Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study

Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current a...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Society interface Vol. 15; no. 140; p. 20170823
Main Authors Fu, Jimin, Zhang, Hua, Guo, Zhenbin, Feng, Dan-qing, Thiyagarajan, Vengatesen, Yao, Haimin
Format Journal Article
LanguageEnglish
Published England The Royal Society 01.03.2018
The Royal Society Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.
AbstractList Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.
Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala , here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.
Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree Sonneratia apetala, here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of S. apetala leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the S. apetala replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the S. apetala leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.
Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces immerged in ocean. The enormous economic loss caused by biofouling in combination with the severe environmental impacts induced by the current antifouling approaches entails the development of novel antifouling strategies with least environmental impact. Inspired by the superior antifouling performance of the leaves of mangrove tree , here we propose to combat biofouling by using a surface with microscopic ridge-like morphology. Settlement tests with tubeworm larvae on polymeric replicas of leaves confirm that the microscopic ridge-like surface morphology can effectively prevent biofouling. A contact mechanics-based model is then established to quantify the dependence of tubeworm settlement on the structural features of the microscopic ridge-like morphology, giving rise to theoretical guidelines to optimize the morphology for better antifouling performance. Under the direction of the obtained guidelines, a synthetic surface with microscopic ridge-like morphology is developed, exhibiting antifouling performance comparable to that of the replica. Our results not only reveal the underlying mechanism accounting for the superior antifouling property of the leaves, but also provide applicable guidance for the development of synthetic antifouling surfaces.
Author Fu, Jimin
Zhang, Hua
Thiyagarajan, Vengatesen
Feng, Dan-qing
Guo, Zhenbin
Yao, Haimin
AuthorAffiliation 1 Department of Mechanical Engineering, The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong SAR, People's Republic of China
3 State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361005 , People's Republic of China
2 Department of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022 , People's Republic of China
4 The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong , Hong Kong SAR, People's Republic of China
AuthorAffiliation_xml – name: 2 Department of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang 330022 , People's Republic of China
– name: 3 State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University , Xiamen 361005 , People's Republic of China
– name: 4 The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong , Hong Kong SAR, People's Republic of China
– name: 1 Department of Mechanical Engineering, The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong SAR, People's Republic of China
Author_xml – sequence: 1
  givenname: Jimin
  orcidid: 0000-0003-2591-9198
  surname: Fu
  fullname: Fu, Jimin
  organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
– sequence: 2
  givenname: Hua
  orcidid: 0000-0002-5587-2119
  surname: Zhang
  fullname: Zhang, Hua
  organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China; Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
– sequence: 3
  givenname: Zhenbin
  orcidid: 0000-0003-0843-3612
  surname: Guo
  fullname: Guo, Zhenbin
  organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
– sequence: 4
  givenname: Dan-qing
  surname: Feng
  fullname: Feng, Dan-qing
  organization: State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, People's Republic of China
– sequence: 5
  givenname: Vengatesen
  orcidid: 0000-0002-2062-4799
  surname: Thiyagarajan
  fullname: Thiyagarajan, Vengatesen
  organization: The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
– sequence: 6
  givenname: Haimin
  orcidid: 0000-0003-0549-2246
  surname: Yao
  fullname: Yao, Haimin
  email: mmhyao@polyu.edu.hk
  organization: Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29514985$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URB-wZYkisWGTi5-JwwKpuqJQqRIS0LXlOHbulCQOdlIUfj2xbltoUVl5ZH_nzPHMMToY_GAReknwhuBKvg0R3IZiUm6wpOwJOiIlp7koCnpwV8vqEB3HeIUxK5kQz9AhrQThlRRH6HLr-1pPWQ3e-bmDoc1-wrTLejDBR-NHMFmAprV5B99tFufgtLFZ78O4851vl3eZTmIY4gjBNlmc5mZ5jp463UX74uY8QZdnH75tP-UXnz-eb08vciOEnPKGUd6wUrOSF5w5WhshZVMZY4luSue4ptV6Yax2VGBbMKwt567UotGyloydoPd733Gue7uCwxR0p8YAvQ6L8hrU_ZcBdqr110pUWAoqVoM3NwbB_5htnFQP0diu04P1c1TrZCkhUuKEvn6AXvk5DOv3ElVhzgqeqFd_J7qLcjvxFeB7IM03BuuUgUlP4FNA6BTBKi1WpcUm41Klxa6yzQPZrfOjgnYvCH5ZM3oDdlr-RP7y9fzsmgggHK88I1hwtpa_YNwbEaEgxtmqBNy3_rcT-1-nR_L9Bqsj2xQ
CitedBy_id crossref_primary_10_1016_j_surfcoat_2021_127836
crossref_primary_10_3390_gels8010026
crossref_primary_10_1002_adfm_202000936
crossref_primary_10_1016_j_nantod_2025_102723
crossref_primary_10_1016_j_eurpolymj_2023_111997
crossref_primary_10_1080_08927014_2019_1667982
crossref_primary_10_1002_adfm_202102568
crossref_primary_10_1177_09540083211035016
crossref_primary_10_1016_j_apsusc_2022_152968
crossref_primary_10_1016_j_carbpol_2022_120504
crossref_primary_10_1016_j_scitotenv_2020_144469
crossref_primary_10_1021_acsabm_1c01243
crossref_primary_10_1016_j_apsusc_2020_145564
crossref_primary_10_1002_jbm_a_37369
crossref_primary_10_31083_j_rcm2304141
crossref_primary_10_1002_admi_201901577
crossref_primary_10_1016_j_pmatsci_2021_100778
crossref_primary_10_1002_adem_202300541
crossref_primary_10_1016_j_cej_2023_145540
crossref_primary_10_1038_s41467_024_44822_1
crossref_primary_10_1016_j_progpolymsci_2022_101516
crossref_primary_10_1039_C9SM00527G
crossref_primary_10_1039_D1NJ06223A
crossref_primary_10_1021_acsami_9b21135
crossref_primary_10_1680_jsuin_22_01041
crossref_primary_10_1016_j_mtchem_2020_100294
crossref_primary_10_1039_D0LC00361A
crossref_primary_10_1039_C8TB02648C
crossref_primary_10_3390_molecules27217394
crossref_primary_10_1016_j_porgcoat_2020_106021
crossref_primary_10_3390_biomimetics5040058
crossref_primary_10_1016_j_porgcoat_2023_107636
crossref_primary_10_1088_1748_3190_ac060f
crossref_primary_10_1063_1_5143651
crossref_primary_10_3390_ma12162608
crossref_primary_10_1016_j_porgcoat_2023_107411
crossref_primary_10_3389_fphy_2022_994438
crossref_primary_10_1016_j_matlet_2020_129141
crossref_primary_10_1016_j_porgcoat_2024_108349
crossref_primary_10_1039_D1MH01103K
crossref_primary_10_1093_icb_icac079
crossref_primary_10_1016_j_mtcomm_2022_105216
crossref_primary_10_1007_s13344_023_0070_y
crossref_primary_10_1021_acsami_1c22205
crossref_primary_10_1016_j_pmatsci_2021_100823
crossref_primary_10_1016_j_pmatsci_2021_100889
Cites_doi 10.1016/S0048-9697(00)00506-4
10.1002/adfm.201000242
10.1080/08927019609378304
10.1080/08927010701784391
10.1038/nrmicro821
10.1002/adma.201203374
10.1080/08927010701393276
10.1163/016942411X574961
10.3354/meps207109
10.1021/am300912w
10.1021/acsami.6b14262
10.1016/j.biomaterials.2005.12.024
10.1016/j.porgcoat.2003.06.001
10.1021/la502006s
10.1080/08927010500504784
10.1007/s00227-014-2529-0
10.1016/S0045-6535(01)00336-8
10.1098/rsta.2011.0502
10.1021/la504215b
10.1002/adma.201001215
10.1080/08927010500506094
10.1126/science.1246794
10.1016/j.porgcoat.2007.01.017
10.3354/meps11585
10.1080/08927010701461974
10.1088/1748-3182/4/1/015007
10.1038/ncomms9649
10.1021/la402952u
10.1002/smll.201602020
10.1063/1.362819
10.1021/am9000562
10.1116/1.2844718
10.1021/ma802805y
10.1038/ncomms1251
ContentType Journal Article
Copyright 2018 The Author(s)
2018 The Author(s).
Copyright The Royal Society Publishing Mar 2018
2018 The Author(s) 2018
Copyright_xml – notice: 2018 The Author(s)
– notice: 2018 The Author(s).
– notice: Copyright The Royal Society Publishing Mar 2018
– notice: 2018 The Author(s) 2018
DBID AAYXX
CITATION
NPM
7QG
7QP
7SN
7SS
7TK
C1K
7X8
5PM
DOI 10.1098/rsif.2017.0823
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Ecology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts
CrossRef
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study
EISSN 1742-5662
EndPage 20170823
ExternalDocumentID PMC5908525
29514985
10_1098_rsif_2017_0823
Genre Journal Article
GrantInformation_xml – fundername: Research Grants Council, University Grants Committee
  grantid: PolyU 152193/14E
  funderid: http://dx.doi.org/10.13039/501100002920
– fundername: National Marine Economic Development Demonstration Project in Xiamen
  grantid: 16CZB023SF12
– fundername: ;
  grantid: 16CZB023SF12
– fundername: ;
  grantid: PolyU 152193/14E
GroupedDBID ---
0R~
18M
29L
2WC
4.4
53G
5GY
5VS
ABXXB
ACGFO
ACQIA
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CS3
DIK
DU5
EBS
EJD
GX1
HH5
HYE
HZ~
ICLEN
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RPM
RRY
TR2
V1E
W8F
XSW
AAYXX
ACRPL
ADNMO
AFFVI
AGPVY
AGQPQ
AJZGM
ALMYZ
BGBPD
C1A
CAG
CITATION
COF
H13
ROL
S70
NPM
7QG
7QP
7SN
7SS
7TK
C1K
7X8
5PM
ID FETCH-LOGICAL-c558t-d324d37a374643f2bc588d9cce1ad7ff4a2988dceaf250e630ae44f7a5da8b833
ISSN 1742-5689
1742-5662
IngestDate Thu Aug 21 18:15:29 EDT 2025
Thu Jul 10 18:57:24 EDT 2025
Mon Jun 30 12:04:46 EDT 2025
Mon Jul 21 06:01:01 EDT 2025
Tue Jul 01 01:33:39 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
Wed Jan 17 02:37:25 EST 2024
Tue May 24 16:18:29 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 140
Keywords surface morphology
antifouling
textured surface
bio-adhesion
surface topography
Language English
License http://royalsocietypublishing.org/licence: Published by the Royal Society. All rights reserved.
2018 The Author(s).
Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c558t-d324d37a374643f2bc588d9cce1ad7ff4a2988dceaf250e630ae44f7a5da8b833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4010341.
ORCID 0000-0002-5587-2119
0000-0003-2591-9198
0000-0003-0843-3612
0000-0002-2062-4799
0000-0003-0549-2246
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0823
PMID 29514985
PQID 2019043645
PQPubID 2046225
PageCount 1
ParticipantIDs proquest_miscellaneous_2012118805
royalsociety_journals_RSIFv15i140_0831054340_zip_rsif_15_issue_140_rsif_2017_0823_rsif_2017_0823
proquest_journals_2019043645
crossref_citationtrail_10_1098_rsif_2017_0823
pubmed_primary_29514985
royalsociety_journals_10_1098_rsif_2017_0823
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5908525
crossref_primary_10_1098_rsif_2017_0823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of the Royal Society interface
PublicationTitleAbbrev J. R. Soc. Interface
PublicationTitleAlternate J R Soc Interface
PublicationYear 2018
Publisher The Royal Society
The Royal Society Publishing
Publisher_xml – name: The Royal Society
– name: The Royal Society Publishing
References e_1_3_6_30_2
e_1_3_6_31_2
e_1_3_6_32_2
e_1_3_6_10_2
e_1_3_6_19_2
e_1_3_6_14_2
e_1_3_6_13_2
e_1_3_6_12_2
e_1_3_6_11_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_15_2
e_1_3_6_20_2
e_1_3_6_21_2
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_2_2
e_1_3_6_9_2
e_1_3_6_8_2
e_1_3_6_7_2
e_1_3_6_6_2
e_1_3_6_26_2
e_1_3_6_27_2
e_1_3_6_28_2
e_1_3_6_29_2
e_1_3_6_22_2
e_1_3_6_23_2
e_1_3_6_24_2
e_1_3_6_25_2
References_xml – ident: e_1_3_6_9_2
  doi: 10.1016/S0048-9697(00)00506-4
– ident: e_1_3_6_22_2
  doi: 10.1002/adfm.201000242
– ident: e_1_3_6_5_2
  doi: 10.1080/08927019609378304
– ident: e_1_3_6_30_2
  doi: 10.1080/08927010701784391
– ident: e_1_3_6_4_2
  doi: 10.1038/nrmicro821
– ident: e_1_3_6_19_2
  doi: 10.1002/adma.201203374
– ident: e_1_3_6_21_2
  doi: 10.1080/08927010701393276
– ident: e_1_3_6_15_2
  doi: 10.1163/016942411X574961
– ident: e_1_3_6_6_2
  doi: 10.3354/meps207109
– ident: e_1_3_6_23_2
  doi: 10.1021/am300912w
– ident: e_1_3_6_34_2
  doi: 10.1021/acsami.6b14262
– ident: e_1_3_6_17_2
  doi: 10.1016/j.biomaterials.2005.12.024
– ident: e_1_3_6_10_2
  doi: 10.1016/j.porgcoat.2003.06.001
– ident: e_1_3_6_20_2
  doi: 10.1021/la502006s
– ident: e_1_3_6_16_2
  doi: 10.1080/08927010500504784
– ident: e_1_3_6_29_2
  doi: 10.1007/s00227-014-2529-0
– ident: e_1_3_6_12_2
  doi: 10.1016/S0045-6535(01)00336-8
– ident: e_1_3_6_14_2
  doi: 10.1098/rsta.2011.0502
– ident: e_1_3_6_31_2
  doi: 10.1021/la504215b
– ident: e_1_3_6_27_2
  doi: 10.1002/adma.201001215
– ident: e_1_3_6_33_2
  doi: 10.1080/08927010500506094
– ident: e_1_3_6_28_2
  doi: 10.1126/science.1246794
– ident: e_1_3_6_11_2
  doi: 10.1016/j.porgcoat.2007.01.017
– ident: e_1_3_6_24_2
  doi: 10.3354/meps11585
– ident: e_1_3_6_3_2
  doi: 10.1080/08927010701461974
– ident: e_1_3_6_13_2
  doi: 10.1088/1748-3182/4/1/015007
– ident: e_1_3_6_7_2
  doi: 10.1038/ncomms9649
– ident: e_1_3_6_32_2
  doi: 10.1021/la402952u
– ident: e_1_3_6_18_2
  doi: 10.1002/smll.201602020
– ident: e_1_3_6_35_2
  doi: 10.1063/1.362819
– ident: e_1_3_6_26_2
  doi: 10.1021/am9000562
– ident: e_1_3_6_8_2
  doi: 10.1116/1.2844718
– ident: e_1_3_6_25_2
  doi: 10.1021/ma802805y
– ident: e_1_3_6_2_2
  doi: 10.1038/ncomms1251
SSID ssj0037355
Score 2.425764
Snippet Biofouling refers to the unfavourable attachment and accumulation of marine sessile organisms (e.g. barnacles, mussels and tubeworms) on the solid surfaces...
SourceID pubmedcentral
proquest
pubmed
crossref
royalsociety
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20170823
SubjectTerms Antifouling
Antifouling substances
Bio-Adhesion
Biofouling
Environmental impact
Guidelines
Larvae
Leaves
Life Sciences–Earth Science interface
Morphology
Mussels
Solid surfaces
Surface Morphology
Surface Topography
Textured Surface
Title Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study
URI https://royalsocietypublishing.org/doi/full/10.1098/rsif.2017.0823
https://www.ncbi.nlm.nih.gov/pubmed/29514985
https://www.proquest.com/docview/2019043645
https://www.proquest.com/docview/2012118805
https://pubmed.ncbi.nlm.nih.gov/PMC5908525
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWJ4LCzISEiBIycOuHW4IsRQkOMBWqrgEJ7EhYjctbcNhfz0zdp7brsRyiVp74jieb5yxPQ9CnoDIGJ5y7aVpMPFYJLSnBPM9mfphHMTaSI0Ozp8-T6Yz9nHO56PRsme1VG3ScXa206_kf7gKZcBX9JK9BGfbRqEAfgN_4Qochus_8RiEOYUFflosDCY2b7ZVT9HIDt1NMDwz-mN5J8Uv_WJdrYwCMT5dwNg6JxXr6Qy3FyUeuIPu2UWb3VZYUUV1uw2NqSfGmrBttiioLCowU9jWjvS0ar8A7yu7QfsNzcs6ShjaH7XXu_e7-aLWGxKB7Cyyxo1L26AzvdkV1uEen7icQWPdLzs3JfM-9Fw8p6253o_Rf2G1LmwkVjHGM8Puq9baGrpTdpkgYYKECRJeIVdDWFhY9_B5axQUicjmyW072ob5lK-GDxqqMVtrkx0mtisck7Ubkp4Kc3yDXK9ZSd84IO2TkS5vkv16dl_TZ3UI8ue3yMwhi3bIoogs2kMW7ZBFa2TRDlmvqaI9XFGLq9tkdvTu-O3UqxNweBnncuPloG3nkVCRYKC4mjDNuJR5nGU6ULkwhqkwhoJMKwOatJ5EvtKMGaF4rmQqo-gO2SsXpb5HaDxhOboMCRkHTAUmZqEIuQqVCSLtK35AvGY8k6yOTo9JUk6S3fw7IE9b-qWLy3Ih5WHDnqSW3TXWxph8gcGDH7fVMLPicZkq9aKyNGGA4QqB5q7jZvuoEBYmLJZQIwZ8bgkwavuwpix-2ujtPIZVTgh3vuwjouvaRW_xfTf5l68fjv4EvEAbTZs1EH3F_eSsWLoWAp5YMUqQYNjmub_3L9ejB-RaJ_2HZG-zqvRDUNA36SMrU38BoenqSw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combat+biofouling+with+microscopic+ridge-like+surface+morphology%3A+a+bioinspired+study&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Fu%2C+Jimin&rft.au=Zhang%2C+Hua&rft.au=Guo%2C+Zhenbin&rft.au=Feng%2C+Dan-qing&rft.date=2018-03-01&rft.pub=The+Royal+Society&rft.issn=1742-5689&rft.eissn=1742-5662&rft.volume=15&rft.issue=140&rft_id=info:doi/10.1098%2Frsif.2017.0823&rft.externalDocID=10_1098_rsif_2017_0823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5689&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5689&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5689&client=summon