Comparison of genetic structures and biochemical properties of tandem cutinase-type polyesterases from Thermobifida alba AHK119
This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by app...
Saved in:
Published in | Journal of bioscience and bioengineering Vol. 120; no. 5; pp. 491 - 497 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Elsevier B.V
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6–1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol. |
---|---|
AbstractList | This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6-1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol. This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6-1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol.This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6-1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol. This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild type and mutant enzymes of Est1 and Est119. Two genes were independently and constitutively expressed. The activity of Est1 was higher by approximately 1.6–1.7-fold than that of Est119 towards p-nitrophenyl butyrate, although both enzymes shared 95% sequence identity and 98% similarity and possessed similar 3D structures except that several amino acids in the probable substrate-docking loops were different from each other. Calcium ion enhanced the activity and the thermostability of both enzymes. Based on conserved sequences among Thermobifida cutinases, valine, proline and lysine were introduced into Est1 at Ala68, Thr253 and Met256, respectively. Among wild and mutant enzymes of Est119 and Est1, Est1 (A68V/T253P) possessed three prolines in the substrate-docking loops and displayed the highest thermostability that spotlighted the important effect of proline numbers in the loops. Est1 (A68V/T253P) was stable for 1 h below 60°C and even at 65°C, more than 70% and 50% activities were maintained after 30 and 60 min, respectively. Est1 (A68V/T253P) degraded various aliphatic and aliphatic-co-aromatic polyesters and hydrophilized an amorphous PET film. The enzyme hydrolyzed a PET trimer model compound, indicating its specificity towards an ester bond between terephthalic acid and ethylene glycol. |
Author | Waku, Tomonori Kawai, Fusako Kawabata, Takeshi Thumarat, Uschara Tanaka, Naoki Sugiyama, Akifumi Nakajima, Hajime Yazaki, Kazufumi Tada, Tomoko Nakajima, Maho |
Author_xml | – sequence: 1 givenname: Uschara surname: Thumarat fullname: Thumarat, Uschara organization: Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand – sequence: 2 givenname: Takeshi surname: Kawabata fullname: Kawabata, Takeshi organization: Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan – sequence: 3 givenname: Maho surname: Nakajima fullname: Nakajima, Maho organization: Department of Materials and Life Science, Graduate School of Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan – sequence: 4 givenname: Hajime surname: Nakajima fullname: Nakajima, Hajime organization: Center for Fiber and Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan – sequence: 5 givenname: Akifumi surname: Sugiyama fullname: Sugiyama, Akifumi organization: Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji City, Kyoto Prefecture 611-0011, Japan – sequence: 6 givenname: Kazufumi surname: Yazaki fullname: Yazaki, Kazufumi organization: Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji City, Kyoto Prefecture 611-0011, Japan – sequence: 7 givenname: Tomoko surname: Tada fullname: Tada, Tomoko organization: Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan – sequence: 8 givenname: Tomonori surname: Waku fullname: Waku, Tomonori organization: Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan – sequence: 9 givenname: Naoki surname: Tanaka fullname: Tanaka, Naoki organization: Department of Biomolecular Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan – sequence: 10 givenname: Fusako surname: Kawai fullname: Kawai, Fusako email: fkawai@kit.ac.jp organization: Center for Fiber and Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25910960$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQhS1URB_wDxDykk3CTJwnC6TqCiiiEpuytvyYUF8lcbCdSnfFX8dXt7BgQVdjzXxnPDrnkp0tfiHGXiOUCNi-25d77Xw0ZQXYlCBKgPYZu0BRd0VdV3h2fPdDgV0lztlljHsA7KDDF-y8agaEoYUL9mvn51UFF_3C_ch_0ELJGR5T2EzaAkWuFsvzR-aeZmfUxNfgVwrJ5VEWpDymmZstuUVFKtJhJb766UAxUcidyMfgZ353T2H22o3OKq4mrfj1zVfE4SV7Pqop0qvHesW-f_p4t7spbr99_rK7vi1M0_SpICW0wUoMgFb3qhXWGNUDmN622vRCYDuSpr5VNYp2tOOAFXSdVWSUHjWIK_b2tDef_3PLx8nZRUPTpBbyW5QVZHf6GqF-Es2G4oBdI4aMvnlENz2TlWtwswoH-cffDNQnwAQfY6DxL4IgjzHKvTzFKI8xShAyx5hl7_-RGZdUcn5JQbnpKfGHk5iynw-OgozG0WLIukAmSevd_xf8BvXLvSs |
CitedBy_id | crossref_primary_10_1016_j_bbapap_2019_140315 crossref_primary_10_1016_j_jece_2023_110092 crossref_primary_10_1016_j_ijbiomac_2023_127656 crossref_primary_10_1002_smll_202305094 crossref_primary_10_1016_j_cec_2024_100077 crossref_primary_10_1186_s13068_017_0912_z crossref_primary_10_1007_s00289_023_04838_x crossref_primary_10_1007_s00253_019_09717_y crossref_primary_10_1016_j_jhazmat_2022_129941 crossref_primary_10_1016_j_jbiotec_2021_09_007 crossref_primary_10_4236_abb_2018_98025 crossref_primary_10_1007_s00253_016_7992_8 crossref_primary_10_1007_s10973_018_7447_9 crossref_primary_10_1016_j_polymdegradstab_2016_10_012 crossref_primary_10_1016_j_tibtech_2021_02_008 crossref_primary_10_1016_j_jclepro_2023_140088 crossref_primary_10_1186_s13568_022_01474_y crossref_primary_10_1021_acssuschemeng_0c01638 crossref_primary_10_3389_fmicb_2020_571265 crossref_primary_10_3390_catal15020147 crossref_primary_10_1016_j_jbiosc_2017_02_007 crossref_primary_10_1039_D2RA00612J crossref_primary_10_3389_fmicb_2023_1265139 crossref_primary_10_1016_j_polymdegradstab_2019_04_003 crossref_primary_10_1039_D4RA00844H crossref_primary_10_3390_catal8120612 crossref_primary_10_1021_acs_chemrev_2c00644 crossref_primary_10_3390_ijms222011257 crossref_primary_10_1002_cssc_202100740 crossref_primary_10_33043_FF_8_1_86_99 crossref_primary_10_1038_s41467_023_37415_x crossref_primary_10_1680_jenes_22_00088 crossref_primary_10_3389_fbioe_2022_930140 crossref_primary_10_1038_s41467_020_19583_2 crossref_primary_10_1002_cssc_202401759 crossref_primary_10_1080_07391102_2024_2440646 crossref_primary_10_3390_catal14080543 crossref_primary_10_3390_catal11020206 crossref_primary_10_1016_j_polymdegradstab_2017_01_006 crossref_primary_10_1016_j_wasman_2025_01_040 crossref_primary_10_1007_s10311_024_01714_6 crossref_primary_10_1002_cssc_202101062 crossref_primary_10_3389_fmicb_2022_888343 crossref_primary_10_1016_j_polymdegradstab_2021_109481 crossref_primary_10_4236_abb_2018_95015 crossref_primary_10_1002_jctb_6745 crossref_primary_10_1186_s44316_024_00011_0 crossref_primary_10_1016_j_marpolbul_2024_116261 |
Cites_doi | 10.1007/s00253-014-5558-1 10.1074/jbc.M800848200 10.1002/pro.5560070509 10.1042/bj3430177 10.1093/protein/15.1.29 10.1016/j.bpc.2005.09.018 10.1016/j.bbapap.2007.03.015 10.1002/bit.21167 10.1073/pnas.95.5.2056 10.1007/s10924-008-0088-5 10.1093/protein/5.3.197 10.1016/j.jbiotec.2004.01.018 10.1007/s00253-010-2465-y 10.1007/s00253-011-3781-6 10.1007/s00253-010-2555-x 10.1128/AEM.64.5.1731-1735.1998 10.1021/ma200949p 10.1007/s00449-006-0069-9 10.1016/j.polymdegradstab.2012.02.003 10.1093/protein/12.8.635 10.1016/j.biotechadv.2013.09.005 10.1016/S0969-2126(98)00052-5 10.1093/jb/mvm025 10.1093/protein/13.3.179 10.1016/j.molcatb.2010.01.001 10.1002/pro.5560070117 10.1038/227680a0 10.1128/JB.01899-06 10.1016/j.jbiotec.2005.06.015 10.1021/bm049582t 10.1016/j.bbapap.2010.09.001 10.1016/j.jmb.2004.06.059 |
ContentType | Journal Article |
Copyright | 2015 The Society for Biotechnology, Japan Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 The Society for Biotechnology, Japan – notice: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jbiosc.2015.03.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1347-4421 |
EndPage | 497 |
ExternalDocumentID | 25910960 10_1016_j_jbiosc_2015_03_006 S138917231500105X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29K 2WC 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CJTIS CS3 D-I DOVZS DU5 E3Z EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TKC TR2 UNMZH XFK Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c558t-ea3bc123901db8a63dcca800c8d6bc83316febe86a4136fdf912077daecabfb03 |
IEDL.DBID | .~1 |
ISSN | 1389-1723 1347-4421 |
IngestDate | Mon Jul 21 09:50:33 EDT 2025 Fri Jul 11 09:06:55 EDT 2025 Mon Jul 21 06:01:42 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Tue Jul 01 02:45:27 EDT 2025 Fri Feb 23 02:24:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Thermostable cutinase Thermobifida alba AHK119 PET surface hydrolysis Ca-activated cutinase Cutinase-type polyesterase Tandem genes regulation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-ea3bc123901db8a63dcca800c8d6bc83316febe86a4136fdf912077daecabfb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25910960 |
PQID | 1721917539 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000184104 proquest_miscellaneous_1721917539 pubmed_primary_25910960 crossref_primary_10_1016_j_jbiosc_2015_03_006 crossref_citationtrail_10_1016_j_jbiosc_2015_03_006 elsevier_sciencedirect_doi_10_1016_j_jbiosc_2015_03_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of bioscience and bioengineering |
PublicationTitleAlternate | J Biosci Bioeng |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhu, Xu, Teng, Tao, Zhu, Wu, Hang, Niu, Wang (bib30) 1999; 12 Kleeberg, Hetz, Kroppenstedt, Müller, Deckwer (bib2) 1998; 64 Thumarat, Nakamura, Kawabata, Suzuki, Kawai (bib11) 2012; 95 Sadeghi, Nader-Manesh, Zarrabi, Ranjbar (bib27) 2006; 119 Herrero-Acero, Ribitsch, Steinkellner, Gruber, Greimel, Eiteljoerg, Trotscha, Wei, Zimmermann, Zinn, other 4 authors (bib10) 2011; 44 Sinsereekul, Wangkam, Thamchaipenet, Srikhirin, Eurwilaichitr, Champreda (bib4) 2010; 86 Wei, Swenson, Castro, Derewenda, Minor, Arai, Aoki, Inoue, Servin-Gonzalez, Derewenda (bib17) 1988; 6 Arnórsdóttir, Helgadóttir, Thorbjarnardóttir, Eggertsson, Kristjánsson (bib31) 2007; 1774 Shah, Kato, Shintani, Kamini, Nakajima-Kambe (bib1) 2014; 98 Dresler, Heuvel, Müller, Deckwer (bib6) 2006; 29 Sakaguchi, Matsuzaki, Niimiya, Seino, Sugahara, Kawakita (bib34) 2007; 141 Bogin, Peretz, Hacham, Korkhin, Frolow, Kalb(Gilboa), Burstein (bib32) 1998; 7 Chen, Su, Billig, Zimmermann, Chen, Wu (bib21) 2010; 63 Kumar, Tsai, Nussinov (bib25) 2000; 13 Kitadokoro, Thumarat, Nakamura, Nishimura, Karatani, Suzuki, Kawai (bib13) 2012; 97 Yang, Malten, Grote, Jahn, Deckwer (bib7) 2007; 96 Pack, Yoo (bib26) 2004; 111 Van den Burg, Vriend, Veltman, Venema, Eijsink (bib29) 1998; 95 Chen, Tong, Woodard, Du, Wu, Chen (bib8) 2008; 283 Kawai, Thumarat, Kitadokoro, Waku, Tada, Tanaka, Kawabata (bib22) 2013 Arpigny, Jäger (bib12) 1999; 343 Muslin, Clark, Henson (bib33) 2002; 15 Acharya, Rajakumara, Sankaranarayanan, Rao (bib23) 2004; 341 Laemmli (bib16) 1970; 227 Hu, Thumarat, Zhang, Tang, Kawai (bib9) 2010; 87 Chen, Chen, Wu (bib14) 2013; 31 Sambrook, Russell (bib15) 2001 Xu, Baase, Baldwin, Matthews (bib28) 1998; 7 Hu, Osaki, Hayashi, Kaku, Katuen, Kobayashi, Kawai (bib3) 2008; 16 Kleeberg, Welzel, VandenHeuvel, Müller, Deckwer (bib5) 2005; 6 Zimmermann, Billig (bib35) 2010; 125 Bustos-Jaimes, Mora-Lugo, Calcagno, Farrés (bib24) 2010; 1804 Lykidis, Mavromatis, Ivanova, Anderson, Land, DiBartolo, Martinez, Lapidus, Lucas, Copeland, other 3 authors (bib18) 2007; 189 Ollis, Cheahm, Cygler, Dijkstra, Frolow, Franken, Harel, Remington, Silman, Schrag, other three authors (bib19) 1992; 5 Vertommen, Nierstrasz, van der Veer, Warmoeskerken (bib20) 2005; 120 Ollis (10.1016/j.jbiosc.2015.03.006_bib19) 1992; 5 Kitadokoro (10.1016/j.jbiosc.2015.03.006_bib13) 2012; 97 Zimmermann (10.1016/j.jbiosc.2015.03.006_bib35) 2010; 125 Sambrook (10.1016/j.jbiosc.2015.03.006_bib15) 2001 Sadeghi (10.1016/j.jbiosc.2015.03.006_bib27) 2006; 119 Muslin (10.1016/j.jbiosc.2015.03.006_bib33) 2002; 15 Sinsereekul (10.1016/j.jbiosc.2015.03.006_bib4) 2010; 86 Kleeberg (10.1016/j.jbiosc.2015.03.006_bib5) 2005; 6 Pack (10.1016/j.jbiosc.2015.03.006_bib26) 2004; 111 Dresler (10.1016/j.jbiosc.2015.03.006_bib6) 2006; 29 Kleeberg (10.1016/j.jbiosc.2015.03.006_bib2) 1998; 64 Arpigny (10.1016/j.jbiosc.2015.03.006_bib12) 1999; 343 Arnórsdóttir (10.1016/j.jbiosc.2015.03.006_bib31) 2007; 1774 Chen (10.1016/j.jbiosc.2015.03.006_bib8) 2008; 283 Hu (10.1016/j.jbiosc.2015.03.006_bib9) 2010; 87 Kumar (10.1016/j.jbiosc.2015.03.006_bib25) 2000; 13 Vertommen (10.1016/j.jbiosc.2015.03.006_bib20) 2005; 120 Zhu (10.1016/j.jbiosc.2015.03.006_bib30) 1999; 12 Kawai (10.1016/j.jbiosc.2015.03.006_bib22) 2013 Thumarat (10.1016/j.jbiosc.2015.03.006_bib11) 2012; 95 Bogin (10.1016/j.jbiosc.2015.03.006_bib32) 1998; 7 Herrero-Acero (10.1016/j.jbiosc.2015.03.006_bib10) 2011; 44 Hu (10.1016/j.jbiosc.2015.03.006_bib3) 2008; 16 Shah (10.1016/j.jbiosc.2015.03.006_bib1) 2014; 98 Yang (10.1016/j.jbiosc.2015.03.006_bib7) 2007; 96 Chen (10.1016/j.jbiosc.2015.03.006_bib14) 2013; 31 Laemmli (10.1016/j.jbiosc.2015.03.006_bib16) 1970; 227 Wei (10.1016/j.jbiosc.2015.03.006_bib17) 1988; 6 Chen (10.1016/j.jbiosc.2015.03.006_bib21) 2010; 63 Bustos-Jaimes (10.1016/j.jbiosc.2015.03.006_bib24) 2010; 1804 Lykidis (10.1016/j.jbiosc.2015.03.006_bib18) 2007; 189 Van den Burg (10.1016/j.jbiosc.2015.03.006_bib29) 1998; 95 Sakaguchi (10.1016/j.jbiosc.2015.03.006_bib34) 2007; 141 Acharya (10.1016/j.jbiosc.2015.03.006_bib23) 2004; 341 Xu (10.1016/j.jbiosc.2015.03.006_bib28) 1998; 7 |
References_xml | – start-page: 111 year: 2013 end-page: 120 ident: bib22 article-title: Comparison of polyester-degrading cutinases from genus publication-title: Green polymer chemistry: Biocatalysis and materials II – volume: 97 start-page: 771 year: 2012 end-page: 775 ident: bib13 article-title: Crystal structure of cutinase Est119 from publication-title: Polym. Degrad. Stab. – volume: 1774 start-page: 749 year: 2007 end-page: 755 ident: bib31 article-title: Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase publication-title: Biochim. Biophys. Acta – volume: 111 start-page: 269 year: 2004 end-page: 277 ident: bib26 article-title: Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins publication-title: J. Biotechnol. – volume: 7 start-page: 158 year: 1998 end-page: 177 ident: bib28 article-title: The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect publication-title: Protein Sci. – volume: 119 start-page: 256 year: 2006 end-page: 270 ident: bib27 article-title: Effective factors in thermostability of thermophilic proteins publication-title: Biophys. Chem. – volume: 44 start-page: 4632 year: 2011 end-page: 4640 ident: bib10 article-title: Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from publication-title: Macromolecules – volume: 98 start-page: 3437 year: 2014 end-page: 3447 ident: bib1 article-title: Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters publication-title: Appl. Microbiol. Biotechnol. – volume: 6 start-page: 511 year: 1988 end-page: 519 ident: bib17 article-title: Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: publication-title: Structure – volume: 96 start-page: 780 year: 2007 end-page: 794 ident: bib7 article-title: Codon optimized publication-title: Biotechnol. Bioeng. – volume: 189 start-page: 2477 year: 2007 end-page: 2486 ident: bib18 article-title: Genome sequence and analysis of the soil cellulolytic actinomycete publication-title: J. Bacteriol. – volume: 87 start-page: 771 year: 2010 end-page: 779 ident: bib9 article-title: Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from publication-title: Appl. Microbiol. Biotechnol. – volume: 12 start-page: 635 year: 1999 end-page: 638 ident: bib30 article-title: Increasing the thermostability of D-xylose isomerase by introduction of a proline into the turn of a random coil publication-title: Protein Eng. – year: 2001 ident: bib15 article-title: Molecular cloning: A laboratory manual – volume: 15 start-page: 29 year: 2002 end-page: 33 ident: bib33 article-title: The effect of proline insertions on the thermostability of a barley alpha-glucosidase publication-title: Protein Eng. – volume: 7 start-page: 1156 year: 1998 end-page: 1163 ident: bib32 article-title: Enhanced thermal stability of publication-title: Protein Sci. – volume: 125 start-page: 97 year: 2010 end-page: 120 ident: bib35 article-title: Enzymes for the biofunctionalization of poly(ethylene terephthalate) publication-title: Adv. Biochem. Eng. Biotechnol. – volume: 95 start-page: 419 year: 2012 end-page: 430 ident: bib11 article-title: Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic publication-title: Appl. Microbiol. Biotechnol. – volume: 29 start-page: 169 year: 2006 end-page: 183 ident: bib6 article-title: Production of a recombinant polyester-cleaving hydrolase from publication-title: Bioprocess Biosyst. Eng. – volume: 141 start-page: 213 year: 2007 end-page: 220 ident: bib34 article-title: Role of proline residues in conferring thermostability on aqualysin I publication-title: J. Biochem. – volume: 13 start-page: 179 year: 2000 end-page: 191 ident: bib25 article-title: Factors enhancing protein thermostability publication-title: Protein Eng. – volume: 16 start-page: 103 year: 2008 end-page: 108 ident: bib3 article-title: Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and publication-title: J. Polym. Environ. – volume: 6 start-page: 262 year: 2005 end-page: 270 ident: bib5 article-title: Characterization of a new extracellular hydrolase from publication-title: Biomacromolecules – volume: 120 start-page: 376 year: 2005 end-page: 386 ident: bib20 article-title: Enzymatic surface modification of poly(ethylene terephthalate) publication-title: J. Biotechnol. – volume: 227 start-page: 680 year: 1970 end-page: 685 ident: bib16 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature – volume: 86 start-page: 1775 year: 2010 end-page: 1784 ident: bib4 article-title: Recombinant expression of BTA hydrolase in publication-title: Appl. Microbiol. Biotechnol. – volume: 5 start-page: 197 year: 1992 end-page: 211 ident: bib19 article-title: The α/β hydrolase fold publication-title: Protein Eng. – volume: 283 start-page: 25854 year: 2008 end-page: 25862 ident: bib8 article-title: Identification and characterization of bacterial cutinase publication-title: J. Biol. Chem. – volume: 31 start-page: 1754 year: 2013 end-page: 1767 ident: bib14 article-title: Cutinase: characteristics, preparation and application publication-title: Biotechnol. Adv. – volume: 343 start-page: 177 year: 1999 end-page: 183 ident: bib12 article-title: Bacterial lipolytic enzymes: classificationand properties publication-title: Biochem. J. – volume: 64 start-page: 1731 year: 1998 end-page: 1735 ident: bib2 article-title: Biodegradation of aliphatic-aromatic copolyester by publication-title: Appl. Environ. Microbiol. – volume: 63 start-page: 121 year: 2010 end-page: 127 ident: bib21 article-title: Biochemical characterization of the cutinases from publication-title: J. Mol. Catal. B Enzym. – volume: 95 start-page: 2056 year: 1998 end-page: 2060 ident: bib29 article-title: Engineering an enzyme to resist boiling publication-title: Proc. Natl. Acad. Sci. USA – volume: 341 start-page: 1271 year: 2004 end-page: 1281 ident: bib23 article-title: Structural basis of selection and thermostability of laboratory evolved publication-title: J. Mol. Biol. – volume: 1804 start-page: 2222 year: 2010 end-page: 2227 ident: bib24 article-title: Kinetic studies of Gly28:Ser mutant form of publication-title: Biochim. Biophys. Acta – volume: 98 start-page: 3437 year: 2014 ident: 10.1016/j.jbiosc.2015.03.006_bib1 article-title: Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-5558-1 – volume: 283 start-page: 25854 year: 2008 ident: 10.1016/j.jbiosc.2015.03.006_bib8 article-title: Identification and characterization of bacterial cutinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800848200 – volume: 7 start-page: 1156 year: 1998 ident: 10.1016/j.jbiosc.2015.03.006_bib32 article-title: Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase publication-title: Protein Sci. doi: 10.1002/pro.5560070509 – volume: 343 start-page: 177 year: 1999 ident: 10.1016/j.jbiosc.2015.03.006_bib12 article-title: Bacterial lipolytic enzymes: classificationand properties publication-title: Biochem. J. doi: 10.1042/bj3430177 – volume: 15 start-page: 29 year: 2002 ident: 10.1016/j.jbiosc.2015.03.006_bib33 article-title: The effect of proline insertions on the thermostability of a barley alpha-glucosidase publication-title: Protein Eng. doi: 10.1093/protein/15.1.29 – volume: 119 start-page: 256 year: 2006 ident: 10.1016/j.jbiosc.2015.03.006_bib27 article-title: Effective factors in thermostability of thermophilic proteins publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2005.09.018 – volume: 1774 start-page: 749 year: 2007 ident: 10.1016/j.jbiosc.2015.03.006_bib31 article-title: Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2007.03.015 – volume: 96 start-page: 780 year: 2007 ident: 10.1016/j.jbiosc.2015.03.006_bib7 article-title: Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21167 – start-page: 111 year: 2013 ident: 10.1016/j.jbiosc.2015.03.006_bib22 article-title: Comparison of polyester-degrading cutinases from genus Thermobifida – volume: 95 start-page: 2056 year: 1998 ident: 10.1016/j.jbiosc.2015.03.006_bib29 article-title: Engineering an enzyme to resist boiling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.5.2056 – volume: 16 start-page: 103 year: 2008 ident: 10.1016/j.jbiosc.2015.03.006_bib3 article-title: Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts publication-title: J. Polym. Environ. doi: 10.1007/s10924-008-0088-5 – volume: 5 start-page: 197 year: 1992 ident: 10.1016/j.jbiosc.2015.03.006_bib19 article-title: The α/β hydrolase fold publication-title: Protein Eng. doi: 10.1093/protein/5.3.197 – volume: 111 start-page: 269 year: 2004 ident: 10.1016/j.jbiosc.2015.03.006_bib26 article-title: Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2004.01.018 – year: 2001 ident: 10.1016/j.jbiosc.2015.03.006_bib15 – volume: 86 start-page: 1775 year: 2010 ident: 10.1016/j.jbiosc.2015.03.006_bib4 article-title: Recombinant expression of BTA hydrolase in Streptomyces rimosus and catalytic analysis on polyesters by surface plasmone resonance publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2465-y – volume: 95 start-page: 419 year: 2012 ident: 10.1016/j.jbiosc.2015.03.006_bib11 article-title: Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3781-6 – volume: 87 start-page: 771 year: 2010 ident: 10.1016/j.jbiosc.2015.03.006_bib9 article-title: Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2555-x – volume: 64 start-page: 1731 year: 1998 ident: 10.1016/j.jbiosc.2015.03.006_bib2 article-title: Biodegradation of aliphatic-aromatic copolyester by Thermomonospora fusca and other thermophillic compost isolates publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.5.1731-1735.1998 – volume: 44 start-page: 4632 year: 2011 ident: 10.1016/j.jbiosc.2015.03.006_bib10 article-title: Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida publication-title: Macromolecules doi: 10.1021/ma200949p – volume: 29 start-page: 169 year: 2006 ident: 10.1016/j.jbiosc.2015.03.006_bib6 article-title: Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-006-0069-9 – volume: 125 start-page: 97 year: 2010 ident: 10.1016/j.jbiosc.2015.03.006_bib35 article-title: Enzymes for the biofunctionalization of poly(ethylene terephthalate) publication-title: Adv. Biochem. Eng. Biotechnol. – volume: 97 start-page: 771 year: 2012 ident: 10.1016/j.jbiosc.2015.03.006_bib13 article-title: Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76_Å resolution publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2012.02.003 – volume: 12 start-page: 635 year: 1999 ident: 10.1016/j.jbiosc.2015.03.006_bib30 article-title: Increasing the thermostability of D-xylose isomerase by introduction of a proline into the turn of a random coil publication-title: Protein Eng. doi: 10.1093/protein/12.8.635 – volume: 31 start-page: 1754 year: 2013 ident: 10.1016/j.jbiosc.2015.03.006_bib14 article-title: Cutinase: characteristics, preparation and application publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.09.005 – volume: 6 start-page: 511 year: 1988 ident: 10.1016/j.jbiosc.2015.03.006_bib17 article-title: Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 Å resolution publication-title: Structure doi: 10.1016/S0969-2126(98)00052-5 – volume: 141 start-page: 213 year: 2007 ident: 10.1016/j.jbiosc.2015.03.006_bib34 article-title: Role of proline residues in conferring thermostability on aqualysin I publication-title: J. Biochem. doi: 10.1093/jb/mvm025 – volume: 13 start-page: 179 year: 2000 ident: 10.1016/j.jbiosc.2015.03.006_bib25 article-title: Factors enhancing protein thermostability publication-title: Protein Eng. doi: 10.1093/protein/13.3.179 – volume: 63 start-page: 121 year: 2010 ident: 10.1016/j.jbiosc.2015.03.006_bib21 article-title: Biochemical characterization of the cutinases from Thermobifid fusca publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2010.01.001 – volume: 7 start-page: 158 year: 1998 ident: 10.1016/j.jbiosc.2015.03.006_bib28 article-title: The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect publication-title: Protein Sci. doi: 10.1002/pro.5560070117 – volume: 227 start-page: 680 year: 1970 ident: 10.1016/j.jbiosc.2015.03.006_bib16 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature doi: 10.1038/227680a0 – volume: 189 start-page: 2477 year: 2007 ident: 10.1016/j.jbiosc.2015.03.006_bib18 article-title: Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX publication-title: J. Bacteriol. doi: 10.1128/JB.01899-06 – volume: 120 start-page: 376 year: 2005 ident: 10.1016/j.jbiosc.2015.03.006_bib20 article-title: Enzymatic surface modification of poly(ethylene terephthalate) publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2005.06.015 – volume: 6 start-page: 262 year: 2005 ident: 10.1016/j.jbiosc.2015.03.006_bib5 article-title: Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters publication-title: Biomacromolecules doi: 10.1021/bm049582t – volume: 1804 start-page: 2222 year: 2010 ident: 10.1016/j.jbiosc.2015.03.006_bib24 article-title: Kinetic studies of Gly28:Ser mutant form of Bacillus pumilus lipase: changes in kcat and thermal dependence publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2010.09.001 – volume: 341 start-page: 1271 year: 2004 ident: 10.1016/j.jbiosc.2015.03.006_bib23 article-title: Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.06.059 |
SSID | ssj0017071 |
Score | 2.3453407 |
Snippet | This study described the genetic map of tandem genes (est1 and est119) encoding cutinase-type polyesterases in Thermobifida alba AHK119 and comparison of wild... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 491 |
SubjectTerms | Actinomycetales - enzymology Actinomycetales - genetics Amino Acid Sequence butyrates Butyrates - metabolism Ca-activated cutinase calcium Calcium - pharmacology Carboxylic Ester Hydrolases - chemistry Carboxylic Ester Hydrolases - genetics Carboxylic Ester Hydrolases - metabolism Conserved Sequence conserved sequences cutinase Cutinase-type polyesterase Enzyme Stability - drug effects ethylene glycol gene expression genes Genes, Bacterial - genetics Hydrolysis lysine Molecular Sequence Data mutants PET surface hydrolysis polyesters Polyesters - chemistry Polyesters - metabolism proline sequence analysis Substrate Specificity Tandem genes regulation Temperature thermal stability Thermobifida alba Thermobifida alba AHK119 Thermostable cutinase valine |
Title | Comparison of genetic structures and biochemical properties of tandem cutinase-type polyesterases from Thermobifida alba AHK119 |
URI | https://dx.doi.org/10.1016/j.jbiosc.2015.03.006 https://www.ncbi.nlm.nih.gov/pubmed/25910960 https://www.proquest.com/docview/1721917539 https://www.proquest.com/docview/2000184104 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhodBLadqk3eaBCr0qa0W2LB2XJWHbpTm0Ddmb0MvgsLGXbHLIpf3rmbHshRyWQE_GRgNCM9bMJ818Q8i3PHecy8BZwCwHJOhiVonAAElo5IdTUWPt8M8rObvOfyyKxQ6ZDrUwmFbZ7_1pT-926_7LuF_N8aqux7-7K7YS4pOia_O4wAr2vEQrP_u7SfPgZdaDLqUZjh7K57ocr1tXt2skMuRFojqV29zTtvCzc0OX78m7Pn6kkzTFfbITmw_kTeoo-fSR_Jtu-grStqJgHVikSBNL7CNAa2qbQGE-vicKoCs8jb9HWlUUwIOFeEc9mGMD_o3hCS1dtcunjlABvqwpFqRQsK77u9bVVR0stUtn6WQ251wfkOvLiz_TGet7LDBfFOqBRSucB-8FYUFwykoRQKUQRHoVpPNKCC4r0LOSFrydrEKl-XlWlsFGb13lMnFIdpu2iZ8Jrc6rGEqfa251roSymfIg7YIEiJfLOCJiWFrjewJy7IOxNEOm2a1JCjGoEJMJAwoZEbaRWiUCjlfGl4PWzAtDMuAjXpH8OijZwD-GFye2ie3j2iBM1khpqrePwZInQMuAbkfkU7KQzXwBYnKEil_-e25H5C2-pSLIY7ILVhNPIBp6cKeduZ-Svcn3-ewKn_NfN_Nn_GcMrQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoqCqXqhRot4XWlbi6G-PEsY9oBVrK41KQ9mb5FSloSVYsHLjQv96ZOFmphxVSr45Hsjxjz3zOzDeEHOW541wGzgJmOSBBF7NKBAZIQiM_nIoaa4evruX0Nv81K2YbZDLUwmBaZX_3pzu9u637kXG_m-NFXY9_d7_YSohPiq7N4-wN2crh-GIbg58vqzwPXmY96lKa4fShfq5L8rpzdbtEJkNeJK5Tuc4_rYs_Oz909oG87wNIepLWuEM2YvORvE0tJZ93yZ_JqrEgbSsK5oFVijTRxD4Btqa2CRTW43umALrA5_gH5FVFAXxZiPfUgz024OAYPtHSRTt_7hgVYGRJsSKFgnk93LeurupgqZ07S0-mF5zrPXJ7dnozmbK-yQLzRaEeWbTCeXBfEBcEp6wUAXQKUaRXQTqvhOCyAkUracHdySpUmh9nZRls9NZVLhP7ZLNpm_iZ0Oq4iqH0ueZW50oomykP0i5IwHi5jCMihq01vmcgx0YYczOkmt2ZpBCDCjGZMKCQEWErqUVi4HhlfjlozfxjSQacxCuSPwYlGzhk-OfENrF9WhrEyRo5TfX6OVjzBHAZ4O2IfEoWslovYEyOWPHLf6_tO3k3vbm6NJfn1xdfyTZ-SRWRB2QTLCgeQmj06L51pv8XmgEMmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+genetic+structures+and+biochemical+properties+of+tandem+cutinase-type+polyesterases+from+Thermobifida+alba+AHK119&rft.jtitle=Journal+of+bioscience+and+bioengineering&rft.au=Thumarat%2C+Uschara&rft.au=Kawabata%2C+Takeshi&rft.au=Nakajima%2C+Maho&rft.au=Nakajima%2C+Hajime&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=1389-1723&rft.eissn=1347-4421&rft.volume=120&rft.issue=5&rft.spage=491&rft.epage=497&rft_id=info:doi/10.1016%2Fj.jbiosc.2015.03.006&rft.externalDocID=S138917231500105X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1723&client=summon |