Comparison of genetic structures and biochemical properties of tandem cutinase-type polyesterases from Thermobifida alba AHK119

This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by app...

Full description

Saved in:
Bibliographic Details
Published inJournal of bioscience and bioengineering Vol. 120; no. 5; pp. 491 - 497
Main Authors Thumarat, Uschara, Kawabata, Takeshi, Nakajima, Maho, Nakajima, Hajime, Sugiyama, Akifumi, Yazaki, Kazufumi, Tada, Tomoko, Waku, Tomonori, Tanaka, Naoki, Kawai, Fusako
Format Journal Article
LanguageEnglish
Published Japan Elsevier B.V 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6–1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol.
AbstractList This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6-1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol.
This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6-1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol.This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6-1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol.
This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6–1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol.
Author Waku, Tomonori
Kawai, Fusako
Kawabata, Takeshi
Thumarat, Uschara
Tanaka, Naoki
Sugiyama, Akifumi
Nakajima, Hajime
Yazaki, Kazufumi
Tada, Tomoko
Nakajima, Maho
Author_xml – sequence: 1
  givenname: Uschara
  surname: Thumarat
  fullname: Thumarat, Uschara
  organization: Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
– sequence: 2
  givenname: Takeshi
  surname: Kawabata
  fullname: Kawabata, Takeshi
  organization: Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
– sequence: 3
  givenname: Maho
  surname: Nakajima
  fullname: Nakajima, Maho
  organization: Department of Materials and Life Science, Graduate School of Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
– sequence: 4
  givenname: Hajime
  surname: Nakajima
  fullname: Nakajima, Hajime
  organization: Center for Fiber and Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
– sequence: 5
  givenname: Akifumi
  surname: Sugiyama
  fullname: Sugiyama, Akifumi
  organization: Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji City, Kyoto Prefecture 611-0011, Japan
– sequence: 6
  givenname: Kazufumi
  surname: Yazaki
  fullname: Yazaki, Kazufumi
  organization: Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji City, Kyoto Prefecture 611-0011, Japan
– sequence: 7
  givenname: Tomoko
  surname: Tada
  fullname: Tada, Tomoko
  organization: Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
– sequence: 8
  givenname: Tomonori
  surname: Waku
  fullname: Waku, Tomonori
  organization: Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
– sequence: 9
  givenname: Naoki
  surname: Tanaka
  fullname: Tanaka, Naoki
  organization: Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
– sequence: 10
  givenname: Fusako
  surname: Kawai
  fullname: Kawai, Fusako
  email: fkawai@kit.ac.jp
  organization: Center for Fiber and Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25910960$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URB_wDxDykk3CTJwnC6TqCiiiEpuytvyYUF8lcbCdSnfFX8dXt7BgQVdjzXxnPDrnkp0tfiHGXiOUCNi-25d77Xw0ZQXYlCBKgPYZu0BRd0VdV3h2fPdDgV0lztlljHsA7KDDF-y8agaEoYUL9mvn51UFF_3C_ch_0ELJGR5T2EzaAkWuFsvzR-aeZmfUxNfgVwrJ5VEWpDymmZstuUVFKtJhJb766UAxUcidyMfgZ353T2H22o3OKq4mrfj1zVfE4SV7Pqop0qvHesW-f_p4t7spbr99_rK7vi1M0_SpICW0wUoMgFb3qhXWGNUDmN622vRCYDuSpr5VNYp2tOOAFXSdVWSUHjWIK_b2tDef_3PLx8nZRUPTpBbyW5QVZHf6GqF-Es2G4oBdI4aMvnlENz2TlWtwswoH-cffDNQnwAQfY6DxL4IgjzHKvTzFKI8xShAyx5hl7_-RGZdUcn5JQbnpKfGHk5iynw-OgozG0WLIukAmSevd_xf8BvXLvSs
CitedBy_id crossref_primary_10_1016_j_bbapap_2019_140315
crossref_primary_10_1016_j_jece_2023_110092
crossref_primary_10_1016_j_ijbiomac_2023_127656
crossref_primary_10_1002_smll_202305094
crossref_primary_10_1016_j_cec_2024_100077
crossref_primary_10_1186_s13068_017_0912_z
crossref_primary_10_1007_s00289_023_04838_x
crossref_primary_10_1007_s00253_019_09717_y
crossref_primary_10_1016_j_jhazmat_2022_129941
crossref_primary_10_1016_j_jbiotec_2021_09_007
crossref_primary_10_4236_abb_2018_98025
crossref_primary_10_1007_s00253_016_7992_8
crossref_primary_10_1007_s10973_018_7447_9
crossref_primary_10_1016_j_polymdegradstab_2016_10_012
crossref_primary_10_1016_j_tibtech_2021_02_008
crossref_primary_10_1016_j_jclepro_2023_140088
crossref_primary_10_1186_s13568_022_01474_y
crossref_primary_10_1021_acssuschemeng_0c01638
crossref_primary_10_3389_fmicb_2020_571265
crossref_primary_10_3390_catal15020147
crossref_primary_10_1016_j_jbiosc_2017_02_007
crossref_primary_10_1039_D2RA00612J
crossref_primary_10_3389_fmicb_2023_1265139
crossref_primary_10_1016_j_polymdegradstab_2019_04_003
crossref_primary_10_1039_D4RA00844H
crossref_primary_10_3390_catal8120612
crossref_primary_10_1021_acs_chemrev_2c00644
crossref_primary_10_3390_ijms222011257
crossref_primary_10_1002_cssc_202100740
crossref_primary_10_33043_FF_8_1_86_99
crossref_primary_10_1038_s41467_023_37415_x
crossref_primary_10_1680_jenes_22_00088
crossref_primary_10_3389_fbioe_2022_930140
crossref_primary_10_1038_s41467_020_19583_2
crossref_primary_10_1002_cssc_202401759
crossref_primary_10_1080_07391102_2024_2440646
crossref_primary_10_3390_catal14080543
crossref_primary_10_3390_catal11020206
crossref_primary_10_1016_j_polymdegradstab_2017_01_006
crossref_primary_10_1016_j_wasman_2025_01_040
crossref_primary_10_1007_s10311_024_01714_6
crossref_primary_10_1002_cssc_202101062
crossref_primary_10_3389_fmicb_2022_888343
crossref_primary_10_1016_j_polymdegradstab_2021_109481
crossref_primary_10_4236_abb_2018_95015
crossref_primary_10_1002_jctb_6745
crossref_primary_10_1186_s44316_024_00011_0
crossref_primary_10_1016_j_marpolbul_2024_116261
Cites_doi 10.1007/s00253-014-5558-1
10.1074/jbc.M800848200
10.1002/pro.5560070509
10.1042/bj3430177
10.1093/protein/15.1.29
10.1016/j.bpc.2005.09.018
10.1016/j.bbapap.2007.03.015
10.1002/bit.21167
10.1073/pnas.95.5.2056
10.1007/s10924-008-0088-5
10.1093/protein/5.3.197
10.1016/j.jbiotec.2004.01.018
10.1007/s00253-010-2465-y
10.1007/s00253-011-3781-6
10.1007/s00253-010-2555-x
10.1128/AEM.64.5.1731-1735.1998
10.1021/ma200949p
10.1007/s00449-006-0069-9
10.1016/j.polymdegradstab.2012.02.003
10.1093/protein/12.8.635
10.1016/j.biotechadv.2013.09.005
10.1016/S0969-2126(98)00052-5
10.1093/jb/mvm025
10.1093/protein/13.3.179
10.1016/j.molcatb.2010.01.001
10.1002/pro.5560070117
10.1038/227680a0
10.1128/JB.01899-06
10.1016/j.jbiotec.2005.06.015
10.1021/bm049582t
10.1016/j.bbapap.2010.09.001
10.1016/j.jmb.2004.06.059
ContentType Journal Article
Copyright 2015 The Society for Biotechnology, Japan
Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 The Society for Biotechnology, Japan
– notice: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jbiosc.2015.03.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1347-4421
EndPage 497
ExternalDocumentID 25910960
10_1016_j_jbiosc_2015_03_006
S138917231500105X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
2WC
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CJTIS
CS3
D-I
DOVZS
DU5
E3Z
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
TKC
TR2
UNMZH
XFK
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c558t-ea3bc123901db8a63dcca800c8d6bc83316febe86a4136fdf912077daecabfb03
IEDL.DBID .~1
ISSN 1389-1723
1347-4421
IngestDate Mon Jul 21 09:50:33 EDT 2025
Fri Jul 11 09:06:55 EDT 2025
Mon Jul 21 06:01:42 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Tue Jul 01 02:45:27 EDT 2025
Fri Feb 23 02:24:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Thermostable cutinase
Thermobifida alba AHK119
PET surface hydrolysis
Ca-activated cutinase
Cutinase-type polyesterase
Tandem genes regulation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-ea3bc123901db8a63dcca800c8d6bc83316febe86a4136fdf912077daecabfb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25910960
PQID 1721917539
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000184104
proquest_miscellaneous_1721917539
pubmed_primary_25910960
crossref_primary_10_1016_j_jbiosc_2015_03_006
crossref_citationtrail_10_1016_j_jbiosc_2015_03_006
elsevier_sciencedirect_doi_10_1016_j_jbiosc_2015_03_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of bioscience and bioengineering
PublicationTitleAlternate J Biosci Bioeng
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhu, Xu, Teng, Tao, Zhu, Wu, Hang, Niu, Wang (bib30) 1999; 12
Kleeberg, Hetz, Kroppenstedt, Müller, Deckwer (bib2) 1998; 64
Thumarat, Nakamura, Kawabata, Suzuki, Kawai (bib11) 2012; 95
Sadeghi, Nader-Manesh, Zarrabi, Ranjbar (bib27) 2006; 119
Herrero-Acero, Ribitsch, Steinkellner, Gruber, Greimel, Eiteljoerg, Trotscha, Wei, Zimmermann, Zinn, other 4 authors (bib10) 2011; 44
Sinsereekul, Wangkam, Thamchaipenet, Srikhirin, Eurwilaichitr, Champreda (bib4) 2010; 86
Wei, Swenson, Castro, Derewenda, Minor, Arai, Aoki, Inoue, Servin-Gonzalez, Derewenda (bib17) 1988; 6
Arnórsdóttir, Helgadóttir, Thorbjarnardóttir, Eggertsson, Kristjánsson (bib31) 2007; 1774
Shah, Kato, Shintani, Kamini, Nakajima-Kambe (bib1) 2014; 98
Dresler, Heuvel, Müller, Deckwer (bib6) 2006; 29
Sakaguchi, Matsuzaki, Niimiya, Seino, Sugahara, Kawakita (bib34) 2007; 141
Bogin, Peretz, Hacham, Korkhin, Frolow, Kalb(Gilboa), Burstein (bib32) 1998; 7
Chen, Su, Billig, Zimmermann, Chen, Wu (bib21) 2010; 63
Kumar, Tsai, Nussinov (bib25) 2000; 13
Kitadokoro, Thumarat, Nakamura, Nishimura, Karatani, Suzuki, Kawai (bib13) 2012; 97
Yang, Malten, Grote, Jahn, Deckwer (bib7) 2007; 96
Pack, Yoo (bib26) 2004; 111
Van den Burg, Vriend, Veltman, Venema, Eijsink (bib29) 1998; 95
Chen, Tong, Woodard, Du, Wu, Chen (bib8) 2008; 283
Kawai, Thumarat, Kitadokoro, Waku, Tada, Tanaka, Kawabata (bib22) 2013
Arpigny, Jäger (bib12) 1999; 343
Muslin, Clark, Henson (bib33) 2002; 15
Acharya, Rajakumara, Sankaranarayanan, Rao (bib23) 2004; 341
Laemmli (bib16) 1970; 227
Hu, Thumarat, Zhang, Tang, Kawai (bib9) 2010; 87
Chen, Chen, Wu (bib14) 2013; 31
Sambrook, Russell (bib15) 2001
Xu, Baase, Baldwin, Matthews (bib28) 1998; 7
Hu, Osaki, Hayashi, Kaku, Katuen, Kobayashi, Kawai (bib3) 2008; 16
Kleeberg, Welzel, VandenHeuvel, Müller, Deckwer (bib5) 2005; 6
Zimmermann, Billig (bib35) 2010; 125
Bustos-Jaimes, Mora-Lugo, Calcagno, Farrés (bib24) 2010; 1804
Lykidis, Mavromatis, Ivanova, Anderson, Land, DiBartolo, Martinez, Lapidus, Lucas, Copeland, other 3 authors (bib18) 2007; 189
Ollis, Cheahm, Cygler, Dijkstra, Frolow, Franken, Harel, Remington, Silman, Schrag, other three authors (bib19) 1992; 5
Vertommen, Nierstrasz, van der Veer, Warmoeskerken (bib20) 2005; 120
Ollis (10.1016/j.jbiosc.2015.03.006_bib19) 1992; 5
Kitadokoro (10.1016/j.jbiosc.2015.03.006_bib13) 2012; 97
Zimmermann (10.1016/j.jbiosc.2015.03.006_bib35) 2010; 125
Sambrook (10.1016/j.jbiosc.2015.03.006_bib15) 2001
Sadeghi (10.1016/j.jbiosc.2015.03.006_bib27) 2006; 119
Muslin (10.1016/j.jbiosc.2015.03.006_bib33) 2002; 15
Sinsereekul (10.1016/j.jbiosc.2015.03.006_bib4) 2010; 86
Kleeberg (10.1016/j.jbiosc.2015.03.006_bib5) 2005; 6
Pack (10.1016/j.jbiosc.2015.03.006_bib26) 2004; 111
Dresler (10.1016/j.jbiosc.2015.03.006_bib6) 2006; 29
Kleeberg (10.1016/j.jbiosc.2015.03.006_bib2) 1998; 64
Arpigny (10.1016/j.jbiosc.2015.03.006_bib12) 1999; 343
Arnórsdóttir (10.1016/j.jbiosc.2015.03.006_bib31) 2007; 1774
Chen (10.1016/j.jbiosc.2015.03.006_bib8) 2008; 283
Hu (10.1016/j.jbiosc.2015.03.006_bib9) 2010; 87
Kumar (10.1016/j.jbiosc.2015.03.006_bib25) 2000; 13
Vertommen (10.1016/j.jbiosc.2015.03.006_bib20) 2005; 120
Zhu (10.1016/j.jbiosc.2015.03.006_bib30) 1999; 12
Kawai (10.1016/j.jbiosc.2015.03.006_bib22) 2013
Thumarat (10.1016/j.jbiosc.2015.03.006_bib11) 2012; 95
Bogin (10.1016/j.jbiosc.2015.03.006_bib32) 1998; 7
Herrero-Acero (10.1016/j.jbiosc.2015.03.006_bib10) 2011; 44
Hu (10.1016/j.jbiosc.2015.03.006_bib3) 2008; 16
Shah (10.1016/j.jbiosc.2015.03.006_bib1) 2014; 98
Yang (10.1016/j.jbiosc.2015.03.006_bib7) 2007; 96
Chen (10.1016/j.jbiosc.2015.03.006_bib14) 2013; 31
Laemmli (10.1016/j.jbiosc.2015.03.006_bib16) 1970; 227
Wei (10.1016/j.jbiosc.2015.03.006_bib17) 1988; 6
Chen (10.1016/j.jbiosc.2015.03.006_bib21) 2010; 63
Bustos-Jaimes (10.1016/j.jbiosc.2015.03.006_bib24) 2010; 1804
Lykidis (10.1016/j.jbiosc.2015.03.006_bib18) 2007; 189
Van den Burg (10.1016/j.jbiosc.2015.03.006_bib29) 1998; 95
Sakaguchi (10.1016/j.jbiosc.2015.03.006_bib34) 2007; 141
Acharya (10.1016/j.jbiosc.2015.03.006_bib23) 2004; 341
Xu (10.1016/j.jbiosc.2015.03.006_bib28) 1998; 7
References_xml – start-page: 111
  year: 2013
  end-page: 120
  ident: bib22
  article-title: Comparison of polyester-degrading cutinases from genus
  publication-title: Green polymer chemistry: Biocatalysis and materials II
– volume: 97
  start-page: 771
  year: 2012
  end-page: 775
  ident: bib13
  article-title: Crystal structure of cutinase Est119 from
  publication-title: Polym. Degrad. Stab.
– volume: 1774
  start-page: 749
  year: 2007
  end-page: 755
  ident: bib31
  article-title: Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase
  publication-title: Biochim. Biophys. Acta
– volume: 111
  start-page: 269
  year: 2004
  end-page: 277
  ident: bib26
  article-title: Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins
  publication-title: J. Biotechnol.
– volume: 7
  start-page: 158
  year: 1998
  end-page: 177
  ident: bib28
  article-title: The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect
  publication-title: Protein Sci.
– volume: 119
  start-page: 256
  year: 2006
  end-page: 270
  ident: bib27
  article-title: Effective factors in thermostability of thermophilic proteins
  publication-title: Biophys. Chem.
– volume: 44
  start-page: 4632
  year: 2011
  end-page: 4640
  ident: bib10
  article-title: Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from
  publication-title: Macromolecules
– volume: 98
  start-page: 3437
  year: 2014
  end-page: 3447
  ident: bib1
  article-title: Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 6
  start-page: 511
  year: 1988
  end-page: 519
  ident: bib17
  article-title: Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases:
  publication-title: Structure
– volume: 96
  start-page: 780
  year: 2007
  end-page: 794
  ident: bib7
  article-title: Codon optimized
  publication-title: Biotechnol. Bioeng.
– volume: 189
  start-page: 2477
  year: 2007
  end-page: 2486
  ident: bib18
  article-title: Genome sequence and analysis of the soil cellulolytic actinomycete
  publication-title: J. Bacteriol.
– volume: 87
  start-page: 771
  year: 2010
  end-page: 779
  ident: bib9
  article-title: Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 12
  start-page: 635
  year: 1999
  end-page: 638
  ident: bib30
  article-title: Increasing the thermostability of D-xylose isomerase by introduction of a proline into the turn of a random coil
  publication-title: Protein Eng.
– year: 2001
  ident: bib15
  article-title: Molecular cloning: A laboratory manual
– volume: 15
  start-page: 29
  year: 2002
  end-page: 33
  ident: bib33
  article-title: The effect of proline insertions on the thermostability of a barley alpha-glucosidase
  publication-title: Protein Eng.
– volume: 7
  start-page: 1156
  year: 1998
  end-page: 1163
  ident: bib32
  article-title: Enhanced thermal stability of
  publication-title: Protein Sci.
– volume: 125
  start-page: 97
  year: 2010
  end-page: 120
  ident: bib35
  article-title: Enzymes for the biofunctionalization of poly(ethylene terephthalate)
  publication-title: Adv. Biochem. Eng. Biotechnol.
– volume: 95
  start-page: 419
  year: 2012
  end-page: 430
  ident: bib11
  article-title: Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 29
  start-page: 169
  year: 2006
  end-page: 183
  ident: bib6
  article-title: Production of a recombinant polyester-cleaving hydrolase from
  publication-title: Bioprocess Biosyst. Eng.
– volume: 141
  start-page: 213
  year: 2007
  end-page: 220
  ident: bib34
  article-title: Role of proline residues in conferring thermostability on aqualysin I
  publication-title: J. Biochem.
– volume: 13
  start-page: 179
  year: 2000
  end-page: 191
  ident: bib25
  article-title: Factors enhancing protein thermostability
  publication-title: Protein Eng.
– volume: 16
  start-page: 103
  year: 2008
  end-page: 108
  ident: bib3
  article-title: Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and
  publication-title: J. Polym. Environ.
– volume: 6
  start-page: 262
  year: 2005
  end-page: 270
  ident: bib5
  article-title: Characterization of a new extracellular hydrolase from
  publication-title: Biomacromolecules
– volume: 120
  start-page: 376
  year: 2005
  end-page: 386
  ident: bib20
  article-title: Enzymatic surface modification of poly(ethylene terephthalate)
  publication-title: J. Biotechnol.
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  ident: bib16
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
– volume: 86
  start-page: 1775
  year: 2010
  end-page: 1784
  ident: bib4
  article-title: Recombinant expression of BTA hydrolase in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 5
  start-page: 197
  year: 1992
  end-page: 211
  ident: bib19
  article-title: The α/β hydrolase fold
  publication-title: Protein Eng.
– volume: 283
  start-page: 25854
  year: 2008
  end-page: 25862
  ident: bib8
  article-title: Identification and characterization of bacterial cutinase
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 1754
  year: 2013
  end-page: 1767
  ident: bib14
  article-title: Cutinase: characteristics, preparation and application
  publication-title: Biotechnol. Adv.
– volume: 343
  start-page: 177
  year: 1999
  end-page: 183
  ident: bib12
  article-title: Bacterial lipolytic enzymes: classificationand properties
  publication-title: Biochem. J.
– volume: 64
  start-page: 1731
  year: 1998
  end-page: 1735
  ident: bib2
  article-title: Biodegradation of aliphatic-aromatic copolyester by
  publication-title: Appl. Environ. Microbiol.
– volume: 63
  start-page: 121
  year: 2010
  end-page: 127
  ident: bib21
  article-title: Biochemical characterization of the cutinases from
  publication-title: J. Mol. Catal. B Enzym.
– volume: 95
  start-page: 2056
  year: 1998
  end-page: 2060
  ident: bib29
  article-title: Engineering an enzyme to resist boiling
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 341
  start-page: 1271
  year: 2004
  end-page: 1281
  ident: bib23
  article-title: Structural basis of selection and thermostability of laboratory evolved
  publication-title: J. Mol. Biol.
– volume: 1804
  start-page: 2222
  year: 2010
  end-page: 2227
  ident: bib24
  article-title: Kinetic studies of Gly28:Ser mutant form of
  publication-title: Biochim. Biophys. Acta
– volume: 98
  start-page: 3437
  year: 2014
  ident: 10.1016/j.jbiosc.2015.03.006_bib1
  article-title: Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-5558-1
– volume: 283
  start-page: 25854
  year: 2008
  ident: 10.1016/j.jbiosc.2015.03.006_bib8
  article-title: Identification and characterization of bacterial cutinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800848200
– volume: 7
  start-page: 1156
  year: 1998
  ident: 10.1016/j.jbiosc.2015.03.006_bib32
  article-title: Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560070509
– volume: 343
  start-page: 177
  year: 1999
  ident: 10.1016/j.jbiosc.2015.03.006_bib12
  article-title: Bacterial lipolytic enzymes: classificationand properties
  publication-title: Biochem. J.
  doi: 10.1042/bj3430177
– volume: 15
  start-page: 29
  year: 2002
  ident: 10.1016/j.jbiosc.2015.03.006_bib33
  article-title: The effect of proline insertions on the thermostability of a barley alpha-glucosidase
  publication-title: Protein Eng.
  doi: 10.1093/protein/15.1.29
– volume: 119
  start-page: 256
  year: 2006
  ident: 10.1016/j.jbiosc.2015.03.006_bib27
  article-title: Effective factors in thermostability of thermophilic proteins
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2005.09.018
– volume: 1774
  start-page: 749
  year: 2007
  ident: 10.1016/j.jbiosc.2015.03.006_bib31
  article-title: Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2007.03.015
– volume: 96
  start-page: 780
  year: 2007
  ident: 10.1016/j.jbiosc.2015.03.006_bib7
  article-title: Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21167
– start-page: 111
  year: 2013
  ident: 10.1016/j.jbiosc.2015.03.006_bib22
  article-title: Comparison of polyester-degrading cutinases from genus Thermobifida
– volume: 95
  start-page: 2056
  year: 1998
  ident: 10.1016/j.jbiosc.2015.03.006_bib29
  article-title: Engineering an enzyme to resist boiling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.5.2056
– volume: 16
  start-page: 103
  year: 2008
  ident: 10.1016/j.jbiosc.2015.03.006_bib3
  article-title: Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-008-0088-5
– volume: 5
  start-page: 197
  year: 1992
  ident: 10.1016/j.jbiosc.2015.03.006_bib19
  article-title: The α/β hydrolase fold
  publication-title: Protein Eng.
  doi: 10.1093/protein/5.3.197
– volume: 111
  start-page: 269
  year: 2004
  ident: 10.1016/j.jbiosc.2015.03.006_bib26
  article-title: Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2004.01.018
– year: 2001
  ident: 10.1016/j.jbiosc.2015.03.006_bib15
– volume: 86
  start-page: 1775
  year: 2010
  ident: 10.1016/j.jbiosc.2015.03.006_bib4
  article-title: Recombinant expression of BTA hydrolase in Streptomyces rimosus and catalytic analysis on polyesters by surface plasmone resonance
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2465-y
– volume: 95
  start-page: 419
  year: 2012
  ident: 10.1016/j.jbiosc.2015.03.006_bib11
  article-title: Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3781-6
– volume: 87
  start-page: 771
  year: 2010
  ident: 10.1016/j.jbiosc.2015.03.006_bib9
  article-title: Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2555-x
– volume: 64
  start-page: 1731
  year: 1998
  ident: 10.1016/j.jbiosc.2015.03.006_bib2
  article-title: Biodegradation of aliphatic-aromatic copolyester by Thermomonospora fusca and other thermophillic compost isolates
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.5.1731-1735.1998
– volume: 44
  start-page: 4632
  year: 2011
  ident: 10.1016/j.jbiosc.2015.03.006_bib10
  article-title: Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida
  publication-title: Macromolecules
  doi: 10.1021/ma200949p
– volume: 29
  start-page: 169
  year: 2006
  ident: 10.1016/j.jbiosc.2015.03.006_bib6
  article-title: Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-006-0069-9
– volume: 125
  start-page: 97
  year: 2010
  ident: 10.1016/j.jbiosc.2015.03.006_bib35
  article-title: Enzymes for the biofunctionalization of poly(ethylene terephthalate)
  publication-title: Adv. Biochem. Eng. Biotechnol.
– volume: 97
  start-page: 771
  year: 2012
  ident: 10.1016/j.jbiosc.2015.03.006_bib13
  article-title: Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76_Å resolution
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2012.02.003
– volume: 12
  start-page: 635
  year: 1999
  ident: 10.1016/j.jbiosc.2015.03.006_bib30
  article-title: Increasing the thermostability of D-xylose isomerase by introduction of a proline into the turn of a random coil
  publication-title: Protein Eng.
  doi: 10.1093/protein/12.8.635
– volume: 31
  start-page: 1754
  year: 2013
  ident: 10.1016/j.jbiosc.2015.03.006_bib14
  article-title: Cutinase: characteristics, preparation and application
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.09.005
– volume: 6
  start-page: 511
  year: 1988
  ident: 10.1016/j.jbiosc.2015.03.006_bib17
  article-title: Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 Å resolution
  publication-title: Structure
  doi: 10.1016/S0969-2126(98)00052-5
– volume: 141
  start-page: 213
  year: 2007
  ident: 10.1016/j.jbiosc.2015.03.006_bib34
  article-title: Role of proline residues in conferring thermostability on aqualysin I
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvm025
– volume: 13
  start-page: 179
  year: 2000
  ident: 10.1016/j.jbiosc.2015.03.006_bib25
  article-title: Factors enhancing protein thermostability
  publication-title: Protein Eng.
  doi: 10.1093/protein/13.3.179
– volume: 63
  start-page: 121
  year: 2010
  ident: 10.1016/j.jbiosc.2015.03.006_bib21
  article-title: Biochemical characterization of the cutinases from Thermobifid fusca
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2010.01.001
– volume: 7
  start-page: 158
  year: 1998
  ident: 10.1016/j.jbiosc.2015.03.006_bib28
  article-title: The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560070117
– volume: 227
  start-page: 680
  year: 1970
  ident: 10.1016/j.jbiosc.2015.03.006_bib16
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
  doi: 10.1038/227680a0
– volume: 189
  start-page: 2477
  year: 2007
  ident: 10.1016/j.jbiosc.2015.03.006_bib18
  article-title: Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01899-06
– volume: 120
  start-page: 376
  year: 2005
  ident: 10.1016/j.jbiosc.2015.03.006_bib20
  article-title: Enzymatic surface modification of poly(ethylene terephthalate)
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2005.06.015
– volume: 6
  start-page: 262
  year: 2005
  ident: 10.1016/j.jbiosc.2015.03.006_bib5
  article-title: Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters
  publication-title: Biomacromolecules
  doi: 10.1021/bm049582t
– volume: 1804
  start-page: 2222
  year: 2010
  ident: 10.1016/j.jbiosc.2015.03.006_bib24
  article-title: Kinetic studies of Gly28:Ser mutant form of Bacillus pumilus lipase: changes in kcat and thermal dependence
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2010.09.001
– volume: 341
  start-page: 1271
  year: 2004
  ident: 10.1016/j.jbiosc.2015.03.006_bib23
  article-title: Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.06.059
SSID ssj0017071
Score 2.3453407
Snippet This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 491
SubjectTerms Actinomycetales - enzymology
Actinomycetales - genetics
Amino Acid Sequence
butyrates
Butyrates - metabolism
Ca-activated cutinase
calcium
Calcium - pharmacology
Carboxylic Ester Hydrolases - chemistry
Carboxylic Ester Hydrolases - genetics
Carboxylic Ester Hydrolases - metabolism
Conserved Sequence
conserved sequences
cutinase
Cutinase-type polyesterase
Enzyme Stability - drug effects
ethylene glycol
gene expression
genes
Genes, Bacterial - genetics
Hydrolysis
lysine
Molecular Sequence Data
mutants
PET surface hydrolysis
polyesters
Polyesters - chemistry
Polyesters - metabolism
proline
sequence analysis
Substrate Specificity
Tandem genes regulation
Temperature
thermal stability
Thermobifida alba
Thermobifida alba AHK119
Thermostable cutinase
valine
Title Comparison of genetic structures and biochemical properties of tandem cutinase-type polyesterases from Thermobifida alba AHK119
URI https://dx.doi.org/10.1016/j.jbiosc.2015.03.006
https://www.ncbi.nlm.nih.gov/pubmed/25910960
https://www.proquest.com/docview/1721917539
https://www.proquest.com/docview/2000184104
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhodBLadqk3eaBCr0qa0W2LB2XJWHbpTm0Ddmb0MvgsLGXbHLIpf3rmbHshRyWQE_GRgNCM9bMJ818Q8i3PHecy8BZwCwHJOhiVonAAElo5IdTUWPt8M8rObvOfyyKxQ6ZDrUwmFbZ7_1pT-926_7LuF_N8aqux7-7K7YS4pOia_O4wAr2vEQrP_u7SfPgZdaDLqUZjh7K57ocr1tXt2skMuRFojqV29zTtvCzc0OX78m7Pn6kkzTFfbITmw_kTeoo-fSR_Jtu-grStqJgHVikSBNL7CNAa2qbQGE-vicKoCs8jb9HWlUUwIOFeEc9mGMD_o3hCS1dtcunjlABvqwpFqRQsK77u9bVVR0stUtn6WQ251wfkOvLiz_TGet7LDBfFOqBRSucB-8FYUFwykoRQKUQRHoVpPNKCC4r0LOSFrydrEKl-XlWlsFGb13lMnFIdpu2iZ8Jrc6rGEqfa251roSymfIg7YIEiJfLOCJiWFrjewJy7IOxNEOm2a1JCjGoEJMJAwoZEbaRWiUCjlfGl4PWzAtDMuAjXpH8OijZwD-GFye2ie3j2iBM1khpqrePwZInQMuAbkfkU7KQzXwBYnKEil_-e25H5C2-pSLIY7ILVhNPIBp6cKeduZ-Svcn3-ewKn_NfN_Nn_GcMrQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoqCqXqhRot4XWlbi6G-PEsY9oBVrK41KQ9mb5FSloSVYsHLjQv96ZOFmphxVSr45Hsjxjz3zOzDeEHOW541wGzgJmOSBBF7NKBAZIQiM_nIoaa4evruX0Nv81K2YbZDLUwmBaZX_3pzu9u637kXG_m-NFXY9_d7_YSohPiq7N4-wN2crh-GIbg58vqzwPXmY96lKa4fShfq5L8rpzdbtEJkNeJK5Tuc4_rYs_Oz909oG87wNIepLWuEM2YvORvE0tJZ93yZ_JqrEgbSsK5oFVijTRxD4Btqa2CRTW43umALrA5_gH5FVFAXxZiPfUgz024OAYPtHSRTt_7hgVYGRJsSKFgnk93LeurupgqZ07S0-mF5zrPXJ7dnozmbK-yQLzRaEeWbTCeXBfEBcEp6wUAXQKUaRXQTqvhOCyAkUracHdySpUmh9nZRls9NZVLhP7ZLNpm_iZ0Oq4iqH0ueZW50oomykP0i5IwHi5jCMihq01vmcgx0YYczOkmt2ZpBCDCjGZMKCQEWErqUVi4HhlfjlozfxjSQacxCuSPwYlGzhk-OfENrF9WhrEyRo5TfX6OVjzBHAZ4O2IfEoWslovYEyOWPHLf6_tO3k3vbm6NJfn1xdfyTZ-SRWRB2QTLCgeQmj06L51pv8XmgEMmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+genetic+structures+and+biochemical+properties+of+tandem+cutinase-type+polyesterases+from+Thermobifida+alba+AHK119&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Thumarat%2C+Uschara&rft.au=Kawabata%2C+Takeshi&rft.au=Nakajima%2C+Maho&rft.au=Nakajima%2C+Hajime&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=1389-1723&rft.eissn=1347-4421&rft.volume=120&rft.issue=5&rft.spage=491&rft.epage=497&rft_id=info:doi/10.1016%2Fj.jbiosc.2015.03.006&rft.externalDocID=S138917231500105X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon