Artificial Neural Networks for Neuroscientists: A Primer
Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 107; no. 6; pp. 1048 - 1070 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
23.09.2020
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics.
Artificial neural networks (ANNs) are essential tools in modern machine learning. In this Primer, Yang and Wang introduce how new computational models based on ANNs can be built, analyzed, and customized to study a wide range of neuroscientific questions. |
---|---|
AbstractList | Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics.Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics. Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics. Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics. Artificial neural networks (ANNs) are essential tools in modern machine learning. In this Primer, Yang and Wang introduce how new computational models based on ANNs can be built, analyzed, and customized to study a wide range of neuroscientific questions. SummaryArtificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics. |
Author | Wang, Xiao-Jing Yang, Guangyu Robert |
AuthorAffiliation | 2 Center for Neural Science, New York University, New York, NY, USA 1 Center for Theoretical Neuroscience, Columbia University, New York, NY, USA |
AuthorAffiliation_xml | – name: 2 Center for Neural Science, New York University, New York, NY, USA – name: 1 Center for Theoretical Neuroscience, Columbia University, New York, NY, USA |
Author_xml | – sequence: 1 givenname: Guangyu Robert surname: Yang fullname: Yang, Guangyu Robert email: robert.yang@columbia.edu organization: Center for Theoretical Neuroscience, Columbia University, New York, NY, USA – sequence: 2 givenname: Xiao-Jing orcidid: 0000-0003-3124-8474 surname: Wang fullname: Wang, Xiao-Jing email: xjwang@nyu.edu organization: Center for Neural Science, New York University, New York, NY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32970997$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uFDEQhC2UiGwCb4DQSly4zND2-DcH0CoCghQFDnC2PB4bvMyOg-0J4u3x7oYoyYGcWrK_KlV3HaODKU4OoRcYWgyYv1m3k5tTnFoCBFpQLQB7ghYYlGgoVuoALUAq3nAiuiN0nPMaAFOm8FN01BElQCmxQHKVSvDBBjMuL6vfbpTfMf3MSx_T7i1mG9xUQi75dLlafklh49IzdOjNmN3zm3mCvn14__XsvLn4_PHT2eqisYzJ0liJTee9AM8YZb0ikoOghgAelOyc7aCXxGLeCzuQXhlpPDbAPZVyYE7g7gS92_tezf3GDbYGqSH1VQ1h0h8dTdD3f6bwQ3-P1xpjJjgoqA6vbxxS_DW7XPQmZOvG0UwuzlkTSjnnpJIVffUAXcc5TXW_LcU61lFKK_XybqTbLP-uWgG6B2y9XU7O3yIY9LY8vdb78vS2PA1K1_Kq7PSBzIZiSojbxcL4mPjtXuxqGdfBJb1rzbohJGeLHmL4v8Ffa2u3Hg |
CitedBy_id | crossref_primary_10_25209_2079_3316_2022_13_3_291_305 crossref_primary_10_9728_dcs_2022_23_12_2445 crossref_primary_10_1038_s41467_024_52289_3 crossref_primary_10_1016_j_chemosphere_2024_142597 crossref_primary_10_1016_j_porgcoat_2024_109003 crossref_primary_10_1523_ENEURO_0066_22_2022 crossref_primary_10_1016_j_entcom_2024_100822 crossref_primary_10_1016_j_ijhydene_2024_02_221 crossref_primary_10_1109_JSEN_2024_3507081 crossref_primary_10_1016_j_measen_2024_101049 crossref_primary_10_1088_1741_2552_ac8b38 crossref_primary_10_1016_j_carbpol_2024_123015 crossref_primary_10_3389_fnsys_2022_760864 crossref_primary_10_1016_j_scitotenv_2025_178520 crossref_primary_10_1007_s10462_023_10666_2 crossref_primary_10_3389_fncom_2022_876652 crossref_primary_10_3389_fnsys_2020_615129 crossref_primary_10_1007_s11738_024_03754_5 crossref_primary_10_1016_j_asoc_2021_107951 crossref_primary_10_1162_neco_a_01681 crossref_primary_10_1007_s43615_024_00453_8 crossref_primary_10_3390_robotics13030049 crossref_primary_10_1016_j_conb_2021_10_013 crossref_primary_10_3390_jcm14020550 crossref_primary_10_1038_s41467_024_54688_y crossref_primary_10_1109_ACCESS_2021_3083519 crossref_primary_10_1029_2024EA003942 crossref_primary_10_1103_PhysRevResearch_5_023024 crossref_primary_10_1016_j_ccr_2023_215155 crossref_primary_10_1038_s41593_022_01088_4 crossref_primary_10_1038_s41583_023_00705_w crossref_primary_10_1016_j_vlsi_2024_102206 crossref_primary_10_1016_j_neunet_2023_08_018 crossref_primary_10_1038_s42003_021_02341_5 crossref_primary_10_1016_j_cnsns_2022_107044 crossref_primary_10_1080_20002297_2025_2451921 crossref_primary_10_1063_5_0205472 crossref_primary_10_4103_1673_5374_343904 crossref_primary_10_1007_s42113_024_00196_7 crossref_primary_10_1016_j_neuroimage_2023_120253 crossref_primary_10_1093_cercor_bhae498 crossref_primary_10_1016_j_bej_2024_109221 crossref_primary_10_1007_s10489_024_05432_y crossref_primary_10_1080_08839514_2021_1995232 crossref_primary_10_3390_w16233424 crossref_primary_10_25209_2079_3316_2022_13_3_275_290 crossref_primary_10_3390_s22228588 crossref_primary_10_1162_netn_a_00300 crossref_primary_10_1038_s41467_024_50503_w crossref_primary_10_2478_amns_2024_2164 crossref_primary_10_3389_fnins_2024_1330512 crossref_primary_10_1016_j_compeleceng_2023_109012 crossref_primary_10_1007_s11141_022_10175_2 crossref_primary_10_1021_acsomega_1c04521 crossref_primary_10_1038_s43856_023_00313_w crossref_primary_10_3389_fnbot_2023_1112839 crossref_primary_10_1016_j_ins_2023_01_011 crossref_primary_10_1155_2021_5633514 crossref_primary_10_1038_s42003_023_05441_6 crossref_primary_10_1007_s10462_022_10166_9 crossref_primary_10_3390_app15031239 crossref_primary_10_1088_1361_6501_ad8947 crossref_primary_10_1016_j_cjche_2024_04_019 crossref_primary_10_1016_j_jwpe_2024_105072 crossref_primary_10_1155_2022_3437364 crossref_primary_10_1016_j_scitotenv_2023_168802 crossref_primary_10_3390_en16062690 crossref_primary_10_1371_journal_pone_0314278 crossref_primary_10_1007_s12559_022_10093_5 crossref_primary_10_1007_s12517_022_09773_1 crossref_primary_10_1016_j_egyai_2024_100391 crossref_primary_10_1016_j_engappai_2024_109255 crossref_primary_10_1038_s41562_023_01592_y crossref_primary_10_3389_fncel_2023_1172741 crossref_primary_10_1016_j_cogsys_2024_101260 crossref_primary_10_3390_e26121078 crossref_primary_10_1016_j_tins_2021_09_001 crossref_primary_10_1093_scan_nsae014 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_3367_UFNe_2021_05_038978 crossref_primary_10_1007_s10489_022_04152_5 crossref_primary_10_3390_met11091378 crossref_primary_10_3367_UFNr_2021_05_038978 crossref_primary_10_3389_fncom_2021_625804 crossref_primary_10_1016_j_tics_2024_03_003 crossref_primary_10_1016_j_saa_2023_122828 crossref_primary_10_1007_s12021_024_09674_6 crossref_primary_10_1016_j_cub_2021_07_051 crossref_primary_10_1016_j_heliyon_2022_e10677 crossref_primary_10_1016_j_neuropharm_2021_108780 crossref_primary_10_1038_s41597_021_01046_y crossref_primary_10_32604_cmc_2022_027523 crossref_primary_10_3390_biomedinformatics3040066 crossref_primary_10_1007_s40430_024_04723_2 crossref_primary_10_1016_j_surfin_2024_105065 crossref_primary_10_3390_en16020706 crossref_primary_10_1016_j_jallcom_2025_178897 crossref_primary_10_3389_fncom_2022_1054421 crossref_primary_10_3389_fpls_2025_1539068 crossref_primary_10_1061_PPSCFX_SCENG_1421 crossref_primary_10_1016_j_cobeha_2024_101351 crossref_primary_10_3390_s24154915 crossref_primary_10_1155_2022_9524185 crossref_primary_10_3390_foods13091384 crossref_primary_10_1371_journal_pbio_3001686 crossref_primary_10_1002_brx2_57 crossref_primary_10_1007_s44163_025_00240_w crossref_primary_10_1016_j_conb_2021_08_002 crossref_primary_10_1039_D5MH00038F crossref_primary_10_1371_journal_pcbi_1011897 crossref_primary_10_3390_app142210587 crossref_primary_10_1039_D2NH00536K crossref_primary_10_1155_hbe2_1518987 crossref_primary_10_1111_coin_12522 crossref_primary_10_1016_j_hazadv_2025_100622 crossref_primary_10_1080_14639947_2024_2383328 crossref_primary_10_1016_j_bspc_2023_105263 crossref_primary_10_1038_s41598_020_79908_5 crossref_primary_10_1162_neco_a_01477 crossref_primary_10_1016_j_uclim_2024_102067 crossref_primary_10_1007_s00500_023_08138_4 crossref_primary_10_3390_drones6080194 crossref_primary_10_1016_j_eswa_2021_115964 crossref_primary_10_1007_s42113_024_00219_3 crossref_primary_10_3390_en15228693 crossref_primary_10_1016_j_energy_2025_134439 crossref_primary_10_1038_s41598_023_31110_z crossref_primary_10_1038_s41467_024_50501_y crossref_primary_10_3390_su14074218 crossref_primary_10_3390_app12052534 crossref_primary_10_1016_j_isci_2021_103178 crossref_primary_10_1177_14707853211072817 crossref_primary_10_12688_f1000research_138294_2 crossref_primary_10_12688_f1000research_138294_1 crossref_primary_10_1038_s41593_024_01731_2 crossref_primary_10_1016_j_tics_2021_01_008 crossref_primary_10_1364_JOCN_525666 crossref_primary_10_1007_s11571_023_09932_4 crossref_primary_10_15622_ia_23_2_9 crossref_primary_10_1016_j_isci_2024_110065 crossref_primary_10_1109_LED_2023_3347333 crossref_primary_10_3389_fnsys_2024_1269190 crossref_primary_10_3390_app15031273 crossref_primary_10_1038_s41598_024_54043_7 crossref_primary_10_1016_j_conb_2023_102780 crossref_primary_10_1371_journal_pcbi_1011315 crossref_primary_10_1016_j_tcs_2024_114697 crossref_primary_10_1073_pnas_2420356122 crossref_primary_10_3389_fncom_2024_1363514 crossref_primary_10_1038_s42003_025_07516_y crossref_primary_10_1016_j_conb_2021_04_004 crossref_primary_10_1016_j_cub_2023_01_009 crossref_primary_10_1016_j_neuroimage_2023_120458 crossref_primary_10_1016_j_conb_2023_102816 crossref_primary_10_4018_JGIM_300742 crossref_primary_10_1016_j_procs_2024_04_266 crossref_primary_10_1360_SSC_2024_0021 crossref_primary_10_1371_journal_pcbi_1011954 |
Cites_doi | 10.1016/j.cell.2015.01.045 10.1016/j.neuron.2020.06.014 10.3389/fncom.2010.00024 10.1038/nrn.2018.6 10.1016/j.neuron.2008.09.034 10.1016/j.neuron.2011.02.027 10.1016/j.neuron.2017.03.002 10.1523/JNEUROSCI.12-12-04745.1992 10.1016/j.conb.2018.01.002 10.1371/journal.pcbi.1003915 10.1038/s41593-019-0377-4 10.1093/cercor/bhs270 10.1126/science.1254642 10.1038/ncomms13276 10.1016/S0896-6273(00)00004-0 10.1016/j.jmp.2008.12.005 10.1038/s41593-019-0392-5 10.1007/BF00275687 10.1038/nature12160 10.1146/annurev.neuro.29.051605.113038 10.1038/20939 10.1038/14819 10.1038/s41593-019-0414-3 10.1109/5.726791 10.1126/science.1150769 10.7554/eLife.10989 10.1038/s41593-018-0314-y 10.1126/science.274.5293.1724 10.1038/nature24270 10.1038/s41593-017-0028-6 10.1126/science.aav9436 10.1038/nrn3136 10.1016/j.neuron.2016.02.009 10.1016/S0079-7421(08)60536-8 10.1038/nn.3405 10.1016/j.conb.2014.01.008 10.1146/annurev.ne.18.030195.001205 10.1038/nature13186 10.1162/neco.1997.9.8.1735 10.1162/089976600300015015 10.1016/j.neuron.2014.12.026 10.1016/j.neuron.2009.01.002 10.1016/j.neunet.2004.03.008 10.1038/s41586-019-1424-8 10.1038/s41593-018-0310-2 10.7554/eLife.22901 10.1038/nn.2202 10.7554/eLife.31134 10.1523/JNEUROSCI.22-21-09475.2002 10.1016/j.neunet.2018.12.002 10.1016/j.cell.2019.04.005 10.1038/s41467-017-01827-3 10.1523/JNEUROSCI.1145-07.2007 10.1038/4580 10.1038/s41593-019-0520-2 10.1109/72.279181 10.1523/JNEUROSCI.0388-18.2018 10.1038/s41592-018-0049-4 10.1073/pnas.95.9.5323 10.1016/j.neuron.2009.07.018 10.1038/s41583-020-0277-3 10.1038/s41593-018-0209-y 10.1037/0033-295X.97.3.332 10.1103/PhysRevLett.61.259 10.1016/j.visres.2011.04.012 10.1016/j.tics.2015.05.004 10.1038/nn.4401 10.1162/neco.1989.1.2.270 10.1038/nature05078 10.1162/neco_a_01086 10.7554/eLife.21492 10.1038/331679a0 10.1038/nn.2889 10.1016/j.cell.2019.02.037 10.1146/annurev.neuro.24.1.139 10.1113/jphysiol.1962.sp006837 10.1016/S0079-6123(05)49011-1 10.1038/s41592-018-0109-9 10.1093/cercor/1.1.1 10.1016/0041-5553(64)90137-5 10.1016/0031-3203(82)90024-3 10.1073/pnas.0305337101 10.1073/pnas.79.8.2554 10.1126/science.1091277 10.1162/089976603762552988 10.1152/jn.1953.16.1.37 10.1146/annurev-vision-082114-035447 10.1038/nature14539 10.1016/j.neuroscience.2017.07.061 10.1016/S0896-6273(02)01092-9 10.1126/science.1169405 10.1126/science.275.5306.1593 10.1073/pnas.93.23.13339 10.1016/j.neuron.2012.10.038 10.1038/s41596-019-0176-0 10.1109/5.58337 10.1214/aoms/1177729586 10.1016/j.neuron.2018.05.015 10.1037/h0042519 10.1073/pnas.1820226116 10.1038/nature12742 10.7554/eLife.43299 10.1073/pnas.1403112111 10.1038/nn.4244 10.1073/pnas.1905544116 10.1038/nn.4042 10.1113/jphysiol.1959.sp006308 10.1371/journal.pcbi.1004792 10.1016/j.neuron.2017.06.011 10.1088/1742-5468/ab3985 10.1016/j.neuron.2008.10.019 10.1038/nature01616 10.1038/78829 10.1152/jn.1987.58.6.1233 10.1038/323533a0 10.1038/nature12346 10.1207/s15516709cog1402_1 10.3389/fncom.2020.00029 10.1137/16M1080173 10.1038/nature14236 10.1038/nature01276 10.1016/j.neuron.2018.07.003 10.1162/NECO_a_00409 10.1016/j.neuron.2005.02.001 10.1038/ncomms12815 10.1038/nature08577 10.1126/science.1225266 10.1146/annurev.physiol.64.092501.114547 10.1016/S0006-3495(72)86068-5 10.1371/journal.pcbi.1003963 10.1073/pnas.1611835114 10.1038/nature10835 10.1016/0896-6273(95)90304-6 10.1073/pnas.1803839115 10.1016/0893-6080(89)90020-8 10.1016/j.conb.2017.06.003 10.1016/j.pneurobio.2013.02.002 10.7554/eLife.38105 10.1038/381607a0 10.1016/S0166-2236(00)01868-3 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020. Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020. Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1016/j.neuron.2020.09.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology Architecture |
EISSN | 1097-4199 |
EndPage | 1070 |
ExternalDocumentID | PMC11576090 32970997 10_1016_j_neuron_2020_09_005 S0896627320307054 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH062349 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M2M M2O M3Z M41 N9A O-L O9- OK1 P2P P6G PQQKQ PROAC RCE ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAEDT AAFWJ AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FGOYB G-2 HZ~ ITC MVM OZT R2- RIG X7M ZGI ZKB CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c558t-c81a3ff70f5545b9286074a201d983ec30b82c16b7cd2b9a8af1a06f488d5e713 |
IEDL.DBID | IXB |
ISSN | 0896-6273 1097-4199 |
IngestDate | Thu Aug 21 18:31:58 EDT 2025 Tue Aug 05 11:38:51 EDT 2025 Fri Jul 25 11:21:04 EDT 2025 Thu Apr 03 07:09:16 EDT 2025 Tue Jul 01 01:16:24 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Fri Feb 23 02:49:05 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-c81a3ff70f5545b9286074a201d983ec30b82c16b7cd2b9a8af1a06f488d5e713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3124-8474 |
OpenAccessLink | http://www.cell.com/article/S0896627320307054/pdf |
PMID | 32970997 |
PQID | 2445353444 |
PQPubID | 2031076 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11576090 proquest_miscellaneous_2446662903 proquest_journals_2445353444 pubmed_primary_32970997 crossref_primary_10_1016_j_neuron_2020_09_005 crossref_citationtrail_10_1016_j_neuron_2020_09_005 elsevier_sciencedirect_doi_10_1016_j_neuron_2020_09_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-23 |
PublicationDateYYYYMMDD | 2020-09-23 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Goodfellow, Bengio, Courville (bib53) 2016 Guerguiev, Lillicrap, Richards (bib57) 2017; 6 He, Gkioxari, Dollár, Girshick (bib62) 2017 Heilbron, Chait (bib64) 2018; 389 Werbos (bib194) 1990; 78 Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, Bengio (bib200) 2015 Haroush, Williams (bib58) 2015; 160 Wu, He (bib198) 2018 Olshausen, Field (bib132) 1996; 381 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (bib181) 2013 Le, Jaitly, Hinton (bib97) 2015 Graves, Wayne, Danihelka (bib55) 2014 Bi, Poo (bib18) 2001; 24 Salinas, Thier (bib158) 2000; 27 Hénaff, Goris, Simoncelli (bib66) 2019; 22 Miconi, Clune, Stanley (bib121) 2018 Chaisangmongkon, Swaminathan, Freedman, Wang (bib25) 2017; 93 Sussillo, Abbott (bib176) 2009; 63 Huang, Liu, Van Der Maaten, Weinberger (bib70) 2017 Maheswaranathan, Williams, Golub, Ganguli, Sussillo (bib109) 2019 Xie, Seung (bib199) 2003; 15 Wang (bib189) 2002; 36 Krizhevsky, Sutskever, Hinton (bib93) 2012; 25 Ba, Kiros, Hinton (bib8) 2016 Pei, Deng, Song, Zhao, Zhang, Wu, Wang, Zou, Wu, He (bib137) 2019; 572 Kar, Kubilius, Schmidt, Issa, DiCarlo (bib81) 2019; 22 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (bib136) 2019; 32 Ardid, Wang, Compte (bib6) 2007; 27 Seung (bib163) 1996; 93 Wang, Yang (bib191) 2018; 49 Barak (bib9) 2017; 46 Sutton, Barto (bib180) 2018 Yang, Murray, Wang (bib205) 2016; 7 Grutzendler, Kasthuri, Gan (bib56) 2002; 420 Sussillo (bib175) 2014; 25 Kiani, Shadlen (bib83) 2009; 324 Saxe, McClelland, Ganguli (bib161) 2019; 116 Hassabis, Kumaran, Summerfield, Botvinick (bib59) 2017; 95 Kobak, Brendel, Constantinidis, Feierstein, Kepecs, Mainen, Qi, Romo, Uchida, Machens (bib88) 2016; 5 Hochreiter, Schmidhuber (bib67) 1997; 9 Bastos, Usrey, Adams, Mangun, Fries, Friston (bib13) 2012; 76 LeCun, Bottou, Bengio, Haffner (bib101) 1998; 86 Kirkpatrick, Pascanu, Rabinowitz, Veness, Desjardins, Rusu, Milan, Quan, Ramalho, Grabska-Barwinska (bib87) 2017; 114 Rigotti, Ben Dayan Rubin, Wang, Fusi (bib147) 2010; 4 Romo, Brody, Hernández, Lemus (bib152) 1999; 399 Sutskever, Martens, Dahl, Hinton (bib179) 2013; 28 Freedman, Assad (bib43) 2006; 443 Murray (bib124) 2019; 8 Roitman, Shadlen (bib151) 2002; 22 Mathis, Mamidanna, Cury, Abe, Murthy, Mathis, Bethge (bib116) 2018; 21 Bengio, Bengio, Cloutier, Gecsei (bib15) 1992 Kriegeskorte, Mur, Bandettini (bib92) 2008; 2 Barlow (bib11) 1961; 1 Devlin, Chang, Lee, Toutanova (bib37) 2018 Bahdanau, Cho, Bengio (bib214) 2016 Bellec, Salaj, Subramoney, Legenstein, Maass (bib14) 2018; 31 Kuffler (bib95) 1953; 16 Abbott, Chance (bib4) 2005; 149 Goldman-Rakic (bib51) 1995; 14 Carandini, Heeger (bib23) 2011; 13 Erhan, Bengio, Courville, Vincent (bib41) 2009; 1341 He, Zhang, Ren, Sun (bib60) 2015 Fukushima, Miyake (bib45) 1982; 15 Sussillo, Barak (bib177) 2013; 25 Rajan, Harvey, Tank (bib142) 2016; 90 Saxe, McClelland, Ganguli (bib159) 2013 Yang, Pan, Gan (bib204) 2009; 462 Cadieu, Hong, Yamins, Pinto, Ardila, Solomon, Majaj, DiCarlo (bib22) 2014; 10 Costa, Assael, Shillingford, de Freitas, Vogels (bib31) 2017; 30 Ulyanov, Vedaldi, Lempitsky (bib185) 2016 Rubin, Van Hooser, Miller (bib155) 2015; 85 Kingma, Welling (bib86) 2013 Koch, Ullman (bib89) 1987 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib172) 2014; 15 Gold, Shadlen (bib50) 2007; 30 Wang (bib188) 2001; 24 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib52) 2014; 27 Markram, Wang, Tsodyks (bib112) 1998; 95 Tieleman, Hinton (bib183) 2012 Chen, Rubanova, Bettencourt, Duvenaud (bib26) 2018; 31 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bib100) 1990; 2 Ioffe, Szegedy (bib74) 2015 Shwartz-Ziv, Tishby (bib165) 2017 Olsen, Bortone, Adesnik, Scanziani (bib131) 2012; 483 Fukushima, Miyake, Ito (bib46) 1983 Lillicrap, Santoro, Marris, Akerman, Hinton (bib104) 2020; 21 Zenke, Ganguli (bib209) 2018; 30 Jacot, Gabriel, Hongler (bib75) 2018; 31 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib187) 2017; 30 Niv (bib128) 2009; 53 Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton (bib166) 2017; 550 Oja (bib130) 1982; 15 Rosenblatt (bib153) 1958; 65 Rao, Ballard (bib143) 1999; 2 Deng, Dong, Socher, Li, Li, Fei-Fei (bib35) 2009 He, Zhang, Ren, Sun (bib61) 2016 Cueva, Wei (bib33) 2018 Rajalingham, Issa, Bashivan, Kar, Schmidt, DiCarlo (bib141) 2018; 38 Kietzmann, Spoerer, Sörensen, Cichy, Hauk, Kriegeskorte (bib84) 2019; 116 Daw, Gershman, Seymour, Dayan, Dolan (bib34) 2011; 69 Mastrogiuseppe, Ostojic (bib115) 2018; 99 McIntosh, Maheswaranathan, Nayebi, Ganguli, Baccus (bib118) 2016; 29 Markov, Ercsey-Ravasz, Ribeiro Gomes, Lamy, Magrou, Vezoli, Misery, Falchier, Quilodran, Gariel (bib111) 2014; 24 Wang, Narain, Hosseini, Jazayeri (bib193) 2018; 21 Krogh, Hertz (bib94) 1992; 4 Zenke, Poole, Ganguli (bib210) 2017 Oh, Harris, Ng, Winslow, Cain, Mihalas, Wang, Lau, Kuan, Henry (bib129) 2014; 508 Nath, Mathis, Chen, Patel, Bethge, Mathis (bib125) 2019; 14 Pascanu, Mikolov, Bengio (bib135) 2013 Bashivan, Kar, DiCarlo (bib12) 2019; 364 Williams, Kim, Wang, Vyas, Ryu, Shenoy, Schnitzer, Kolda, Ganguli (bib196) 2018; 98 Abbott (bib2) 2006 Zucker, Regehr (bib213) 2002; 64 Zeiler, Fergus (bib208) 2014 Rosenblatt (bib154) 1962 Hubel, Wiesel (bib71) 1959; 148 Merolla, Arthur, Alvarez-Icaza, Cassidy, Sawada, Akopyan, Jackson, Imam, Guo, Nakamura (bib119) 2014; 345 Orhan, Ma (bib133) 2019; 22 Reynolds, Heeger (bib144) 2009; 61 Gers, Schmidhuber, Cummins (bib48) 2000; 12 Hebb (bib63) 2005 Lindsay, Miller (bib106) 2018; 7 Yang, Ganichev, Wang, Shlens, Sussillo (bib206) 2018 Hubel, Wiesel (bib72) 1962; 160 Prenger, Wu, David, Gallant (bib140) 2004; 17 Yamane, Carlson, Bowman, Wang, Connor (bib201) 2008; 11 Polyak (bib138) 1964; 4 Desimone, Duncan (bib36) 1995; 18 Zipser, Andersen (bib212) 1988; 331 van Vreeswijk, Sompolinsky (bib186) 1996; 274 Sompolinsky, Crisanti, Sommers (bib168) 1988; 61 Carrasco (bib24) 2011; 51 Nayebi, Bear, Kubilius, Kar, Ganguli, Sussillo, DiCarlo, Yamins (bib126) 2018; 31 Abbott (bib3) 2008; 60 Duchi, Hazan, Singer (bib38) 2011; 12 Cohen, Dunbar, McClelland (bib30) 1990; 97 Shu, Hasenstaub, McCormick (bib164) 2003; 423 Richards, Lillicrap, Beaudoin, Bengio, Bogacz, Christensen, Clopath, Costa, de Berker, Ganguli (bib145) 2019; 22 Laje, Buonomano (bib96) 2013; 16 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib203) 2014; 111 Mongillo, Barak, Tsodyks (bib123) 2008; 319 Jaeger, Haas (bib76) 2004; 304 Jones, Palmer (bib78) 1987; 58 Sacramento, Costa, Bengio, Senn (bib157) 2018; 31 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib122) 2015; 518 Kaplanis, Shanahan, Clopath (bib80) 2018 Lillicrap, Cownden, Tweed, Akerman (bib103) 2016; 7 Nicola, Clopath (bib127) 2017; 8 Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib27) 2014 Roelfsema, Holtmaat (bib150) 2018; 19 Kingma, Ba (bib85) 2014 Glorot, Bordes, Bengio (bib49) 2011; 15 Saxe, Bansal, Dapello, Advani, Kolchinsky, Tracey, Cox (bib160) 2019; 2019 Schultz, Dayan, Montague (bib162) 1997; 275 Riesenhuber, Poggio (bib146) 1999; 2 Kriegeskorte (bib91) 2015; 1 Tikhonov (bib184) 1943; 39 Strogatz (bib174) 2001 Yamins, DiCarlo (bib202) 2016; 19 Yang, Joglekar, Song, Newsome, Wang (bib207) 2019; 22 Courbariaux, Hubara, Soudry, El-Yaniv, Bengio (bib32) 2016 Rigotti, Barak, Warden, Wang, Daw, Miller, Fusi (bib148) 2013; 497 Jouppi, Young, Patil, Patterson, Agrawal, Bajwa, Bates, Bhatia, Boden, Borchers (bib79) 2017 Lindsay (bib105) 2020; 14 Clevert, Unterthiner, Hochreiter (bib29) 2015 Robbins, Monro (bib149) 1951; 22 Goudar, Buonomano (bib54) 2018; 7 Rumelhart, Hinton, Williams (bib156) 1986; 323 Andalman, Burns, Lovett-Barron, Broxton, Poole, Yang, Grosenick, Lerner, Chen, Benster (bib5) 2019; 177 Eliasmith, Stewart, Choo, Bekolay, DeWolf, Tang, Rasmussen (bib39) 2012; 338 McCloskey, Cohen (bib117) 1989; 24 Britten, Shadlen, Newsome, Movshon (bib21) 1992; 12 Williams, Zipser (bib195) 1989; 1 Kornblith, Norouzi, Lee, Hinton (bib90) 2019 Ponce, Xiao, Schade, Hartmann, Kreiman, Livingstone (bib139) 2019; 177 Song, Miller, Abbott (bib169) 2000; 3 Ba, Hinton, Mnih, Leibo, Ionescu (bib7) 2016; 29 Elman (bib40) 1990; 14 LeCun, Bengio, Hinton (bib102) 2015; 521 Tavanaei, Ghodrati, Kheradpisheh, Masquelier, Maida (bib182) 2019; 111 Wilson, Cowan (bib197) 1972; 12 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib1) 2016 LeCun, Bengio (bib99) 1995 Wang, Tegnér, Constantinidis, Goldman-Rakic (bib192) 2004; 101 Masse, Grant, Freedman (bib113) 2018; 115 Song, Yang, Wang (bib170) 2016; 12 Freeman, Simoncelli (bib44) 2011; 14 Mante, Sussillo, Shenoy, Newsome (bib110) 2013; 503 Masse, Yang, Song, Wang, Freedman (bib114) 2019; 22 Helmstaedter, Briggman, Turaga, Jain, Seung, Denk (bib65) 2013; 500 Khaligh-Razavi, Kriegeskorte (bib82) 2014; 10 Botvinick, Wang, Dabney, Miller, Kurth-Nelson (bib20) 2020; 107 Benna, Fusi (bib17) 2016; 19 Lotter, Kreiman, Cox (bib108) 2016 Lindsey, Ocko, Ganguli, Deny (bib107) 2019 Song, Yang, Wang (bib171) 2017; 6 Hornik, Stinchcombe, White (bib69) 1989; 2 Januszewski, Kornfeld, Li, Pope, Blakely, Lindsey, Maitin-Shepard, Tyka, Denk, Jain (bib77) 2018; 15 Metz, Maheswaranathan, Cheung, Sohl-Dickstein (bib120) 2018 Bengio, Simard, Frasconi (bib16) 1994; 5 Stokes (bib173) 2015; 19 Barak, Sussillo, Romo, Tsodyks, Abbott (bib10) 2013; 103 Simonyan, Zisserman (bib167) 2014 Pandarinath, O’Shea, Collins, Jozefowicz, Stavisky, Kao, Trautmann, Kaufman, Ryu, Hochberg (bib134) 2018; 15 Wang (bib190) 2008; 60 Chung, Gulcehre, Cho, Bengio (bib28) 2014 Sussillo, Churchland, Kaufman, Shenoy (bib178) 2015; 18 LeCun (bib98) 1988 Fusi, Drew, Abbott (bib47) 2005; 45 Huh, Sejnowski (bib73) 2018; 31 Zhuang, Yan, Nayebi, Yamins (bib211) 2019 Hopfield (bib68) 1982; 79 Felleman, Van Essen (bib42) 1991; 1 Bottou, Curtis, Nocedal (bib19) 2018; 60 Costa (10.1016/j.neuron.2020.09.005_bib31) 2017; 30 Britten (10.1016/j.neuron.2020.09.005_bib21) 1992; 12 Barak (10.1016/j.neuron.2020.09.005_bib9) 2017; 46 Botvinick (10.1016/j.neuron.2020.09.005_bib20) 2020; 107 Gold (10.1016/j.neuron.2020.09.005_bib50) 2007; 30 Yang (10.1016/j.neuron.2020.09.005_bib206) 2018 Mastrogiuseppe (10.1016/j.neuron.2020.09.005_bib115) 2018; 99 Daw (10.1016/j.neuron.2020.09.005_bib34) 2011; 69 Sutton (10.1016/j.neuron.2020.09.005_bib180) 2018 Wu (10.1016/j.neuron.2020.09.005_bib198) 2018 Ioffe (10.1016/j.neuron.2020.09.005_bib74) 2015 LeCun (10.1016/j.neuron.2020.09.005_bib100) 1990; 2 Kriegeskorte (10.1016/j.neuron.2020.09.005_bib91) 2015; 1 Paszke (10.1016/j.neuron.2020.09.005_bib136) 2019; 32 Huang (10.1016/j.neuron.2020.09.005_bib70) 2017 Sussillo (10.1016/j.neuron.2020.09.005_bib178) 2015; 18 Sussillo (10.1016/j.neuron.2020.09.005_bib176) 2009; 63 Krogh (10.1016/j.neuron.2020.09.005_bib94) 1992; 4 Markram (10.1016/j.neuron.2020.09.005_bib112) 1998; 95 Helmstaedter (10.1016/j.neuron.2020.09.005_bib65) 2013; 500 Song (10.1016/j.neuron.2020.09.005_bib170) 2016; 12 Graves (10.1016/j.neuron.2020.09.005_bib55) 2014 Rajalingham (10.1016/j.neuron.2020.09.005_bib141) 2018; 38 Hénaff (10.1016/j.neuron.2020.09.005_bib66) 2019; 22 Lindsay (10.1016/j.neuron.2020.09.005_bib105) 2020; 14 Rumelhart (10.1016/j.neuron.2020.09.005_bib156) 1986; 323 Lillicrap (10.1016/j.neuron.2020.09.005_bib104) 2020; 21 Xie (10.1016/j.neuron.2020.09.005_bib199) 2003; 15 Ba (10.1016/j.neuron.2020.09.005_bib8) 2016 Wang (10.1016/j.neuron.2020.09.005_bib193) 2018; 21 Gers (10.1016/j.neuron.2020.09.005_bib48) 2000; 12 Fukushima (10.1016/j.neuron.2020.09.005_bib46) 1983 Metz (10.1016/j.neuron.2020.09.005_bib120) 2018 Kietzmann (10.1016/j.neuron.2020.09.005_bib84) 2019; 116 Nayebi (10.1016/j.neuron.2020.09.005_bib126) 2018; 31 Olsen (10.1016/j.neuron.2020.09.005_bib131) 2012; 483 Hochreiter (10.1016/j.neuron.2020.09.005_bib67) 1997; 9 Ba (10.1016/j.neuron.2020.09.005_bib7) 2016; 29 Song (10.1016/j.neuron.2020.09.005_bib169) 2000; 3 Rosenblatt (10.1016/j.neuron.2020.09.005_bib153) 1958; 65 Le (10.1016/j.neuron.2020.09.005_bib97) 2015 Merolla (10.1016/j.neuron.2020.09.005_bib119) 2014; 345 Lotter (10.1016/j.neuron.2020.09.005_bib108) 2016 Cohen (10.1016/j.neuron.2020.09.005_bib30) 1990; 97 Oja (10.1016/j.neuron.2020.09.005_bib130) 1982; 15 Saxe (10.1016/j.neuron.2020.09.005_bib159) 2013 Bi (10.1016/j.neuron.2020.09.005_bib18) 2001; 24 Jacot (10.1016/j.neuron.2020.09.005_bib75) 2018; 31 Guerguiev (10.1016/j.neuron.2020.09.005_bib57) 2017; 6 Seung (10.1016/j.neuron.2020.09.005_bib163) 1996; 93 Roelfsema (10.1016/j.neuron.2020.09.005_bib150) 2018; 19 Kaplanis (10.1016/j.neuron.2020.09.005_bib80) 2018 Miconi (10.1016/j.neuron.2020.09.005_bib121) 2018 Goldman-Rakic (10.1016/j.neuron.2020.09.005_bib51) 1995; 14 Bastos (10.1016/j.neuron.2020.09.005_bib13) 2012; 76 Orhan (10.1016/j.neuron.2020.09.005_bib133) 2019; 22 Ulyanov (10.1016/j.neuron.2020.09.005_bib185) 2016 Nicola (10.1016/j.neuron.2020.09.005_bib127) 2017; 8 He (10.1016/j.neuron.2020.09.005_bib62) 2017 Krizhevsky (10.1016/j.neuron.2020.09.005_bib93) 2012; 25 Srivastava (10.1016/j.neuron.2020.09.005_bib172) 2014; 15 Sompolinsky (10.1016/j.neuron.2020.09.005_bib168) 1988; 61 Fusi (10.1016/j.neuron.2020.09.005_bib47) 2005; 45 Glorot (10.1016/j.neuron.2020.09.005_bib49) 2011; 15 McCloskey (10.1016/j.neuron.2020.09.005_bib117) 1989; 24 Rigotti (10.1016/j.neuron.2020.09.005_bib148) 2013; 497 Bengio (10.1016/j.neuron.2020.09.005_bib16) 1994; 5 Goudar (10.1016/j.neuron.2020.09.005_bib54) 2018; 7 Saxe (10.1016/j.neuron.2020.09.005_bib160) 2019; 2019 Yang (10.1016/j.neuron.2020.09.005_bib204) 2009; 462 Pei (10.1016/j.neuron.2020.09.005_bib137) 2019; 572 Rajan (10.1016/j.neuron.2020.09.005_bib142) 2016; 90 Rubin (10.1016/j.neuron.2020.09.005_bib155) 2015; 85 Mongillo (10.1016/j.neuron.2020.09.005_bib123) 2008; 319 Yamane (10.1016/j.neuron.2020.09.005_bib201) 2008; 11 Barlow (10.1016/j.neuron.2020.09.005_bib11) 1961; 1 Freeman (10.1016/j.neuron.2020.09.005_bib44) 2011; 14 Wang (10.1016/j.neuron.2020.09.005_bib190) 2008; 60 Williams (10.1016/j.neuron.2020.09.005_bib196) 2018; 98 Rosenblatt (10.1016/j.neuron.2020.09.005_bib154) 1962 Bengio (10.1016/j.neuron.2020.09.005_bib15) 1992 Yang (10.1016/j.neuron.2020.09.005_bib205) 2016; 7 He (10.1016/j.neuron.2020.09.005_bib61) 2016 Elman (10.1016/j.neuron.2020.09.005_bib40) 1990; 14 Kriegeskorte (10.1016/j.neuron.2020.09.005_bib92) 2008; 2 Zeiler (10.1016/j.neuron.2020.09.005_bib208) 2014 Reynolds (10.1016/j.neuron.2020.09.005_bib144) 2009; 61 Romo (10.1016/j.neuron.2020.09.005_bib152) 1999; 399 Deng (10.1016/j.neuron.2020.09.005_bib35) 2009 Sutskever (10.1016/j.neuron.2020.09.005_bib179) 2013; 28 Williams (10.1016/j.neuron.2020.09.005_bib195) 1989; 1 Kingma (10.1016/j.neuron.2020.09.005_bib86) 2013 He (10.1016/j.neuron.2020.09.005_bib60) 2015 Jones (10.1016/j.neuron.2020.09.005_bib78) 1987; 58 Wang (10.1016/j.neuron.2020.09.005_bib189) 2002; 36 Hornik (10.1016/j.neuron.2020.09.005_bib69) 1989; 2 Song (10.1016/j.neuron.2020.09.005_bib171) 2017; 6 Hassabis (10.1016/j.neuron.2020.09.005_bib59) 2017; 95 Roitman (10.1016/j.neuron.2020.09.005_bib151) 2002; 22 van Vreeswijk (10.1016/j.neuron.2020.09.005_bib186) 1996; 274 Hubel (10.1016/j.neuron.2020.09.005_bib72) 1962; 160 Salinas (10.1016/j.neuron.2020.09.005_bib158) 2000; 27 Eliasmith (10.1016/j.neuron.2020.09.005_bib39) 2012; 338 Pascanu (10.1016/j.neuron.2020.09.005_bib135) 2013 Kobak (10.1016/j.neuron.2020.09.005_bib88) 2016; 5 Olshausen (10.1016/j.neuron.2020.09.005_bib132) 1996; 381 Zenke (10.1016/j.neuron.2020.09.005_bib209) 2018; 30 Grutzendler (10.1016/j.neuron.2020.09.005_bib56) 2002; 420 Yamins (10.1016/j.neuron.2020.09.005_bib202) 2016; 19 LeCun (10.1016/j.neuron.2020.09.005_bib98) 1988 Courbariaux (10.1016/j.neuron.2020.09.005_bib32) 2016 Kingma (10.1016/j.neuron.2020.09.005_bib85) 2014 Wang (10.1016/j.neuron.2020.09.005_bib188) 2001; 24 Laje (10.1016/j.neuron.2020.09.005_bib96) 2013; 16 Murray (10.1016/j.neuron.2020.09.005_bib124) 2019; 8 Andalman (10.1016/j.neuron.2020.09.005_bib5) 2019; 177 Zenke (10.1016/j.neuron.2020.09.005_bib210) 2017 Wang (10.1016/j.neuron.2020.09.005_bib191) 2018; 49 Kirkpatrick (10.1016/j.neuron.2020.09.005_bib87) 2017; 114 Werbos (10.1016/j.neuron.2020.09.005_bib194) 1990; 78 Schultz (10.1016/j.neuron.2020.09.005_bib162) 1997; 275 Sussillo (10.1016/j.neuron.2020.09.005_bib175) 2014; 25 Felleman (10.1016/j.neuron.2020.09.005_bib42) 1991; 1 Oh (10.1016/j.neuron.2020.09.005_bib129) 2014; 508 Zipser (10.1016/j.neuron.2020.09.005_bib212) 1988; 331 Lillicrap (10.1016/j.neuron.2020.09.005_bib103) 2016; 7 McIntosh (10.1016/j.neuron.2020.09.005_bib118) 2016; 29 Shwartz-Ziv (10.1016/j.neuron.2020.09.005_bib165) 2017 Koch (10.1016/j.neuron.2020.09.005_bib89) 1987 Januszewski (10.1016/j.neuron.2020.09.005_bib77) 2018; 15 Zhuang (10.1016/j.neuron.2020.09.005_bib211) 2019 Rao (10.1016/j.neuron.2020.09.005_bib143) 1999; 2 Richards (10.1016/j.neuron.2020.09.005_bib145) 2019; 22 Vaswani (10.1016/j.neuron.2020.09.005_bib187) 2017; 30 Abbott (10.1016/j.neuron.2020.09.005_bib2) 2006 Cueva (10.1016/j.neuron.2020.09.005_bib33) 2018 Polyak (10.1016/j.neuron.2020.09.005_bib138) 1964; 4 Barak (10.1016/j.neuron.2020.09.005_bib10) 2013; 103 Silver (10.1016/j.neuron.2020.09.005_bib166) 2017; 550 Bellec (10.1016/j.neuron.2020.09.005_bib14) 2018; 31 Heilbron (10.1016/j.neuron.2020.09.005_bib64) 2018; 389 Bahdanau (10.1016/j.neuron.2020.09.005_bib214) 2016 Bottou (10.1016/j.neuron.2020.09.005_bib19) 2018; 60 LeCun (10.1016/j.neuron.2020.09.005_bib101) 1998; 86 Pandarinath (10.1016/j.neuron.2020.09.005_bib134) 2018; 15 Kuffler (10.1016/j.neuron.2020.09.005_bib95) 1953; 16 Duchi (10.1016/j.neuron.2020.09.005_bib38) 2011; 12 Yamins (10.1016/j.neuron.2020.09.005_bib203) 2014; 111 Khaligh-Razavi (10.1016/j.neuron.2020.09.005_bib82) 2014; 10 Markov (10.1016/j.neuron.2020.09.005_bib111) 2014; 24 Masse (10.1016/j.neuron.2020.09.005_bib113) 2018; 115 Niv (10.1016/j.neuron.2020.09.005_bib128) 2009; 53 Masse (10.1016/j.neuron.2020.09.005_bib114) 2019; 22 Prenger (10.1016/j.neuron.2020.09.005_bib140) 2004; 17 Rigotti (10.1016/j.neuron.2020.09.005_bib147) 2010; 4 Wilson (10.1016/j.neuron.2020.09.005_bib197) 1972; 12 Sussillo (10.1016/j.neuron.2020.09.005_bib177) 2013; 25 Yang (10.1016/j.neuron.2020.09.005_bib207) 2019; 22 Hubel (10.1016/j.neuron.2020.09.005_bib71) 1959; 148 Bashivan (10.1016/j.neuron.2020.09.005_bib12) 2019; 364 Maheswaranathan (10.1016/j.neuron.2020.09.005_bib109) 2019 Haroush (10.1016/j.neuron.2020.09.005_bib58) 2015; 160 Cho (10.1016/j.neuron.2020.09.005_bib27) 2014 Kornblith (10.1016/j.neuron.2020.09.005_bib90) 2019 Fukushima (10.1016/j.neuron.2020.09.005_bib45) 1982; 15 Tikhonov (10.1016/j.neuron.2020.09.005_bib184) 1943; 39 Chen (10.1016/j.neuron.2020.09.005_bib26) 2018; 31 Stokes (10.1016/j.neuron.2020.09.005_bib173) 2015; 19 Freedman (10.1016/j.neuron.2020.09.005_bib43) 2006; 443 Hebb (10.1016/j.neuron.2020.09.005_bib63) 2005 Goodfellow (10.1016/j.neuron.2020.09.005_bib53) 2016 Benna (10.1016/j.neuron.2020.09.005_bib17) 2016; 19 Abbott (10.1016/j.neuron.2020.09.005_bib4) 2005; 149 Ponce (10.1016/j.neuron.2020.09.005_bib139) 2019; 177 Lindsay (10.1016/j.neuron.2020.09.005_bib106) 2018; 7 Huh (10.1016/j.neuron.2020.09.005_bib73) 2018; 31 LeCun (10.1016/j.neuron.2020.09.005_bib99) 1995 Desimone (10.1016/j.neuron.2020.09.005_bib36) 1995; 18 Shu (10.1016/j.neuron.2020.09.005_bib164) 2003; 423 Goodfellow (10.1016/j.neuron.2020.09.005_bib52) 2014; 27 Clevert (10.1016/j.neuron.2020.09.005_bib29) 2015 Tavanaei (10.1016/j.neuron.2020.09.005_bib182) 2019; 111 Riesenhuber (10.1016/j.neuron.2020.09.005_bib146) 1999; 2 Devlin (10.1016/j.neuron.2020.09.005_bib37) 2018 Kiani (10.1016/j.neuron.2020.09.005_bib83) 2009; 324 Strogatz (10.1016/j.neuron.2020.09.005_bib174) 2001 Tieleman (10.1016/j.neuron.2020.09.005_bib183) 2012 Lindsey (10.1016/j.neuron.2020.09.005_bib107) 2019 Zucker (10.1016/j.neuron.2020.09.005_bib213) 2002; 64 Nath (10.1016/j.neuron.2020.09.005_bib125) 2019; 14 Cadieu (10.1016/j.neuron.2020.09.005_bib22) 2014; 10 Jouppi (10.1016/j.neuron.2020.09.005_bib79) 33600755 - Neuron. 2021 Feb 17;109(4):739. doi: 10.1016/j.neuron.2021.01.022 |
References_xml | – year: 2019 ident: bib90 article-title: Similarity of Neural Network Representations Revisited publication-title: arXiv – volume: 4 start-page: 1 year: 1964 end-page: 17 ident: bib138 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib172 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 98 start-page: 1099 year: 2018 end-page: 1115.e8 ident: bib196 article-title: Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis publication-title: Neuron – volume: 24 start-page: 17 year: 2014 end-page: 36 ident: bib111 article-title: A weighted and directed interareal connectivity matrix for macaque cerebral cortex publication-title: Cereb. Cortex – volume: 12 start-page: 2451 year: 2000 end-page: 2471 ident: bib48 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. – volume: 101 start-page: 1368 year: 2004 end-page: 1373 ident: bib192 article-title: Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory publication-title: Proc. Natl. Acad. Sci. USA – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bib203 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. USA – start-page: 1 year: 2017 end-page: 12 ident: bib79 article-title: In-datacenter performance analysis of a tensor processing unit. In ISCA ‘17: Proceedings of the 44th Annual International Symposium on Computer Architecture – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib101 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 19 start-page: 394 year: 2015 end-page: 405 ident: bib173 article-title: ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework publication-title: Trends Cogn. Sci. – volume: 29 start-page: 4331 year: 2016 end-page: 4339 ident: bib7 article-title: Using fast weights to attend to the recent past publication-title: Adv. Neural Inf. Process. Syst. – volume: 60 start-page: 215 year: 2008 end-page: 234 ident: bib190 article-title: Decision making in recurrent neuronal circuits publication-title: Neuron – volume: 420 start-page: 812 year: 2002 end-page: 816 ident: bib56 article-title: Long-term dendritic spine stability in the adult cortex publication-title: Nature – volume: 49 start-page: 75 year: 2018 end-page: 83 ident: bib191 article-title: A disinhibitory circuit motif and flexible information routing in the brain publication-title: Curr. Opin. Neurobiol. – volume: 32 start-page: 8024 year: 2019 end-page: 8035 ident: bib136 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 12815 year: 2016 ident: bib205 article-title: A dendritic disinhibitory circuit mechanism for pathway-specific gating publication-title: Nat. Commun. – volume: 550 start-page: 354 year: 2017 end-page: 359 ident: bib166 article-title: Mastering the game of Go without human knowledge publication-title: Nature – volume: 93 start-page: 13339 year: 1996 end-page: 13344 ident: bib163 article-title: How the brain keeps the eyes still publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 9475 year: 2002 end-page: 9489 ident: bib151 article-title: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task publication-title: J. Neurosci. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: bib93 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 248 year: 2009 end-page: 255 ident: bib35 article-title: Imagenet: A large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – volume: 58 start-page: 1233 year: 1987 end-page: 1258 ident: bib78 article-title: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex publication-title: J. Neurophysiol. – year: 2013 ident: bib86 article-title: Auto-Encoding Variational Bayes publication-title: arXiv – volume: 7 start-page: e38105 year: 2018 ident: bib106 article-title: How biological attention mechanisms improve task performance in a large-scale visual system model publication-title: eLife – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: bib122 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 304 start-page: 78 year: 2004 end-page: 80 ident: bib76 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science – volume: 25 start-page: 156 year: 2014 end-page: 163 ident: bib175 article-title: Neural circuits as computational dynamical systems publication-title: Curr. Opin. Neurobiol. – year: 2017 ident: bib165 article-title: Opening the black box of deep neural networks via information publication-title: arXiv – volume: 10 start-page: e1003963 year: 2014 ident: bib22 article-title: Deep neural networks rival the representation of primate IT cortex for core visual object recognition publication-title: PLoS Comput. Biol. – year: 2018 ident: bib121 article-title: Differentiable plasticity: training plastic neural networks with backpropagation publication-title: arXiv – volume: 21 start-page: 1281 year: 2018 end-page: 1289 ident: bib116 article-title: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning publication-title: Nat. Neurosci. – start-page: 3987 year: 2017 end-page: 3995 ident: bib210 article-title: Continual learning through synaptic intelligence. Proceedings of the 34th International Conference on Machine Learning 70 – volume: 31 start-page: 8571 year: 2018 end-page: 8580 ident: bib75 article-title: Neural tangent kernel: Convergence and generalization in neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 265 year: 2016 end-page: 283 ident: bib1 article-title: Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI) – volume: 1 start-page: 217 year: 1961 end-page: 234 ident: bib11 article-title: Possible principles underlying the transformation of sensory messages publication-title: Sensory Communication – volume: 39 start-page: 195 year: 1943 end-page: 198 ident: bib184 article-title: On the stability of inverse problems publication-title: Dokl. Akad. Nauk SSSR – year: 2016 ident: bib108 article-title: Deep predictive coding networks for video prediction and unsupervised learning publication-title: arXiv – volume: 462 start-page: 920 year: 2009 end-page: 924 ident: bib204 article-title: Stably maintained dendritic spines are associated with lifelong memories publication-title: Nature – volume: 15 start-page: 805 year: 2018 end-page: 815 ident: bib134 article-title: Inferring single-trial neural population dynamics using sequential auto-encoders publication-title: Nat. Methods – volume: 107 start-page: 603 year: 2020 end-page: 616 ident: bib20 article-title: Deep reinforcement learning and its neuroscientific implications publication-title: Neuron – year: 2014 ident: bib55 article-title: Neural turing machines publication-title: arXiv – volume: 149 start-page: 147 year: 2005 end-page: 155 ident: bib4 article-title: Drivers and modulators from push-pull and balanced synaptic input publication-title: Prog. Brain Res. – volume: 24 start-page: 139 year: 2001 end-page: 166 ident: bib18 article-title: Synaptic modification by correlated activity: Hebb’s postulate revisited publication-title: Annu. Rev. Neurosci. – start-page: 826 year: 1983 end-page: 834 ident: bib46 article-title: Neocognitron: A neural network model for a mechanism of visual pattern recognition publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 116 start-page: 21854 year: 2019 end-page: 21863 ident: bib84 article-title: Recurrence is required to capture the representational dynamics of the human visual system publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 2152 year: 2019 end-page: 2176 ident: bib125 article-title: Using DeepLabCut for 3D markerless pose estimation across species and behaviors publication-title: Nat. Protoc. – volume: 6 start-page: e22901 year: 2017 ident: bib57 article-title: Towards deep learning with segregated dendrites publication-title: eLife – start-page: 3 year: 2018 end-page: 19 ident: bib198 article-title: Group normalization publication-title: Computer Vision – ECCV 2018 – volume: 503 start-page: 78 year: 2013 end-page: 84 ident: bib110 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature – volume: 443 start-page: 85 year: 2006 end-page: 88 ident: bib43 article-title: Experience-dependent representation of visual categories in parietal cortex publication-title: Nature – volume: 65 start-page: 386 year: 1958 end-page: 408 ident: bib153 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: bib40 article-title: Finding structure in time publication-title: Cogn. Sci. – year: 2018 ident: bib120 article-title: Meta-learning update rules for unsupervised representation learning publication-title: arXiv – volume: 31 start-page: 1433 year: 2018 end-page: 1443 ident: bib73 article-title: Gradient descent for spiking neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 315 year: 2011 end-page: 323 ident: bib49 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – start-page: 245 year: 1962 end-page: 248 ident: bib154 article-title: Principles of neurodynamics: Perceptions and the theory of brain mechanisms publication-title: Brain Theory – volume: 38 start-page: 7255 year: 2018 end-page: 7269 ident: bib141 article-title: Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks publication-title: J. Neurosci. – volume: 22 start-page: 974 year: 2019 end-page: 983 ident: bib81 article-title: Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior publication-title: Nat. Neurosci. – volume: 22 start-page: 1159 year: 2019 end-page: 1167 ident: bib114 article-title: Circuit mechanisms for the maintenance and manipulation of information in working memory publication-title: Nat. Neurosci. – volume: 61 start-page: 168 year: 2009 end-page: 185 ident: bib144 article-title: The normalization model of attention publication-title: Neuron – volume: 15 start-page: 441 year: 2003 end-page: 454 ident: bib199 article-title: Equivalence of backpropagation and contrastive Hebbian learning in a layered network publication-title: Neural Comput. – volume: 8 start-page: e43299 year: 2019 ident: bib124 article-title: Local online learning in recurrent networks with random feedback publication-title: eLife – volume: 25 start-page: 626 year: 2013 end-page: 649 ident: bib177 article-title: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks publication-title: Neural Comput. – volume: 399 start-page: 470 year: 1999 end-page: 473 ident: bib152 article-title: Neuronal correlates of parametric working memory in the prefrontal cortex publication-title: Nature – year: 2016 ident: bib214 article-title: Neural Machine Translation by Jointly Learning to Align and Translate publication-title: arXiv – volume: 4 start-page: 950 year: 1992 end-page: 957 ident: bib94 article-title: A simple weight decay can improve generalization publication-title: Adv. Neural Inf. Process. Syst. – volume: 51 start-page: 1484 year: 2011 end-page: 1525 ident: bib24 article-title: Visual attention: the past 25 years publication-title: Vision Res. – volume: 95 start-page: 245 year: 2017 end-page: 258 ident: bib59 article-title: Neuroscience-inspired artificial intelligence publication-title: Neuron – volume: 19 start-page: 166 year: 2018 end-page: 180 ident: bib150 article-title: Control of synaptic plasticity in deep cortical networks publication-title: Nat. Rev. Neurosci. – volume: 319 start-page: 1543 year: 2008 end-page: 1546 ident: bib123 article-title: Synaptic theory of working memory publication-title: Science – volume: 19 start-page: 356 year: 2016 end-page: 365 ident: bib202 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. – year: 2016 ident: bib53 article-title: Deep Learning – volume: 95 start-page: 5323 year: 1998 end-page: 5328 ident: bib112 article-title: Differential signaling via the same axon of neocortical pyramidal neurons publication-title: Proc. Natl. Acad. Sci. USA – year: 2018 ident: bib180 article-title: Reinforcement Learning: An Introduction – volume: 63 start-page: 544 year: 2009 end-page: 557 ident: bib176 article-title: Generating coherent patterns of activity from chaotic neural networks publication-title: Neuron – year: 2013 ident: bib181 article-title: Intriguing properties of neural networks publication-title: arXiv – volume: 2 start-page: 396 year: 1990 end-page: 404 ident: bib100 article-title: Handwritten digit recognition with a back-propagation network publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 start-page: 1019 year: 1999 end-page: 1025 ident: bib146 article-title: Hierarchical models of object recognition in cortex publication-title: Nat. Neurosci. – start-page: 566 year: 2019 end-page: 569 ident: bib211 article-title: Self-supervised neural network models of higher visual cortex development publication-title: 2019 Conference on Cognitive Computational Neuroscience – volume: 61 start-page: 259 year: 1988 end-page: 262 ident: bib168 article-title: Chaos in random neural networks publication-title: Phys. Rev. Lett. – volume: 148 start-page: 574 year: 1959 end-page: 591 ident: bib71 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: J. Physiol. – start-page: 729 year: 2018 end-page: 745 ident: bib206 article-title: A dataset and architecture for visual reasoning with a working memory publication-title: Computer Vision – ECCV 2018 – volume: 16 start-page: 925 year: 2013 end-page: 933 ident: bib96 article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks publication-title: Nat. Neurosci. – volume: 99 start-page: 609 year: 2018 end-page: 623.e29 ident: bib115 article-title: Linking connectivity, dynamics, and computations in low-rank recurrent neural networks publication-title: Neuron – year: 2013 ident: bib159 article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks publication-title: arXiv – volume: 7 start-page: 13276 year: 2016 ident: bib103 article-title: Random synaptic feedback weights support error backpropagation for deep learning publication-title: Nat. Commun. – volume: 30 start-page: 535 year: 2007 end-page: 574 ident: bib50 article-title: The neural basis of decision making publication-title: Annu. Rev. Neurosci. – start-page: 4700 year: 2017 end-page: 4708 ident: bib70 article-title: Densely connected convolutional networks publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition – volume: 15 start-page: 605 year: 2018 end-page: 610 ident: bib77 article-title: High-precision automated reconstruction of neurons with flood-filling networks publication-title: Nat. Methods – volume: 27 start-page: 2672 year: 2014 end-page: 2680 ident: bib52 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: bib8 article-title: Layer normalization publication-title: arXiv – volume: 16 start-page: 37 year: 1953 end-page: 68 ident: bib95 article-title: Discharge patterns and functional organization of mammalian retina publication-title: J. Neurophysiol. – year: 2015 ident: bib97 article-title: A simple way to initialize recurrent networks of rectified linear units publication-title: arXiv – volume: 22 start-page: 297 year: 2019 end-page: 306 ident: bib207 article-title: Task representations in neural networks trained to perform many cognitive tasks publication-title: Nat. Neurosci. – volume: 85 start-page: 402 year: 2015 end-page: 417 ident: bib155 article-title: The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex publication-title: Neuron – volume: 31 start-page: 5290 year: 2018 end-page: 5301 ident: bib126 article-title: Task-driven convolutional recurrent models of the visual system publication-title: Adv. Neural Inf. Process. Syst. – volume: 177 start-page: 999 year: 2019 end-page: 1009.e10 ident: bib139 article-title: Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences publication-title: Cell – volume: 17 start-page: 663 year: 2004 end-page: 679 ident: bib140 article-title: Nonlinear V1 responses to natural scenes revealed by neural network analysis publication-title: Neural Netw. – volume: 93 start-page: 1504 year: 2017 end-page: 1517.e4 ident: bib25 article-title: Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions publication-title: Neuron – start-page: 818 year: 2014 end-page: 833 ident: bib208 article-title: Visualizing and understanding convolutional networks publication-title: Computer Vision – ECCV 2014 – volume: 497 start-page: 585 year: 2013 end-page: 590 ident: bib148 article-title: The importance of mixed selectivity in complex cognitive tasks publication-title: Nature – volume: 5 start-page: e10989 year: 2016 ident: bib88 article-title: Demixed principal component analysis of neural population data publication-title: eLife – volume: 46 start-page: 1 year: 2017 end-page: 6 ident: bib9 article-title: Recurrent neural networks as versatile tools of neuroscience research publication-title: Curr. Opin. Neurobiol. – volume: 1341 start-page: 1 year: 2009 ident: bib41 article-title: Visualizing higher-layer features of a deep network publication-title: University of Montreal – year: 2015 ident: bib29 article-title: Fast and accurate deep network learning by exponential linear units (elus) publication-title: arXiv – volume: 90 start-page: 128 year: 2016 end-page: 142 ident: bib142 article-title: Recurrent network models of sequence generation and memory publication-title: Neuron – volume: 3 start-page: 919 year: 2000 end-page: 926 ident: bib169 article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity publication-title: Nat. Neurosci. – start-page: 2048 year: 2015 end-page: 2057 ident: bib200 article-title: Show, attend and tell: Neural image caption generation with visual attention. Proceedings of the 32nd International Conference on Machine Learning 37 – volume: 274 start-page: 1724 year: 1996 end-page: 1726 ident: bib186 article-title: Chaos in neuronal networks with balanced excitatory and inhibitory activity publication-title: Science – volume: 115 start-page: E10467 year: 2018 end-page: E10475 ident: bib113 article-title: Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization publication-title: Proc. Natl. Acad. Sci. USA – year: 2014 ident: bib27 article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation publication-title: arXiv – volume: 2 start-page: 79 year: 1999 end-page: 87 ident: bib143 article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects publication-title: Nat. Neurosci. – volume: 11 start-page: 1352 year: 2008 end-page: 1360 ident: bib201 article-title: A neural code for three-dimensional object shape in macaque inferotemporal cortex publication-title: Nat. Neurosci. – volume: 60 start-page: 489 year: 2008 end-page: 495 ident: bib3 article-title: Theoretical neuroscience rising publication-title: Neuron – volume: 22 start-page: 275 year: 2019 end-page: 283 ident: bib133 article-title: A diverse range of factors affect the nature of neural representations underlying short-term memory publication-title: Nat. Neurosci. – volume: 8 start-page: 2208 year: 2017 ident: bib127 article-title: Supervised learning in spiking neural networks with FORCE training publication-title: Nat. Commun. – volume: 160 start-page: 1233 year: 2015 end-page: 1245 ident: bib58 article-title: Neuronal prediction of opponent’s behavior during cooperative social interchange in primates publication-title: Cell – start-page: 26 year: 2012 end-page: 31 ident: bib183 article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning 4 – year: 2016 ident: bib185 article-title: Instance normalization: The missing ingredient for fast stylization publication-title: arXiv – year: 2018 ident: bib80 article-title: Continual reinforcement learning with complex synapses publication-title: arXiv – volume: 275 start-page: 1593 year: 1997 end-page: 1599 ident: bib162 article-title: A neural substrate of prediction and reward publication-title: Science – volume: 423 start-page: 288 year: 2003 end-page: 293 ident: bib164 article-title: Turning on and off recurrent balanced cortical activity publication-title: Nature – volume: 13 start-page: 51 year: 2011 end-page: 62 ident: bib23 article-title: Normalization as a canonical neural computation publication-title: Nat. Rev. Neurosci. – volume: 21 start-page: 102 year: 2018 end-page: 110 ident: bib193 article-title: Flexible timing by temporal scaling of cortical responses publication-title: Nat. Neurosci. – start-page: 115 year: 1987 end-page: 141 ident: bib89 article-title: Shifts in selective visual attention: towards the underlying neural circuitry publication-title: Matters of Intelligence – volume: 31 start-page: 8721 year: 2018 end-page: 8732 ident: bib157 article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm publication-title: Adv. Neural Inf. Process. Syst. – volume: 508 start-page: 207 year: 2014 end-page: 214 ident: bib129 article-title: A mesoscale connectome of the mouse brain publication-title: Nature – volume: 111 start-page: 47 year: 2019 end-page: 63 ident: bib182 article-title: Deep learning in spiking neural networks publication-title: Neural Netw. – volume: 103 start-page: 214 year: 2013 end-page: 222 ident: bib10 article-title: From fixed points to chaos: three models of delayed discrimination publication-title: Prog. Neurobiol. – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: bib16 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. – start-page: 1310 year: 2013 end-page: 1318 ident: bib135 article-title: On the difficulty of training recurrent neural networks. Proceedings of the 30th International Conference on Machine Learning 28 – volume: 22 start-page: 984 year: 2019 end-page: 991 ident: bib66 article-title: Perceptual straightening of natural videos publication-title: Nat. Neurosci. – volume: 572 start-page: 106 year: 2019 end-page: 111 ident: bib137 article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture publication-title: Nature – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib156 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 30 start-page: 272 year: 2017 end-page: 283 ident: bib31 article-title: Cortical microcircuits as gated-recurrent neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 21 year: 1988 end-page: 28 ident: bib98 article-title: A theoretical framework for back-propagation publication-title: Proceedings of the 1988 Connectionist Models Summer School – volume: 78 start-page: 1550 year: 1990 end-page: 1560 ident: bib194 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE – volume: 27 start-page: 15 year: 2000 end-page: 21 ident: bib158 article-title: Gain modulation: a major computational principle of the central nervous system publication-title: Neuron – volume: 30 start-page: 1514 year: 2018 end-page: 1541 ident: bib209 article-title: Superspike: Supervised learning in multilayer spiking neural networks publication-title: Neural Comput. – year: 2018 ident: bib37 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding publication-title: arXiv – year: 1992 ident: bib15 article-title: On the optimization of a synaptic learning rule publication-title: Preprints Conf. Optimality in Artificial and Biological Neural Networks – volume: 483 start-page: 47 year: 2012 end-page: 52 ident: bib131 article-title: Gain control by layer six in cortical circuits of vision publication-title: Nature – volume: 31 start-page: 6571 year: 2018 end-page: 6583 ident: bib26 article-title: Neural ordinary differential equations publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 193 year: 1995 end-page: 222 ident: bib36 article-title: Neural mechanisms of selective visual attention publication-title: Annu. Rev. Neurosci. – volume: 381 start-page: 607 year: 1996 end-page: 609 ident: bib132 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – year: 2016 ident: bib32 article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1 publication-title: arXiv – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib67 article-title: Long short-term memory publication-title: Neural Comput. – volume: 4 start-page: 24 year: 2010 ident: bib147 article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses publication-title: Front. Comput. Neurosci. – volume: 12 start-page: 1 year: 1972 end-page: 24 ident: bib197 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophys. J. – volume: 27 start-page: 8486 year: 2007 end-page: 8495 ident: bib6 article-title: An integrated microcircuit model of attentional processing in the neocortex publication-title: J. Neurosci. – start-page: 770 year: 2016 end-page: 778 ident: bib61 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition – volume: 76 start-page: 695 year: 2012 end-page: 711 ident: bib13 article-title: Canonical microcircuits for predictive coding publication-title: Neuron – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: bib68 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 1369 year: 2016 end-page: 1377 ident: bib118 article-title: Deep learning models of the retinal response to natural scenes publication-title: Adv. Neural Inf. Process. Syst. – year: 2014 ident: bib28 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: arXiv – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: bib38 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 364 start-page: eaav9436 year: 2019 ident: bib12 article-title: Neural population control via deep image synthesis publication-title: Science – volume: 53 start-page: 139 year: 2009 end-page: 154 ident: bib128 article-title: Reinforcement learning in the brain publication-title: J. Math. Psychol. – volume: 12 start-page: 4745 year: 1992 end-page: 4765 ident: bib21 article-title: The analysis of visual motion: a comparison of neuronal and psychophysical performance publication-title: J. Neurosci. – volume: 389 start-page: 54 year: 2018 end-page: 73 ident: bib64 article-title: Great expectations: is there evidence for predictive coding in auditory cortex? publication-title: Neuroscience – year: 2015 ident: bib74 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv – volume: 22 start-page: 1761 year: 2019 end-page: 1770 ident: bib145 article-title: A deep learning framework for neuroscience publication-title: Nat. Neurosci. – volume: 114 start-page: 3521 year: 2017 end-page: 3526 ident: bib87 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 267 year: 1982 end-page: 273 ident: bib130 article-title: A simplified neuron model as a principal component analyzer publication-title: J. Math. Biol. – volume: 338 start-page: 1202 year: 2012 end-page: 1205 ident: bib39 article-title: A large-scale model of the functioning brain publication-title: Science – start-page: 255 year: 1995 end-page: 258 ident: bib99 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – volume: 331 start-page: 679 year: 1988 end-page: 684 ident: bib212 article-title: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons publication-title: Nature – volume: 2019 start-page: 124020 year: 2019 ident: bib160 article-title: On the information bottleneck theory of deep learning publication-title: J. Stat. Mech. – year: 2018 ident: bib33 article-title: Emergence of grid-like representations by training recurrent neural networks to perform spatial localization publication-title: arXiv – year: 2005 ident: bib63 article-title: The Organization of Behavior: A Neuropsychological Theory – volume: 69 start-page: 1204 year: 2011 end-page: 1215 ident: bib34 article-title: Model-based influences on humans’ choices and striatal prediction errors publication-title: Neuron – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: bib72 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J. Physiol. – volume: 97 start-page: 332 year: 1990 end-page: 361 ident: bib30 article-title: On the control of automatic processes: a parallel distributed processing account of the Stroop effect publication-title: Psychol. Rev. – volume: 24 start-page: 455 year: 2001 end-page: 463 ident: bib188 article-title: Synaptic reverberation underlying mnemonic persistent activity publication-title: Trends Neurosci. – volume: 1 start-page: 270 year: 1989 end-page: 280 ident: bib195 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput. – volume: 28 start-page: 1139 year: 2013 end-page: 1147 ident: bib179 article-title: On the importance of initialization and momentum in deep learning publication-title: Proceedings of the 30th International Conference on Machine Learning – volume: 1 start-page: 417 year: 2015 end-page: 446 ident: bib91 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Annu. Rev. Vis. Sci. – volume: 12 start-page: e1004792 year: 2016 ident: bib170 article-title: Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework publication-title: PLoS Comput. Biol. – volume: 19 start-page: 1697 year: 2016 end-page: 1706 ident: bib17 article-title: Computational principles of synaptic memory consolidation publication-title: Nat. Neurosci. – volume: 14 start-page: 1195 year: 2011 end-page: 1201 ident: bib44 article-title: Metamers of the ventral stream publication-title: Nat. Neurosci. – volume: 18 start-page: 1025 year: 2015 end-page: 1033 ident: bib178 article-title: A neural network that finds a naturalistic solution for the production of muscle activity publication-title: Nat. Neurosci. – volume: 14 start-page: 477 year: 1995 end-page: 485 ident: bib51 article-title: Cellular basis of working memory publication-title: Neuron – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib69 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – volume: 60 start-page: 223 year: 2018 end-page: 311 ident: bib19 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev. – volume: 15 start-page: 455 year: 1982 end-page: 469 ident: bib45 article-title: Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position publication-title: Pattern Recognit. – volume: 45 start-page: 599 year: 2005 end-page: 611 ident: bib47 article-title: Cascade models of synaptically stored memories publication-title: Neuron – year: 2019 ident: bib107 article-title: A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnns publication-title: arXiv – volume: 14 start-page: 29 year: 2020 ident: bib105 article-title: Attention in psychology, neuroscience, and machine learning publication-title: Front. Comput. Neurosci. – volume: 30 start-page: 5998 year: 2017 end-page: 6008 ident: bib187 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib102 article-title: Deep learning publication-title: Nature – volume: 36 start-page: 955 year: 2002 end-page: 968 ident: bib189 article-title: Probabilistic decision making by slow reverberation in cortical circuits publication-title: Neuron – volume: 345 start-page: 668 year: 2014 end-page: 673 ident: bib119 article-title: Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface publication-title: Science – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: bib42 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex – volume: 21 start-page: 335 year: 2020 end-page: 346 ident: bib104 article-title: Backpropagation and the brain publication-title: Nat. Rev. Neurosci. – volume: 24 start-page: 109 year: 1989 end-page: 165 ident: bib117 article-title: Catastrophic interference in connectionist networks: The sequential learning problem publication-title: Psychology of Learning and Motivation – volume: 2 start-page: 4 year: 2008 ident: bib92 article-title: Representational similarity analysis - connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – start-page: 423 year: 2006 end-page: 431 ident: bib2 article-title: Where are the switches on this thing? publication-title: 23 Problems in Systems Neuroscience – year: 2014 ident: bib167 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv – volume: 7 start-page: e31134 year: 2018 ident: bib54 article-title: Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks publication-title: eLife – volume: 116 start-page: 11537 year: 2019 end-page: 11546 ident: bib161 article-title: A mathematical theory of semantic development in deep neural networks publication-title: Proc. Natl. Acad. Sci. USA – start-page: 1026 year: 2015 end-page: 1034 ident: bib60 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In 2015 IEEE International Conference on Computer Vision – year: 2014 ident: bib85 article-title: Adam: A method for stochastic optimization publication-title: arXiv – volume: 10 start-page: e1003915 year: 2014 ident: bib82 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. – volume: 324 start-page: 759 year: 2009 end-page: 764 ident: bib83 article-title: Representation of confidence associated with a decision by neurons in the parietal cortex publication-title: Science – volume: 500 start-page: 168 year: 2013 end-page: 174 ident: bib65 article-title: Connectomic reconstruction of the inner plexiform layer in the mouse retina publication-title: Nature – volume: 31 start-page: 787 year: 2018 end-page: 797 ident: bib14 article-title: Long short-term memory and learning-to-learn in networks of spiking neurons publication-title: Adv. Neural Inf. Process. Syst. – volume: 177 start-page: 970 year: 2019 end-page: 985.e20 ident: bib5 article-title: Neuronal dynamics regulating brain and behavioral state transitions publication-title: Cell – year: 2019 ident: bib109 article-title: Universality and individuality in neural dynamics across large populations of recurrent networks publication-title: arXiv – volume: 64 start-page: 355 year: 2002 end-page: 405 ident: bib213 article-title: Short-term synaptic plasticity publication-title: Annu. Rev. Physiol. – start-page: 2961 year: 2017 end-page: 2969 ident: bib62 article-title: Mask R-CNN publication-title: 2017 IEEE International Conference on Computer Vision – volume: 6 start-page: e21492 year: 2017 ident: bib171 article-title: Reward-based training of recurrent neural networks for cognitive and value-based tasks publication-title: eLife – volume: 22 start-page: 400 year: 1951 end-page: 407 ident: bib149 article-title: A stochastic approximation method publication-title: Ann. Math. Stat. – year: 2001 ident: bib174 article-title: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity) – volume: 1 start-page: 217 year: 1961 ident: 10.1016/j.neuron.2020.09.005_bib11 article-title: Possible principles underlying the transformation of sensory messages publication-title: Sensory Communication – volume: 160 start-page: 1233 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib58 article-title: Neuronal prediction of opponent’s behavior during cooperative social interchange in primates publication-title: Cell doi: 10.1016/j.cell.2015.01.045 – start-page: 1 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib79 – volume: 107 start-page: 603 year: 2020 ident: 10.1016/j.neuron.2020.09.005_bib20 article-title: Deep reinforcement learning and its neuroscientific implications publication-title: Neuron doi: 10.1016/j.neuron.2020.06.014 – volume: 4 start-page: 24 year: 2010 ident: 10.1016/j.neuron.2020.09.005_bib147 article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2010.00024 – year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib108 article-title: Deep predictive coding networks for video prediction and unsupervised learning publication-title: arXiv – volume: 19 start-page: 166 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib150 article-title: Control of synaptic plasticity in deep cortical networks publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2018.6 – volume: 60 start-page: 215 year: 2008 ident: 10.1016/j.neuron.2020.09.005_bib190 article-title: Decision making in recurrent neuronal circuits publication-title: Neuron doi: 10.1016/j.neuron.2008.09.034 – volume: 69 start-page: 1204 year: 2011 ident: 10.1016/j.neuron.2020.09.005_bib34 article-title: Model-based influences on humans’ choices and striatal prediction errors publication-title: Neuron doi: 10.1016/j.neuron.2011.02.027 – volume: 93 start-page: 1504 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib25 article-title: Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions publication-title: Neuron doi: 10.1016/j.neuron.2017.03.002 – volume: 12 start-page: 4745 year: 1992 ident: 10.1016/j.neuron.2020.09.005_bib21 article-title: The analysis of visual motion: a comparison of neuronal and psychophysical performance publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.12-12-04745.1992 – volume: 49 start-page: 75 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib191 article-title: A disinhibitory circuit motif and flexible information routing in the brain publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.01.002 – volume: 10 start-page: e1003915 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib82 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003915 – year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib85 article-title: Adam: A method for stochastic optimization publication-title: arXiv – year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib97 article-title: A simple way to initialize recurrent networks of rectified linear units publication-title: arXiv – volume: 22 start-page: 984 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib66 article-title: Perceptual straightening of natural videos publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0377-4 – volume: 24 start-page: 17 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib111 article-title: A weighted and directed interareal connectivity matrix for macaque cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs270 – volume: 345 start-page: 668 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib119 article-title: Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface publication-title: Science doi: 10.1126/science.1254642 – volume: 7 start-page: 13276 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib103 article-title: Random synaptic feedback weights support error backpropagation for deep learning publication-title: Nat. Commun. doi: 10.1038/ncomms13276 – volume: 27 start-page: 15 year: 2000 ident: 10.1016/j.neuron.2020.09.005_bib158 article-title: Gain modulation: a major computational principle of the central nervous system publication-title: Neuron doi: 10.1016/S0896-6273(00)00004-0 – year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib185 article-title: Instance normalization: The missing ingredient for fast stylization publication-title: arXiv – volume: 53 start-page: 139 year: 2009 ident: 10.1016/j.neuron.2020.09.005_bib128 article-title: Reinforcement learning in the brain publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2008.12.005 – volume: 22 start-page: 974 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib81 article-title: Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0392-5 – volume: 15 start-page: 267 year: 1982 ident: 10.1016/j.neuron.2020.09.005_bib130 article-title: A simplified neuron model as a principal component analyzer publication-title: J. Math. Biol. doi: 10.1007/BF00275687 – start-page: 770 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib61 article-title: Deep residual learning for image recognition – year: 1992 ident: 10.1016/j.neuron.2020.09.005_bib15 article-title: On the optimization of a synaptic learning rule – volume: 15 start-page: 315 year: 2011 ident: 10.1016/j.neuron.2020.09.005_bib49 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – volume: 12 start-page: 2121 year: 2011 ident: 10.1016/j.neuron.2020.09.005_bib38 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 497 start-page: 585 year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib148 article-title: The importance of mixed selectivity in complex cognitive tasks publication-title: Nature doi: 10.1038/nature12160 – volume: 31 start-page: 8721 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib157 article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1026 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib60 – year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib27 article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation publication-title: arXiv – volume: 30 start-page: 535 year: 2007 ident: 10.1016/j.neuron.2020.09.005_bib50 article-title: The neural basis of decision making publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.29.051605.113038 – volume: 399 start-page: 470 year: 1999 ident: 10.1016/j.neuron.2020.09.005_bib152 article-title: Neuronal correlates of parametric working memory in the prefrontal cortex publication-title: Nature doi: 10.1038/20939 – volume: 2 start-page: 1019 year: 1999 ident: 10.1016/j.neuron.2020.09.005_bib146 article-title: Hierarchical models of object recognition in cortex publication-title: Nat. Neurosci. doi: 10.1038/14819 – volume: 22 start-page: 1159 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib114 article-title: Circuit mechanisms for the maintenance and manipulation of information in working memory publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0414-3 – start-page: 1310 year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib135 – volume: 32 start-page: 8024 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib136 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – volume: 86 start-page: 2278 year: 1998 ident: 10.1016/j.neuron.2020.09.005_bib101 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib74 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv – volume: 31 start-page: 787 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib14 article-title: Long short-term memory and learning-to-learn in networks of spiking neurons publication-title: Adv. Neural Inf. Process. Syst. – volume: 319 start-page: 1543 year: 2008 ident: 10.1016/j.neuron.2020.09.005_bib123 article-title: Synaptic theory of working memory publication-title: Science doi: 10.1126/science.1150769 – volume: 5 start-page: e10989 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib88 article-title: Demixed principal component analysis of neural population data publication-title: eLife doi: 10.7554/eLife.10989 – volume: 22 start-page: 275 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib133 article-title: A diverse range of factors affect the nature of neural representations underlying short-term memory publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0314-y – volume: 274 start-page: 1724 year: 1996 ident: 10.1016/j.neuron.2020.09.005_bib186 article-title: Chaos in neuronal networks with balanced excitatory and inhibitory activity publication-title: Science doi: 10.1126/science.274.5293.1724 – start-page: 3987 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib210 – start-page: 566 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib211 article-title: Self-supervised neural network models of higher visual cortex development – volume: 550 start-page: 354 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib166 article-title: Mastering the game of Go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 21 start-page: 102 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib193 article-title: Flexible timing by temporal scaling of cortical responses publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0028-6 – year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib180 – volume: 364 start-page: eaav9436 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib12 article-title: Neural population control via deep image synthesis publication-title: Science doi: 10.1126/science.aav9436 – volume: 13 start-page: 51 year: 2011 ident: 10.1016/j.neuron.2020.09.005_bib23 article-title: Normalization as a canonical neural computation publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3136 – volume: 90 start-page: 128 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib142 article-title: Recurrent network models of sequence generation and memory publication-title: Neuron doi: 10.1016/j.neuron.2016.02.009 – volume: 24 start-page: 109 year: 1989 ident: 10.1016/j.neuron.2020.09.005_bib117 article-title: Catastrophic interference in connectionist networks: The sequential learning problem publication-title: Psychology of Learning and Motivation doi: 10.1016/S0079-7421(08)60536-8 – volume: 16 start-page: 925 year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib96 article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks publication-title: Nat. Neurosci. doi: 10.1038/nn.3405 – volume: 25 start-page: 156 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib175 article-title: Neural circuits as computational dynamical systems publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.01.008 – volume: 18 start-page: 193 year: 1995 ident: 10.1016/j.neuron.2020.09.005_bib36 article-title: Neural mechanisms of selective visual attention publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.18.030195.001205 – volume: 31 start-page: 5290 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib126 article-title: Task-driven convolutional recurrent models of the visual system publication-title: Adv. Neural Inf. Process. Syst. – volume: 508 start-page: 207 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib129 article-title: A mesoscale connectome of the mouse brain publication-title: Nature doi: 10.1038/nature13186 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.neuron.2020.09.005_bib67 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 12 start-page: 2451 year: 2000 ident: 10.1016/j.neuron.2020.09.005_bib48 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 85 start-page: 402 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib155 article-title: The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex publication-title: Neuron doi: 10.1016/j.neuron.2014.12.026 – year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib120 article-title: Meta-learning update rules for unsupervised representation learning publication-title: arXiv – volume: 61 start-page: 168 year: 2009 ident: 10.1016/j.neuron.2020.09.005_bib144 article-title: The normalization model of attention publication-title: Neuron doi: 10.1016/j.neuron.2009.01.002 – start-page: 245 year: 1962 ident: 10.1016/j.neuron.2020.09.005_bib154 article-title: Principles of neurodynamics: Perceptions and the theory of brain mechanisms – volume: 17 start-page: 663 year: 2004 ident: 10.1016/j.neuron.2020.09.005_bib140 article-title: Nonlinear V1 responses to natural scenes revealed by neural network analysis publication-title: Neural Netw. doi: 10.1016/j.neunet.2004.03.008 – volume: 572 start-page: 106 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib137 article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture publication-title: Nature doi: 10.1038/s41586-019-1424-8 – volume: 22 start-page: 297 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib207 article-title: Task representations in neural networks trained to perform many cognitive tasks publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0310-2 – volume: 6 start-page: e22901 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib57 article-title: Towards deep learning with segregated dendrites publication-title: eLife doi: 10.7554/eLife.22901 – year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib32 article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1 publication-title: arXiv – volume: 11 start-page: 1352 year: 2008 ident: 10.1016/j.neuron.2020.09.005_bib201 article-title: A neural code for three-dimensional object shape in macaque inferotemporal cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.2202 – year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib109 article-title: Universality and individuality in neural dynamics across large populations of recurrent networks publication-title: arXiv – volume: 7 start-page: e31134 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib54 article-title: Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks publication-title: eLife doi: 10.7554/eLife.31134 – volume: 22 start-page: 9475 year: 2002 ident: 10.1016/j.neuron.2020.09.005_bib151 article-title: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-21-09475.2002 – start-page: 3 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib198 article-title: Group normalization – volume: 111 start-page: 47 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib182 article-title: Deep learning in spiking neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.12.002 – year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib28 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: arXiv – volume: 177 start-page: 999 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib139 article-title: Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences publication-title: Cell doi: 10.1016/j.cell.2019.04.005 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib172 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 31 start-page: 1433 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib73 article-title: Gradient descent for spiking neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 2208 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib127 article-title: Supervised learning in spiking neural networks with FORCE training publication-title: Nat. Commun. doi: 10.1038/s41467-017-01827-3 – volume: 27 start-page: 8486 year: 2007 ident: 10.1016/j.neuron.2020.09.005_bib6 article-title: An integrated microcircuit model of attentional processing in the neocortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1145-07.2007 – volume: 2 start-page: 79 year: 1999 ident: 10.1016/j.neuron.2020.09.005_bib143 article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects publication-title: Nat. Neurosci. doi: 10.1038/4580 – volume: 22 start-page: 1761 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib145 article-title: A deep learning framework for neuroscience publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0520-2 – start-page: 265 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib1 – volume: 29 start-page: 4331 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib7 article-title: Using fast weights to attend to the recent past publication-title: Adv. Neural Inf. Process. Syst. – volume: 5 start-page: 157 year: 1994 ident: 10.1016/j.neuron.2020.09.005_bib16 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – start-page: 729 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib206 article-title: A dataset and architecture for visual reasoning with a working memory – year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib214 article-title: Neural Machine Translation by Jointly Learning to Align and Translate publication-title: arXiv – volume: 38 start-page: 7255 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib141 article-title: Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0388-18.2018 – volume: 15 start-page: 605 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib77 article-title: High-precision automated reconstruction of neurons with flood-filling networks publication-title: Nat. Methods doi: 10.1038/s41592-018-0049-4 – volume: 31 start-page: 8571 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib75 article-title: Neural tangent kernel: Convergence and generalization in neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 95 start-page: 5323 year: 1998 ident: 10.1016/j.neuron.2020.09.005_bib112 article-title: Differential signaling via the same axon of neocortical pyramidal neurons publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.9.5323 – volume: 63 start-page: 544 year: 2009 ident: 10.1016/j.neuron.2020.09.005_bib176 article-title: Generating coherent patterns of activity from chaotic neural networks publication-title: Neuron doi: 10.1016/j.neuron.2009.07.018 – volume: 21 start-page: 335 year: 2020 ident: 10.1016/j.neuron.2020.09.005_bib104 article-title: Backpropagation and the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-020-0277-3 – volume: 30 start-page: 5998 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib187 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 21 start-page: 1281 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib116 article-title: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0209-y – volume: 97 start-page: 332 year: 1990 ident: 10.1016/j.neuron.2020.09.005_bib30 article-title: On the control of automatic processes: a parallel distributed processing account of the Stroop effect publication-title: Psychol. Rev. doi: 10.1037/0033-295X.97.3.332 – volume: 61 start-page: 259 year: 1988 ident: 10.1016/j.neuron.2020.09.005_bib168 article-title: Chaos in random neural networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.259 – volume: 51 start-page: 1484 year: 2011 ident: 10.1016/j.neuron.2020.09.005_bib24 article-title: Visual attention: the past 25 years publication-title: Vision Res. doi: 10.1016/j.visres.2011.04.012 – volume: 19 start-page: 394 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib173 article-title: ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2015.05.004 – volume: 19 start-page: 1697 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib17 article-title: Computational principles of synaptic memory consolidation publication-title: Nat. Neurosci. doi: 10.1038/nn.4401 – volume: 1 start-page: 270 year: 1989 ident: 10.1016/j.neuron.2020.09.005_bib195 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput. doi: 10.1162/neco.1989.1.2.270 – volume: 443 start-page: 85 year: 2006 ident: 10.1016/j.neuron.2020.09.005_bib43 article-title: Experience-dependent representation of visual categories in parietal cortex publication-title: Nature doi: 10.1038/nature05078 – start-page: 2048 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib200 – volume: 30 start-page: 1514 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib209 article-title: Superspike: Supervised learning in multilayer spiking neural networks publication-title: Neural Comput. doi: 10.1162/neco_a_01086 – volume: 6 start-page: e21492 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib171 article-title: Reward-based training of recurrent neural networks for cognitive and value-based tasks publication-title: eLife doi: 10.7554/eLife.21492 – volume: 331 start-page: 679 year: 1988 ident: 10.1016/j.neuron.2020.09.005_bib212 article-title: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons publication-title: Nature doi: 10.1038/331679a0 – year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib107 article-title: A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnns publication-title: arXiv – volume: 14 start-page: 1195 year: 2011 ident: 10.1016/j.neuron.2020.09.005_bib44 article-title: Metamers of the ventral stream publication-title: Nat. Neurosci. doi: 10.1038/nn.2889 – volume: 177 start-page: 970 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib5 article-title: Neuronal dynamics regulating brain and behavioral state transitions publication-title: Cell doi: 10.1016/j.cell.2019.02.037 – start-page: 26 year: 2012 ident: 10.1016/j.neuron.2020.09.005_bib183 – volume: 24 start-page: 139 year: 2001 ident: 10.1016/j.neuron.2020.09.005_bib18 article-title: Synaptic modification by correlated activity: Hebb’s postulate revisited publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.139 – volume: 160 start-page: 106 year: 1962 ident: 10.1016/j.neuron.2020.09.005_bib72 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 149 start-page: 147 year: 2005 ident: 10.1016/j.neuron.2020.09.005_bib4 article-title: Drivers and modulators from push-pull and balanced synaptic input publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(05)49011-1 – volume: 15 start-page: 805 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib134 article-title: Inferring single-trial neural population dynamics using sequential auto-encoders publication-title: Nat. Methods doi: 10.1038/s41592-018-0109-9 – year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib29 article-title: Fast and accurate deep network learning by exponential linear units (elus) publication-title: arXiv – volume: 1 start-page: 1 year: 1991 ident: 10.1016/j.neuron.2020.09.005_bib42 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/1.1.1 – volume: 4 start-page: 1 year: 1964 ident: 10.1016/j.neuron.2020.09.005_bib138 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 15 start-page: 455 year: 1982 ident: 10.1016/j.neuron.2020.09.005_bib45 article-title: Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position publication-title: Pattern Recognit. doi: 10.1016/0031-3203(82)90024-3 – volume: 101 start-page: 1368 year: 2004 ident: 10.1016/j.neuron.2020.09.005_bib192 article-title: Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0305337101 – volume: 79 start-page: 2554 year: 1982 ident: 10.1016/j.neuron.2020.09.005_bib68 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 304 start-page: 78 year: 2004 ident: 10.1016/j.neuron.2020.09.005_bib76 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – start-page: 826 year: 1983 ident: 10.1016/j.neuron.2020.09.005_bib46 article-title: Neocognitron: A neural network model for a mechanism of visual pattern recognition – volume: 15 start-page: 441 year: 2003 ident: 10.1016/j.neuron.2020.09.005_bib199 article-title: Equivalence of backpropagation and contrastive Hebbian learning in a layered network publication-title: Neural Comput. doi: 10.1162/089976603762552988 – volume: 16 start-page: 37 year: 1953 ident: 10.1016/j.neuron.2020.09.005_bib95 article-title: Discharge patterns and functional organization of mammalian retina publication-title: J. Neurophysiol. doi: 10.1152/jn.1953.16.1.37 – volume: 1 start-page: 417 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib91 article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing publication-title: Annu. Rev. Vis. Sci. doi: 10.1146/annurev-vision-082114-035447 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib102 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib90 article-title: Similarity of Neural Network Representations Revisited publication-title: arXiv – volume: 389 start-page: 54 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib64 article-title: Great expectations: is there evidence for predictive coding in auditory cortex? publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.07.061 – volume: 36 start-page: 955 year: 2002 ident: 10.1016/j.neuron.2020.09.005_bib189 article-title: Probabilistic decision making by slow reverberation in cortical circuits publication-title: Neuron doi: 10.1016/S0896-6273(02)01092-9 – volume: 324 start-page: 759 year: 2009 ident: 10.1016/j.neuron.2020.09.005_bib83 article-title: Representation of confidence associated with a decision by neurons in the parietal cortex publication-title: Science doi: 10.1126/science.1169405 – volume: 275 start-page: 1593 year: 1997 ident: 10.1016/j.neuron.2020.09.005_bib162 article-title: A neural substrate of prediction and reward publication-title: Science doi: 10.1126/science.275.5306.1593 – volume: 93 start-page: 13339 year: 1996 ident: 10.1016/j.neuron.2020.09.005_bib163 article-title: How the brain keeps the eyes still publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.23.13339 – start-page: 423 year: 2006 ident: 10.1016/j.neuron.2020.09.005_bib2 article-title: Where are the switches on this thing? – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.neuron.2020.09.005_bib93 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib53 – start-page: 255 year: 1995 ident: 10.1016/j.neuron.2020.09.005_bib99 article-title: Convolutional networks for images, speech, and time series – year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib8 article-title: Layer normalization publication-title: arXiv – volume: 30 start-page: 272 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib31 article-title: Cortical microcircuits as gated-recurrent neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 1341 start-page: 1 year: 2009 ident: 10.1016/j.neuron.2020.09.005_bib41 article-title: Visualizing higher-layer features of a deep network publication-title: University of Montreal – year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib165 article-title: Opening the black box of deep neural networks via information publication-title: arXiv – volume: 76 start-page: 695 year: 2012 ident: 10.1016/j.neuron.2020.09.005_bib13 article-title: Canonical microcircuits for predictive coding publication-title: Neuron doi: 10.1016/j.neuron.2012.10.038 – volume: 14 start-page: 2152 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib125 article-title: Using DeepLabCut for 3D markerless pose estimation across species and behaviors publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0176-0 – volume: 78 start-page: 1550 year: 1990 ident: 10.1016/j.neuron.2020.09.005_bib194 article-title: Backpropagation through time: what it does and how to do it publication-title: Proc. IEEE doi: 10.1109/5.58337 – volume: 22 start-page: 400 year: 1951 ident: 10.1016/j.neuron.2020.09.005_bib149 article-title: A stochastic approximation method publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – volume: 98 start-page: 1099 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib196 article-title: Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis publication-title: Neuron doi: 10.1016/j.neuron.2018.05.015 – volume: 4 start-page: 950 year: 1992 ident: 10.1016/j.neuron.2020.09.005_bib94 article-title: A simple weight decay can improve generalization publication-title: Adv. Neural Inf. Process. Syst. – year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib159 article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks publication-title: arXiv – volume: 65 start-page: 386 year: 1958 ident: 10.1016/j.neuron.2020.09.005_bib153 article-title: The perceptron: a probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 116 start-page: 11537 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib161 article-title: A mathematical theory of semantic development in deep neural networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1820226116 – year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib33 article-title: Emergence of grid-like representations by training recurrent neural networks to perform spatial localization publication-title: arXiv – year: 2001 ident: 10.1016/j.neuron.2020.09.005_bib174 – volume: 503 start-page: 78 year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib110 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature doi: 10.1038/nature12742 – volume: 2 start-page: 396 year: 1990 ident: 10.1016/j.neuron.2020.09.005_bib100 article-title: Handwritten digit recognition with a back-propagation network publication-title: Adv. Neural Inf. Process. Syst. – year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib181 article-title: Intriguing properties of neural networks publication-title: arXiv – volume: 8 start-page: e43299 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib124 article-title: Local online learning in recurrent networks with random feedback publication-title: eLife doi: 10.7554/eLife.43299 – volume: 31 start-page: 6571 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib26 article-title: Neural ordinary differential equations publication-title: Adv. Neural Inf. Process. Syst. – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib203 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1403112111 – volume: 28 start-page: 1139 year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib179 article-title: On the importance of initialization and momentum in deep learning publication-title: Proceedings of the 30th International Conference on Machine Learning – volume: 19 start-page: 356 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib202 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4244 – volume: 116 start-page: 21854 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib84 article-title: Recurrence is required to capture the representational dynamics of the human visual system publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1905544116 – volume: 18 start-page: 1025 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib178 article-title: A neural network that finds a naturalistic solution for the production of muscle activity publication-title: Nat. Neurosci. doi: 10.1038/nn.4042 – volume: 148 start-page: 574 year: 1959 ident: 10.1016/j.neuron.2020.09.005_bib71 article-title: Receptive fields of single neurones in the cat’s striate cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1959.sp006308 – volume: 12 start-page: e1004792 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib170 article-title: Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004792 – year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib86 article-title: Auto-Encoding Variational Bayes publication-title: arXiv – volume: 95 start-page: 245 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib59 article-title: Neuroscience-inspired artificial intelligence publication-title: Neuron doi: 10.1016/j.neuron.2017.06.011 – volume: 2019 start-page: 124020 year: 2019 ident: 10.1016/j.neuron.2020.09.005_bib160 article-title: On the information bottleneck theory of deep learning publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/ab3985 – volume: 60 start-page: 489 year: 2008 ident: 10.1016/j.neuron.2020.09.005_bib3 article-title: Theoretical neuroscience rising publication-title: Neuron doi: 10.1016/j.neuron.2008.10.019 – start-page: 2961 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib62 article-title: Mask R-CNN – volume: 423 start-page: 288 year: 2003 ident: 10.1016/j.neuron.2020.09.005_bib164 article-title: Turning on and off recurrent balanced cortical activity publication-title: Nature doi: 10.1038/nature01616 – volume: 3 start-page: 919 year: 2000 ident: 10.1016/j.neuron.2020.09.005_bib169 article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity publication-title: Nat. Neurosci. doi: 10.1038/78829 – year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib37 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding publication-title: arXiv – volume: 58 start-page: 1233 year: 1987 ident: 10.1016/j.neuron.2020.09.005_bib78 article-title: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.1987.58.6.1233 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.neuron.2020.09.005_bib156 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 500 start-page: 168 year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib65 article-title: Connectomic reconstruction of the inner plexiform layer in the mouse retina publication-title: Nature doi: 10.1038/nature12346 – volume: 14 start-page: 179 year: 1990 ident: 10.1016/j.neuron.2020.09.005_bib40 article-title: Finding structure in time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – volume: 14 start-page: 29 year: 2020 ident: 10.1016/j.neuron.2020.09.005_bib105 article-title: Attention in psychology, neuroscience, and machine learning publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2020.00029 – year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib80 article-title: Continual reinforcement learning with complex synapses publication-title: arXiv – volume: 60 start-page: 223 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib19 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev. doi: 10.1137/16M1080173 – volume: 518 start-page: 529 year: 2015 ident: 10.1016/j.neuron.2020.09.005_bib122 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – start-page: 248 year: 2009 ident: 10.1016/j.neuron.2020.09.005_bib35 article-title: Imagenet: A large-scale hierarchical image database – start-page: 818 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib208 article-title: Visualizing and understanding convolutional networks – volume: 420 start-page: 812 year: 2002 ident: 10.1016/j.neuron.2020.09.005_bib56 article-title: Long-term dendritic spine stability in the adult cortex publication-title: Nature doi: 10.1038/nature01276 – volume: 27 start-page: 2672 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib52 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – volume: 99 start-page: 609 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib115 article-title: Linking connectivity, dynamics, and computations in low-rank recurrent neural networks publication-title: Neuron doi: 10.1016/j.neuron.2018.07.003 – start-page: 21 year: 1988 ident: 10.1016/j.neuron.2020.09.005_bib98 article-title: A theoretical framework for back-propagation – volume: 25 start-page: 626 year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib177 article-title: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks publication-title: Neural Comput. doi: 10.1162/NECO_a_00409 – volume: 45 start-page: 599 year: 2005 ident: 10.1016/j.neuron.2020.09.005_bib47 article-title: Cascade models of synaptically stored memories publication-title: Neuron doi: 10.1016/j.neuron.2005.02.001 – volume: 7 start-page: 12815 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib205 article-title: A dendritic disinhibitory circuit mechanism for pathway-specific gating publication-title: Nat. Commun. doi: 10.1038/ncomms12815 – year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib167 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv – volume: 462 start-page: 920 year: 2009 ident: 10.1016/j.neuron.2020.09.005_bib204 article-title: Stably maintained dendritic spines are associated with lifelong memories publication-title: Nature doi: 10.1038/nature08577 – volume: 338 start-page: 1202 year: 2012 ident: 10.1016/j.neuron.2020.09.005_bib39 article-title: A large-scale model of the functioning brain publication-title: Science doi: 10.1126/science.1225266 – volume: 39 start-page: 195 year: 1943 ident: 10.1016/j.neuron.2020.09.005_bib184 article-title: On the stability of inverse problems publication-title: Dokl. Akad. Nauk SSSR – start-page: 4700 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib70 article-title: Densely connected convolutional networks – volume: 64 start-page: 355 year: 2002 ident: 10.1016/j.neuron.2020.09.005_bib213 article-title: Short-term synaptic plasticity publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.64.092501.114547 – volume: 12 start-page: 1 year: 1972 ident: 10.1016/j.neuron.2020.09.005_bib197 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophys. J. doi: 10.1016/S0006-3495(72)86068-5 – volume: 10 start-page: e1003963 year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib22 article-title: Deep neural networks rival the representation of primate IT cortex for core visual object recognition publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003963 – volume: 114 start-page: 3521 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib87 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611835114 – volume: 483 start-page: 47 year: 2012 ident: 10.1016/j.neuron.2020.09.005_bib131 article-title: Gain control by layer six in cortical circuits of vision publication-title: Nature doi: 10.1038/nature10835 – year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib121 article-title: Differentiable plasticity: training plastic neural networks with backpropagation publication-title: arXiv – volume: 14 start-page: 477 year: 1995 ident: 10.1016/j.neuron.2020.09.005_bib51 article-title: Cellular basis of working memory publication-title: Neuron doi: 10.1016/0896-6273(95)90304-6 – year: 2014 ident: 10.1016/j.neuron.2020.09.005_bib55 article-title: Neural turing machines publication-title: arXiv – volume: 115 start-page: E10467 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib113 article-title: Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1803839115 – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.neuron.2020.09.005_bib69 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 46 start-page: 1 year: 2017 ident: 10.1016/j.neuron.2020.09.005_bib9 article-title: Recurrent neural networks as versatile tools of neuroscience research publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2017.06.003 – volume: 103 start-page: 214 year: 2013 ident: 10.1016/j.neuron.2020.09.005_bib10 article-title: From fixed points to chaos: three models of delayed discrimination publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2013.02.002 – volume: 7 start-page: e38105 year: 2018 ident: 10.1016/j.neuron.2020.09.005_bib106 article-title: How biological attention mechanisms improve task performance in a large-scale visual system model publication-title: eLife doi: 10.7554/eLife.38105 – volume: 381 start-page: 607 year: 1996 ident: 10.1016/j.neuron.2020.09.005_bib132 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 24 start-page: 455 year: 2001 ident: 10.1016/j.neuron.2020.09.005_bib188 article-title: Synaptic reverberation underlying mnemonic persistent activity publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(00)01868-3 – start-page: 115 year: 1987 ident: 10.1016/j.neuron.2020.09.005_bib89 article-title: Shifts in selective visual attention: towards the underlying neural circuitry – volume: 29 start-page: 1369 year: 2016 ident: 10.1016/j.neuron.2020.09.005_bib118 article-title: Deep learning models of the retinal response to natural scenes publication-title: Adv. Neural Inf. Process. Syst. – year: 2005 ident: 10.1016/j.neuron.2020.09.005_bib63 – volume: 2 start-page: 4 year: 2008 ident: 10.1016/j.neuron.2020.09.005_bib92 article-title: Representational similarity analysis - connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – reference: 33600755 - Neuron. 2021 Feb 17;109(4):739. doi: 10.1016/j.neuron.2021.01.022 |
SSID | ssj0014591 |
Score | 2.6735728 |
SecondaryResourceType | review_article |
Snippet | Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful... SummaryArtificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1048 |
SubjectTerms | Algorithms Animal cognition Animals Architecture Artificial intelligence Attention Brain - physiology Brain research Deep learning Humans Ingredients Learning algorithms Machine learning Mathematical models Models, Neurological Nervous system Neural networks Neural Networks, Computer Neurophysiology Neurosciences |
Title | Artificial Neural Networks for Neuroscientists: A Primer |
URI | https://dx.doi.org/10.1016/j.neuron.2020.09.005 https://www.ncbi.nlm.nih.gov/pubmed/32970997 https://www.proquest.com/docview/2445353444 https://www.proquest.com/docview/2446662903 https://pubmed.ncbi.nlm.nih.gov/PMC11576090 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_S90wED_EMdgvY1O3dXPSwfC38tJ8aZP99iYTURTZFN9voU0b9mSr4nv-4H-_u6QteyoI_lSaXCC93CV3zd3nAL7WOWPYUWeNF-igeM8yXVcqK13OGlE5bhTlOx-fFAfn8nCmZmuwN-TCUFhlv_fHPT3s1n3LpOfm5Ho-n_xi2hB6ueBBbhVhggqpQxLf7Pt4kyBVrJqHxBlRD-lzIcYrYEYSCipnAe2Uitg9fjw9ND_vR1H-dyztv4HXvT2ZTuOU38Ja223A5rRDX_rvXbqbhgjP8Ot8A17GwpN3m6CJPmJHpATPER4hHnyRohUb2iLK5RLFYPEtnaanVAfgZgvO93-c7R1kfQ2FzCmll5nTeSW8L5lHu0HVhusCjYYKj_3GaNE6wWrNXV7UpWt4bSpd-bxihUe9blSLHuw7WO-uuvYDpLqUzhdNjnuClMh6HE8gokKKplAN4wmIgXXW9QDjVOfijx0iyS5tZLglhltmLDI8gWwcdR0BNp6gL4dVsSuCYvEMeGLk9rCItlfUhUXrRgklpJQJfBm7UcXo3qTq2qvbQINOHjdMJPA-rvk4VcFNScnHCegVaRgJCL57taeb_w4w3gRzVDDDPj77iz7BK3qj8BUutmF9eXPbfkYbaVnvwIvp0c-Lo52gDP8Ao88QqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRfRFtPUjtmoE8S3cZj-SXd_O0nLVtgi2cG9LssnSE01L7_rQ_96Z3ST0qlDwKbAzC8ns12-yM78B-FjnjKGgzhov0EHxnmW6rlRWupw1onLcKMp3Pj4pZmfy61zNN2BvyIWhsMp-7497etit-5ZJb83J5WIx-cG0IfZywcO8VfIBPEQ0UFL9hsP5l_EqQapYNg-1M1If8udCkFcgjSQaVM4C3SlVsfv3-fQ3_rwbRnnrXDp4Bk97QJlO4zs_h42224LtaYfO9O-b9FMaQjzDv_MteBQrT95sgyb9SB6REj9HeISA8GWKMDa0RZrLFc6D5ed0mn6nQgBXL-DsYP90b5b1RRQyp5ReZU7nlfC-ZB6Bg6oN1wWihgrP_cZo0TrBas1dXtSla3htKl35vGKFx4XdqBZd2Jew2V107WtIdSmdL5ocNwUp0fbYn1hEhRRNoRrGExCD6azrGcap0MUvO4SS_bTR4JYMbpmxaPAEsrHXZWTYuEe_HEbFrs0Ui4fAPT13h0G0_UpdWoQ3SighpUzgwyjGNUYXJ1XXXlwHHfTyuGEigVdxzMdXFdyUlH2cgF6bDaMC8XevS7rFeeDxJp6jghn25r-_6D08np0eH9mjw5NvO_CEJBTLwsUubK6urtu3CJhW9buwIP4AweQSJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Networks+for+Neuroscientists%3A+A+Primer&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Yang%2C+Guangyu+Robert&rft.au=Wang%2C+Xiao-Jing&rft.date=2020-09-23&rft.eissn=1097-4199&rft.volume=107&rft.issue=6&rft.spage=1048&rft_id=info:doi/10.1016%2Fj.neuron.2020.09.005&rft_id=info%3Apmid%2F32970997&rft.externalDocID=32970997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |