Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study
Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current a...
Saved in:
Published in | Journal of the Royal Society interface Vol. 15; no. 140; p. 20170823 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
01.03.2018
The Royal Society Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces. |
---|---|
AbstractList | Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces. Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala , here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces. Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces. Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree , here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces. |
Author | Fu, Jimin Zhang, Hua Thiyagarajan, Vengatesen Feng, Dan-qing Guo, Zhenbin Yao, Haimin |
AuthorAffiliation | 1 Department of Mechanical Engineering, The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong SAR, People's Republic of China 3 State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361005 , People's Republic of China 2 Department of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022 , People's Republic of China 4 The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong , Hong Kong SAR, People's Republic of China |
AuthorAffiliation_xml | – name: 2 Department of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022 , People's Republic of China – name: 3 State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361005 , People's Republic of China – name: 4 The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong , Hong Kong SAR, People's Republic of China – name: 1 Department of Mechanical Engineering, The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong SAR, People's Republic of China |
Author_xml | – sequence: 1 givenname: Jimin orcidid: 0000-0003-2591-9198 surname: Fu fullname: Fu, Jimin organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China – sequence: 2 givenname: Hua orcidid: 0000-0002-5587-2119 surname: Zhang fullname: Zhang, Hua organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China; Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China – sequence: 3 givenname: Zhenbin orcidid: 0000-0003-0843-3612 surname: Guo fullname: Guo, Zhenbin organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China – sequence: 4 givenname: Dan-qing surname: Feng fullname: Feng, Dan-qing organization: State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, People's Republic of China – sequence: 5 givenname: Vengatesen orcidid: 0000-0002-2062-4799 surname: Thiyagarajan fullname: Thiyagarajan, Vengatesen organization: The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China – sequence: 6 givenname: Haimin orcidid: 0000-0003-0549-2246 surname: Yao fullname: Yao, Haimin email: mmhyao@polyu.edu.hk organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29514985$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1URB-wZYkisWGTi5-JwwKpuqJQqRIS0LXlOHbulCQOdlIUfj2xbltoUVl5ZH_nzPHMMToY_GAReknwhuBKvg0R3IZiUm6wpOwJOiIlp7koCnpwV8vqEB3HeIUxK5kQz9AhrQThlRRH6HLr-1pPWQ3e-bmDoc1-wrTLejDBR-NHMFmAprV5B99tFufgtLFZ78O4851vl3eZTmIY4gjBNlmc5mZ5jp463UX74uY8QZdnH75tP-UXnz-eb08vciOEnPKGUd6wUrOSF5w5WhshZVMZY4luSue4ptV6Yax2VGBbMKwt567UotGyloydoPd733Gue7uCwxR0p8YAvQ6L8hrU_ZcBdqr110pUWAoqVoM3NwbB_5htnFQP0diu04P1c1TrZCkhUuKEvn6AXvk5DOv3ElVhzgqeqFd_J7qLcjvxFeB7IM03BuuUgUlP4FNA6BTBKi1WpcUm41Klxa6yzQPZrfOjgnYvCH5ZM3oDdlr-RP7y9fzsmgggHK88I1hwtpa_YNwbEaEgxtmqBNy3_rcT-1-nR_L9Bqsj2xQ |
CitedBy_id | crossref_primary_10_1016_j_surfcoat_2021_127836 crossref_primary_10_3390_gels8010026 crossref_primary_10_1002_adfm_202000936 crossref_primary_10_1016_j_nantod_2025_102723 crossref_primary_10_1016_j_eurpolymj_2023_111997 crossref_primary_10_1080_08927014_2019_1667982 crossref_primary_10_1002_adfm_202102568 crossref_primary_10_1177_09540083211035016 crossref_primary_10_1016_j_apsusc_2022_152968 crossref_primary_10_1016_j_carbpol_2022_120504 crossref_primary_10_1016_j_scitotenv_2020_144469 crossref_primary_10_1021_acsabm_1c01243 crossref_primary_10_1016_j_apsusc_2020_145564 crossref_primary_10_1002_jbm_a_37369 crossref_primary_10_31083_j_rcm2304141 crossref_primary_10_1002_admi_201901577 crossref_primary_10_1016_j_pmatsci_2021_100778 crossref_primary_10_1002_adem_202300541 crossref_primary_10_1016_j_cej_2023_145540 crossref_primary_10_1038_s41467_024_44822_1 crossref_primary_10_1016_j_progpolymsci_2022_101516 crossref_primary_10_1039_C9SM00527G crossref_primary_10_1039_D1NJ06223A crossref_primary_10_1021_acsami_9b21135 crossref_primary_10_1680_jsuin_22_01041 crossref_primary_10_1016_j_mtchem_2020_100294 crossref_primary_10_1039_D0LC00361A crossref_primary_10_1039_C8TB02648C crossref_primary_10_3390_molecules27217394 crossref_primary_10_1016_j_porgcoat_2020_106021 crossref_primary_10_3390_biomimetics5040058 crossref_primary_10_1016_j_porgcoat_2023_107636 crossref_primary_10_1088_1748_3190_ac060f crossref_primary_10_1063_1_5143651 crossref_primary_10_3390_ma12162608 crossref_primary_10_1016_j_porgcoat_2023_107411 crossref_primary_10_3389_fphy_2022_994438 crossref_primary_10_1016_j_matlet_2020_129141 crossref_primary_10_1016_j_porgcoat_2024_108349 crossref_primary_10_1039_D1MH01103K crossref_primary_10_1093_icb_icac079 crossref_primary_10_1016_j_mtcomm_2022_105216 crossref_primary_10_1007_s13344_023_0070_y crossref_primary_10_1021_acsami_1c22205 crossref_primary_10_1016_j_pmatsci_2021_100823 crossref_primary_10_1016_j_pmatsci_2021_100889 |
Cites_doi | 10.1016/S0048-9697(00)00506-4 10.1002/adfm.201000242 10.1080/08927019609378304 10.1080/08927010701784391 10.1038/nrmicro821 10.1002/adma.201203374 10.1080/08927010701393276 10.1163/016942411X574961 10.3354/meps207109 10.1021/am300912w 10.1021/acsami.6b14262 10.1016/j.biomaterials.2005.12.024 10.1016/j.porgcoat.2003.06.001 10.1021/la502006s 10.1080/08927010500504784 10.1007/s00227-014-2529-0 10.1016/S0045-6535(01)00336-8 10.1098/rsta.2011.0502 10.1021/la504215b 10.1002/adma.201001215 10.1080/08927010500506094 10.1126/science.1246794 10.1016/j.porgcoat.2007.01.017 10.3354/meps11585 10.1080/08927010701461974 10.1088/1748-3182/4/1/015007 10.1038/ncomms9649 10.1021/la402952u 10.1002/smll.201602020 10.1063/1.362819 10.1021/am9000562 10.1116/1.2844718 10.1021/ma802805y 10.1038/ncomms1251 |
ContentType | Journal Article |
Copyright | 2018 The Author(s) 2018 The Author(s). Copyright The Royal Society Publishing Mar 2018 2018 The Author(s) 2018 |
Copyright_xml | – notice: 2018 The Author(s) – notice: 2018 The Author(s). – notice: Copyright The Royal Society Publishing Mar 2018 – notice: 2018 The Author(s) 2018 |
DBID | AAYXX CITATION NPM 7QG 7QP 7SN 7SS 7TK C1K 7X8 5PM |
DOI | 10.1098/rsif.2017.0823 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Ecology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study |
EISSN | 1742-5662 |
EndPage | 20170823 |
ExternalDocumentID | PMC5908525 29514985 10_1098_rsif_2017_0823 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Research Grants Council, University Grants Committee grantid: PolyU 152193/14E funderid: http://dx.doi.org/10.13039/501100002920 – fundername: National Marine Economic Development Demonstration Project in Xiamen grantid: 16CZB023SF12 – fundername: ; grantid: 16CZB023SF12 – fundername: ; grantid: PolyU 152193/14E |
GroupedDBID | --- 0R~ 18M 29L 2WC 4.4 53G 5GY 5VS ABXXB ACGFO ACQIA ADBBV ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CS3 DIK DU5 EBS EJD GX1 HH5 HYE HZ~ ICLEN KQ8 MRS MV1 NSAHA O9- OK1 OP1 P2P RHF RPM RRY TR2 V1E W8F XSW AAYXX ACRPL ADNMO AFFVI AGPVY AGQPQ AJZGM ALMYZ BGBPD C1A CAG CITATION COF H13 ROL S70 NPM 7QG 7QP 7SN 7SS 7TK C1K 7X8 5PM |
ID | FETCH-LOGICAL-c558t-d324d37a374643f2bc588d9cce1ad7ff4a2988dceaf250e630ae44f7a5da8b833 |
ISSN | 1742-5689 1742-5662 |
IngestDate | Thu Aug 21 18:15:29 EDT 2025 Thu Jul 10 18:57:24 EDT 2025 Mon Jun 30 12:04:46 EDT 2025 Mon Jul 21 06:01:01 EDT 2025 Tue Jul 01 01:33:39 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 Wed Jan 17 02:37:25 EST 2024 Tue May 24 16:18:29 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 140 |
Keywords | surface morphology antifouling textured surface bio-adhesion surface topography |
Language | English |
License | http://royalsocietypublishing.org/licence: Published by the Royal Society. All rights reserved. 2018 The Author(s). Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c558t-d324d37a374643f2bc588d9cce1ad7ff4a2988dceaf250e630ae44f7a5da8b833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4010341. |
ORCID | 0000-0002-5587-2119 0000-0003-2591-9198 0000-0003-0843-3612 0000-0002-2062-4799 0000-0003-0549-2246 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0823 |
PMID | 29514985 |
PQID | 2019043645 |
PQPubID | 2046225 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2012118805 royalsociety_journals_RSIFv15i140_0831054340_zip_rsif_15_issue_140_rsif_2017_0823_rsif_2017_0823 proquest_journals_2019043645 crossref_citationtrail_10_1098_rsif_2017_0823 pubmed_primary_29514985 royalsociety_journals_10_1098_rsif_2017_0823 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5908525 crossref_primary_10_1098_rsif_2017_0823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of the Royal Society interface |
PublicationTitleAbbrev | J. R. Soc. Interface |
PublicationTitleAlternate | J R Soc Interface |
PublicationYear | 2018 |
Publisher | The Royal Society The Royal Society Publishing |
Publisher_xml | – name: The Royal Society – name: The Royal Society Publishing |
References | e_1_3_6_30_2 e_1_3_6_31_2 e_1_3_6_32_2 e_1_3_6_10_2 e_1_3_6_19_2 e_1_3_6_14_2 e_1_3_6_13_2 e_1_3_6_12_2 e_1_3_6_11_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_15_2 e_1_3_6_20_2 e_1_3_6_21_2 e_1_3_6_5_2 e_1_3_6_4_2 e_1_3_6_3_2 e_1_3_6_2_2 e_1_3_6_9_2 e_1_3_6_8_2 e_1_3_6_7_2 e_1_3_6_6_2 e_1_3_6_26_2 e_1_3_6_27_2 e_1_3_6_28_2 e_1_3_6_29_2 e_1_3_6_22_2 e_1_3_6_23_2 e_1_3_6_24_2 e_1_3_6_25_2 |
References_xml | – ident: e_1_3_6_9_2 doi: 10.1016/S0048-9697(00)00506-4 – ident: e_1_3_6_22_2 doi: 10.1002/adfm.201000242 – ident: e_1_3_6_5_2 doi: 10.1080/08927019609378304 – ident: e_1_3_6_30_2 doi: 10.1080/08927010701784391 – ident: e_1_3_6_4_2 doi: 10.1038/nrmicro821 – ident: e_1_3_6_19_2 doi: 10.1002/adma.201203374 – ident: e_1_3_6_21_2 doi: 10.1080/08927010701393276 – ident: e_1_3_6_15_2 doi: 10.1163/016942411X574961 – ident: e_1_3_6_6_2 doi: 10.3354/meps207109 – ident: e_1_3_6_23_2 doi: 10.1021/am300912w – ident: e_1_3_6_34_2 doi: 10.1021/acsami.6b14262 – ident: e_1_3_6_17_2 doi: 10.1016/j.biomaterials.2005.12.024 – ident: e_1_3_6_10_2 doi: 10.1016/j.porgcoat.2003.06.001 – ident: e_1_3_6_20_2 doi: 10.1021/la502006s – ident: e_1_3_6_16_2 doi: 10.1080/08927010500504784 – ident: e_1_3_6_29_2 doi: 10.1007/s00227-014-2529-0 – ident: e_1_3_6_12_2 doi: 10.1016/S0045-6535(01)00336-8 – ident: e_1_3_6_14_2 doi: 10.1098/rsta.2011.0502 – ident: e_1_3_6_31_2 doi: 10.1021/la504215b – ident: e_1_3_6_27_2 doi: 10.1002/adma.201001215 – ident: e_1_3_6_33_2 doi: 10.1080/08927010500506094 – ident: e_1_3_6_28_2 doi: 10.1126/science.1246794 – ident: e_1_3_6_11_2 doi: 10.1016/j.porgcoat.2007.01.017 – ident: e_1_3_6_24_2 doi: 10.3354/meps11585 – ident: e_1_3_6_3_2 doi: 10.1080/08927010701461974 – ident: e_1_3_6_13_2 doi: 10.1088/1748-3182/4/1/015007 – ident: e_1_3_6_7_2 doi: 10.1038/ncomms9649 – ident: e_1_3_6_32_2 doi: 10.1021/la402952u – ident: e_1_3_6_18_2 doi: 10.1002/smll.201602020 – ident: e_1_3_6_35_2 doi: 10.1063/1.362819 – ident: e_1_3_6_26_2 doi: 10.1021/am9000562 – ident: e_1_3_6_8_2 doi: 10.1116/1.2844718 – ident: e_1_3_6_25_2 doi: 10.1021/ma802805y – ident: e_1_3_6_2_2 doi: 10.1038/ncomms1251 |
SSID | ssj0037355 |
Score | 2.425764 |
Snippet | Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces... |
SourceID | pubmedcentral proquest pubmed crossref royalsociety |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20170823 |
SubjectTerms | Antifouling Antifouling substances Bio-Adhesion Biofouling Environmental impact Guidelines Larvae Leaves Life Sciences–Earth Science interface Morphology Mussels Solid surfaces Surface Morphology Surface Topography Textured Surface |
Title | Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study |
URI | https://royalsocietypublishing.org/doi/full/10.1098/rsif.2017.0823 https://www.ncbi.nlm.nih.gov/pubmed/29514985 https://www.proquest.com/docview/2019043645 https://www.proquest.com/docview/2012118805 https://pubmed.ncbi.nlm.nih.gov/PMC5908525 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWJ4LCzISEiBIycOuHW4IsRQkOMBWqrgEJ7EhYjctbcNhfz0zdp7brsRyiVp74jieb5yxPQ9CnoDIGJ5y7aVpMPFYJLSnBPM9mfphHMTaSI0Ozp8-T6Yz9nHO56PRsme1VG3ScXa206_kf7gKZcBX9JK9BGfbRqEAfgN_4Qochus_8RiEOYUFflosDCY2b7ZVT9HIDt1NMDwz-mN5J8Uv_WJdrYwCMT5dwNg6JxXr6Qy3FyUeuIPu2UWb3VZYUUV1uw2NqSfGmrBttiioLCowU9jWjvS0ar8A7yu7QfsNzcs6ShjaH7XXu_e7-aLWGxKB7Cyyxo1L26AzvdkV1uEen7icQWPdLzs3JfM-9Fw8p6253o_Rf2G1LmwkVjHGM8Puq9baGrpTdpkgYYKECRJeIVdDWFhY9_B5axQUicjmyW072ob5lK-GDxqqMVtrkx0mtisck7Ubkp4Kc3yDXK9ZSd84IO2TkS5vkv16dl_TZ3UI8ue3yMwhi3bIoogs2kMW7ZBFa2TRDlmvqaI9XFGLq9tkdvTu-O3UqxNweBnncuPloG3nkVCRYKC4mjDNuJR5nGU6ULkwhqkwhoJMKwOatJ5EvtKMGaF4rmQqo-gO2SsXpb5HaDxhOboMCRkHTAUmZqEIuQqVCSLtK35AvGY8k6yOTo9JUk6S3fw7IE9b-qWLy3Ih5WHDnqSW3TXWxph8gcGDH7fVMLPicZkq9aKyNGGA4QqB5q7jZvuoEBYmLJZQIwZ8bgkwavuwpix-2ujtPIZVTgh3vuwjouvaRW_xfTf5l68fjv4EvEAbTZs1EH3F_eSsWLoWAp5YMUqQYNjmub_3L9ejB-RaJ_2HZG-zqvRDUNA36SMrU38BoenqSw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combat+biofouling+with+microscopic+ridge-like+surface+morphology%3A+a+bioinspired+study&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Fu%2C+Jimin&rft.au=Zhang%2C+Hua&rft.au=Guo%2C+Zhenbin&rft.au=Feng%2C+Dan-qing&rft.date=2018-03-01&rft.pub=The+Royal+Society&rft.issn=1742-5689&rft.eissn=1742-5662&rft.volume=15&rft.issue=140&rft_id=info:doi/10.1098%2Frsif.2017.0823&rft.externalDocID=10_1098_rsif_2017_0823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5689&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5689&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5689&client=summon |