Deuterostome Genomics: Lineage-Specific Protein Expansions That Enabled Chordate Muscle Evolution
Abstract Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it possible for chordate ancestors to swim by beating a tail formed of notochord and bilateral paraxial muscles. In order to investigate the molecul...
Saved in:
Published in | Molecular biology and evolution Vol. 35; no. 4; pp. 914 - 924 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it possible for chordate ancestors to swim by beating a tail formed of notochord and bilateral paraxial muscles. In order to investigate the molecular genetic basis of the origin and evolution of paraxial muscle, we deduced the evolutionary histories of 16 contractile protein genes from paraxial muscle, based on genomic data from all five deuterostome lineages, using a newly developed orthology identification pipeline and a species tree. As a result, we found that more than twice as many orthologs of paraxial muscle genes are present in chordates, as in nonchordate deuterostomes (ambulacrarians). Orthologs of paraxial-type actin and troponin C genes are absent in ambulacrarians and most paraxial muscle protein isoforms diversified via gene duplications that occurred in each chordate lineage. Analyses of genes with known expression sites indicated that some isoforms were reutilized in specific muscles of nonvertebrate chordates via gene duplications. As orthologs of most paraxial muscle genes were present in ambulacrarians, in addition to expression patterns of related genes and functions of the two protein isoforms, regulatory mechanisms of muscle genes should also be considered in future studies of the origin of paraxial muscle. |
---|---|
AbstractList | Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it possible for chordate ancestors to swim by beating a tail formed of notochord and bilateral paraxial muscles. In order to investigate the molecular genetic basis of the origin and evolution of paraxial muscle, we deduced the evolutionary histories of 16 contractile protein genes from paraxial muscle, based on genomic data from all five deuterostome lineages, using a newly developed orthology identification pipeline and a species tree. As a result, we found that more than twice as many orthologs of paraxial muscle genes are present in chordates, as in nonchordate deuterostomes (ambulacrarians). Orthologs of paraxial-type actin and troponin C genes are absent in ambulacrarians and most paraxial muscle protein isoforms diversified via gene duplications that occurred in each chordate lineage. Analyses of genes with known expression sites indicated that some isoforms were reutilized in specific muscles of nonvertebrate chordates via gene duplications. As orthologs of most paraxial muscle genes were present in ambulacrarians, in addition to expression patterns of related genes and functions of the two protein isoforms, regulatory mechanisms of muscle genes should also be considered in future studies of the origin of paraxial muscle.Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it possible for chordate ancestors to swim by beating a tail formed of notochord and bilateral paraxial muscles. In order to investigate the molecular genetic basis of the origin and evolution of paraxial muscle, we deduced the evolutionary histories of 16 contractile protein genes from paraxial muscle, based on genomic data from all five deuterostome lineages, using a newly developed orthology identification pipeline and a species tree. As a result, we found that more than twice as many orthologs of paraxial muscle genes are present in chordates, as in nonchordate deuterostomes (ambulacrarians). Orthologs of paraxial-type actin and troponin C genes are absent in ambulacrarians and most paraxial muscle protein isoforms diversified via gene duplications that occurred in each chordate lineage. Analyses of genes with known expression sites indicated that some isoforms were reutilized in specific muscles of nonvertebrate chordates via gene duplications. As orthologs of most paraxial muscle genes were present in ambulacrarians, in addition to expression patterns of related genes and functions of the two protein isoforms, regulatory mechanisms of muscle genes should also be considered in future studies of the origin of paraxial muscle. Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it possible for chordate ancestors to swim by beating a tail formed of notochord and bilateral paraxial muscles. In order to investigate the molecular genetic basis of the origin and evolution of paraxial muscle, we deduced the evolutionary histories of 16 contractile protein genes from paraxial muscle, based on genomic data from all five deuterostome lineages, using a newly developed orthology identification pipeline and a species tree. As a result, we found that more than twice as many orthologs of paraxial muscle genes are present in chordates, as in nonchordate deuterostomes (ambulacrarians). Orthologs of paraxial-type actin and troponin C genes are absent in ambulacrarians and most paraxial muscle protein isoforms diversified via gene duplications that occurred in each chordate lineage. Analyses of genes with known expression sites indicated that some isoforms were reutilized in specific muscles of nonvertebrate chordates via gene duplications. As orthologs of most paraxial muscle genes were present in ambulacrarians, in addition to expression patterns of related genes and functions of the two protein isoforms, regulatory mechanisms of muscle genes should also be considered in future studies of the origin of paraxial muscle. Abstract Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it possible for chordate ancestors to swim by beating a tail formed of notochord and bilateral paraxial muscles. In order to investigate the molecular genetic basis of the origin and evolution of paraxial muscle, we deduced the evolutionary histories of 16 contractile protein genes from paraxial muscle, based on genomic data from all five deuterostome lineages, using a newly developed orthology identification pipeline and a species tree. As a result, we found that more than twice as many orthologs of paraxial muscle genes are present in chordates, as in nonchordate deuterostomes (ambulacrarians). Orthologs of paraxial-type actin and troponin C genes are absent in ambulacrarians and most paraxial muscle protein isoforms diversified via gene duplications that occurred in each chordate lineage. Analyses of genes with known expression sites indicated that some isoforms were reutilized in specific muscles of nonvertebrate chordates via gene duplications. As orthologs of most paraxial muscle genes were present in ambulacrarians, in addition to expression patterns of related genes and functions of the two protein isoforms, regulatory mechanisms of muscle genes should also be considered in future studies of the origin of paraxial muscle. Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it possible for chordate ancestors to swim by beating a tail formed of notochord and bilateral paraxial muscles. In order to investigate the molecular genetic basis of the origin and evolution of paraxial muscle, we deduced the evolutionary histories of 16 contractile protein genes from paraxial muscle, based on genomic data from all five deuterostome lineages, using a newly developed orthology identification pipeline and a species tree. As a result, we found that more than twice as many orthologs of paraxial muscle genes are present in chordates, as in nonchordate deuterostomes (ambulacrarians). Orthologs of paraxial-type actin and troponin C genes are absent in ambulacrarians and most paraxial muscle protein isoforms diversified via gene duplications that occurred in each chordate lineage. Analyses of genes with known expression sites indicated that some isoforms were reutilized in specific muscles of nonvertebrate chordates via gene duplications. As orthologs of most paraxial muscle genes were present in ambulacrarians, in addition to expression patterns of related genes and functions of the two protein isoforms, regulatory mechanisms of muscle genes should also be considered in future studies of the origin of paraxial muscle. |
Author | Inoue, Jun Satoh, Noriyuki |
AuthorAffiliation | Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan |
AuthorAffiliation_xml | – name: Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0003-4954-6373 surname: Inoue fullname: Inoue, Jun email: jun.inoue@oist.jp organization: Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan – sequence: 2 givenname: Noriyuki surname: Satoh fullname: Satoh, Noriyuki organization: Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29319812$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYNU7Hb10VcZ8MWXsfmYmSQ-CLJdq7CiYH0OmcydbspMMiaZpf3vzbJb0ULpUy7kdw_nnnOGTpx3gNBrgt8TLNn56IcWdudjvMOYPkMLUjNeEk7kCVpgnucKM3GKzmK8wZhUVdO8QKdUMiIFoQukL2BOEHxMfoTiEpwfrYkfio11oK-h_DmBsb01xY_gE1hXrG8n7aL1LhZXW52KtdPtAF2x2vrQ6QTFtzmaAYr1zg9zytxL9LzXQ4RXx3eJfn1eX62-lJvvl19XnzalqWuRSt1J2QndUqFZw6XugItK8ho0MZ0xRjaUmYbQilLGBdasp1xWouol57xqO7ZEHw-609yO0BlwKehBTcGOOtwpr636_8fZrbr2O1ULISShWeDdUSD43zPEpEYbDQyDduDnqHJism4anlNdorcP0Bs_B5fPU4xwLHE2thd886-jv1bu088AOwAmFxAD9MrYpPehZYN2UASrfcfq0LE6dJy3ygdb98KP8ce7_Dw9gf4BMB26_A |
CitedBy_id | crossref_primary_10_1016_j_ydbio_2024_01_003 crossref_primary_10_1002_dvg_23240 crossref_primary_10_3389_fcell_2021_696875 crossref_primary_10_3389_fcell_2021_760366 crossref_primary_10_1186_s13227_020_00162_x crossref_primary_10_3389_fcell_2021_790847 crossref_primary_10_1016_j_ydbio_2018_09_003 crossref_primary_10_1093_molbev_msy226 crossref_primary_10_1111_dgd_12665 crossref_primary_10_1186_s12862_023_02167_1 crossref_primary_10_1111_dgd_12684 crossref_primary_10_1038_d41586_019_01967_0 crossref_primary_10_1073_pnas_1816973116 |
Cites_doi | 10.1093/bioinformatics/btu033 10.1038/nature14436 10.1016/j.semcdb.2012.12.007 10.1093/nar/gki198 10.1038/nrg1042 10.1093/acprof:oso/9780198566687.001.0001 10.1007/BF00457803 10.1038/nature11180 10.1186/2041-9139-4-33 10.1007/BF00160154 10.1242/jeb.52.1.125 10.1007/BF00178256 10.1002/cm.21281 10.1093/jb/mvw047 10.7554/eLife.19607 10.1096/fasebj.9.9.7601340 10.1002/dvg.20416 10.1038/srep43563 10.1038/nature14433 10.1093/oxfordjournals.molbev.a026170 10.1073/pnas.1507669112 10.1007/s10974-013-9349-6 10.1016/0305-0491(79)90114-7 10.1126/science.1253396 10.1046/j.1525-142X.2003.03051.x 10.1016/0305-0491(88)90334-3 10.1093/nar/gkl315 10.1093/bioinformatics/btp348 10.1242/dev.124.9.1711 10.1098/rspb.2014.1729 10.1126/science.1080049 10.1292/jvms.67.115 10.1007/s00427-003-0324-x 10.1038/nature14434 10.2108/zsj.31.122 10.1093/nar/25.17.3389 10.1007/BF00312050 10.1006/dbio.2000.9796 10.1038/nature14435 10.1186/s40851-017-0064-9 10.1186/s12858-015-0036-7 10.1098/rstb.2007.2246 10.1038/nature06967 10.1002/1097-010X(20000815)288:2<135::AID-JEZ5>3.0.CO;2-# 10.1126/science.1058040 10.2174/138161210790883426 10.1038/nature16150 10.1242/dev.121.12.4283 10.1089/106652700750050871 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2018 The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2018 – notice: The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1093/molbev/msy002 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-1719 |
EndPage | 924 |
ExternalDocumentID | PMC5888912 29319812 10_1093_molbev_msy002 10.1093/molbev/msy002 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 16H04824; 15K07172 funderid: 10.13039/501100001691 – fundername: ; ; grantid: 16H04824; 15K07172 |
GroupedDBID | --- -E4 -~X .2P .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 5VS 5WA 70D AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEUO ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACNCT ACPRK ACUFI ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADJQC ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFIYH AFOFC AFPKN AFRAH AFULF AFXEN AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HH5 HW0 HZ~ IOX J21 KOP KQ8 KSI KSN M-Z M49 ML0 N9A NGC NLBLG NMDNZ NOYVH NU- O9- OAWHX ODMLO OJQWA OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RHF ROL ROX ROZ RPM RUSNO RW1 RXO TEORI TJP TJX TLC TN5 TOX TR2 VQA W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZCA ZKX ~02 ~91 7X7 AAYXX ABEJV ABGNP AMNDL BBNVY CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GNUQQ GUQSH H94 HCIFZ K9. LK8 M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c558t-ad99d8ab28a3679ade784975ea1cdccc9623c6124223780a3f279484f97774bd3 |
IEDL.DBID | 7X7 |
ISSN | 0737-4038 1537-1719 |
IngestDate | Thu Aug 21 13:36:47 EDT 2025 Fri Jul 11 05:14:23 EDT 2025 Fri Jul 25 19:30:39 EDT 2025 Thu Apr 03 07:08:50 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 03:45:51 EDT 2025 Wed Sep 11 04:48:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | chordate evolution muscle structural proteins phylogenetics lineage-specific expansion gene duplication |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-ad99d8ab28a3679ade784975ea1cdccc9623c6124223780a3f279484f97774bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Associate editor: Gunter Wagner |
ORCID | 0000-0003-4954-6373 |
OpenAccessLink | https://dx.doi.org/10.1093/molbev/msy002 |
PMID | 29319812 |
PQID | 3170904842 |
PQPubID | 36253 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5888912 proquest_miscellaneous_1989566707 proquest_journals_3170904842 pubmed_primary_29319812 crossref_citationtrail_10_1093_molbev_msy002 crossref_primary_10_1093_molbev_msy002 oup_primary_10_1093_molbev_msy002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Molecular biology and evolution |
PublicationTitleAlternate | Mol Biol Evol |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Suyama ( key 20180626081805_msy002-B52) 2006; 34 Benito ( key 20180626081805_msy002-B5) 1997 Obinata ( key 20180626081805_msy002-B37) 2014; 31 Lowe ( key 20180626081805_msy002-B32) 2015; 520 Katoh ( key 20180626081805_msy002-B30) 2005; 33 Burke ( key 20180626081805_msy002-B8) 1981; 98 Araki ( key 20180626081805_msy002-B3) 1994; 203 Putnam ( key 20180626081805_msy002-B501) 2008; 453 Stamatakis ( key 20180626081805_msy002-B50) 2014; 30 Jensen ( key 20180626081805_msy002-B29) 2015; 16 Shiina ( key 20180626081805_msy002-B46) 2005; 67 Holland ( key 20180626081805_msy002-B26) 1995; 121 Satoh ( key 20180626081805_msy002-B40) 2003; 4 Toyota ( key 20180626081805_msy002-B56) 1979; 62 Burighel ( key 20180626081805_msy002-B7) 1997 Inoue ( key 20180626081805_msy002-B28) 2017; 3 Steinmetz ( key 20180626081805_msy002-B51) 2012; 487 Yang ( key 20180626081805_msy002-B60) 1994; 39 Diogo ( key 20180626081805_msy002-B16) 2015; 520 Oota ( key 20180626081805_msy002-B39) 1999; 16 Guthrie ( key 20180626081805_msy002-B22) 1970; 52 Capella-Gutierrez ( key 20180626081805_msy002-B9) 2009; 25 Dehal ( key 20180626081805_msy002-B15) 2002; 298 Satoh ( key 20180626081805_msy002-B42) 2014 Brunet ( key 20180626081805_msy002-B6) 2016; 5 Ceresa Castellani ( key 20180626081805_msy002-B10) 1974; 8 Nishino ( key 20180626081805_msy002-B36) 2000; 288 Satoh ( key 20180626081805_msy002-B41) 2008; 46 Satoh ( key 20180626081805_msy002-B44) 2014; 281 Gee ( key 20180626081805_msy002-B20) 1996 Yaguchi ( key 20180626081805_msy002-B59) 2017; 7 Yang ( key 20180626081805_msy002-B61) 1994; 39 Colpan ( key 20180626081805_msy002-B13) 2013; 34 Lauri ( key 20180626081805_msy002-B31) 2014; 345 Meedel ( key 20180626081805_msy002-B34) 1997; 124 Altschul ( key 20180626081805_msy002-B1) 1997; 25 Urano ( key 20180626081805_msy002-B57) 2003; 5 Chen ( key 20180626081805_msy002-B11) 2000; 7 Barnes ( key 20180626081805_msy002-B4) 2016; 73 Flood ( key 20180626081805_msy002-B18) 1975; 36 Holland ( key 20180626081805_msy002-B25) 2015; 520 Inoue ( key 20180626081805_msy002-B27) 2015; 112 Holland ( key 20180626081805_msy002-B24) 2013; 24 Green ( key 20180626081805_msy002-B21) 2015; 520 Ohshima ( key 20180626081805_msy002-B38) 1988; 90 Simakov ( key 20180626081805_msy002-B47) 2015; 527 Schmidt-Rhaesa ( key 20180626081805_msy002-B45) 2007 Venter ( key 20180626081805_msy002-B58) 2001; 291 Garcia-Arraras ( key 20180626081805_msy002-B19) 2010; 16 Andrikou ( key 20180626081805_msy002-B2) 2013; 4 Suzuki ( key 20180626081805_msy002-B53) 2000; 224 Farah ( key 20180626081805_msy002-B17) 1995; 9 Holland ( key 20180626081805_msy002-B23) 1996; 42 Satoh ( key 20180626081805_msy002-B43) 2016 Swalla ( key 20180626081805_msy002-B54) 2008; 363 Sonobe ( key 20180626081805_msy002-B49) 2016; 160 Chiba ( key 20180626081805_msy002-B12) 2003; 213 key 20180626081805_msy002-B502 Darwin ( key 20180626081805_msy002-B14) 1859 Tamura ( key 20180626081805_msy002-B55) 1993; 10 Marieb ( key 20180626081805_msy002-B33) 2015 29659984 - Mol Biol Evol. 2018 Jul 1;35(7):1821 |
References_xml | – volume: 30 start-page: 1312 issue: 9 year: 2014 ident: key 20180626081805_msy002-B50 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 520 start-page: 474 issue: 7548 year: 2015 ident: key 20180626081805_msy002-B21 article-title: Evolution of vertebrates as viewed from the crest publication-title: Nature doi: 10.1038/nature14436 – volume: 24 start-page: 101 issue: 2 year: 2013 ident: key 20180626081805_msy002-B24 article-title: Evolution of new characters after whole genome duplications: insights from amphioxus publication-title: Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2012.12.007 – volume: 8 start-page: 117 year: 1974 ident: key 20180626081805_msy002-B10 article-title: Ultrastructural analysis of muscle fibres in Glossobalanus minutus (Kowalewskij, 1886) (Enteropneusta) publication-title: Monit Zool Ital – volume: 33 start-page: 511 issue: 2 year: 2005 ident: key 20180626081805_msy002-B30 article-title: MAFFT version 5: improvement in accuracy of multiple sequence alignment publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki198 – volume: 4 start-page: 285 issue: 4 year: 2003 ident: key 20180626081805_msy002-B40 article-title: The ascidian tadpole larva: comparative molecular development and genomics publication-title: Nat Rev Genet. doi: 10.1038/nrg1042 – volume-title: The evolution of organ systems year: 2007 ident: key 20180626081805_msy002-B45 doi: 10.1093/acprof:oso/9780198566687.001.0001 – start-page: 15 volume-title: Microscopic anatomy of invertebrates year: 1997 ident: key 20180626081805_msy002-B5 – ident: key 20180626081805_msy002-B502 – volume: 203 start-page: 320 issue: 6 year: 1994 ident: key 20180626081805_msy002-B3 article-title: Expression of Amd1, a gene for a Myod1-related factor in the ascidian Halocynthia roretzi publication-title: Roux Arch Dev Biol. doi: 10.1007/BF00457803 – volume-title: Developmental genomics of ascidians. year: 2014 ident: key 20180626081805_msy002-B42 – volume: 487 start-page: 231 issue: 7406 year: 2012 ident: key 20180626081805_msy002-B51 article-title: Independent evolution of striated muscles in cnidarians and bilaterians publication-title: Nature doi: 10.1038/nature11180 – volume: 4 start-page: 33. issue: 1 year: 2013 ident: key 20180626081805_msy002-B2 article-title: Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors publication-title: Evodevo doi: 10.1186/2041-9139-4-33 – volume-title: Human anatomy & physiology year: 2015 ident: key 20180626081805_msy002-B33 – volume: 39 start-page: 306 year: 1994 ident: key 20180626081805_msy002-B61 article-title: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate method publication-title: J Mol Evol. doi: 10.1007/BF00160154 – volume: 52 start-page: 125 year: 1970 ident: key 20180626081805_msy002-B22 article-title: Observations on the function and physiological properties of a fast paramyosin muscle – the notochord of amphioxus (Branchiostoma lanceolatum) publication-title: J Exp Biol. doi: 10.1242/jeb.52.1.125 – volume: 39 start-page: 105 issue: 1 year: 1994 ident: key 20180626081805_msy002-B60 article-title: Estimating the pattern of nucleotide substitution publication-title: J Mol Evol. doi: 10.1007/BF00178256 – volume: 73 start-page: 117 issue: 3 year: 2016 ident: key 20180626081805_msy002-B4 article-title: Molecular evolution of troponin I and a role of its N-terminal extension in nematode locomotion publication-title: Cytoskeleton (Hoboken) doi: 10.1002/cm.21281 – volume: 160 start-page: 369 issue: 6 year: 2016 ident: key 20180626081805_msy002-B49 article-title: Characterization of paramyosin and thin filaments in the smooth muscle of acorn worm, a member of hemichordates publication-title: J Biochem. doi: 10.1093/jb/mvw047 – volume: 5 start-page: e19607 year: 2016 ident: key 20180626081805_msy002-B6 article-title: The evolutionary origin of bilaterian smooth and striated myocytes publication-title: Elife doi: 10.7554/eLife.19607 – volume: 9 start-page: 755 issue: 9 year: 1995 ident: key 20180626081805_msy002-B17 article-title: The troponin complex and regulation of muscle-contraction publication-title: FASEB J. doi: 10.1096/fasebj.9.9.7601340 – volume: 46 start-page: 614 issue: 11 year: 2008 ident: key 20180626081805_msy002-B41 article-title: An aboral-dorsalization hypothesis for chordate origin publication-title: Genesis doi: 10.1002/dvg.20416 – volume: 7 start-page: 43563. year: 2017 ident: key 20180626081805_msy002-B59 article-title: Troponin-I is present as an essential component of muscles in echinoderm larvae publication-title: Sci Rep. doi: 10.1038/srep43563 – volume: 520 start-page: 450 issue: 7548 year: 2015 ident: key 20180626081805_msy002-B25 article-title: Scenarios for the making of vertebrates publication-title: Nature doi: 10.1038/nature14433 – volume: 16 start-page: 856 issue: 6 year: 1999 ident: key 20180626081805_msy002-B39 article-title: Phylogenetic relationship of muscle tissues deduced from superimposition of gene trees publication-title: Mol Biol Evol. doi: 10.1093/oxfordjournals.molbev.a026170 – volume: 112 start-page: 14918 issue: 48 year: 2015 ident: key 20180626081805_msy002-B27 article-title: Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1507669112 – volume: 34 start-page: 247 issue: 3–4 year: 2013 ident: key 20180626081805_msy002-B13 article-title: Tropomodulins and tropomyosins: working as a team publication-title: J Muscle Res Cell Motil. doi: 10.1007/s10974-013-9349-6 – volume: 42 start-page: S235 year: 1996 ident: key 20180626081805_msy002-B23 article-title: Muscle development in amphioxus: morphology, biochemistry, and molecular biology publication-title: Isr J Zool. – volume-title: On the origin of species year: 1859 ident: key 20180626081805_msy002-B14 – volume: 36 start-page: 81 year: 1975 ident: key 20180626081805_msy002-B18 article-title: Fine structure of the notochord of amphioxus publication-title: Symp Zool Soc Lond. – volume: 62 start-page: 433 issue: 4 year: 1979 ident: key 20180626081805_msy002-B56 article-title: Isolation of troponin-tropomyosin-containing thin-filaments from ascidian smooth-muscle publication-title: Comp Biochem Physiol B Biochem. doi: 10.1016/0305-0491(79)90114-7 – volume-title: Before the backbone: views on the origin of the vertebrates year: 1996 ident: key 20180626081805_msy002-B20 – volume: 10 start-page: 512 issue: 3 year: 1993 ident: key 20180626081805_msy002-B55 article-title: Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees publication-title: Mol Biol Evol. – volume: 345 start-page: 1365 issue: 6202 year: 2014 ident: key 20180626081805_msy002-B31 article-title: Development of the annelid axochord: insights into notochord evolution publication-title: Science doi: 10.1126/science.1253396 – volume: 5 start-page: 447 issue: 5 year: 2003 ident: key 20180626081805_msy002-B57 article-title: Expression of muscle-related genes and two MyoD genes during amphioxus notochord development publication-title: Evol Dev. doi: 10.1046/j.1525-142X.2003.03051.x – volume: 90 start-page: 779 issue: 4 year: 1988 ident: key 20180626081805_msy002-B38 article-title: Generation of multiple troponin-T isoforms is a common feature of the muscles in various chordate animals publication-title: Comp Biochem Physiol B Biochem. doi: 10.1016/0305-0491(88)90334-3 – volume: 34 start-page: W609 issue: Web Server issue year: 2006 ident: key 20180626081805_msy002-B52 article-title: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl315 – volume: 25 start-page: 1972 issue: 15 year: 2009 ident: key 20180626081805_msy002-B9 article-title: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp348 – volume: 124 start-page: 1711 issue: 9 year: 1997 ident: key 20180626081805_msy002-B34 article-title: The single MyoD family gene of Ciona intestinalis encodes two differentially expressed proteins: implications for the evolution of chordate muscle gene regulation publication-title: Development doi: 10.1242/dev.124.9.1711 – volume: 281 start-page: 20141729. issue: 1794 year: 2014 ident: key 20180626081805_msy002-B44 article-title: Chordate evolution and the three-phylum system publication-title: Proc Biol Sci. doi: 10.1098/rspb.2014.1729 – volume: 298 start-page: 2157 issue: 5601 year: 2002 ident: key 20180626081805_msy002-B15 article-title: The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins publication-title: Science doi: 10.1126/science.1080049 – volume: 67 start-page: 115 issue: 1 year: 2005 ident: key 20180626081805_msy002-B46 article-title: A comparative histological study on the distribution of striated and smooth muscles and glands in the esophagus of wild birds and mammals publication-title: J Vet Med Sci doi: 10.1292/jvms.67.115 – volume: 213 start-page: 291 issue: 5–6 year: 2003 ident: key 20180626081805_msy002-B12 article-title: A genomewide survey of developmentally relevant genes in Ciona intestinalis. IX. Genes for muscle structural proteins publication-title: Dev Genes Evol. doi: 10.1007/s00427-003-0324-x – volume: 520 start-page: 456 issue: 7548 year: 2015 ident: key 20180626081805_msy002-B32 article-title: The deuterostome context of chordate origins publication-title: Nature doi: 10.1038/nature14434 – volume: 31 start-page: 122 issue: 3 year: 2014 ident: key 20180626081805_msy002-B37 article-title: Sea lily muscle lacks a troponin-regulatory system, while it contains paramyosin publication-title: Zoolog Sci. doi: 10.2108/zsj.31.122 – volume-title: Chordate origins and evolution: the molecular evolutionary road to vertebrates. year: 2016 ident: key 20180626081805_msy002-B43 – volume: 25 start-page: 3389 issue: 17 year: 1997 ident: key 20180626081805_msy002-B1 article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 98 start-page: 209 issue: 3 year: 1981 ident: key 20180626081805_msy002-B8 article-title: Structure of the digestive-tract of the pluteus larva of Dendraster excentricus (Echinodermata, Echinoida) publication-title: Zoomorphology doi: 10.1007/BF00312050 – volume: 224 start-page: 168 issue: 2 year: 2000 ident: key 20180626081805_msy002-B53 article-title: Genes expressed in the amphioxus notochord revealed by EST analysis publication-title: Dev Biol. doi: 10.1006/dbio.2000.9796 – volume: 520 start-page: 466 issue: 7548 year: 2015 ident: key 20180626081805_msy002-B16 article-title: A new heart for a new head in vertebrate cardiopharyngeal evolution publication-title: Nature doi: 10.1038/nature14435 – volume: 3 start-page: 4. year: 2017 ident: key 20180626081805_msy002-B28 article-title: The chordate ancestor possessed a single copy of the Brachyury gene for notochord acquisition publication-title: Zoological Lett. doi: 10.1186/s40851-017-0064-9 – volume: 16 start-page: 6. issue: 1 year: 2015 ident: key 20180626081805_msy002-B29 article-title: The exchanged EF-hands in calmodulin and troponin C chimeras impair the Ca2+-induced hydrophobicity and alter the interaction with Orai1: a spectroscopic, thermodynamic and kinetic study publication-title: BMC Biochem. doi: 10.1186/s12858-015-0036-7 – volume: 363 start-page: 1557 issue: 1496 year: 2008 ident: key 20180626081805_msy002-B54 article-title: Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives publication-title: Philos Trans R Soc Lond B Biol Sci. doi: 10.1098/rstb.2007.2246 – volume: 453 start-page: 1064 issue: 7198 year: 2008 ident: key 20180626081805_msy002-B501 article-title: The amphioxus genome and the evolution of the chordate karyotype publication-title: Nature doi: 10.1038/nature06967 – volume: 288 start-page: 135 issue: 2 year: 2000 ident: key 20180626081805_msy002-B36 article-title: Muscle actin genes and muscle cells in the appendicularian, Oikopleura longicauda: phylogenetic relationships among muscle tissues in the urochordates publication-title: J Exp Zool doi: 10.1002/1097-010X(20000815)288:2<135::AID-JEZ5>3.0.CO;2-# – volume: 291 start-page: 1304 issue: 5507 year: 2001 ident: key 20180626081805_msy002-B58 article-title: The sequence of the human genome publication-title: Science doi: 10.1126/science.1058040 – volume: 16 start-page: 942 issue: 8 year: 2010 ident: key 20180626081805_msy002-B19 article-title: Echinoderms: potential model systems for studies on muscle regeneration publication-title: Curr Pharm Des. doi: 10.2174/138161210790883426 – volume: 527 start-page: 459 issue: 7579 year: 2015 ident: key 20180626081805_msy002-B47 article-title: Hemichordate genomes and deuterostome origins publication-title: Nature doi: 10.1038/nature16150 – start-page: 221 volume-title: Microscopic anatomy of invertebrates year: 1997 ident: key 20180626081805_msy002-B7 – volume: 121 start-page: 4283 year: 1995 ident: key 20180626081805_msy002-B26 article-title: Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications publication-title: Development doi: 10.1242/dev.121.12.4283 – volume: 7 start-page: 429 issue: 3–4 year: 2000 ident: key 20180626081805_msy002-B11 article-title: NOTUNG: a program for dating gene duplications and optimizing gene family trees publication-title: J Comput Biol. doi: 10.1089/106652700750050871 – reference: 29659984 - Mol Biol Evol. 2018 Jul 1;35(7):1821 |
SSID | ssj0014466 |
Score | 2.3353348 |
Snippet | Abstract
Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it... Fish-like larvae were foundational to the chordate body plan, given the basal placement of free-living lancelets. That body plan probably made it possible for... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 914 |
SubjectTerms | Actin Animals Chordata Chordata - genetics Discoveries Evolution, Molecular Gene Duplication Genes Genomics Isoforms Larvae Muscle contraction Muscle Proteins - genetics Muscles Notochord Orthology Proteins Regulatory mechanisms (biology) Troponin C |
Title | Deuterostome Genomics: Lineage-Specific Protein Expansions That Enabled Chordate Muscle Evolution |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29319812 https://www.proquest.com/docview/3170904842 https://www.proquest.com/docview/1989566707 https://pubmed.ncbi.nlm.nih.gov/PMC5888912 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA86EXwRv51OiSA-WbZ-JvVF_KgOwQ9kwt5Kml7ZwHVqt-H-ey9tWjdBfSxJm3J3ufzukvyOkGNuiYR7njAA8YLhcNEyRGyCgdAW0QGAZyUqD3n_4LVfnLuu29UJt0wfqyx9Yu6o46FUOfImrnMtH83Nsc7f3g1VNUrtruoSGotkSVGXKatm3SrgMsu9SmYzjJNsrjk2MYhvDoavEUyag2xaZlTKNWnuntsM3Px5anJmGbpZI6saP9KLQuHrZAHSDbJcVJScbhJxDapGg2LLGAC9hfzScXZGMeQE9BxGXm4-6Uv6pPgZ-ikNPtEdqIxZRjs9MaJBfpcqplc9jEoRh9L7cYYD0WCibXSLvNwEnau2oasoGNJ1-QhF7_sxF5HFhe0xX8TAuOMzF4QpYymljwBIIs5xECgw3hJ2YuEc5U6CyJA5UWxvk1o6TGGXUPQNMo5cT1GHOoknfCbAUiGPCZDYiVknp6UcQ6kpxlWli9ew2Oq2w0LsYSH2Ojmpur8V3Bq_dTxCpfzXp1GqLNTTMAu_jQY_UTXjBFK7IiKF4TgL1aExxLSsxepkp9BwNRJiIWw28W02p_uqgyLnnm9J-72cpNvlnPumtff3b-2TFURgvDgK1CC10ccYDhDljKLD3JQPydJl8PD0jE-dx-4X3EsCcA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviG8KA4wEPBE1cT5sIyGEto6OrRMPndS3zHEuaqU1HaQd9J_ib-QcJ2FFAp727Isd3Z3vfne27wBeSa4LmSTaQ8ILXiS17-k8QI-gLaEDxIQXNg85Ok6GJ9HnSTzZgp_tWxh7rbK1ibWhzhfG5sj75Od8ReoW8Q_nXz3bNcqerrYtNJxaHOL6O4Vs1fuDPZLva873B-Pdodd0FfBMHMsl_YpSudQZlzpMhNI5ChkpEaMOTG6MUQQIDPn9iBynkL4OC046K6OCkJKIsjykea_BdXK8vg32xKQL8IL2bFSEguKyUDY1PX0V9ueLswwv-vNq3WZwWh-48a7uErz985bmJbe3fwduN3iVfXQKdhe2sLwHN1wHy_V90Htoe0LY6hxzZJ-wfuRcvWMU4iJZKq9ub1_MDPti60HMSjb4QebHZugqNp7qJRvUb7dytjsllhLuZaNVRQuxwUWzJx7AyZXw9yFsl4sSHwMjW2TyLE5sqdKoSLQSGrkNsQLEIiyCHrxt-ZiapqS57axxlrqj9TB1bE8d23vwpiM_d7U8_kb4koTyP5qdVmRps-2r9LeS0hTdMG1YewqjS1ysqtReUiMMLXzRg0dOwt1KhL1oOKCvxYbsOwJbDHxzpJxN66LgsZRSBfzJv3_rBdwcjkdH6dHB8eFTuEXoT7prSDuwvfy2wmeEsJbZ81qtGZxe9T76BcUiO-k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deuterostome+Genomics%3A+Lineage-Specific+Protein+Expansions+That+Enabled+Chordate+Muscle+Evolution&rft.jtitle=Molecular+biology+and+evolution&rft.au=Inoue%2C+Jun&rft.au=Satoh%2C+Noriyuki&rft.date=2018-04-01&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.eissn=1537-1719&rft.volume=35&rft.issue=4&rft.spage=914&rft.epage=924&rft_id=info:doi/10.1093%2Fmolbev%2Fmsy002&rft_id=info%3Apmid%2F29319812&rft.externalDocID=PMC5888912 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon |