvMkd4HMr8MfwA4GOpe_MKfms2_UOe45WpyMsWnbR3-YgiWUCzGJAwj8LMPUeIhKaR4LPN0GsNtjJO_SAT4uYynnyA1ZAG-GZlzI7nZGVqZe-j74q1KkqwE8ayE1PKAHaAB8DWxDB2cSvt6CEPJm4R1knt965Gu4d_pxmn89OvnyAu7j_9P6XI53YXPxZ2leIidbFK_86vsHSAIzdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+selection+of+therapeutic+antibodies+for+development%3A+Viscosity%2C+clearance%2C+and+chemical+stability&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vikas+K.+Sharma&rft.au=Thomas+W.+Patapoff&rft.au=Bruce+Kabakoff&rft.au=Satyan+Pai&rft.date=2014-12-30&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=52&rft.spage=18601&rft_id=info:doi/10.1073%2Fpnas.1421779112&rft_id=info%3Apmid%2F25512516&rft.externalDBID=n%2Fa&rft.externalDocID=111_52_18601
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F52.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F52.cover.gif