Artificial Neural Networks for Neuroscientists: A Primer

Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 107; no. 6; pp. 1048 - 1070
Main Authors Yang, Guangyu Robert, Wang, Xiao-Jing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 23.09.2020
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics. Artificial neural networks (ANNs) are essential tools in modern machine learning. In this Primer, Yang and Wang introduce how new computational models based on ANNs can be built, analyzed, and customized to study a wide range of neuroscientific questions.
AbstractList Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics.Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics.
Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics.
Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics. Artificial neural networks (ANNs) are essential tools in modern machine learning. In this Primer, Yang and Wang introduce how new computational models based on ANNs can be built, analyzed, and customized to study a wide range of neuroscientific questions.
SummaryArtificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectivity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for. In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs to better address a wide range of challenges in brain research. To help readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and Jupyter Notebook, covering major topics.
Author Wang, Xiao-Jing
Yang, Guangyu Robert
AuthorAffiliation 2 Center for Neural Science, New York University, New York, NY, USA
1 Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
AuthorAffiliation_xml – name: 2 Center for Neural Science, New York University, New York, NY, USA
– name: 1 Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
Author_xml – sequence: 1
  givenname: Guangyu Robert
  surname: Yang
  fullname: Yang, Guangyu Robert
  email: robert.yang@columbia.edu
  organization: Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
– sequence: 2
  givenname: Xiao-Jing
  orcidid: 0000-0003-3124-8474
  surname: Wang
  fullname: Wang, Xiao-Jing
  email: xjwang@nyu.edu
  organization: Center for Neural Science, New York University, New York, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32970997$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uFDEQhC2UiGwCb4DQSly4zND2-DcH0CoCghQFDnC2PB4bvMyOg-0J4u3x7oYoyYGcWrK_KlV3HaODKU4OoRcYWgyYv1m3k5tTnFoCBFpQLQB7ghYYlGgoVuoALUAq3nAiuiN0nPMaAFOm8FN01BElQCmxQHKVSvDBBjMuL6vfbpTfMf3MSx_T7i1mG9xUQi75dLlafklh49IzdOjNmN3zm3mCvn14__XsvLn4_PHT2eqisYzJ0liJTee9AM8YZb0ikoOghgAelOyc7aCXxGLeCzuQXhlpPDbAPZVyYE7g7gS92_tezf3GDbYGqSH1VQ1h0h8dTdD3f6bwQ3-P1xpjJjgoqA6vbxxS_DW7XPQmZOvG0UwuzlkTSjnnpJIVffUAXcc5TXW_LcU61lFKK_XybqTbLP-uWgG6B2y9XU7O3yIY9LY8vdb78vS2PA1K1_Kq7PSBzIZiSojbxcL4mPjtXuxqGdfBJb1rzbohJGeLHmL4v8Ffa2u3Hg
CitedBy_id crossref_primary_10_25209_2079_3316_2022_13_3_291_305
crossref_primary_10_9728_dcs_2022_23_12_2445
crossref_primary_10_1038_s41467_024_52289_3
crossref_primary_10_1016_j_chemosphere_2024_142597
crossref_primary_10_1016_j_porgcoat_2024_109003
crossref_primary_10_1523_ENEURO_0066_22_2022
crossref_primary_10_1016_j_entcom_2024_100822
crossref_primary_10_1016_j_ijhydene_2024_02_221
crossref_primary_10_1109_JSEN_2024_3507081
crossref_primary_10_1016_j_measen_2024_101049
crossref_primary_10_1088_1741_2552_ac8b38
crossref_primary_10_1016_j_carbpol_2024_123015
crossref_primary_10_3389_fnsys_2022_760864
crossref_primary_10_1016_j_scitotenv_2025_178520
crossref_primary_10_1007_s10462_023_10666_2
crossref_primary_10_3389_fncom_2022_876652
crossref_primary_10_3389_fnsys_2020_615129
crossref_primary_10_1007_s11738_024_03754_5
crossref_primary_10_1016_j_asoc_2021_107951
crossref_primary_10_1162_neco_a_01681
crossref_primary_10_1007_s43615_024_00453_8
crossref_primary_10_3390_robotics13030049
crossref_primary_10_1016_j_conb_2021_10_013
crossref_primary_10_3390_jcm14020550
crossref_primary_10_1038_s41467_024_54688_y
crossref_primary_10_1109_ACCESS_2021_3083519
crossref_primary_10_1029_2024EA003942
crossref_primary_10_1103_PhysRevResearch_5_023024
crossref_primary_10_1016_j_ccr_2023_215155
crossref_primary_10_1038_s41593_022_01088_4
crossref_primary_10_1038_s41583_023_00705_w
crossref_primary_10_1016_j_vlsi_2024_102206
crossref_primary_10_1016_j_neunet_2023_08_018
crossref_primary_10_1038_s42003_021_02341_5
crossref_primary_10_1016_j_cnsns_2022_107044
crossref_primary_10_1080_20002297_2025_2451921
crossref_primary_10_1063_5_0205472
crossref_primary_10_4103_1673_5374_343904
crossref_primary_10_1007_s42113_024_00196_7
crossref_primary_10_1016_j_neuroimage_2023_120253
crossref_primary_10_1093_cercor_bhae498
crossref_primary_10_1016_j_bej_2024_109221
crossref_primary_10_1007_s10489_024_05432_y
crossref_primary_10_1080_08839514_2021_1995232
crossref_primary_10_3390_w16233424
crossref_primary_10_25209_2079_3316_2022_13_3_275_290
crossref_primary_10_3390_s22228588
crossref_primary_10_1162_netn_a_00300
crossref_primary_10_1038_s41467_024_50503_w
crossref_primary_10_2478_amns_2024_2164
crossref_primary_10_3389_fnins_2024_1330512
crossref_primary_10_1016_j_compeleceng_2023_109012
crossref_primary_10_1007_s11141_022_10175_2
crossref_primary_10_1021_acsomega_1c04521
crossref_primary_10_1038_s43856_023_00313_w
crossref_primary_10_3389_fnbot_2023_1112839
crossref_primary_10_1016_j_ins_2023_01_011
crossref_primary_10_1155_2021_5633514
crossref_primary_10_1038_s42003_023_05441_6
crossref_primary_10_1007_s10462_022_10166_9
crossref_primary_10_3390_app15031239
crossref_primary_10_1088_1361_6501_ad8947
crossref_primary_10_1016_j_cjche_2024_04_019
crossref_primary_10_1016_j_jwpe_2024_105072
crossref_primary_10_1155_2022_3437364
crossref_primary_10_1016_j_scitotenv_2023_168802
crossref_primary_10_3390_en16062690
crossref_primary_10_1371_journal_pone_0314278
crossref_primary_10_1007_s12559_022_10093_5
crossref_primary_10_1007_s12517_022_09773_1
crossref_primary_10_1016_j_egyai_2024_100391
crossref_primary_10_1016_j_engappai_2024_109255
crossref_primary_10_1038_s41562_023_01592_y
crossref_primary_10_3389_fncel_2023_1172741
crossref_primary_10_1016_j_cogsys_2024_101260
crossref_primary_10_3390_e26121078
crossref_primary_10_1016_j_tins_2021_09_001
crossref_primary_10_1093_scan_nsae014
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_3367_UFNe_2021_05_038978
crossref_primary_10_1007_s10489_022_04152_5
crossref_primary_10_3390_met11091378
crossref_primary_10_3367_UFNr_2021_05_038978
crossref_primary_10_3389_fncom_2021_625804
crossref_primary_10_1016_j_tics_2024_03_003
crossref_primary_10_1016_j_saa_2023_122828
crossref_primary_10_1007_s12021_024_09674_6
crossref_primary_10_1016_j_cub_2021_07_051
crossref_primary_10_1016_j_heliyon_2022_e10677
crossref_primary_10_1016_j_neuropharm_2021_108780
crossref_primary_10_1038_s41597_021_01046_y
crossref_primary_10_32604_cmc_2022_027523
crossref_primary_10_3390_biomedinformatics3040066
crossref_primary_10_1007_s40430_024_04723_2
crossref_primary_10_1016_j_surfin_2024_105065
crossref_primary_10_3390_en16020706
crossref_primary_10_1016_j_jallcom_2025_178897
crossref_primary_10_3389_fncom_2022_1054421
crossref_primary_10_3389_fpls_2025_1539068
crossref_primary_10_1061_PPSCFX_SCENG_1421
crossref_primary_10_1016_j_cobeha_2024_101351
crossref_primary_10_3390_s24154915
crossref_primary_10_1155_2022_9524185
crossref_primary_10_3390_foods13091384
crossref_primary_10_1371_journal_pbio_3001686
crossref_primary_10_1002_brx2_57
crossref_primary_10_1007_s44163_025_00240_w
crossref_primary_10_1016_j_conb_2021_08_002
crossref_primary_10_1039_D5MH00038F
crossref_primary_10_1371_journal_pcbi_1011897
crossref_primary_10_3390_app142210587
crossref_primary_10_1039_D2NH00536K
crossref_primary_10_1155_hbe2_1518987
crossref_primary_10_1111_coin_12522
crossref_primary_10_1016_j_hazadv_2025_100622
crossref_primary_10_1080_14639947_2024_2383328
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_1038_s41598_020_79908_5
crossref_primary_10_1162_neco_a_01477
crossref_primary_10_1016_j_uclim_2024_102067
crossref_primary_10_1007_s00500_023_08138_4
crossref_primary_10_3390_drones6080194
crossref_primary_10_1016_j_eswa_2021_115964
crossref_primary_10_1007_s42113_024_00219_3
crossref_primary_10_3390_en15228693
crossref_primary_10_1016_j_energy_2025_134439
crossref_primary_10_1038_s41598_023_31110_z
crossref_primary_10_1038_s41467_024_50501_y
crossref_primary_10_3390_su14074218
crossref_primary_10_3390_app12052534
crossref_primary_10_1016_j_isci_2021_103178
crossref_primary_10_1177_14707853211072817
crossref_primary_10_12688_f1000research_138294_2
crossref_primary_10_12688_f1000research_138294_1
crossref_primary_10_1038_s41593_024_01731_2
crossref_primary_10_1016_j_tics_2021_01_008
crossref_primary_10_1364_JOCN_525666
crossref_primary_10_1007_s11571_023_09932_4
crossref_primary_10_15622_ia_23_2_9
crossref_primary_10_1016_j_isci_2024_110065
crossref_primary_10_1109_LED_2023_3347333
crossref_primary_10_3389_fnsys_2024_1269190
crossref_primary_10_3390_app15031273
crossref_primary_10_1038_s41598_024_54043_7
crossref_primary_10_1016_j_conb_2023_102780
crossref_primary_10_1371_journal_pcbi_1011315
crossref_primary_10_1016_j_tcs_2024_114697
crossref_primary_10_1073_pnas_2420356122
crossref_primary_10_3389_fncom_2024_1363514
crossref_primary_10_1038_s42003_025_07516_y
crossref_primary_10_1016_j_conb_2021_04_004
crossref_primary_10_1016_j_cub_2023_01_009
crossref_primary_10_1016_j_neuroimage_2023_120458
crossref_primary_10_1016_j_conb_2023_102816
crossref_primary_10_4018_JGIM_300742
crossref_primary_10_1016_j_procs_2024_04_266
crossref_primary_10_1360_SSC_2024_0021
crossref_primary_10_1371_journal_pcbi_1011954
Cites_doi 10.1016/j.cell.2015.01.045
10.1016/j.neuron.2020.06.014
10.3389/fncom.2010.00024
10.1038/nrn.2018.6
10.1016/j.neuron.2008.09.034
10.1016/j.neuron.2011.02.027
10.1016/j.neuron.2017.03.002
10.1523/JNEUROSCI.12-12-04745.1992
10.1016/j.conb.2018.01.002
10.1371/journal.pcbi.1003915
10.1038/s41593-019-0377-4
10.1093/cercor/bhs270
10.1126/science.1254642
10.1038/ncomms13276
10.1016/S0896-6273(00)00004-0
10.1016/j.jmp.2008.12.005
10.1038/s41593-019-0392-5
10.1007/BF00275687
10.1038/nature12160
10.1146/annurev.neuro.29.051605.113038
10.1038/20939
10.1038/14819
10.1038/s41593-019-0414-3
10.1109/5.726791
10.1126/science.1150769
10.7554/eLife.10989
10.1038/s41593-018-0314-y
10.1126/science.274.5293.1724
10.1038/nature24270
10.1038/s41593-017-0028-6
10.1126/science.aav9436
10.1038/nrn3136
10.1016/j.neuron.2016.02.009
10.1016/S0079-7421(08)60536-8
10.1038/nn.3405
10.1016/j.conb.2014.01.008
10.1146/annurev.ne.18.030195.001205
10.1038/nature13186
10.1162/neco.1997.9.8.1735
10.1162/089976600300015015
10.1016/j.neuron.2014.12.026
10.1016/j.neuron.2009.01.002
10.1016/j.neunet.2004.03.008
10.1038/s41586-019-1424-8
10.1038/s41593-018-0310-2
10.7554/eLife.22901
10.1038/nn.2202
10.7554/eLife.31134
10.1523/JNEUROSCI.22-21-09475.2002
10.1016/j.neunet.2018.12.002
10.1016/j.cell.2019.04.005
10.1038/s41467-017-01827-3
10.1523/JNEUROSCI.1145-07.2007
10.1038/4580
10.1038/s41593-019-0520-2
10.1109/72.279181
10.1523/JNEUROSCI.0388-18.2018
10.1038/s41592-018-0049-4
10.1073/pnas.95.9.5323
10.1016/j.neuron.2009.07.018
10.1038/s41583-020-0277-3
10.1038/s41593-018-0209-y
10.1037/0033-295X.97.3.332
10.1103/PhysRevLett.61.259
10.1016/j.visres.2011.04.012
10.1016/j.tics.2015.05.004
10.1038/nn.4401
10.1162/neco.1989.1.2.270
10.1038/nature05078
10.1162/neco_a_01086
10.7554/eLife.21492
10.1038/331679a0
10.1038/nn.2889
10.1016/j.cell.2019.02.037
10.1146/annurev.neuro.24.1.139
10.1113/jphysiol.1962.sp006837
10.1016/S0079-6123(05)49011-1
10.1038/s41592-018-0109-9
10.1093/cercor/1.1.1
10.1016/0041-5553(64)90137-5
10.1016/0031-3203(82)90024-3
10.1073/pnas.0305337101
10.1073/pnas.79.8.2554
10.1126/science.1091277
10.1162/089976603762552988
10.1152/jn.1953.16.1.37
10.1146/annurev-vision-082114-035447
10.1038/nature14539
10.1016/j.neuroscience.2017.07.061
10.1016/S0896-6273(02)01092-9
10.1126/science.1169405
10.1126/science.275.5306.1593
10.1073/pnas.93.23.13339
10.1016/j.neuron.2012.10.038
10.1038/s41596-019-0176-0
10.1109/5.58337
10.1214/aoms/1177729586
10.1016/j.neuron.2018.05.015
10.1037/h0042519
10.1073/pnas.1820226116
10.1038/nature12742
10.7554/eLife.43299
10.1073/pnas.1403112111
10.1038/nn.4244
10.1073/pnas.1905544116
10.1038/nn.4042
10.1113/jphysiol.1959.sp006308
10.1371/journal.pcbi.1004792
10.1016/j.neuron.2017.06.011
10.1088/1742-5468/ab3985
10.1016/j.neuron.2008.10.019
10.1038/nature01616
10.1038/78829
10.1152/jn.1987.58.6.1233
10.1038/323533a0
10.1038/nature12346
10.1207/s15516709cog1402_1
10.3389/fncom.2020.00029
10.1137/16M1080173
10.1038/nature14236
10.1038/nature01276
10.1016/j.neuron.2018.07.003
10.1162/NECO_a_00409
10.1016/j.neuron.2005.02.001
10.1038/ncomms12815
10.1038/nature08577
10.1126/science.1225266
10.1146/annurev.physiol.64.092501.114547
10.1016/S0006-3495(72)86068-5
10.1371/journal.pcbi.1003963
10.1073/pnas.1611835114
10.1038/nature10835
10.1016/0896-6273(95)90304-6
10.1073/pnas.1803839115
10.1016/0893-6080(89)90020-8
10.1016/j.conb.2017.06.003
10.1016/j.pneurobio.2013.02.002
10.7554/eLife.38105
10.1038/381607a0
10.1016/S0166-2236(00)01868-3
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020. Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1016/j.neuron.2020.09.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
Architecture
EISSN 1097-4199
EndPage 1070
ExternalDocumentID PMC11576090
32970997
10_1016_j_neuron_2020_09_005
S0896627320307054
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH062349
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M2M
M2O
M3Z
M41
N9A
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
RIG
X7M
ZGI
ZKB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c558t-c81a3ff70f5545b9286074a201d983ec30b82c16b7cd2b9a8af1a06f488d5e713
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Thu Aug 21 18:31:58 EDT 2025
Tue Aug 05 11:38:51 EDT 2025
Fri Jul 25 11:21:04 EDT 2025
Thu Apr 03 07:09:16 EDT 2025
Tue Jul 01 01:16:24 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Fri Feb 23 02:49:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-c81a3ff70f5545b9286074a201d983ec30b82c16b7cd2b9a8af1a06f488d5e713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3124-8474
OpenAccessLink http://www.cell.com/article/S0896627320307054/pdf
PMID 32970997
PQID 2445353444
PQPubID 2031076
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11576090
proquest_miscellaneous_2446662903
proquest_journals_2445353444
pubmed_primary_32970997
crossref_primary_10_1016_j_neuron_2020_09_005
crossref_citationtrail_10_1016_j_neuron_2020_09_005
elsevier_sciencedirect_doi_10_1016_j_neuron_2020_09_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-23
PublicationDateYYYYMMDD 2020-09-23
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Goodfellow, Bengio, Courville (bib53) 2016
Guerguiev, Lillicrap, Richards (bib57) 2017; 6
He, Gkioxari, Dollár, Girshick (bib62) 2017
Heilbron, Chait (bib64) 2018; 389
Werbos (bib194) 1990; 78
Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, Bengio (bib200) 2015
Haroush, Williams (bib58) 2015; 160
Wu, He (bib198) 2018
Olshausen, Field (bib132) 1996; 381
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (bib181) 2013
Le, Jaitly, Hinton (bib97) 2015
Graves, Wayne, Danihelka (bib55) 2014
Bi, Poo (bib18) 2001; 24
Salinas, Thier (bib158) 2000; 27
Hénaff, Goris, Simoncelli (bib66) 2019; 22
Miconi, Clune, Stanley (bib121) 2018
Chaisangmongkon, Swaminathan, Freedman, Wang (bib25) 2017; 93
Sussillo, Abbott (bib176) 2009; 63
Huang, Liu, Van Der Maaten, Weinberger (bib70) 2017
Maheswaranathan, Williams, Golub, Ganguli, Sussillo (bib109) 2019
Xie, Seung (bib199) 2003; 15
Wang (bib189) 2002; 36
Krizhevsky, Sutskever, Hinton (bib93) 2012; 25
Ba, Kiros, Hinton (bib8) 2016
Pei, Deng, Song, Zhao, Zhang, Wu, Wang, Zou, Wu, He (bib137) 2019; 572
Kar, Kubilius, Schmidt, Issa, DiCarlo (bib81) 2019; 22
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (bib136) 2019; 32
Ardid, Wang, Compte (bib6) 2007; 27
Seung (bib163) 1996; 93
Wang, Yang (bib191) 2018; 49
Barak (bib9) 2017; 46
Sutton, Barto (bib180) 2018
Yang, Murray, Wang (bib205) 2016; 7
Grutzendler, Kasthuri, Gan (bib56) 2002; 420
Sussillo (bib175) 2014; 25
Kiani, Shadlen (bib83) 2009; 324
Saxe, McClelland, Ganguli (bib161) 2019; 116
Hassabis, Kumaran, Summerfield, Botvinick (bib59) 2017; 95
Kobak, Brendel, Constantinidis, Feierstein, Kepecs, Mainen, Qi, Romo, Uchida, Machens (bib88) 2016; 5
Hochreiter, Schmidhuber (bib67) 1997; 9
Bastos, Usrey, Adams, Mangun, Fries, Friston (bib13) 2012; 76
LeCun, Bottou, Bengio, Haffner (bib101) 1998; 86
Kirkpatrick, Pascanu, Rabinowitz, Veness, Desjardins, Rusu, Milan, Quan, Ramalho, Grabska-Barwinska (bib87) 2017; 114
Rigotti, Ben Dayan Rubin, Wang, Fusi (bib147) 2010; 4
Romo, Brody, Hernández, Lemus (bib152) 1999; 399
Sutskever, Martens, Dahl, Hinton (bib179) 2013; 28
Freedman, Assad (bib43) 2006; 443
Murray (bib124) 2019; 8
Roitman, Shadlen (bib151) 2002; 22
Mathis, Mamidanna, Cury, Abe, Murthy, Mathis, Bethge (bib116) 2018; 21
Bengio, Bengio, Cloutier, Gecsei (bib15) 1992
Kriegeskorte, Mur, Bandettini (bib92) 2008; 2
Barlow (bib11) 1961; 1
Devlin, Chang, Lee, Toutanova (bib37) 2018
Bahdanau, Cho, Bengio (bib214) 2016
Bellec, Salaj, Subramoney, Legenstein, Maass (bib14) 2018; 31
Kuffler (bib95) 1953; 16
Abbott, Chance (bib4) 2005; 149
Goldman-Rakic (bib51) 1995; 14
Carandini, Heeger (bib23) 2011; 13
Erhan, Bengio, Courville, Vincent (bib41) 2009; 1341
He, Zhang, Ren, Sun (bib60) 2015
Fukushima, Miyake (bib45) 1982; 15
Sussillo, Barak (bib177) 2013; 25
Rajan, Harvey, Tank (bib142) 2016; 90
Saxe, McClelland, Ganguli (bib159) 2013
Yang, Pan, Gan (bib204) 2009; 462
Cadieu, Hong, Yamins, Pinto, Ardila, Solomon, Majaj, DiCarlo (bib22) 2014; 10
Costa, Assael, Shillingford, de Freitas, Vogels (bib31) 2017; 30
Ulyanov, Vedaldi, Lempitsky (bib185) 2016
Rubin, Van Hooser, Miller (bib155) 2015; 85
Kingma, Welling (bib86) 2013
Koch, Ullman (bib89) 1987
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib172) 2014; 15
Gold, Shadlen (bib50) 2007; 30
Wang (bib188) 2001; 24
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib52) 2014; 27
Markram, Wang, Tsodyks (bib112) 1998; 95
Tieleman, Hinton (bib183) 2012
Chen, Rubanova, Bettencourt, Duvenaud (bib26) 2018; 31
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bib100) 1990; 2
Ioffe, Szegedy (bib74) 2015
Shwartz-Ziv, Tishby (bib165) 2017
Olsen, Bortone, Adesnik, Scanziani (bib131) 2012; 483
Fukushima, Miyake, Ito (bib46) 1983
Lillicrap, Santoro, Marris, Akerman, Hinton (bib104) 2020; 21
Zenke, Ganguli (bib209) 2018; 30
Jacot, Gabriel, Hongler (bib75) 2018; 31
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib187) 2017; 30
Niv (bib128) 2009; 53
Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton (bib166) 2017; 550
Oja (bib130) 1982; 15
Rosenblatt (bib153) 1958; 65
Rao, Ballard (bib143) 1999; 2
Deng, Dong, Socher, Li, Li, Fei-Fei (bib35) 2009
He, Zhang, Ren, Sun (bib61) 2016
Cueva, Wei (bib33) 2018
Rajalingham, Issa, Bashivan, Kar, Schmidt, DiCarlo (bib141) 2018; 38
Kietzmann, Spoerer, Sörensen, Cichy, Hauk, Kriegeskorte (bib84) 2019; 116
Daw, Gershman, Seymour, Dayan, Dolan (bib34) 2011; 69
Mastrogiuseppe, Ostojic (bib115) 2018; 99
McIntosh, Maheswaranathan, Nayebi, Ganguli, Baccus (bib118) 2016; 29
Markov, Ercsey-Ravasz, Ribeiro Gomes, Lamy, Magrou, Vezoli, Misery, Falchier, Quilodran, Gariel (bib111) 2014; 24
Wang, Narain, Hosseini, Jazayeri (bib193) 2018; 21
Krogh, Hertz (bib94) 1992; 4
Zenke, Poole, Ganguli (bib210) 2017
Oh, Harris, Ng, Winslow, Cain, Mihalas, Wang, Lau, Kuan, Henry (bib129) 2014; 508
Nath, Mathis, Chen, Patel, Bethge, Mathis (bib125) 2019; 14
Pascanu, Mikolov, Bengio (bib135) 2013
Bashivan, Kar, DiCarlo (bib12) 2019; 364
Williams, Kim, Wang, Vyas, Ryu, Shenoy, Schnitzer, Kolda, Ganguli (bib196) 2018; 98
Abbott (bib2) 2006
Zucker, Regehr (bib213) 2002; 64
Zeiler, Fergus (bib208) 2014
Rosenblatt (bib154) 1962
Hubel, Wiesel (bib71) 1959; 148
Merolla, Arthur, Alvarez-Icaza, Cassidy, Sawada, Akopyan, Jackson, Imam, Guo, Nakamura (bib119) 2014; 345
Orhan, Ma (bib133) 2019; 22
Reynolds, Heeger (bib144) 2009; 61
Gers, Schmidhuber, Cummins (bib48) 2000; 12
Hebb (bib63) 2005
Lindsay, Miller (bib106) 2018; 7
Yang, Ganichev, Wang, Shlens, Sussillo (bib206) 2018
Hubel, Wiesel (bib72) 1962; 160
Prenger, Wu, David, Gallant (bib140) 2004; 17
Yamane, Carlson, Bowman, Wang, Connor (bib201) 2008; 11
Polyak (bib138) 1964; 4
Desimone, Duncan (bib36) 1995; 18
Zipser, Andersen (bib212) 1988; 331
van Vreeswijk, Sompolinsky (bib186) 1996; 274
Sompolinsky, Crisanti, Sommers (bib168) 1988; 61
Carrasco (bib24) 2011; 51
Nayebi, Bear, Kubilius, Kar, Ganguli, Sussillo, DiCarlo, Yamins (bib126) 2018; 31
Abbott (bib3) 2008; 60
Duchi, Hazan, Singer (bib38) 2011; 12
Cohen, Dunbar, McClelland (bib30) 1990; 97
Shu, Hasenstaub, McCormick (bib164) 2003; 423
Richards, Lillicrap, Beaudoin, Bengio, Bogacz, Christensen, Clopath, Costa, de Berker, Ganguli (bib145) 2019; 22
Laje, Buonomano (bib96) 2013; 16
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bib203) 2014; 111
Mongillo, Barak, Tsodyks (bib123) 2008; 319
Jaeger, Haas (bib76) 2004; 304
Jones, Palmer (bib78) 1987; 58
Sacramento, Costa, Bengio, Senn (bib157) 2018; 31
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (bib122) 2015; 518
Kaplanis, Shanahan, Clopath (bib80) 2018
Lillicrap, Cownden, Tweed, Akerman (bib103) 2016; 7
Nicola, Clopath (bib127) 2017; 8
Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib27) 2014
Roelfsema, Holtmaat (bib150) 2018; 19
Kingma, Ba (bib85) 2014
Glorot, Bordes, Bengio (bib49) 2011; 15
Saxe, Bansal, Dapello, Advani, Kolchinsky, Tracey, Cox (bib160) 2019; 2019
Schultz, Dayan, Montague (bib162) 1997; 275
Riesenhuber, Poggio (bib146) 1999; 2
Kriegeskorte (bib91) 2015; 1
Tikhonov (bib184) 1943; 39
Strogatz (bib174) 2001
Yamins, DiCarlo (bib202) 2016; 19
Yang, Joglekar, Song, Newsome, Wang (bib207) 2019; 22
Courbariaux, Hubara, Soudry, El-Yaniv, Bengio (bib32) 2016
Rigotti, Barak, Warden, Wang, Daw, Miller, Fusi (bib148) 2013; 497
Jouppi, Young, Patil, Patterson, Agrawal, Bajwa, Bates, Bhatia, Boden, Borchers (bib79) 2017
Lindsay (bib105) 2020; 14
Clevert, Unterthiner, Hochreiter (bib29) 2015
Robbins, Monro (bib149) 1951; 22
Goudar, Buonomano (bib54) 2018; 7
Rumelhart, Hinton, Williams (bib156) 1986; 323
Andalman, Burns, Lovett-Barron, Broxton, Poole, Yang, Grosenick, Lerner, Chen, Benster (bib5) 2019; 177
Eliasmith, Stewart, Choo, Bekolay, DeWolf, Tang, Rasmussen (bib39) 2012; 338
McCloskey, Cohen (bib117) 1989; 24
Britten, Shadlen, Newsome, Movshon (bib21) 1992; 12
Williams, Zipser (bib195) 1989; 1
Kornblith, Norouzi, Lee, Hinton (bib90) 2019
Ponce, Xiao, Schade, Hartmann, Kreiman, Livingstone (bib139) 2019; 177
Song, Miller, Abbott (bib169) 2000; 3
Ba, Hinton, Mnih, Leibo, Ionescu (bib7) 2016; 29
Elman (bib40) 1990; 14
LeCun, Bengio, Hinton (bib102) 2015; 521
Tavanaei, Ghodrati, Kheradpisheh, Masquelier, Maida (bib182) 2019; 111
Wilson, Cowan (bib197) 1972; 12
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bib1) 2016
LeCun, Bengio (bib99) 1995
Wang, Tegnér, Constantinidis, Goldman-Rakic (bib192) 2004; 101
Masse, Grant, Freedman (bib113) 2018; 115
Song, Yang, Wang (bib170) 2016; 12
Freeman, Simoncelli (bib44) 2011; 14
Mante, Sussillo, Shenoy, Newsome (bib110) 2013; 503
Masse, Yang, Song, Wang, Freedman (bib114) 2019; 22
Helmstaedter, Briggman, Turaga, Jain, Seung, Denk (bib65) 2013; 500
Khaligh-Razavi, Kriegeskorte (bib82) 2014; 10
Botvinick, Wang, Dabney, Miller, Kurth-Nelson (bib20) 2020; 107
Benna, Fusi (bib17) 2016; 19
Lotter, Kreiman, Cox (bib108) 2016
Lindsey, Ocko, Ganguli, Deny (bib107) 2019
Song, Yang, Wang (bib171) 2017; 6
Hornik, Stinchcombe, White (bib69) 1989; 2
Januszewski, Kornfeld, Li, Pope, Blakely, Lindsey, Maitin-Shepard, Tyka, Denk, Jain (bib77) 2018; 15
Metz, Maheswaranathan, Cheung, Sohl-Dickstein (bib120) 2018
Bengio, Simard, Frasconi (bib16) 1994; 5
Stokes (bib173) 2015; 19
Barak, Sussillo, Romo, Tsodyks, Abbott (bib10) 2013; 103
Simonyan, Zisserman (bib167) 2014
Pandarinath, O’Shea, Collins, Jozefowicz, Stavisky, Kao, Trautmann, Kaufman, Ryu, Hochberg (bib134) 2018; 15
Wang (bib190) 2008; 60
Chung, Gulcehre, Cho, Bengio (bib28) 2014
Sussillo, Churchland, Kaufman, Shenoy (bib178) 2015; 18
LeCun (bib98) 1988
Fusi, Drew, Abbott (bib47) 2005; 45
Huh, Sejnowski (bib73) 2018; 31
Zhuang, Yan, Nayebi, Yamins (bib211) 2019
Hopfield (bib68) 1982; 79
Felleman, Van Essen (bib42) 1991; 1
Bottou, Curtis, Nocedal (bib19) 2018; 60
Costa (10.1016/j.neuron.2020.09.005_bib31) 2017; 30
Britten (10.1016/j.neuron.2020.09.005_bib21) 1992; 12
Barak (10.1016/j.neuron.2020.09.005_bib9) 2017; 46
Botvinick (10.1016/j.neuron.2020.09.005_bib20) 2020; 107
Gold (10.1016/j.neuron.2020.09.005_bib50) 2007; 30
Yang (10.1016/j.neuron.2020.09.005_bib206) 2018
Mastrogiuseppe (10.1016/j.neuron.2020.09.005_bib115) 2018; 99
Daw (10.1016/j.neuron.2020.09.005_bib34) 2011; 69
Sutton (10.1016/j.neuron.2020.09.005_bib180) 2018
Wu (10.1016/j.neuron.2020.09.005_bib198) 2018
Ioffe (10.1016/j.neuron.2020.09.005_bib74) 2015
LeCun (10.1016/j.neuron.2020.09.005_bib100) 1990; 2
Kriegeskorte (10.1016/j.neuron.2020.09.005_bib91) 2015; 1
Paszke (10.1016/j.neuron.2020.09.005_bib136) 2019; 32
Huang (10.1016/j.neuron.2020.09.005_bib70) 2017
Sussillo (10.1016/j.neuron.2020.09.005_bib178) 2015; 18
Sussillo (10.1016/j.neuron.2020.09.005_bib176) 2009; 63
Krogh (10.1016/j.neuron.2020.09.005_bib94) 1992; 4
Markram (10.1016/j.neuron.2020.09.005_bib112) 1998; 95
Helmstaedter (10.1016/j.neuron.2020.09.005_bib65) 2013; 500
Song (10.1016/j.neuron.2020.09.005_bib170) 2016; 12
Graves (10.1016/j.neuron.2020.09.005_bib55) 2014
Rajalingham (10.1016/j.neuron.2020.09.005_bib141) 2018; 38
Hénaff (10.1016/j.neuron.2020.09.005_bib66) 2019; 22
Lindsay (10.1016/j.neuron.2020.09.005_bib105) 2020; 14
Rumelhart (10.1016/j.neuron.2020.09.005_bib156) 1986; 323
Lillicrap (10.1016/j.neuron.2020.09.005_bib104) 2020; 21
Xie (10.1016/j.neuron.2020.09.005_bib199) 2003; 15
Ba (10.1016/j.neuron.2020.09.005_bib8) 2016
Wang (10.1016/j.neuron.2020.09.005_bib193) 2018; 21
Gers (10.1016/j.neuron.2020.09.005_bib48) 2000; 12
Fukushima (10.1016/j.neuron.2020.09.005_bib46) 1983
Metz (10.1016/j.neuron.2020.09.005_bib120) 2018
Kietzmann (10.1016/j.neuron.2020.09.005_bib84) 2019; 116
Nayebi (10.1016/j.neuron.2020.09.005_bib126) 2018; 31
Olsen (10.1016/j.neuron.2020.09.005_bib131) 2012; 483
Hochreiter (10.1016/j.neuron.2020.09.005_bib67) 1997; 9
Ba (10.1016/j.neuron.2020.09.005_bib7) 2016; 29
Song (10.1016/j.neuron.2020.09.005_bib169) 2000; 3
Rosenblatt (10.1016/j.neuron.2020.09.005_bib153) 1958; 65
Le (10.1016/j.neuron.2020.09.005_bib97) 2015
Merolla (10.1016/j.neuron.2020.09.005_bib119) 2014; 345
Lotter (10.1016/j.neuron.2020.09.005_bib108) 2016
Cohen (10.1016/j.neuron.2020.09.005_bib30) 1990; 97
Oja (10.1016/j.neuron.2020.09.005_bib130) 1982; 15
Saxe (10.1016/j.neuron.2020.09.005_bib159) 2013
Bi (10.1016/j.neuron.2020.09.005_bib18) 2001; 24
Jacot (10.1016/j.neuron.2020.09.005_bib75) 2018; 31
Guerguiev (10.1016/j.neuron.2020.09.005_bib57) 2017; 6
Seung (10.1016/j.neuron.2020.09.005_bib163) 1996; 93
Roelfsema (10.1016/j.neuron.2020.09.005_bib150) 2018; 19
Kaplanis (10.1016/j.neuron.2020.09.005_bib80) 2018
Miconi (10.1016/j.neuron.2020.09.005_bib121) 2018
Goldman-Rakic (10.1016/j.neuron.2020.09.005_bib51) 1995; 14
Bastos (10.1016/j.neuron.2020.09.005_bib13) 2012; 76
Orhan (10.1016/j.neuron.2020.09.005_bib133) 2019; 22
Ulyanov (10.1016/j.neuron.2020.09.005_bib185) 2016
Nicola (10.1016/j.neuron.2020.09.005_bib127) 2017; 8
He (10.1016/j.neuron.2020.09.005_bib62) 2017
Krizhevsky (10.1016/j.neuron.2020.09.005_bib93) 2012; 25
Srivastava (10.1016/j.neuron.2020.09.005_bib172) 2014; 15
Sompolinsky (10.1016/j.neuron.2020.09.005_bib168) 1988; 61
Fusi (10.1016/j.neuron.2020.09.005_bib47) 2005; 45
Glorot (10.1016/j.neuron.2020.09.005_bib49) 2011; 15
McCloskey (10.1016/j.neuron.2020.09.005_bib117) 1989; 24
Rigotti (10.1016/j.neuron.2020.09.005_bib148) 2013; 497
Bengio (10.1016/j.neuron.2020.09.005_bib16) 1994; 5
Goudar (10.1016/j.neuron.2020.09.005_bib54) 2018; 7
Saxe (10.1016/j.neuron.2020.09.005_bib160) 2019; 2019
Yang (10.1016/j.neuron.2020.09.005_bib204) 2009; 462
Pei (10.1016/j.neuron.2020.09.005_bib137) 2019; 572
Rajan (10.1016/j.neuron.2020.09.005_bib142) 2016; 90
Rubin (10.1016/j.neuron.2020.09.005_bib155) 2015; 85
Mongillo (10.1016/j.neuron.2020.09.005_bib123) 2008; 319
Yamane (10.1016/j.neuron.2020.09.005_bib201) 2008; 11
Barlow (10.1016/j.neuron.2020.09.005_bib11) 1961; 1
Freeman (10.1016/j.neuron.2020.09.005_bib44) 2011; 14
Wang (10.1016/j.neuron.2020.09.005_bib190) 2008; 60
Williams (10.1016/j.neuron.2020.09.005_bib196) 2018; 98
Rosenblatt (10.1016/j.neuron.2020.09.005_bib154) 1962
Bengio (10.1016/j.neuron.2020.09.005_bib15) 1992
Yang (10.1016/j.neuron.2020.09.005_bib205) 2016; 7
He (10.1016/j.neuron.2020.09.005_bib61) 2016
Elman (10.1016/j.neuron.2020.09.005_bib40) 1990; 14
Kriegeskorte (10.1016/j.neuron.2020.09.005_bib92) 2008; 2
Zeiler (10.1016/j.neuron.2020.09.005_bib208) 2014
Reynolds (10.1016/j.neuron.2020.09.005_bib144) 2009; 61
Romo (10.1016/j.neuron.2020.09.005_bib152) 1999; 399
Deng (10.1016/j.neuron.2020.09.005_bib35) 2009
Sutskever (10.1016/j.neuron.2020.09.005_bib179) 2013; 28
Williams (10.1016/j.neuron.2020.09.005_bib195) 1989; 1
Kingma (10.1016/j.neuron.2020.09.005_bib86) 2013
He (10.1016/j.neuron.2020.09.005_bib60) 2015
Jones (10.1016/j.neuron.2020.09.005_bib78) 1987; 58
Wang (10.1016/j.neuron.2020.09.005_bib189) 2002; 36
Hornik (10.1016/j.neuron.2020.09.005_bib69) 1989; 2
Song (10.1016/j.neuron.2020.09.005_bib171) 2017; 6
Hassabis (10.1016/j.neuron.2020.09.005_bib59) 2017; 95
Roitman (10.1016/j.neuron.2020.09.005_bib151) 2002; 22
van Vreeswijk (10.1016/j.neuron.2020.09.005_bib186) 1996; 274
Hubel (10.1016/j.neuron.2020.09.005_bib72) 1962; 160
Salinas (10.1016/j.neuron.2020.09.005_bib158) 2000; 27
Eliasmith (10.1016/j.neuron.2020.09.005_bib39) 2012; 338
Pascanu (10.1016/j.neuron.2020.09.005_bib135) 2013
Kobak (10.1016/j.neuron.2020.09.005_bib88) 2016; 5
Olshausen (10.1016/j.neuron.2020.09.005_bib132) 1996; 381
Zenke (10.1016/j.neuron.2020.09.005_bib209) 2018; 30
Grutzendler (10.1016/j.neuron.2020.09.005_bib56) 2002; 420
Yamins (10.1016/j.neuron.2020.09.005_bib202) 2016; 19
LeCun (10.1016/j.neuron.2020.09.005_bib98) 1988
Courbariaux (10.1016/j.neuron.2020.09.005_bib32) 2016
Kingma (10.1016/j.neuron.2020.09.005_bib85) 2014
Wang (10.1016/j.neuron.2020.09.005_bib188) 2001; 24
Laje (10.1016/j.neuron.2020.09.005_bib96) 2013; 16
Murray (10.1016/j.neuron.2020.09.005_bib124) 2019; 8
Andalman (10.1016/j.neuron.2020.09.005_bib5) 2019; 177
Zenke (10.1016/j.neuron.2020.09.005_bib210) 2017
Wang (10.1016/j.neuron.2020.09.005_bib191) 2018; 49
Kirkpatrick (10.1016/j.neuron.2020.09.005_bib87) 2017; 114
Werbos (10.1016/j.neuron.2020.09.005_bib194) 1990; 78
Schultz (10.1016/j.neuron.2020.09.005_bib162) 1997; 275
Sussillo (10.1016/j.neuron.2020.09.005_bib175) 2014; 25
Felleman (10.1016/j.neuron.2020.09.005_bib42) 1991; 1
Oh (10.1016/j.neuron.2020.09.005_bib129) 2014; 508
Zipser (10.1016/j.neuron.2020.09.005_bib212) 1988; 331
Lillicrap (10.1016/j.neuron.2020.09.005_bib103) 2016; 7
McIntosh (10.1016/j.neuron.2020.09.005_bib118) 2016; 29
Shwartz-Ziv (10.1016/j.neuron.2020.09.005_bib165) 2017
Koch (10.1016/j.neuron.2020.09.005_bib89) 1987
Januszewski (10.1016/j.neuron.2020.09.005_bib77) 2018; 15
Zhuang (10.1016/j.neuron.2020.09.005_bib211) 2019
Rao (10.1016/j.neuron.2020.09.005_bib143) 1999; 2
Richards (10.1016/j.neuron.2020.09.005_bib145) 2019; 22
Vaswani (10.1016/j.neuron.2020.09.005_bib187) 2017; 30
Abbott (10.1016/j.neuron.2020.09.005_bib2) 2006
Cueva (10.1016/j.neuron.2020.09.005_bib33) 2018
Polyak (10.1016/j.neuron.2020.09.005_bib138) 1964; 4
Barak (10.1016/j.neuron.2020.09.005_bib10) 2013; 103
Silver (10.1016/j.neuron.2020.09.005_bib166) 2017; 550
Bellec (10.1016/j.neuron.2020.09.005_bib14) 2018; 31
Heilbron (10.1016/j.neuron.2020.09.005_bib64) 2018; 389
Bahdanau (10.1016/j.neuron.2020.09.005_bib214) 2016
Bottou (10.1016/j.neuron.2020.09.005_bib19) 2018; 60
LeCun (10.1016/j.neuron.2020.09.005_bib101) 1998; 86
Pandarinath (10.1016/j.neuron.2020.09.005_bib134) 2018; 15
Kuffler (10.1016/j.neuron.2020.09.005_bib95) 1953; 16
Duchi (10.1016/j.neuron.2020.09.005_bib38) 2011; 12
Yamins (10.1016/j.neuron.2020.09.005_bib203) 2014; 111
Khaligh-Razavi (10.1016/j.neuron.2020.09.005_bib82) 2014; 10
Markov (10.1016/j.neuron.2020.09.005_bib111) 2014; 24
Masse (10.1016/j.neuron.2020.09.005_bib113) 2018; 115
Niv (10.1016/j.neuron.2020.09.005_bib128) 2009; 53
Masse (10.1016/j.neuron.2020.09.005_bib114) 2019; 22
Prenger (10.1016/j.neuron.2020.09.005_bib140) 2004; 17
Rigotti (10.1016/j.neuron.2020.09.005_bib147) 2010; 4
Wilson (10.1016/j.neuron.2020.09.005_bib197) 1972; 12
Sussillo (10.1016/j.neuron.2020.09.005_bib177) 2013; 25
Yang (10.1016/j.neuron.2020.09.005_bib207) 2019; 22
Hubel (10.1016/j.neuron.2020.09.005_bib71) 1959; 148
Bashivan (10.1016/j.neuron.2020.09.005_bib12) 2019; 364
Maheswaranathan (10.1016/j.neuron.2020.09.005_bib109) 2019
Haroush (10.1016/j.neuron.2020.09.005_bib58) 2015; 160
Cho (10.1016/j.neuron.2020.09.005_bib27) 2014
Kornblith (10.1016/j.neuron.2020.09.005_bib90) 2019
Fukushima (10.1016/j.neuron.2020.09.005_bib45) 1982; 15
Tikhonov (10.1016/j.neuron.2020.09.005_bib184) 1943; 39
Chen (10.1016/j.neuron.2020.09.005_bib26) 2018; 31
Stokes (10.1016/j.neuron.2020.09.005_bib173) 2015; 19
Freedman (10.1016/j.neuron.2020.09.005_bib43) 2006; 443
Hebb (10.1016/j.neuron.2020.09.005_bib63) 2005
Goodfellow (10.1016/j.neuron.2020.09.005_bib53) 2016
Benna (10.1016/j.neuron.2020.09.005_bib17) 2016; 19
Abbott (10.1016/j.neuron.2020.09.005_bib4) 2005; 149
Ponce (10.1016/j.neuron.2020.09.005_bib139) 2019; 177
Lindsay (10.1016/j.neuron.2020.09.005_bib106) 2018; 7
Huh (10.1016/j.neuron.2020.09.005_bib73) 2018; 31
LeCun (10.1016/j.neuron.2020.09.005_bib99) 1995
Desimone (10.1016/j.neuron.2020.09.005_bib36) 1995; 18
Shu (10.1016/j.neuron.2020.09.005_bib164) 2003; 423
Goodfellow (10.1016/j.neuron.2020.09.005_bib52) 2014; 27
Clevert (10.1016/j.neuron.2020.09.005_bib29) 2015
Tavanaei (10.1016/j.neuron.2020.09.005_bib182) 2019; 111
Riesenhuber (10.1016/j.neuron.2020.09.005_bib146) 1999; 2
Devlin (10.1016/j.neuron.2020.09.005_bib37) 2018
Kiani (10.1016/j.neuron.2020.09.005_bib83) 2009; 324
Strogatz (10.1016/j.neuron.2020.09.005_bib174) 2001
Tieleman (10.1016/j.neuron.2020.09.005_bib183) 2012
Lindsey (10.1016/j.neuron.2020.09.005_bib107) 2019
Zucker (10.1016/j.neuron.2020.09.005_bib213) 2002; 64
Nath (10.1016/j.neuron.2020.09.005_bib125) 2019; 14
Cadieu (10.1016/j.neuron.2020.09.005_bib22) 2014; 10
Jouppi (10.1016/j.neuron.2020.09.005_bib79)
33600755 - Neuron. 2021 Feb 17;109(4):739. doi: 10.1016/j.neuron.2021.01.022
References_xml – year: 2019
  ident: bib90
  article-title: Similarity of Neural Network Representations Revisited
  publication-title: arXiv
– volume: 4
  start-page: 1
  year: 1964
  end-page: 17
  ident: bib138
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib172
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 98
  start-page: 1099
  year: 2018
  end-page: 1115.e8
  ident: bib196
  article-title: Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis
  publication-title: Neuron
– volume: 24
  start-page: 17
  year: 2014
  end-page: 36
  ident: bib111
  article-title: A weighted and directed interareal connectivity matrix for macaque cerebral cortex
  publication-title: Cereb. Cortex
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: bib48
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
– volume: 101
  start-page: 1368
  year: 2004
  end-page: 1373
  ident: bib192
  article-title: Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bib203
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 1
  year: 2017
  end-page: 12
  ident: bib79
  article-title: In-datacenter performance analysis of a tensor processing unit. In ISCA ‘17: Proceedings of the 44th Annual International Symposium on Computer Architecture
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib101
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 19
  start-page: 394
  year: 2015
  end-page: 405
  ident: bib173
  article-title: ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework
  publication-title: Trends Cogn. Sci.
– volume: 29
  start-page: 4331
  year: 2016
  end-page: 4339
  ident: bib7
  article-title: Using fast weights to attend to the recent past
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 60
  start-page: 215
  year: 2008
  end-page: 234
  ident: bib190
  article-title: Decision making in recurrent neuronal circuits
  publication-title: Neuron
– volume: 420
  start-page: 812
  year: 2002
  end-page: 816
  ident: bib56
  article-title: Long-term dendritic spine stability in the adult cortex
  publication-title: Nature
– volume: 49
  start-page: 75
  year: 2018
  end-page: 83
  ident: bib191
  article-title: A disinhibitory circuit motif and flexible information routing in the brain
  publication-title: Curr. Opin. Neurobiol.
– volume: 32
  start-page: 8024
  year: 2019
  end-page: 8035
  ident: bib136
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 12815
  year: 2016
  ident: bib205
  article-title: A dendritic disinhibitory circuit mechanism for pathway-specific gating
  publication-title: Nat. Commun.
– volume: 550
  start-page: 354
  year: 2017
  end-page: 359
  ident: bib166
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
– volume: 93
  start-page: 13339
  year: 1996
  end-page: 13344
  ident: bib163
  article-title: How the brain keeps the eyes still
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 9475
  year: 2002
  end-page: 9489
  ident: bib151
  article-title: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task
  publication-title: J. Neurosci.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib93
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib35
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 58
  start-page: 1233
  year: 1987
  end-page: 1258
  ident: bib78
  article-title: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex
  publication-title: J. Neurophysiol.
– year: 2013
  ident: bib86
  article-title: Auto-Encoding Variational Bayes
  publication-title: arXiv
– volume: 7
  start-page: e38105
  year: 2018
  ident: bib106
  article-title: How biological attention mechanisms improve task performance in a large-scale visual system model
  publication-title: eLife
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: bib122
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 304
  start-page: 78
  year: 2004
  end-page: 80
  ident: bib76
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
– volume: 25
  start-page: 156
  year: 2014
  end-page: 163
  ident: bib175
  article-title: Neural circuits as computational dynamical systems
  publication-title: Curr. Opin. Neurobiol.
– year: 2017
  ident: bib165
  article-title: Opening the black box of deep neural networks via information
  publication-title: arXiv
– volume: 10
  start-page: e1003963
  year: 2014
  ident: bib22
  article-title: Deep neural networks rival the representation of primate IT cortex for core visual object recognition
  publication-title: PLoS Comput. Biol.
– year: 2018
  ident: bib121
  article-title: Differentiable plasticity: training plastic neural networks with backpropagation
  publication-title: arXiv
– volume: 21
  start-page: 1281
  year: 2018
  end-page: 1289
  ident: bib116
  article-title: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
  publication-title: Nat. Neurosci.
– start-page: 3987
  year: 2017
  end-page: 3995
  ident: bib210
  article-title: Continual learning through synaptic intelligence. Proceedings of the 34th International Conference on Machine Learning 70
– volume: 31
  start-page: 8571
  year: 2018
  end-page: 8580
  ident: bib75
  article-title: Neural tangent kernel: Convergence and generalization in neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 265
  year: 2016
  end-page: 283
  ident: bib1
  article-title: Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI)
– volume: 1
  start-page: 217
  year: 1961
  end-page: 234
  ident: bib11
  article-title: Possible principles underlying the transformation of sensory messages
  publication-title: Sensory Communication
– volume: 39
  start-page: 195
  year: 1943
  end-page: 198
  ident: bib184
  article-title: On the stability of inverse problems
  publication-title: Dokl. Akad. Nauk SSSR
– year: 2016
  ident: bib108
  article-title: Deep predictive coding networks for video prediction and unsupervised learning
  publication-title: arXiv
– volume: 462
  start-page: 920
  year: 2009
  end-page: 924
  ident: bib204
  article-title: Stably maintained dendritic spines are associated with lifelong memories
  publication-title: Nature
– volume: 15
  start-page: 805
  year: 2018
  end-page: 815
  ident: bib134
  article-title: Inferring single-trial neural population dynamics using sequential auto-encoders
  publication-title: Nat. Methods
– volume: 107
  start-page: 603
  year: 2020
  end-page: 616
  ident: bib20
  article-title: Deep reinforcement learning and its neuroscientific implications
  publication-title: Neuron
– year: 2014
  ident: bib55
  article-title: Neural turing machines
  publication-title: arXiv
– volume: 149
  start-page: 147
  year: 2005
  end-page: 155
  ident: bib4
  article-title: Drivers and modulators from push-pull and balanced synaptic input
  publication-title: Prog. Brain Res.
– volume: 24
  start-page: 139
  year: 2001
  end-page: 166
  ident: bib18
  article-title: Synaptic modification by correlated activity: Hebb’s postulate revisited
  publication-title: Annu. Rev. Neurosci.
– start-page: 826
  year: 1983
  end-page: 834
  ident: bib46
  article-title: Neocognitron: A neural network model for a mechanism of visual pattern recognition
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 116
  start-page: 21854
  year: 2019
  end-page: 21863
  ident: bib84
  article-title: Recurrence is required to capture the representational dynamics of the human visual system
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 2152
  year: 2019
  end-page: 2176
  ident: bib125
  article-title: Using DeepLabCut for 3D markerless pose estimation across species and behaviors
  publication-title: Nat. Protoc.
– volume: 6
  start-page: e22901
  year: 2017
  ident: bib57
  article-title: Towards deep learning with segregated dendrites
  publication-title: eLife
– start-page: 3
  year: 2018
  end-page: 19
  ident: bib198
  article-title: Group normalization
  publication-title: Computer Vision – ECCV 2018
– volume: 503
  start-page: 78
  year: 2013
  end-page: 84
  ident: bib110
  article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex
  publication-title: Nature
– volume: 443
  start-page: 85
  year: 2006
  end-page: 88
  ident: bib43
  article-title: Experience-dependent representation of visual categories in parietal cortex
  publication-title: Nature
– volume: 65
  start-page: 386
  year: 1958
  end-page: 408
  ident: bib153
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: bib40
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
– year: 2018
  ident: bib120
  article-title: Meta-learning update rules for unsupervised representation learning
  publication-title: arXiv
– volume: 31
  start-page: 1433
  year: 2018
  end-page: 1443
  ident: bib73
  article-title: Gradient descent for spiking neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 315
  year: 2011
  end-page: 323
  ident: bib49
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– start-page: 245
  year: 1962
  end-page: 248
  ident: bib154
  article-title: Principles of neurodynamics: Perceptions and the theory of brain mechanisms
  publication-title: Brain Theory
– volume: 38
  start-page: 7255
  year: 2018
  end-page: 7269
  ident: bib141
  article-title: Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks
  publication-title: J. Neurosci.
– volume: 22
  start-page: 974
  year: 2019
  end-page: 983
  ident: bib81
  article-title: Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior
  publication-title: Nat. Neurosci.
– volume: 22
  start-page: 1159
  year: 2019
  end-page: 1167
  ident: bib114
  article-title: Circuit mechanisms for the maintenance and manipulation of information in working memory
  publication-title: Nat. Neurosci.
– volume: 61
  start-page: 168
  year: 2009
  end-page: 185
  ident: bib144
  article-title: The normalization model of attention
  publication-title: Neuron
– volume: 15
  start-page: 441
  year: 2003
  end-page: 454
  ident: bib199
  article-title: Equivalence of backpropagation and contrastive Hebbian learning in a layered network
  publication-title: Neural Comput.
– volume: 8
  start-page: e43299
  year: 2019
  ident: bib124
  article-title: Local online learning in recurrent networks with random feedback
  publication-title: eLife
– volume: 25
  start-page: 626
  year: 2013
  end-page: 649
  ident: bib177
  article-title: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks
  publication-title: Neural Comput.
– volume: 399
  start-page: 470
  year: 1999
  end-page: 473
  ident: bib152
  article-title: Neuronal correlates of parametric working memory in the prefrontal cortex
  publication-title: Nature
– year: 2016
  ident: bib214
  article-title: Neural Machine Translation by Jointly Learning to Align and Translate
  publication-title: arXiv
– volume: 4
  start-page: 950
  year: 1992
  end-page: 957
  ident: bib94
  article-title: A simple weight decay can improve generalization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 51
  start-page: 1484
  year: 2011
  end-page: 1525
  ident: bib24
  article-title: Visual attention: the past 25 years
  publication-title: Vision Res.
– volume: 95
  start-page: 245
  year: 2017
  end-page: 258
  ident: bib59
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
– volume: 19
  start-page: 166
  year: 2018
  end-page: 180
  ident: bib150
  article-title: Control of synaptic plasticity in deep cortical networks
  publication-title: Nat. Rev. Neurosci.
– volume: 319
  start-page: 1543
  year: 2008
  end-page: 1546
  ident: bib123
  article-title: Synaptic theory of working memory
  publication-title: Science
– volume: 19
  start-page: 356
  year: 2016
  end-page: 365
  ident: bib202
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
– year: 2016
  ident: bib53
  article-title: Deep Learning
– volume: 95
  start-page: 5323
  year: 1998
  end-page: 5328
  ident: bib112
  article-title: Differential signaling via the same axon of neocortical pyramidal neurons
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2018
  ident: bib180
  article-title: Reinforcement Learning: An Introduction
– volume: 63
  start-page: 544
  year: 2009
  end-page: 557
  ident: bib176
  article-title: Generating coherent patterns of activity from chaotic neural networks
  publication-title: Neuron
– year: 2013
  ident: bib181
  article-title: Intriguing properties of neural networks
  publication-title: arXiv
– volume: 2
  start-page: 396
  year: 1990
  end-page: 404
  ident: bib100
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  start-page: 1019
  year: 1999
  end-page: 1025
  ident: bib146
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nat. Neurosci.
– start-page: 566
  year: 2019
  end-page: 569
  ident: bib211
  article-title: Self-supervised neural network models of higher visual cortex development
  publication-title: 2019 Conference on Cognitive Computational Neuroscience
– volume: 61
  start-page: 259
  year: 1988
  end-page: 262
  ident: bib168
  article-title: Chaos in random neural networks
  publication-title: Phys. Rev. Lett.
– volume: 148
  start-page: 574
  year: 1959
  end-page: 591
  ident: bib71
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: J. Physiol.
– start-page: 729
  year: 2018
  end-page: 745
  ident: bib206
  article-title: A dataset and architecture for visual reasoning with a working memory
  publication-title: Computer Vision – ECCV 2018
– volume: 16
  start-page: 925
  year: 2013
  end-page: 933
  ident: bib96
  article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks
  publication-title: Nat. Neurosci.
– volume: 99
  start-page: 609
  year: 2018
  end-page: 623.e29
  ident: bib115
  article-title: Linking connectivity, dynamics, and computations in low-rank recurrent neural networks
  publication-title: Neuron
– year: 2013
  ident: bib159
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
  publication-title: arXiv
– volume: 7
  start-page: 13276
  year: 2016
  ident: bib103
  article-title: Random synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nat. Commun.
– volume: 30
  start-page: 535
  year: 2007
  end-page: 574
  ident: bib50
  article-title: The neural basis of decision making
  publication-title: Annu. Rev. Neurosci.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib70
  article-title: Densely connected convolutional networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 15
  start-page: 605
  year: 2018
  end-page: 610
  ident: bib77
  article-title: High-precision automated reconstruction of neurons with flood-filling networks
  publication-title: Nat. Methods
– volume: 27
  start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib52
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: bib8
  article-title: Layer normalization
  publication-title: arXiv
– volume: 16
  start-page: 37
  year: 1953
  end-page: 68
  ident: bib95
  article-title: Discharge patterns and functional organization of mammalian retina
  publication-title: J. Neurophysiol.
– year: 2015
  ident: bib97
  article-title: A simple way to initialize recurrent networks of rectified linear units
  publication-title: arXiv
– volume: 22
  start-page: 297
  year: 2019
  end-page: 306
  ident: bib207
  article-title: Task representations in neural networks trained to perform many cognitive tasks
  publication-title: Nat. Neurosci.
– volume: 85
  start-page: 402
  year: 2015
  end-page: 417
  ident: bib155
  article-title: The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex
  publication-title: Neuron
– volume: 31
  start-page: 5290
  year: 2018
  end-page: 5301
  ident: bib126
  article-title: Task-driven convolutional recurrent models of the visual system
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 177
  start-page: 999
  year: 2019
  end-page: 1009.e10
  ident: bib139
  article-title: Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences
  publication-title: Cell
– volume: 17
  start-page: 663
  year: 2004
  end-page: 679
  ident: bib140
  article-title: Nonlinear V1 responses to natural scenes revealed by neural network analysis
  publication-title: Neural Netw.
– volume: 93
  start-page: 1504
  year: 2017
  end-page: 1517.e4
  ident: bib25
  article-title: Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions
  publication-title: Neuron
– start-page: 818
  year: 2014
  end-page: 833
  ident: bib208
  article-title: Visualizing and understanding convolutional networks
  publication-title: Computer Vision – ECCV 2014
– volume: 497
  start-page: 585
  year: 2013
  end-page: 590
  ident: bib148
  article-title: The importance of mixed selectivity in complex cognitive tasks
  publication-title: Nature
– volume: 5
  start-page: e10989
  year: 2016
  ident: bib88
  article-title: Demixed principal component analysis of neural population data
  publication-title: eLife
– volume: 46
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib9
  article-title: Recurrent neural networks as versatile tools of neuroscience research
  publication-title: Curr. Opin. Neurobiol.
– volume: 1341
  start-page: 1
  year: 2009
  ident: bib41
  article-title: Visualizing higher-layer features of a deep network
  publication-title: University of Montreal
– year: 2015
  ident: bib29
  article-title: Fast and accurate deep network learning by exponential linear units (elus)
  publication-title: arXiv
– volume: 90
  start-page: 128
  year: 2016
  end-page: 142
  ident: bib142
  article-title: Recurrent network models of sequence generation and memory
  publication-title: Neuron
– volume: 3
  start-page: 919
  year: 2000
  end-page: 926
  ident: bib169
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nat. Neurosci.
– start-page: 2048
  year: 2015
  end-page: 2057
  ident: bib200
  article-title: Show, attend and tell: Neural image caption generation with visual attention. Proceedings of the 32nd International Conference on Machine Learning 37
– volume: 274
  start-page: 1724
  year: 1996
  end-page: 1726
  ident: bib186
  article-title: Chaos in neuronal networks with balanced excitatory and inhibitory activity
  publication-title: Science
– volume: 115
  start-page: E10467
  year: 2018
  end-page: E10475
  ident: bib113
  article-title: Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2014
  ident: bib27
  article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation
  publication-title: arXiv
– volume: 2
  start-page: 79
  year: 1999
  end-page: 87
  ident: bib143
  article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
  publication-title: Nat. Neurosci.
– volume: 11
  start-page: 1352
  year: 2008
  end-page: 1360
  ident: bib201
  article-title: A neural code for three-dimensional object shape in macaque inferotemporal cortex
  publication-title: Nat. Neurosci.
– volume: 60
  start-page: 489
  year: 2008
  end-page: 495
  ident: bib3
  article-title: Theoretical neuroscience rising
  publication-title: Neuron
– volume: 22
  start-page: 275
  year: 2019
  end-page: 283
  ident: bib133
  article-title: A diverse range of factors affect the nature of neural representations underlying short-term memory
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: 2208
  year: 2017
  ident: bib127
  article-title: Supervised learning in spiking neural networks with FORCE training
  publication-title: Nat. Commun.
– volume: 160
  start-page: 1233
  year: 2015
  end-page: 1245
  ident: bib58
  article-title: Neuronal prediction of opponent’s behavior during cooperative social interchange in primates
  publication-title: Cell
– start-page: 26
  year: 2012
  end-page: 31
  ident: bib183
  article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning 4
– year: 2016
  ident: bib185
  article-title: Instance normalization: The missing ingredient for fast stylization
  publication-title: arXiv
– year: 2018
  ident: bib80
  article-title: Continual reinforcement learning with complex synapses
  publication-title: arXiv
– volume: 275
  start-page: 1593
  year: 1997
  end-page: 1599
  ident: bib162
  article-title: A neural substrate of prediction and reward
  publication-title: Science
– volume: 423
  start-page: 288
  year: 2003
  end-page: 293
  ident: bib164
  article-title: Turning on and off recurrent balanced cortical activity
  publication-title: Nature
– volume: 13
  start-page: 51
  year: 2011
  end-page: 62
  ident: bib23
  article-title: Normalization as a canonical neural computation
  publication-title: Nat. Rev. Neurosci.
– volume: 21
  start-page: 102
  year: 2018
  end-page: 110
  ident: bib193
  article-title: Flexible timing by temporal scaling of cortical responses
  publication-title: Nat. Neurosci.
– start-page: 115
  year: 1987
  end-page: 141
  ident: bib89
  article-title: Shifts in selective visual attention: towards the underlying neural circuitry
  publication-title: Matters of Intelligence
– volume: 31
  start-page: 8721
  year: 2018
  end-page: 8732
  ident: bib157
  article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 508
  start-page: 207
  year: 2014
  end-page: 214
  ident: bib129
  article-title: A mesoscale connectome of the mouse brain
  publication-title: Nature
– volume: 111
  start-page: 47
  year: 2019
  end-page: 63
  ident: bib182
  article-title: Deep learning in spiking neural networks
  publication-title: Neural Netw.
– volume: 103
  start-page: 214
  year: 2013
  end-page: 222
  ident: bib10
  article-title: From fixed points to chaos: three models of delayed discrimination
  publication-title: Prog. Neurobiol.
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: bib16
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– start-page: 1310
  year: 2013
  end-page: 1318
  ident: bib135
  article-title: On the difficulty of training recurrent neural networks. Proceedings of the 30th International Conference on Machine Learning 28
– volume: 22
  start-page: 984
  year: 2019
  end-page: 991
  ident: bib66
  article-title: Perceptual straightening of natural videos
  publication-title: Nat. Neurosci.
– volume: 572
  start-page: 106
  year: 2019
  end-page: 111
  ident: bib137
  article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture
  publication-title: Nature
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib156
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 30
  start-page: 272
  year: 2017
  end-page: 283
  ident: bib31
  article-title: Cortical microcircuits as gated-recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 21
  year: 1988
  end-page: 28
  ident: bib98
  article-title: A theoretical framework for back-propagation
  publication-title: Proceedings of the 1988 Connectionist Models Summer School
– volume: 78
  start-page: 1550
  year: 1990
  end-page: 1560
  ident: bib194
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
– volume: 27
  start-page: 15
  year: 2000
  end-page: 21
  ident: bib158
  article-title: Gain modulation: a major computational principle of the central nervous system
  publication-title: Neuron
– volume: 30
  start-page: 1514
  year: 2018
  end-page: 1541
  ident: bib209
  article-title: Superspike: Supervised learning in multilayer spiking neural networks
  publication-title: Neural Comput.
– year: 2018
  ident: bib37
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv
– year: 1992
  ident: bib15
  article-title: On the optimization of a synaptic learning rule
  publication-title: Preprints Conf. Optimality in Artificial and Biological Neural Networks
– volume: 483
  start-page: 47
  year: 2012
  end-page: 52
  ident: bib131
  article-title: Gain control by layer six in cortical circuits of vision
  publication-title: Nature
– volume: 31
  start-page: 6571
  year: 2018
  end-page: 6583
  ident: bib26
  article-title: Neural ordinary differential equations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 193
  year: 1995
  end-page: 222
  ident: bib36
  article-title: Neural mechanisms of selective visual attention
  publication-title: Annu. Rev. Neurosci.
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  ident: bib132
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– year: 2016
  ident: bib32
  article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1
  publication-title: arXiv
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib67
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 4
  start-page: 24
  year: 2010
  ident: bib147
  article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses
  publication-title: Front. Comput. Neurosci.
– volume: 12
  start-page: 1
  year: 1972
  end-page: 24
  ident: bib197
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys. J.
– volume: 27
  start-page: 8486
  year: 2007
  end-page: 8495
  ident: bib6
  article-title: An integrated microcircuit model of attentional processing in the neocortex
  publication-title: J. Neurosci.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib61
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 76
  start-page: 695
  year: 2012
  end-page: 711
  ident: bib13
  article-title: Canonical microcircuits for predictive coding
  publication-title: Neuron
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: bib68
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 1369
  year: 2016
  end-page: 1377
  ident: bib118
  article-title: Deep learning models of the retinal response to natural scenes
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2014
  ident: bib28
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: arXiv
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: bib38
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 364
  start-page: eaav9436
  year: 2019
  ident: bib12
  article-title: Neural population control via deep image synthesis
  publication-title: Science
– volume: 53
  start-page: 139
  year: 2009
  end-page: 154
  ident: bib128
  article-title: Reinforcement learning in the brain
  publication-title: J. Math. Psychol.
– volume: 12
  start-page: 4745
  year: 1992
  end-page: 4765
  ident: bib21
  article-title: The analysis of visual motion: a comparison of neuronal and psychophysical performance
  publication-title: J. Neurosci.
– volume: 389
  start-page: 54
  year: 2018
  end-page: 73
  ident: bib64
  article-title: Great expectations: is there evidence for predictive coding in auditory cortex?
  publication-title: Neuroscience
– year: 2015
  ident: bib74
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv
– volume: 22
  start-page: 1761
  year: 2019
  end-page: 1770
  ident: bib145
  article-title: A deep learning framework for neuroscience
  publication-title: Nat. Neurosci.
– volume: 114
  start-page: 3521
  year: 2017
  end-page: 3526
  ident: bib87
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 267
  year: 1982
  end-page: 273
  ident: bib130
  article-title: A simplified neuron model as a principal component analyzer
  publication-title: J. Math. Biol.
– volume: 338
  start-page: 1202
  year: 2012
  end-page: 1205
  ident: bib39
  article-title: A large-scale model of the functioning brain
  publication-title: Science
– start-page: 255
  year: 1995
  end-page: 258
  ident: bib99
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 331
  start-page: 679
  year: 1988
  end-page: 684
  ident: bib212
  article-title: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons
  publication-title: Nature
– volume: 2019
  start-page: 124020
  year: 2019
  ident: bib160
  article-title: On the information bottleneck theory of deep learning
  publication-title: J. Stat. Mech.
– year: 2018
  ident: bib33
  article-title: Emergence of grid-like representations by training recurrent neural networks to perform spatial localization
  publication-title: arXiv
– year: 2005
  ident: bib63
  article-title: The Organization of Behavior: A Neuropsychological Theory
– volume: 69
  start-page: 1204
  year: 2011
  end-page: 1215
  ident: bib34
  article-title: Model-based influences on humans’ choices and striatal prediction errors
  publication-title: Neuron
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: bib72
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J. Physiol.
– volume: 97
  start-page: 332
  year: 1990
  end-page: 361
  ident: bib30
  article-title: On the control of automatic processes: a parallel distributed processing account of the Stroop effect
  publication-title: Psychol. Rev.
– volume: 24
  start-page: 455
  year: 2001
  end-page: 463
  ident: bib188
  article-title: Synaptic reverberation underlying mnemonic persistent activity
  publication-title: Trends Neurosci.
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  ident: bib195
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
– volume: 28
  start-page: 1139
  year: 2013
  end-page: 1147
  ident: bib179
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– volume: 1
  start-page: 417
  year: 2015
  end-page: 446
  ident: bib91
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Annu. Rev. Vis. Sci.
– volume: 12
  start-page: e1004792
  year: 2016
  ident: bib170
  article-title: Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework
  publication-title: PLoS Comput. Biol.
– volume: 19
  start-page: 1697
  year: 2016
  end-page: 1706
  ident: bib17
  article-title: Computational principles of synaptic memory consolidation
  publication-title: Nat. Neurosci.
– volume: 14
  start-page: 1195
  year: 2011
  end-page: 1201
  ident: bib44
  article-title: Metamers of the ventral stream
  publication-title: Nat. Neurosci.
– volume: 18
  start-page: 1025
  year: 2015
  end-page: 1033
  ident: bib178
  article-title: A neural network that finds a naturalistic solution for the production of muscle activity
  publication-title: Nat. Neurosci.
– volume: 14
  start-page: 477
  year: 1995
  end-page: 485
  ident: bib51
  article-title: Cellular basis of working memory
  publication-title: Neuron
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib69
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 60
  start-page: 223
  year: 2018
  end-page: 311
  ident: bib19
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev.
– volume: 15
  start-page: 455
  year: 1982
  end-page: 469
  ident: bib45
  article-title: Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
  publication-title: Pattern Recognit.
– volume: 45
  start-page: 599
  year: 2005
  end-page: 611
  ident: bib47
  article-title: Cascade models of synaptically stored memories
  publication-title: Neuron
– year: 2019
  ident: bib107
  article-title: A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnns
  publication-title: arXiv
– volume: 14
  start-page: 29
  year: 2020
  ident: bib105
  article-title: Attention in psychology, neuroscience, and machine learning
  publication-title: Front. Comput. Neurosci.
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
  ident: bib187
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib102
  article-title: Deep learning
  publication-title: Nature
– volume: 36
  start-page: 955
  year: 2002
  end-page: 968
  ident: bib189
  article-title: Probabilistic decision making by slow reverberation in cortical circuits
  publication-title: Neuron
– volume: 345
  start-page: 668
  year: 2014
  end-page: 673
  ident: bib119
  article-title: Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: bib42
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
– volume: 21
  start-page: 335
  year: 2020
  end-page: 346
  ident: bib104
  article-title: Backpropagation and the brain
  publication-title: Nat. Rev. Neurosci.
– volume: 24
  start-page: 109
  year: 1989
  end-page: 165
  ident: bib117
  article-title: Catastrophic interference in connectionist networks: The sequential learning problem
  publication-title: Psychology of Learning and Motivation
– volume: 2
  start-page: 4
  year: 2008
  ident: bib92
  article-title: Representational similarity analysis - connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– start-page: 423
  year: 2006
  end-page: 431
  ident: bib2
  article-title: Where are the switches on this thing?
  publication-title: 23 Problems in Systems Neuroscience
– year: 2014
  ident: bib167
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv
– volume: 7
  start-page: e31134
  year: 2018
  ident: bib54
  article-title: Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks
  publication-title: eLife
– volume: 116
  start-page: 11537
  year: 2019
  end-page: 11546
  ident: bib161
  article-title: A mathematical theory of semantic development in deep neural networks
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib60
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In 2015 IEEE International Conference on Computer Vision
– year: 2014
  ident: bib85
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv
– volume: 10
  start-page: e1003915
  year: 2014
  ident: bib82
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
– volume: 324
  start-page: 759
  year: 2009
  end-page: 764
  ident: bib83
  article-title: Representation of confidence associated with a decision by neurons in the parietal cortex
  publication-title: Science
– volume: 500
  start-page: 168
  year: 2013
  end-page: 174
  ident: bib65
  article-title: Connectomic reconstruction of the inner plexiform layer in the mouse retina
  publication-title: Nature
– volume: 31
  start-page: 787
  year: 2018
  end-page: 797
  ident: bib14
  article-title: Long short-term memory and learning-to-learn in networks of spiking neurons
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 177
  start-page: 970
  year: 2019
  end-page: 985.e20
  ident: bib5
  article-title: Neuronal dynamics regulating brain and behavioral state transitions
  publication-title: Cell
– year: 2019
  ident: bib109
  article-title: Universality and individuality in neural dynamics across large populations of recurrent networks
  publication-title: arXiv
– volume: 64
  start-page: 355
  year: 2002
  end-page: 405
  ident: bib213
  article-title: Short-term synaptic plasticity
  publication-title: Annu. Rev. Physiol.
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib62
  article-title: Mask R-CNN
  publication-title: 2017 IEEE International Conference on Computer Vision
– volume: 6
  start-page: e21492
  year: 2017
  ident: bib171
  article-title: Reward-based training of recurrent neural networks for cognitive and value-based tasks
  publication-title: eLife
– volume: 22
  start-page: 400
  year: 1951
  end-page: 407
  ident: bib149
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
– year: 2001
  ident: bib174
  article-title: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity)
– volume: 1
  start-page: 217
  year: 1961
  ident: 10.1016/j.neuron.2020.09.005_bib11
  article-title: Possible principles underlying the transformation of sensory messages
  publication-title: Sensory Communication
– volume: 160
  start-page: 1233
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib58
  article-title: Neuronal prediction of opponent’s behavior during cooperative social interchange in primates
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.045
– start-page: 1
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib79
– volume: 107
  start-page: 603
  year: 2020
  ident: 10.1016/j.neuron.2020.09.005_bib20
  article-title: Deep reinforcement learning and its neuroscientific implications
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.06.014
– volume: 4
  start-page: 24
  year: 2010
  ident: 10.1016/j.neuron.2020.09.005_bib147
  article-title: Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2010.00024
– year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib108
  article-title: Deep predictive coding networks for video prediction and unsupervised learning
  publication-title: arXiv
– volume: 19
  start-page: 166
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib150
  article-title: Control of synaptic plasticity in deep cortical networks
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2018.6
– volume: 60
  start-page: 215
  year: 2008
  ident: 10.1016/j.neuron.2020.09.005_bib190
  article-title: Decision making in recurrent neuronal circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.09.034
– volume: 69
  start-page: 1204
  year: 2011
  ident: 10.1016/j.neuron.2020.09.005_bib34
  article-title: Model-based influences on humans’ choices and striatal prediction errors
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.027
– volume: 93
  start-page: 1504
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib25
  article-title: Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.03.002
– volume: 12
  start-page: 4745
  year: 1992
  ident: 10.1016/j.neuron.2020.09.005_bib21
  article-title: The analysis of visual motion: a comparison of neuronal and psychophysical performance
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.12-12-04745.1992
– volume: 49
  start-page: 75
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib191
  article-title: A disinhibitory circuit motif and flexible information routing in the brain
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.01.002
– volume: 10
  start-page: e1003915
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib82
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003915
– year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib85
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv
– year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib97
  article-title: A simple way to initialize recurrent networks of rectified linear units
  publication-title: arXiv
– volume: 22
  start-page: 984
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib66
  article-title: Perceptual straightening of natural videos
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0377-4
– volume: 24
  start-page: 17
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib111
  article-title: A weighted and directed interareal connectivity matrix for macaque cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs270
– volume: 345
  start-page: 668
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib119
  article-title: Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– volume: 7
  start-page: 13276
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib103
  article-title: Random synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13276
– volume: 27
  start-page: 15
  year: 2000
  ident: 10.1016/j.neuron.2020.09.005_bib158
  article-title: Gain modulation: a major computational principle of the central nervous system
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00004-0
– year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib185
  article-title: Instance normalization: The missing ingredient for fast stylization
  publication-title: arXiv
– volume: 53
  start-page: 139
  year: 2009
  ident: 10.1016/j.neuron.2020.09.005_bib128
  article-title: Reinforcement learning in the brain
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2008.12.005
– volume: 22
  start-page: 974
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib81
  article-title: Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0392-5
– volume: 15
  start-page: 267
  year: 1982
  ident: 10.1016/j.neuron.2020.09.005_bib130
  article-title: A simplified neuron model as a principal component analyzer
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00275687
– start-page: 770
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib61
  article-title: Deep residual learning for image recognition
– year: 1992
  ident: 10.1016/j.neuron.2020.09.005_bib15
  article-title: On the optimization of a synaptic learning rule
– volume: 15
  start-page: 315
  year: 2011
  ident: 10.1016/j.neuron.2020.09.005_bib49
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– volume: 12
  start-page: 2121
  year: 2011
  ident: 10.1016/j.neuron.2020.09.005_bib38
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 497
  start-page: 585
  year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib148
  article-title: The importance of mixed selectivity in complex cognitive tasks
  publication-title: Nature
  doi: 10.1038/nature12160
– volume: 31
  start-page: 8721
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib157
  article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1026
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib60
– year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib27
  article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation
  publication-title: arXiv
– volume: 30
  start-page: 535
  year: 2007
  ident: 10.1016/j.neuron.2020.09.005_bib50
  article-title: The neural basis of decision making
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.29.051605.113038
– volume: 399
  start-page: 470
  year: 1999
  ident: 10.1016/j.neuron.2020.09.005_bib152
  article-title: Neuronal correlates of parametric working memory in the prefrontal cortex
  publication-title: Nature
  doi: 10.1038/20939
– volume: 2
  start-page: 1019
  year: 1999
  ident: 10.1016/j.neuron.2020.09.005_bib146
  article-title: Hierarchical models of object recognition in cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/14819
– volume: 22
  start-page: 1159
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib114
  article-title: Circuit mechanisms for the maintenance and manipulation of information in working memory
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0414-3
– start-page: 1310
  year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib135
– volume: 32
  start-page: 8024
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib136
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.neuron.2020.09.005_bib101
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib74
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv
– volume: 31
  start-page: 787
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib14
  article-title: Long short-term memory and learning-to-learn in networks of spiking neurons
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 319
  start-page: 1543
  year: 2008
  ident: 10.1016/j.neuron.2020.09.005_bib123
  article-title: Synaptic theory of working memory
  publication-title: Science
  doi: 10.1126/science.1150769
– volume: 5
  start-page: e10989
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib88
  article-title: Demixed principal component analysis of neural population data
  publication-title: eLife
  doi: 10.7554/eLife.10989
– volume: 22
  start-page: 275
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib133
  article-title: A diverse range of factors affect the nature of neural representations underlying short-term memory
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0314-y
– volume: 274
  start-page: 1724
  year: 1996
  ident: 10.1016/j.neuron.2020.09.005_bib186
  article-title: Chaos in neuronal networks with balanced excitatory and inhibitory activity
  publication-title: Science
  doi: 10.1126/science.274.5293.1724
– start-page: 3987
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib210
– start-page: 566
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib211
  article-title: Self-supervised neural network models of higher visual cortex development
– volume: 550
  start-page: 354
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib166
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 21
  start-page: 102
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib193
  article-title: Flexible timing by temporal scaling of cortical responses
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0028-6
– year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib180
– volume: 364
  start-page: eaav9436
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib12
  article-title: Neural population control via deep image synthesis
  publication-title: Science
  doi: 10.1126/science.aav9436
– volume: 13
  start-page: 51
  year: 2011
  ident: 10.1016/j.neuron.2020.09.005_bib23
  article-title: Normalization as a canonical neural computation
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3136
– volume: 90
  start-page: 128
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib142
  article-title: Recurrent network models of sequence generation and memory
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.009
– volume: 24
  start-page: 109
  year: 1989
  ident: 10.1016/j.neuron.2020.09.005_bib117
  article-title: Catastrophic interference in connectionist networks: The sequential learning problem
  publication-title: Psychology of Learning and Motivation
  doi: 10.1016/S0079-7421(08)60536-8
– volume: 16
  start-page: 925
  year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib96
  article-title: Robust timing and motor patterns by taming chaos in recurrent neural networks
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3405
– volume: 25
  start-page: 156
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib175
  article-title: Neural circuits as computational dynamical systems
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.01.008
– volume: 18
  start-page: 193
  year: 1995
  ident: 10.1016/j.neuron.2020.09.005_bib36
  article-title: Neural mechanisms of selective visual attention
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.18.030195.001205
– volume: 31
  start-page: 5290
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib126
  article-title: Task-driven convolutional recurrent models of the visual system
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 508
  start-page: 207
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib129
  article-title: A mesoscale connectome of the mouse brain
  publication-title: Nature
  doi: 10.1038/nature13186
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.neuron.2020.09.005_bib67
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 12
  start-page: 2451
  year: 2000
  ident: 10.1016/j.neuron.2020.09.005_bib48
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 85
  start-page: 402
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib155
  article-title: The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.12.026
– year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib120
  article-title: Meta-learning update rules for unsupervised representation learning
  publication-title: arXiv
– volume: 61
  start-page: 168
  year: 2009
  ident: 10.1016/j.neuron.2020.09.005_bib144
  article-title: The normalization model of attention
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.01.002
– start-page: 245
  year: 1962
  ident: 10.1016/j.neuron.2020.09.005_bib154
  article-title: Principles of neurodynamics: Perceptions and the theory of brain mechanisms
– volume: 17
  start-page: 663
  year: 2004
  ident: 10.1016/j.neuron.2020.09.005_bib140
  article-title: Nonlinear V1 responses to natural scenes revealed by neural network analysis
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2004.03.008
– volume: 572
  start-page: 106
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib137
  article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture
  publication-title: Nature
  doi: 10.1038/s41586-019-1424-8
– volume: 22
  start-page: 297
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib207
  article-title: Task representations in neural networks trained to perform many cognitive tasks
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0310-2
– volume: 6
  start-page: e22901
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib57
  article-title: Towards deep learning with segregated dendrites
  publication-title: eLife
  doi: 10.7554/eLife.22901
– year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib32
  article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1
  publication-title: arXiv
– volume: 11
  start-page: 1352
  year: 2008
  ident: 10.1016/j.neuron.2020.09.005_bib201
  article-title: A neural code for three-dimensional object shape in macaque inferotemporal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2202
– year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib109
  article-title: Universality and individuality in neural dynamics across large populations of recurrent networks
  publication-title: arXiv
– volume: 7
  start-page: e31134
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib54
  article-title: Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks
  publication-title: eLife
  doi: 10.7554/eLife.31134
– volume: 22
  start-page: 9475
  year: 2002
  ident: 10.1016/j.neuron.2020.09.005_bib151
  article-title: Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-21-09475.2002
– start-page: 3
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib198
  article-title: Group normalization
– volume: 111
  start-page: 47
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib182
  article-title: Deep learning in spiking neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.12.002
– year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib28
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: arXiv
– volume: 177
  start-page: 999
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib139
  article-title: Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences
  publication-title: Cell
  doi: 10.1016/j.cell.2019.04.005
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib172
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 31
  start-page: 1433
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib73
  article-title: Gradient descent for spiking neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 2208
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib127
  article-title: Supervised learning in spiking neural networks with FORCE training
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01827-3
– volume: 27
  start-page: 8486
  year: 2007
  ident: 10.1016/j.neuron.2020.09.005_bib6
  article-title: An integrated microcircuit model of attentional processing in the neocortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1145-07.2007
– volume: 2
  start-page: 79
  year: 1999
  ident: 10.1016/j.neuron.2020.09.005_bib143
  article-title: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
  publication-title: Nat. Neurosci.
  doi: 10.1038/4580
– volume: 22
  start-page: 1761
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib145
  article-title: A deep learning framework for neuroscience
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0520-2
– start-page: 265
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib1
– volume: 29
  start-page: 4331
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib7
  article-title: Using fast weights to attend to the recent past
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 5
  start-page: 157
  year: 1994
  ident: 10.1016/j.neuron.2020.09.005_bib16
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– start-page: 729
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib206
  article-title: A dataset and architecture for visual reasoning with a working memory
– year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib214
  article-title: Neural Machine Translation by Jointly Learning to Align and Translate
  publication-title: arXiv
– volume: 38
  start-page: 7255
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib141
  article-title: Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0388-18.2018
– volume: 15
  start-page: 605
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib77
  article-title: High-precision automated reconstruction of neurons with flood-filling networks
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0049-4
– volume: 31
  start-page: 8571
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib75
  article-title: Neural tangent kernel: Convergence and generalization in neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 95
  start-page: 5323
  year: 1998
  ident: 10.1016/j.neuron.2020.09.005_bib112
  article-title: Differential signaling via the same axon of neocortical pyramidal neurons
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.9.5323
– volume: 63
  start-page: 544
  year: 2009
  ident: 10.1016/j.neuron.2020.09.005_bib176
  article-title: Generating coherent patterns of activity from chaotic neural networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.07.018
– volume: 21
  start-page: 335
  year: 2020
  ident: 10.1016/j.neuron.2020.09.005_bib104
  article-title: Backpropagation and the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-020-0277-3
– volume: 30
  start-page: 5998
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib187
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 21
  start-page: 1281
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib116
  article-title: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0209-y
– volume: 97
  start-page: 332
  year: 1990
  ident: 10.1016/j.neuron.2020.09.005_bib30
  article-title: On the control of automatic processes: a parallel distributed processing account of the Stroop effect
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.97.3.332
– volume: 61
  start-page: 259
  year: 1988
  ident: 10.1016/j.neuron.2020.09.005_bib168
  article-title: Chaos in random neural networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.259
– volume: 51
  start-page: 1484
  year: 2011
  ident: 10.1016/j.neuron.2020.09.005_bib24
  article-title: Visual attention: the past 25 years
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2011.04.012
– volume: 19
  start-page: 394
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib173
  article-title: ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2015.05.004
– volume: 19
  start-page: 1697
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib17
  article-title: Computational principles of synaptic memory consolidation
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4401
– volume: 1
  start-page: 270
  year: 1989
  ident: 10.1016/j.neuron.2020.09.005_bib195
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– volume: 443
  start-page: 85
  year: 2006
  ident: 10.1016/j.neuron.2020.09.005_bib43
  article-title: Experience-dependent representation of visual categories in parietal cortex
  publication-title: Nature
  doi: 10.1038/nature05078
– start-page: 2048
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib200
– volume: 30
  start-page: 1514
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib209
  article-title: Superspike: Supervised learning in multilayer spiking neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01086
– volume: 6
  start-page: e21492
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib171
  article-title: Reward-based training of recurrent neural networks for cognitive and value-based tasks
  publication-title: eLife
  doi: 10.7554/eLife.21492
– volume: 331
  start-page: 679
  year: 1988
  ident: 10.1016/j.neuron.2020.09.005_bib212
  article-title: A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons
  publication-title: Nature
  doi: 10.1038/331679a0
– year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib107
  article-title: A unified theory of early visual representations from retina to cortex through anatomically constrained deep cnns
  publication-title: arXiv
– volume: 14
  start-page: 1195
  year: 2011
  ident: 10.1016/j.neuron.2020.09.005_bib44
  article-title: Metamers of the ventral stream
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2889
– volume: 177
  start-page: 970
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib5
  article-title: Neuronal dynamics regulating brain and behavioral state transitions
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.037
– start-page: 26
  year: 2012
  ident: 10.1016/j.neuron.2020.09.005_bib183
– volume: 24
  start-page: 139
  year: 2001
  ident: 10.1016/j.neuron.2020.09.005_bib18
  article-title: Synaptic modification by correlated activity: Hebb’s postulate revisited
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.139
– volume: 160
  start-page: 106
  year: 1962
  ident: 10.1016/j.neuron.2020.09.005_bib72
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 149
  start-page: 147
  year: 2005
  ident: 10.1016/j.neuron.2020.09.005_bib4
  article-title: Drivers and modulators from push-pull and balanced synaptic input
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(05)49011-1
– volume: 15
  start-page: 805
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib134
  article-title: Inferring single-trial neural population dynamics using sequential auto-encoders
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0109-9
– year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib29
  article-title: Fast and accurate deep network learning by exponential linear units (elus)
  publication-title: arXiv
– volume: 1
  start-page: 1
  year: 1991
  ident: 10.1016/j.neuron.2020.09.005_bib42
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 4
  start-page: 1
  year: 1964
  ident: 10.1016/j.neuron.2020.09.005_bib138
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 15
  start-page: 455
  year: 1982
  ident: 10.1016/j.neuron.2020.09.005_bib45
  article-title: Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(82)90024-3
– volume: 101
  start-page: 1368
  year: 2004
  ident: 10.1016/j.neuron.2020.09.005_bib192
  article-title: Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0305337101
– volume: 79
  start-page: 2554
  year: 1982
  ident: 10.1016/j.neuron.2020.09.005_bib68
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 304
  start-page: 78
  year: 2004
  ident: 10.1016/j.neuron.2020.09.005_bib76
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– start-page: 826
  year: 1983
  ident: 10.1016/j.neuron.2020.09.005_bib46
  article-title: Neocognitron: A neural network model for a mechanism of visual pattern recognition
– volume: 15
  start-page: 441
  year: 2003
  ident: 10.1016/j.neuron.2020.09.005_bib199
  article-title: Equivalence of backpropagation and contrastive Hebbian learning in a layered network
  publication-title: Neural Comput.
  doi: 10.1162/089976603762552988
– volume: 16
  start-page: 37
  year: 1953
  ident: 10.1016/j.neuron.2020.09.005_bib95
  article-title: Discharge patterns and functional organization of mammalian retina
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1953.16.1.37
– volume: 1
  start-page: 417
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib91
  article-title: Deep neural networks: a new framework for modeling biological vision and brain information processing
  publication-title: Annu. Rev. Vis. Sci.
  doi: 10.1146/annurev-vision-082114-035447
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib102
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib90
  article-title: Similarity of Neural Network Representations Revisited
  publication-title: arXiv
– volume: 389
  start-page: 54
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib64
  article-title: Great expectations: is there evidence for predictive coding in auditory cortex?
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.07.061
– volume: 36
  start-page: 955
  year: 2002
  ident: 10.1016/j.neuron.2020.09.005_bib189
  article-title: Probabilistic decision making by slow reverberation in cortical circuits
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01092-9
– volume: 324
  start-page: 759
  year: 2009
  ident: 10.1016/j.neuron.2020.09.005_bib83
  article-title: Representation of confidence associated with a decision by neurons in the parietal cortex
  publication-title: Science
  doi: 10.1126/science.1169405
– volume: 275
  start-page: 1593
  year: 1997
  ident: 10.1016/j.neuron.2020.09.005_bib162
  article-title: A neural substrate of prediction and reward
  publication-title: Science
  doi: 10.1126/science.275.5306.1593
– volume: 93
  start-page: 13339
  year: 1996
  ident: 10.1016/j.neuron.2020.09.005_bib163
  article-title: How the brain keeps the eyes still
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.23.13339
– start-page: 423
  year: 2006
  ident: 10.1016/j.neuron.2020.09.005_bib2
  article-title: Where are the switches on this thing?
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.neuron.2020.09.005_bib93
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib53
– start-page: 255
  year: 1995
  ident: 10.1016/j.neuron.2020.09.005_bib99
  article-title: Convolutional networks for images, speech, and time series
– year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib8
  article-title: Layer normalization
  publication-title: arXiv
– volume: 30
  start-page: 272
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib31
  article-title: Cortical microcircuits as gated-recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1341
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuron.2020.09.005_bib41
  article-title: Visualizing higher-layer features of a deep network
  publication-title: University of Montreal
– year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib165
  article-title: Opening the black box of deep neural networks via information
  publication-title: arXiv
– volume: 76
  start-page: 695
  year: 2012
  ident: 10.1016/j.neuron.2020.09.005_bib13
  article-title: Canonical microcircuits for predictive coding
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.038
– volume: 14
  start-page: 2152
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib125
  article-title: Using DeepLabCut for 3D markerless pose estimation across species and behaviors
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-019-0176-0
– volume: 78
  start-page: 1550
  year: 1990
  ident: 10.1016/j.neuron.2020.09.005_bib194
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– volume: 22
  start-page: 400
  year: 1951
  ident: 10.1016/j.neuron.2020.09.005_bib149
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– volume: 98
  start-page: 1099
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib196
  article-title: Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.015
– volume: 4
  start-page: 950
  year: 1992
  ident: 10.1016/j.neuron.2020.09.005_bib94
  article-title: A simple weight decay can improve generalization
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib159
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
  publication-title: arXiv
– volume: 65
  start-page: 386
  year: 1958
  ident: 10.1016/j.neuron.2020.09.005_bib153
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 116
  start-page: 11537
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib161
  article-title: A mathematical theory of semantic development in deep neural networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1820226116
– year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib33
  article-title: Emergence of grid-like representations by training recurrent neural networks to perform spatial localization
  publication-title: arXiv
– year: 2001
  ident: 10.1016/j.neuron.2020.09.005_bib174
– volume: 503
  start-page: 78
  year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib110
  article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex
  publication-title: Nature
  doi: 10.1038/nature12742
– volume: 2
  start-page: 396
  year: 1990
  ident: 10.1016/j.neuron.2020.09.005_bib100
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib181
  article-title: Intriguing properties of neural networks
  publication-title: arXiv
– volume: 8
  start-page: e43299
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib124
  article-title: Local online learning in recurrent networks with random feedback
  publication-title: eLife
  doi: 10.7554/eLife.43299
– volume: 31
  start-page: 6571
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib26
  article-title: Neural ordinary differential equations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib203
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1403112111
– volume: 28
  start-page: 1139
  year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib179
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– volume: 19
  start-page: 356
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib202
  article-title: Using goal-driven deep learning models to understand sensory cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4244
– volume: 116
  start-page: 21854
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib84
  article-title: Recurrence is required to capture the representational dynamics of the human visual system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1905544116
– volume: 18
  start-page: 1025
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib178
  article-title: A neural network that finds a naturalistic solution for the production of muscle activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4042
– volume: 148
  start-page: 574
  year: 1959
  ident: 10.1016/j.neuron.2020.09.005_bib71
  article-title: Receptive fields of single neurones in the cat’s striate cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 12
  start-page: e1004792
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib170
  article-title: Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004792
– year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib86
  article-title: Auto-Encoding Variational Bayes
  publication-title: arXiv
– volume: 95
  start-page: 245
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib59
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.011
– volume: 2019
  start-page: 124020
  year: 2019
  ident: 10.1016/j.neuron.2020.09.005_bib160
  article-title: On the information bottleneck theory of deep learning
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/ab3985
– volume: 60
  start-page: 489
  year: 2008
  ident: 10.1016/j.neuron.2020.09.005_bib3
  article-title: Theoretical neuroscience rising
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.019
– start-page: 2961
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib62
  article-title: Mask R-CNN
– volume: 423
  start-page: 288
  year: 2003
  ident: 10.1016/j.neuron.2020.09.005_bib164
  article-title: Turning on and off recurrent balanced cortical activity
  publication-title: Nature
  doi: 10.1038/nature01616
– volume: 3
  start-page: 919
  year: 2000
  ident: 10.1016/j.neuron.2020.09.005_bib169
  article-title: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
  publication-title: Nat. Neurosci.
  doi: 10.1038/78829
– year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib37
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv
– volume: 58
  start-page: 1233
  year: 1987
  ident: 10.1016/j.neuron.2020.09.005_bib78
  article-title: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1987.58.6.1233
– volume: 323
  start-page: 533
  year: 1986
  ident: 10.1016/j.neuron.2020.09.005_bib156
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 500
  start-page: 168
  year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib65
  article-title: Connectomic reconstruction of the inner plexiform layer in the mouse retina
  publication-title: Nature
  doi: 10.1038/nature12346
– volume: 14
  start-page: 179
  year: 1990
  ident: 10.1016/j.neuron.2020.09.005_bib40
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– volume: 14
  start-page: 29
  year: 2020
  ident: 10.1016/j.neuron.2020.09.005_bib105
  article-title: Attention in psychology, neuroscience, and machine learning
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2020.00029
– year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib80
  article-title: Continual reinforcement learning with complex synapses
  publication-title: arXiv
– volume: 60
  start-page: 223
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib19
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– volume: 518
  start-page: 529
  year: 2015
  ident: 10.1016/j.neuron.2020.09.005_bib122
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– start-page: 248
  year: 2009
  ident: 10.1016/j.neuron.2020.09.005_bib35
  article-title: Imagenet: A large-scale hierarchical image database
– start-page: 818
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib208
  article-title: Visualizing and understanding convolutional networks
– volume: 420
  start-page: 812
  year: 2002
  ident: 10.1016/j.neuron.2020.09.005_bib56
  article-title: Long-term dendritic spine stability in the adult cortex
  publication-title: Nature
  doi: 10.1038/nature01276
– volume: 27
  start-page: 2672
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib52
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 99
  start-page: 609
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib115
  article-title: Linking connectivity, dynamics, and computations in low-rank recurrent neural networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.07.003
– start-page: 21
  year: 1988
  ident: 10.1016/j.neuron.2020.09.005_bib98
  article-title: A theoretical framework for back-propagation
– volume: 25
  start-page: 626
  year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib177
  article-title: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00409
– volume: 45
  start-page: 599
  year: 2005
  ident: 10.1016/j.neuron.2020.09.005_bib47
  article-title: Cascade models of synaptically stored memories
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.02.001
– volume: 7
  start-page: 12815
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib205
  article-title: A dendritic disinhibitory circuit mechanism for pathway-specific gating
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12815
– year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib167
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv
– volume: 462
  start-page: 920
  year: 2009
  ident: 10.1016/j.neuron.2020.09.005_bib204
  article-title: Stably maintained dendritic spines are associated with lifelong memories
  publication-title: Nature
  doi: 10.1038/nature08577
– volume: 338
  start-page: 1202
  year: 2012
  ident: 10.1016/j.neuron.2020.09.005_bib39
  article-title: A large-scale model of the functioning brain
  publication-title: Science
  doi: 10.1126/science.1225266
– volume: 39
  start-page: 195
  year: 1943
  ident: 10.1016/j.neuron.2020.09.005_bib184
  article-title: On the stability of inverse problems
  publication-title: Dokl. Akad. Nauk SSSR
– start-page: 4700
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib70
  article-title: Densely connected convolutional networks
– volume: 64
  start-page: 355
  year: 2002
  ident: 10.1016/j.neuron.2020.09.005_bib213
  article-title: Short-term synaptic plasticity
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.64.092501.114547
– volume: 12
  start-page: 1
  year: 1972
  ident: 10.1016/j.neuron.2020.09.005_bib197
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(72)86068-5
– volume: 10
  start-page: e1003963
  year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib22
  article-title: Deep neural networks rival the representation of primate IT cortex for core visual object recognition
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003963
– volume: 114
  start-page: 3521
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib87
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1611835114
– volume: 483
  start-page: 47
  year: 2012
  ident: 10.1016/j.neuron.2020.09.005_bib131
  article-title: Gain control by layer six in cortical circuits of vision
  publication-title: Nature
  doi: 10.1038/nature10835
– year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib121
  article-title: Differentiable plasticity: training plastic neural networks with backpropagation
  publication-title: arXiv
– volume: 14
  start-page: 477
  year: 1995
  ident: 10.1016/j.neuron.2020.09.005_bib51
  article-title: Cellular basis of working memory
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90304-6
– year: 2014
  ident: 10.1016/j.neuron.2020.09.005_bib55
  article-title: Neural turing machines
  publication-title: arXiv
– volume: 115
  start-page: E10467
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib113
  article-title: Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1803839115
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.neuron.2020.09.005_bib69
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 46
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuron.2020.09.005_bib9
  article-title: Recurrent neural networks as versatile tools of neuroscience research
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2017.06.003
– volume: 103
  start-page: 214
  year: 2013
  ident: 10.1016/j.neuron.2020.09.005_bib10
  article-title: From fixed points to chaos: three models of delayed discrimination
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2013.02.002
– volume: 7
  start-page: e38105
  year: 2018
  ident: 10.1016/j.neuron.2020.09.005_bib106
  article-title: How biological attention mechanisms improve task performance in a large-scale visual system model
  publication-title: eLife
  doi: 10.7554/eLife.38105
– volume: 381
  start-page: 607
  year: 1996
  ident: 10.1016/j.neuron.2020.09.005_bib132
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 24
  start-page: 455
  year: 2001
  ident: 10.1016/j.neuron.2020.09.005_bib188
  article-title: Synaptic reverberation underlying mnemonic persistent activity
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(00)01868-3
– start-page: 115
  year: 1987
  ident: 10.1016/j.neuron.2020.09.005_bib89
  article-title: Shifts in selective visual attention: towards the underlying neural circuitry
– volume: 29
  start-page: 1369
  year: 2016
  ident: 10.1016/j.neuron.2020.09.005_bib118
  article-title: Deep learning models of the retinal response to natural scenes
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2005
  ident: 10.1016/j.neuron.2020.09.005_bib63
– volume: 2
  start-page: 4
  year: 2008
  ident: 10.1016/j.neuron.2020.09.005_bib92
  article-title: Representational similarity analysis - connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– reference: 33600755 - Neuron. 2021 Feb 17;109(4):739. doi: 10.1016/j.neuron.2021.01.022
SSID ssj0014591
Score 2.6735728
SecondaryResourceType review_article
Snippet Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering powerful...
SummaryArtificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience. Besides offering...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1048
SubjectTerms Algorithms
Animal cognition
Animals
Architecture
Artificial intelligence
Attention
Brain - physiology
Brain research
Deep learning
Humans
Ingredients
Learning algorithms
Machine learning
Mathematical models
Models, Neurological
Nervous system
Neural networks
Neural Networks, Computer
Neurophysiology
Neurosciences
Title Artificial Neural Networks for Neuroscientists: A Primer
URI https://dx.doi.org/10.1016/j.neuron.2020.09.005
https://www.ncbi.nlm.nih.gov/pubmed/32970997
https://www.proquest.com/docview/2445353444
https://www.proquest.com/docview/2446662903
https://pubmed.ncbi.nlm.nih.gov/PMC11576090
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_S90wED_EMdgvY1O3dXPSwfC38tJ8aZP99iYTURTZFN9voU0b9mSr4nv-4H-_u6QteyoI_lSaXCC93CV3zd3nAL7WOWPYUWeNF-igeM8yXVcqK13OGlE5bhTlOx-fFAfn8nCmZmuwN-TCUFhlv_fHPT3s1n3LpOfm5Ho-n_xi2hB6ueBBbhVhggqpQxLf7Pt4kyBVrJqHxBlRD-lzIcYrYEYSCipnAe2Uitg9fjw9ND_vR1H-dyztv4HXvT2ZTuOU38Ja223A5rRDX_rvXbqbhgjP8Ot8A17GwpN3m6CJPmJHpATPER4hHnyRohUb2iLK5RLFYPEtnaanVAfgZgvO93-c7R1kfQ2FzCmll5nTeSW8L5lHu0HVhusCjYYKj_3GaNE6wWrNXV7UpWt4bSpd-bxihUe9blSLHuw7WO-uuvYDpLqUzhdNjnuClMh6HE8gokKKplAN4wmIgXXW9QDjVOfijx0iyS5tZLglhltmLDI8gWwcdR0BNp6gL4dVsSuCYvEMeGLk9rCItlfUhUXrRgklpJQJfBm7UcXo3qTq2qvbQINOHjdMJPA-rvk4VcFNScnHCegVaRgJCL57taeb_w4w3gRzVDDDPj77iz7BK3qj8BUutmF9eXPbfkYbaVnvwIvp0c-Lo52gDP8Ao88QqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRfRFtPUjtmoE8S3cZj-SXd_O0nLVtgi2cG9LssnSE01L7_rQ_96Z3ST0qlDwKbAzC8ns12-yM78B-FjnjKGgzhov0EHxnmW6rlRWupw1onLcKMp3Pj4pZmfy61zNN2BvyIWhsMp-7497etit-5ZJb83J5WIx-cG0IfZywcO8VfIBPEQ0UFL9hsP5l_EqQapYNg-1M1If8udCkFcgjSQaVM4C3SlVsfv3-fQ3_rwbRnnrXDp4Bk97QJlO4zs_h42224LtaYfO9O-b9FMaQjzDv_MteBQrT95sgyb9SB6REj9HeISA8GWKMDa0RZrLFc6D5ed0mn6nQgBXL-DsYP90b5b1RRQyp5ReZU7nlfC-ZB6Bg6oN1wWihgrP_cZo0TrBas1dXtSla3htKl35vGKFx4XdqBZd2Jew2V107WtIdSmdL5ocNwUp0fbYn1hEhRRNoRrGExCD6azrGcap0MUvO4SS_bTR4JYMbpmxaPAEsrHXZWTYuEe_HEbFrs0Ui4fAPT13h0G0_UpdWoQ3SighpUzgwyjGNUYXJ1XXXlwHHfTyuGEigVdxzMdXFdyUlH2cgF6bDaMC8XevS7rFeeDxJp6jghn25r-_6D08np0eH9mjw5NvO_CEJBTLwsUubK6urtu3CJhW9buwIP4AweQSJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Networks+for+Neuroscientists%3A+A+Primer&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Yang%2C+Guangyu+Robert&rft.au=Wang%2C+Xiao-Jing&rft.date=2020-09-23&rft.eissn=1097-4199&rft.volume=107&rft.issue=6&rft.spage=1048&rft_id=info:doi/10.1016%2Fj.neuron.2020.09.005&rft_id=info%3Apmid%2F32970997&rft.externalDocID=32970997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon