Benefits of multi-modal fusion analysis on a large-scale dataset: Life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure
Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and processing them along separate pipelines that provide a set of complementary windows into each subject's brain. However, few attempts have been...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 63; no. 1; pp. 365 - 380 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.10.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and processing them along separate pipelines that provide a set of complementary windows into each subject's brain. However, few attempts have been made to integrate the various modalities in the same analysis. Linked ICA is a robust data fusion model that takes multi-modal data and characterizes inter-subject variability in terms of a set of multi-modal components. This paper examines the types of components found when running Linked ICA on a large magnetic resonance imaging (MRI) morphometric and diffusion tensor imaging (DTI) data set comprising 484 healthy subjects ranging from 8 to 85years of age. We find several strong global features related to age, sex, and intracranial volume; in particular, one component predicts age to a high accuracy (r=0.95). Most of the remaining components describe spatially localized modes of variability in white or gray matter, with many components including both tissue types. The multimodal components tend to be located in anatomically-related brain areas, suggesting a morphological and possibly functional relationship. The local components show relationships between surface-based cortical thickness and arealization, voxel-based morphometry (VBM), and between three different DTI measures. Further, we report components related to artifacts (e.g. scanner software upgrades) which would be expected in a dataset of this size. Most of the 100 extracted components showed interpretable spatial patterns and were found to be reliable using split-half validation. This work provides novel information about normal inter-subject variability in brain structure, and demonstrates the potential of Linked ICA as a feature-extracting data fusion approach across modalities. This exploratory approach automatically generates models to explain structure in the data, and may prove especially powerful for large-scale studies, where the population variability can be explored in increased detail.
► Linked ICA used to fuse six modalities of MRI data from 484 healthy subjects. ► A strong age-related component shows r=0.95 correlation with age, over 8–85yrs. ► Most features show local, bilateral variability in multiple GM/WM measures. ► Identifies artifact components, including scanner software upgrade effects. |
---|---|
AbstractList | Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and processing them along separate pipelines that provide a set of complementary windows into each subject's brain. However, few attempts have been made to integrate the various modalities in the same analysis. Linked ICA is a robust data fusion model that takes multi-modal data and characterizes inter-subject variability in terms of a set of multi-modal components. This paper examines the types of components found when running Linked ICA on a large magnetic resonance imaging (MRI) morphometric and diffusion tensor imaging (DTI) data set comprising 484 healthy subjects ranging from 8 to 85years of age. We find several strong global features related to age, sex, and intracranial volume; in particular, one component predicts age to a high accuracy (r=0.95). Most of the remaining components describe spatially localized modes of variability in white or gray matter, with many components including both tissue types. The multimodal components tend to be located in anatomically-related brain areas, suggesting a morphological and possibly functional relationship. The local components show relationships between surface-based cortical thickness and arealization, voxel-based morphometry (VBM), and between three different DTI measures. Further, we report components related to artifacts (e.g. scanner software upgrades) which would be expected in a dataset of this size. Most of the 100 extracted components showed interpretable spatial patterns and were found to be reliable using split-half validation. This work provides novel information about normal inter-subject variability in brain structure, and demonstrates the potential of Linked ICA as a feature-extracting data fusion approach across modalities. This exploratory approach automatically generates models to explain structure in the data, and may prove especially powerful for large-scale studies, where the population variability can be explored in increased detail. Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and processing them along separate pipelines that provide a set of complementary windows into each subject's brain. However, few attempts have been made to integrate the various modalities in the same analysis. Linked ICA is a robust data fusion model that takes multi-modal data and characterizes inter-subject variability in terms of a set of multi-modal components. This paper examines the types of components found when running Linked ICA on a large magnetic resonance imaging (MRI) morphometric and diffusion tensor imaging (DTI) data set comprising 484 healthy subjects ranging from 8 to 85years of age. We find several strong global features related to age, sex, and intracranial volume; in particular, one component predicts age to a high accuracy (r=0.95). Most of the remaining components describe spatially localized modes of variability in white or gray matter, with many components including both tissue types. The multimodal components tend to be located in anatomically-related brain areas, suggesting a morphological and possibly functional relationship. The local components show relationships between surface-based cortical thickness and arealization, voxel-based morphometry (VBM), and between three different DTI measures. Further, we report components related to artifacts (e.g. scanner software upgrades) which would be expected in a dataset of this size. Most of the 100 extracted components showed interpretable spatial patterns and were found to be reliable using split-half validation. This work provides novel information about normal inter-subject variability in brain structure, and demonstrates the potential of Linked ICA as a feature-extracting data fusion approach across modalities. This exploratory approach automatically generates models to explain structure in the data, and may prove especially powerful for large-scale studies, where the population variability can be explored in increased detail. ► Linked ICA used to fuse six modalities of MRI data from 484 healthy subjects. ► A strong age-related component shows r=0.95 correlation with age, over 8–85yrs. ► Most features show local, bilateral variability in multiple GM/WM measures. ► Identifies artifact components, including scanner software upgrade effects. Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and processing them along separate pipelines that provide a set of complementary windows into each subject's brain. However, few attempts have been made to integrate the various modalities in the same analysis. Linked ICA is a robust data fusion model that takes multi-modal data and characterizes inter-subject variability in terms of a set of multi-modal components. This paper examines the types of components found when running Linked ICA on a large magnetic resonance imaging (MRI) morphometric and diffusion tensor imaging (DTI) data set comprising 484 healthy subjects ranging from 8 to 85 years of age. We find several strong global features related to age, sex, and intracranial volume; in particular, one component predicts age to a high accuracy (r = 0.95). Most of the remaining components describe spatially localized modes of variability in white or gray matter, with many components including both tissue types. The multimodal components tend to be located in anatomically-related brain areas, suggesting a morphological and possibly functional relationship. The local components show relationships between surface-based cortical thickness and arealization, voxel-based morphometry (VBM), and between three different DTI measures. Further, we report components related to artifacts (e.g. scanner software upgrades) which would be expected in a dataset of this size. Most of the 100 extracted components showed interpretable spatial patterns and were found to be reliable using split-half validation. This work provides novel information about normal inter-subject variability in brain structure, and demonstrates the potential of Linked ICA as a feature-extracting data fusion approach across modalities. This exploratory approach automatically generates models to explain structure in the data, and may prove especially powerful for large-scale studies, where the population variability can be explored in increased detail. Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and processing them along separate pipelines that provide a set of complementary windows into each subject's brain. However, few attempts have been made to integrate the various modalities in the same analysis. Linked ICA is a robust data fusion model that takes multi-modal data and characterizes inter-subject variability in terms of a set of multi-modal components. This paper examines the types of components found when running Linked ICA on a large magnetic resonance imaging (MRI) morphometric and diffusion tensor imaging (DTI) data set comprising 484 healthy subjects ranging from 8 to 85 years of age. We find several strong global features related to age, sex, and intracranial volume; in particular, one component predicts age to a high accuracy (r=0.95). Most of the remaining components describe spatially localized modes of variability in white or gray matter, with many components including both tissue types. The multimodal components tend to be located in anatomically-related brain areas, suggesting a morphological and possibly functional relationship. The local components show relationships between surface-based cortical thickness and arealization, voxel-based morphometry (VBM), and between three different DTI measures. Further, we report components related to artifacts (e.g. scanner software upgrades) which would be expected in a dataset of this size. Most of the 100 extracted components showed interpretable spatial patterns and were found to be reliable using split-half validation. This work provides novel information about normal inter-subject variability in brain structure, and demonstrates the potential of Linked ICA as a feature-extracting data fusion approach across modalities. This exploratory approach automatically generates models to explain structure in the data, and may prove especially powerful for large-scale studies, where the population variability can be explored in increased detail.Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and processing them along separate pipelines that provide a set of complementary windows into each subject's brain. However, few attempts have been made to integrate the various modalities in the same analysis. Linked ICA is a robust data fusion model that takes multi-modal data and characterizes inter-subject variability in terms of a set of multi-modal components. This paper examines the types of components found when running Linked ICA on a large magnetic resonance imaging (MRI) morphometric and diffusion tensor imaging (DTI) data set comprising 484 healthy subjects ranging from 8 to 85 years of age. We find several strong global features related to age, sex, and intracranial volume; in particular, one component predicts age to a high accuracy (r=0.95). Most of the remaining components describe spatially localized modes of variability in white or gray matter, with many components including both tissue types. The multimodal components tend to be located in anatomically-related brain areas, suggesting a morphological and possibly functional relationship. The local components show relationships between surface-based cortical thickness and arealization, voxel-based morphometry (VBM), and between three different DTI measures. Further, we report components related to artifacts (e.g. scanner software upgrades) which would be expected in a dataset of this size. Most of the 100 extracted components showed interpretable spatial patterns and were found to be reliable using split-half validation. This work provides novel information about normal inter-subject variability in brain structure, and demonstrates the potential of Linked ICA as a feature-extracting data fusion approach across modalities. This exploratory approach automatically generates models to explain structure in the data, and may prove especially powerful for large-scale studies, where the population variability can be explored in increased detail. |
Author | Walhovd, Kristine B. Smith, Stephen M. Woolrich, Mark W. Tamnes, Christian K. Fjell, Anders M. Groves, Adrian R. Westlye, Lars T. Douaud, Gwenaëlle |
Author_xml | – sequence: 1 givenname: Adrian R. surname: Groves fullname: Groves, Adrian R. email: adriang@fmrib.ox.ac.uk, adrian-neuroimage@groves.ca organization: FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK – sequence: 2 givenname: Stephen M. surname: Smith fullname: Smith, Stephen M. organization: FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK – sequence: 3 givenname: Anders M. surname: Fjell fullname: Fjell, Anders M. organization: Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway, PO Box 1094 Blindern, 0317 Oslo, Norway – sequence: 4 givenname: Christian K. surname: Tamnes fullname: Tamnes, Christian K. organization: Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway, PO Box 1094 Blindern, 0317 Oslo, Norway – sequence: 5 givenname: Kristine B. surname: Walhovd fullname: Walhovd, Kristine B. organization: Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway, PO Box 1094 Blindern, 0317 Oslo, Norway – sequence: 6 givenname: Gwenaëlle surname: Douaud fullname: Douaud, Gwenaëlle organization: FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK – sequence: 7 givenname: Mark W. surname: Woolrich fullname: Woolrich, Mark W. organization: FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, UK – sequence: 8 givenname: Lars T. surname: Westlye fullname: Westlye, Lars T. email: l.t.westlye@psykologi.uio.no organization: Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway, PO Box 1094 Blindern, 0317 Oslo, Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22750721$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9uFCEUxiemxv7RVzAk3ngzKzALA14Y28ZWk0280WvCMIeWlYEVmJp9JN9SttvGZK_2ihPOx--Q7zvnzUmIAZoGEbwgmPAP60WAOUU36TtYUEzoAvMF7sSL5oxgyVrJenqyq1nXCkLkaXOe8xpjLMlSvGpOKe0Z7ik5a_5eQQDrSkbRomn2xbVTHLVHds4uBqSD9tvsarvWyOt0B2022gMaddEZyke0crbebXRAG10KpPDIcqGWbZ6HNZiCHnRyenDelW3tIBNTcZWCppg293GCkrZ11Ij-3LsCaHrkoMmZFHNJsylzgtfNS6t9hjdP50Xz8-bLj-uv7er77bfry1VrGBOl7c1ykBb3lgjDtJXCUjkaQWjfcWrwkkptybCkhAnTcSkHwbslxpx0lBtidHfRvN9zNyn-niEXNblswHsdIM5Zkeozx6zmcIyUi15Sxqv03YF0HedUza0qhrkQlYer6u2Tah4mGNUm1YjTVj3nVQWf9oKdMzmBVcYVXWpSJWnn60S1WxC1Vv8XRO0WRGGu6scrQBwAnmcc8fRq_xSq-w8OksrGQTAwulQzVmN0x0A-H0CMd2G3C79gexziH3hu9C8 |
CitedBy_id | crossref_primary_10_1177_0271678X17729111 crossref_primary_10_1177_2158244016633273 crossref_primary_10_1016_j_neuroimage_2018_08_006 crossref_primary_10_1016_j_bpsc_2020_07_019 crossref_primary_10_1016_j_nicl_2016_03_005 crossref_primary_10_7554_eLife_85006 crossref_primary_10_1016_j_neuroimage_2013_09_044 crossref_primary_10_1002_sim_6757 crossref_primary_10_1016_j_bpsc_2025_03_003 crossref_primary_10_1123_jpah_2019_0659 crossref_primary_10_1016_j_neurobiolaging_2013_03_028 crossref_primary_10_1016_j_neuroimage_2017_06_070 crossref_primary_10_1016_j_nicl_2023_103486 crossref_primary_10_1038_s41398_020_00931_1 crossref_primary_10_1111_ejn_16120 crossref_primary_10_1016_j_media_2021_102050 crossref_primary_10_1186_s13229_023_00564_3 crossref_primary_10_1016_j_neuroimage_2017_08_081 crossref_primary_10_1016_j_neuroimage_2021_118036 crossref_primary_10_1038_ng_3624 crossref_primary_10_3389_fnhum_2022_965602 crossref_primary_10_1016_j_neurobiolaging_2023_06_017 crossref_primary_10_1038_s42003_021_01832_9 crossref_primary_10_1016_j_neuroimage_2012_08_004 crossref_primary_10_1016_j_dcn_2024_101345 crossref_primary_10_1002_hbm_25742 crossref_primary_10_1002_hbm_24774 crossref_primary_10_1002_jcv2_12220 crossref_primary_10_1016_j_neurobiolaging_2022_02_005 crossref_primary_10_1002_jnr_24584 crossref_primary_10_1016_j_nicl_2019_101851 crossref_primary_10_3390_genes12050683 crossref_primary_10_1117_1_NPh_7_1_015009 crossref_primary_10_1016_j_neuroimage_2016_01_061 crossref_primary_10_1016_j_nicl_2018_101627 crossref_primary_10_1093_psyrad_kkad026 crossref_primary_10_1186_s13229_020_00389_4 crossref_primary_10_3389_fneur_2019_00789 crossref_primary_10_1016_j_mri_2019_11_003 crossref_primary_10_1016_j_bpsc_2022_08_011 crossref_primary_10_1016_j_nicl_2014_11_019 crossref_primary_10_1016_j_neuroimage_2020_117292 crossref_primary_10_1038_srep45131 crossref_primary_10_7554_eLife_52677 crossref_primary_10_1038_s41398_022_02085_8 crossref_primary_10_1038_s41467_024_46344_2 crossref_primary_10_1002_hbm_24802 crossref_primary_10_3389_fdata_2021_637724 crossref_primary_10_1097_WCO_0000000000000967 crossref_primary_10_1109_ACCESS_2024_3382819 crossref_primary_10_1016_j_bpsc_2015_12_005 crossref_primary_10_1002_hbm_26025 crossref_primary_10_1016_j_zemedi_2023_07_003 crossref_primary_10_1016_j_expneurol_2020_113331 crossref_primary_10_1016_j_jneumeth_2020_109013 crossref_primary_10_1016_j_neurobiolaging_2025_01_011 crossref_primary_10_1016_j_neuroimage_2012_11_039 crossref_primary_10_1515_jtim_2025_0007 crossref_primary_10_1016_j_neuroimage_2016_11_005 crossref_primary_10_1016_j_nicl_2019_101900 crossref_primary_10_1002_nbm_3900 crossref_primary_10_1371_journal_pone_0067329 crossref_primary_10_1109_JBHI_2020_3019421 crossref_primary_10_1523_JNEUROSCI_1260_20_2020 crossref_primary_10_1001_jamanetworkopen_2019_6126 crossref_primary_10_1155_2018_3786083 crossref_primary_10_1002_ana_24995 crossref_primary_10_1007_s00429_020_02205_4 crossref_primary_10_1109_ACCESS_2020_2999513 crossref_primary_10_1093_cercor_bhac164 crossref_primary_10_1016_j_neuroimage_2019_116388 crossref_primary_10_1016_j_neuroimage_2022_119254 crossref_primary_10_1007_s12021_015_9266_5 crossref_primary_10_1016_j_neuroimage_2016_04_038 crossref_primary_10_2196_31269 crossref_primary_10_1016_j_neurobiolaging_2014_03_034 crossref_primary_10_1371_journal_pone_0219515 crossref_primary_10_1016_j_neuroimage_2013_05_088 crossref_primary_10_1016_j_neubiorev_2017_11_002 crossref_primary_10_1016_j_nicl_2015_08_010 crossref_primary_10_1371_journal_pone_0140945 crossref_primary_10_1016_j_neurobiolaging_2020_03_014 crossref_primary_10_1016_j_nicl_2017_06_014 crossref_primary_10_1109_TNSRE_2022_3190467 crossref_primary_10_1016_j_dcn_2022_101173 crossref_primary_10_1017_S0033291723002386 crossref_primary_10_7554_eLife_44443 crossref_primary_10_1002_hbm_22488 crossref_primary_10_1002_hbm_23656 crossref_primary_10_1038_s44220_024_00349_4 crossref_primary_10_1093_cercor_bhaa348 crossref_primary_10_1016_j_neubiorev_2020_01_031 crossref_primary_10_1038_s41598_024_79817_x crossref_primary_10_1016_j_neuroimage_2017_10_047 crossref_primary_10_1002_ana_24367 |
Cites_doi | 10.1038/nn.3045 10.1093/cercor/bhn084 10.1016/j.brainres.2009.04.025 10.1109/TMI.2003.822821 10.1002/hbm.10062 10.1016/j.neuroimage.2004.07.051 10.1109/42.906426 10.1093/cercor/bhp280 10.1016/j.neuroimage.2010.01.005 10.1214/aos/1009210544 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1097/WNR.0b013e3282f0d40c 10.1006/nimg.1998.0396 10.1523/JNEUROSCI.4771-11.2012 10.1093/cercor/bhm225 10.1016/j.neurobiolaging.2009.05.013 10.1006/nimg.1995.1024 10.1523/JNEUROSCI.1553-10.2010 10.1016/j.neuroimage.2009.06.074 10.1006/nimg.2000.0582 10.1016/j.neuroimage.2006.02.024 10.1016/S0896-6273(02)00569-X 10.1016/j.neuroimage.2008.12.038 10.1016/j.neuroimage.2012.01.122 10.1002/mrm.10308 10.1006/nimg.2002.1132 10.1093/brain/awm184 10.1162/jocn.1993.5.2.162 10.1038/nn.2706 10.1002/mrm.20741 10.1073/pnas.0811879106 10.1016/0022-3956(75)90026-6 10.1073/pnas.200033797 10.1523/JNEUROSCI.1242-09.2009 10.1093/cercor/bhp118 10.1038/nn.2412 10.1056/NEJMoa070972 10.1016/j.neuron.2009.03.024 10.1016/j.neuroimage.2008.10.055 10.1098/rstb.2005.1634 10.1016/j.neuroimage.2011.11.094 10.1016/j.neuroimage.2009.05.084 10.1016/j.neuroimage.2011.12.053 10.1016/j.neuroimage.2010.02.072 10.1016/j.neuroimage.2008.06.005 10.1126/science.1194144 10.1073/pnas.0905267106 10.1016/j.neuroimage.2010.09.073 10.1016/j.neuroimage.2003.12.023 10.1016/j.neuroimage.2004.06.018 10.1006/nimg.1998.0395 10.1016/j.neuroimage.2010.12.008 10.1038/nprot.2007.45 10.1006/nimg.2001.0786 10.1093/cercor/bhg087 10.1016/j.neuroimage.2010.01.061 10.1016/j.neuroimage.2010.03.056 10.1016/S0896-6273(00)81138-1 10.1371/journal.pone.0023437 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 15, 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 15, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2012.06.038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 380 |
ExternalDocumentID | 3245057481 22750721 10_1016_j_neuroimage_2012_06_038 S1053811912006532 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0700399 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c558t-7c4b9f07f18c5af98f29dc8127362c0429af1b42158c3699b86340061326c1ca3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 09:55:50 EDT 2025 Fri Jul 11 02:46:34 EDT 2025 Wed Aug 13 10:04:34 EDT 2025 Mon Jul 21 05:50:31 EDT 2025 Tue Jul 01 02:14:47 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Fri Feb 23 02:36:05 EST 2024 Tue Aug 26 16:31:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Surface-based morphometry Bayesian modeling Independent component analysis Voxel-based morphometry Aging Data fusion Diffusion tensor imaging |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-7c4b9f07f18c5af98f29dc8127362c0429af1b42158c3699b86340061326c1ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 22750721 |
PQID | 1506881010 |
PQPubID | 2031077 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1038605101 proquest_miscellaneous_1036879256 proquest_journals_1506881010 pubmed_primary_22750721 crossref_citationtrail_10_1016_j_neuroimage_2012_06_038 crossref_primary_10_1016_j_neuroimage_2012_06_038 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_06_038 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_06_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-15 |
PublicationDateYYYYMMDD | 2012-10-15 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Seeley, Crawford, Zhou, Miller, Greicius (bb0230) 2009; 62 Johnstone (bb0175) 2001; 29 Lebel, Gee, Camicioli, Wieler, Martin, Beaulieu (bb0180) 2012; 60 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bb0245) 2004; 23 Worsley, Poline, Vandal, Friston (bb0310) 1995; 2 Douaud, Jbabdi, Behrens, Menke, Gass, Monsch, Rao, Whitcher, Kindlmann, Matthews, Smith (bb0060) 2011; 55 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bb0100) 2002; 33 Reese, Heid, Weisskoff, Wedeen (bb9005) 2003; 49 Westlye, Walhovd, Bjørnerud, Due-Tønnessen, Fjell (bb0280) 2009; 19 Beck, Steer (bb0020) 1987 Buckner, Head, Parker, Fotenos, Marcus, Morris, Snyder (bb0035) 2004; 23 Fischl, Dale (bb0085) 2000; 97 Fischl, van der Kouwe, Destrieux, Halgren, Segonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (bb0115) 2004; 14 Fischl, Liu, Dale (bb0090) 2001; 20 Hasan, Sankar, Halphen, Kramer, Brandt, Juranek, Cirino, Fletcher, Papanicolaou, Ewing-Cobbs (bb0160) 2007; 18 Fischl, Sereno, Dale (bb0105) 1999; 9 Scholz, Klein, Behrens, Johansen-Berg (bb0215) 2009; 12 Dale, Sereno (bb0050) 1993; 5 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bb0140) 2001; 14 Ennis, Kindlmann (bb0075) 2006; 55 Ashburner, Friston (bb0015) 2000; 11 Fischl, Rajendran, Busa, Augustinack, Hinds, Yeo, Mohlberg, Amunts, Zilles (bb0095) 2008; 18 Fjell, Walhovd, Westlye, Ostby, Tamnes, Jernigan, Gamst, Dale (bb0120) 2010; 50 Dale, Liu, Fischl, Buckner, Belliveau, Lewine, Halgren (bb0045) 2000; 26 Duff, Trachtenberg, Mackay, Howard, Wilson, Smith, Woolrich (bb0070) 2012; 60 Andersson, Jenkinson, Smith (bb0330) 2007 Groppe, Makeig, Kutas (bb0145) 2009; 45 Fjell, Westlye, Greve, Fischl, Benner, van der Kouwe, Salat, Bjørnerud, Due-Tønnessen, Walhovd (bb0125) 2008; 42 Folstein, Folstein, McHugh (bb0130) 1975; 12 Wechsler (bb0275) 1999 Dale, Fischl, Sereno (bb0040) 1999; 9 Li, Yang, Nguyen, Cooper, Lahue, Venugopal, Mukherjee (bb0340) 2011 Wahl, Li, Ng, Lahue, Cooper, Sherr, Mukherjee (bb0265) 2010; 51 Filippini, MacIntosh, Hough, Goodwin, Frisoni, Smith, Matthews, Beckmann, Mackay (bb0080) 2009; 106 Panizzon, Fennema-Notestine, Kubarych, Chen, Eyler, Fischl, Franz, Grant, Hamza, Jak, Jernigan, Lyons, Neale, Prom-Wormley, Seidman, Tsuang, Wu, Dale, Kremen (bb0200) 2012; 60 Lövdén, Laukka, Rieckmann, Kalpuzos, Li, Jonsson, Wahlund, Bäckman (bb0195) 2012 Tamnes, Ostby, Fjell, Westlye, Due-Tonnessen, Walhovd (bb0260) 2010; 20 Groves, Beckmann, Smith, Woolrich (bb0150) 2011; 54 Ziegler, Dahnke, Jancke, Yotter, May, Gaser (bb0320) 2011 Zatorre, Fields, Johansen-Berg (bb0315) 2012; 15 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bb0345) 2009; 106 Smith (bb0235) 2002; 17 Westlye, Walhovd, Dale, Espeseth, Reinvang, Raz, Agartz, Greve, Fischl, Fjell (bb0295) 2009; 47 Beckmann, Smith (bb0030) 2004; 23 Penke, Munoz Maniega, Murray, Gow, Hernandez, Clayden, Starr, Wardlaw, Bastin, Deary (bb0205) 2010; 30 Schwarzkopf, Song, Rees (bb0225) 2011; 14 Smith, Johansen-Berg, Jenkinson, Rueckert, Nichols, Miller, Robson, Jones, Klein, Bartsch, Behrens (bb0250) 2007; 2 Franke, Ziegler, Kloppel, Gaser (bb0135) 2010; 50 Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews, Behrens (bb0240) 2006; 31 Hasan, Iftikhar, Kamali, Kramer, Ashtari, Cirino, Papanicolaou, Fletcher, Ewing-Cobbs (bb0155) 2009; 18 Østby, Tamnes, Fjell, Westlye, Due-Tønnessen, Walhovd (bb0325) 2009; 29 Westlye, Walhovd, Dale, Bjornerud, Due-Tonnessen, Engvig, Grydeland, Tamnes, Ostby, Fjell (bb0290) 2010; 20 Li, Mukherjee, Nagarajan, Attias (bb0185) 2010 Imperati, Colcombe, Kelly, Di Martino, Zhou, Castellanos, Milham (bb0165) 2011; 6 Jenkinson, Bannister, Brady, Smith (bb0170) 2002; 17 Woolrich, Behrens, Beckmann, Jenkinson, Smith (bb0300) 2004; 21 Walhovd, Westlye, Amlien, Espeseth, Reinvang, Raz, Agartz, Salat, Greve, Fischl, Dale, Fjell (bb0270) 2011; 32 Beckmann, DeLuca, Devlin, Smith (bb0025) 2005; 360 Salat, Lee, van der Kouwe, Greve, Fischl, Rosas (bb0210) 2009; 48 Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens, Beckmann, Jenkinson, Smith (bb0305) 2009; 45 Andersson, Jenkinson, Smith (bb0335) 2007 Dosenbach, Nardos, Cohen, Fair, Power, Church, Nelson, Wig, Vogel, Lessov-Schlaggar, Barnes, Dubis, Feczko, Coalson, Pruett, Barch, Petersen, Schlaggar (bb0055) 2010; 329 Schwarzkopf, Robertson, Song, Barnes, Rees (bb0220) 2012; 32 Westlye, Walhovd, Dale, Bjornerud, Due-Tonnessen, Engvig, Grydeland, Tamnes, Ostby, Fjell (bb0285) 2010; 52 Vernooij, Ikram, Tanghe, Vincent, Hofman, Krestin, Niessen, Breteler, van der Lugt (bb9000) 2007; 357 Douaud, Smith, Jenkinson, Behrens, Johansen-Berg, Vickers, James, Voets, Watkins, Matthews, James (bb0065) 2007; 130 Fischl, Sereno, Tootell, Dale (bb0110) 1999; 8 Smith (10.1016/j.neuroimage.2012.06.038_bb0250) 2007; 2 Fischl (10.1016/j.neuroimage.2012.06.038_bb0110) 1999; 8 Groves (10.1016/j.neuroimage.2012.06.038_bb0150) 2011; 54 Fischl (10.1016/j.neuroimage.2012.06.038_bb0095) 2008; 18 Schwarzkopf (10.1016/j.neuroimage.2012.06.038_bb0220) 2012; 32 Scholz (10.1016/j.neuroimage.2012.06.038_bb0215) 2009; 12 Beckmann (10.1016/j.neuroimage.2012.06.038_bb0025) 2005; 360 Smith (10.1016/j.neuroimage.2012.06.038_bb0345) 2009; 106 Dosenbach (10.1016/j.neuroimage.2012.06.038_bb0055) 2010; 329 Filippini (10.1016/j.neuroimage.2012.06.038_bb0080) 2009; 106 Walhovd (10.1016/j.neuroimage.2012.06.038_bb0270) 2011; 32 Penke (10.1016/j.neuroimage.2012.06.038_bb0205) 2010; 30 Schwarzkopf (10.1016/j.neuroimage.2012.06.038_bb0225) 2011; 14 Smith (10.1016/j.neuroimage.2012.06.038_bb0245) 2004; 23 Ziegler (10.1016/j.neuroimage.2012.06.038_bb0320) 2011 Westlye (10.1016/j.neuroimage.2012.06.038_bb0285) 2010; 52 Dale (10.1016/j.neuroimage.2012.06.038_bb0045) 2000; 26 Dale (10.1016/j.neuroimage.2012.06.038_bb0040) 1999; 9 Wahl (10.1016/j.neuroimage.2012.06.038_bb0265) 2010; 51 Andersson (10.1016/j.neuroimage.2012.06.038_bb0330) Zatorre (10.1016/j.neuroimage.2012.06.038_bb0315) 2012; 15 Hasan (10.1016/j.neuroimage.2012.06.038_bb0155) 2009; 18 Salat (10.1016/j.neuroimage.2012.06.038_bb0210) 2009; 48 Fjell (10.1016/j.neuroimage.2012.06.038_bb0125) 2008; 42 Franke (10.1016/j.neuroimage.2012.06.038_bb0135) 2010; 50 Smith (10.1016/j.neuroimage.2012.06.038_bb0240) 2006; 31 Andersson (10.1016/j.neuroimage.2012.06.038_bb0335) Li (10.1016/j.neuroimage.2012.06.038_bb0185) 2010 Westlye (10.1016/j.neuroimage.2012.06.038_bb0290) 2010; 20 Ennis (10.1016/j.neuroimage.2012.06.038_bb0075) 2006; 55 Imperati (10.1016/j.neuroimage.2012.06.038_bb0165) 2011; 6 Buckner (10.1016/j.neuroimage.2012.06.038_bb0035) 2004; 23 Duff (10.1016/j.neuroimage.2012.06.038_bb0070) 2012; 60 Seeley (10.1016/j.neuroimage.2012.06.038_bb0230) 2009; 62 Westlye (10.1016/j.neuroimage.2012.06.038_bb0280) 2009; 19 Woolrich (10.1016/j.neuroimage.2012.06.038_bb0305) 2009; 45 Tamnes (10.1016/j.neuroimage.2012.06.038_bb0260) 2010; 20 Douaud (10.1016/j.neuroimage.2012.06.038_bb0060) 2011; 55 Groppe (10.1016/j.neuroimage.2012.06.038_bb0145) 2009; 45 Fischl (10.1016/j.neuroimage.2012.06.038_bb0115) 2004; 14 Li (10.1016/j.neuroimage.2012.06.038_bb0340) 2011 Dale (10.1016/j.neuroimage.2012.06.038_bb0050) 1993; 5 Lövdén (10.1016/j.neuroimage.2012.06.038_bb0195) 2012 Jenkinson (10.1016/j.neuroimage.2012.06.038_bb0170) 2002; 17 Johnstone (10.1016/j.neuroimage.2012.06.038_bb0175) 2001; 29 Smith (10.1016/j.neuroimage.2012.06.038_bb0235) 2002; 17 Fischl (10.1016/j.neuroimage.2012.06.038_bb0105) 1999; 9 Ashburner (10.1016/j.neuroimage.2012.06.038_bb0015) 2000; 11 Fischl (10.1016/j.neuroimage.2012.06.038_bb0085) 2000; 97 Douaud (10.1016/j.neuroimage.2012.06.038_bb0065) 2007; 130 Fischl (10.1016/j.neuroimage.2012.06.038_bb0090) 2001; 20 Folstein (10.1016/j.neuroimage.2012.06.038_bb0130) 1975; 12 Fischl (10.1016/j.neuroimage.2012.06.038_bb0100) 2002; 33 Good (10.1016/j.neuroimage.2012.06.038_bb0140) 2001; 14 Hasan (10.1016/j.neuroimage.2012.06.038_bb0160) 2007; 18 Lebel (10.1016/j.neuroimage.2012.06.038_bb0180) 2012; 60 Panizzon (10.1016/j.neuroimage.2012.06.038_bb0200) 2012; 60 Westlye (10.1016/j.neuroimage.2012.06.038_bb0295) 2009; 47 Beck (10.1016/j.neuroimage.2012.06.038_bb0020) 1987 Fjell (10.1016/j.neuroimage.2012.06.038_bb0120) 2010; 50 Reese (10.1016/j.neuroimage.2012.06.038_bb9005) 2003; 49 Beckmann (10.1016/j.neuroimage.2012.06.038_bb0030) 2004; 23 Vernooij (10.1016/j.neuroimage.2012.06.038_bb9000) 2007; 357 Wechsler (10.1016/j.neuroimage.2012.06.038_bb0275) 1999 Worsley (10.1016/j.neuroimage.2012.06.038_bb0310) 1995; 2 Østby (10.1016/j.neuroimage.2012.06.038_bb0325) 2009; 29 Woolrich (10.1016/j.neuroimage.2012.06.038_bb0300) 2004; 21 |
References_xml | – volume: 51 start-page: 531 year: 2010 end-page: 541 ident: bb0265 article-title: Microstructural correlations of white matter tracts in the human brain publication-title: NeuroImage – volume: 50 start-page: 1376 year: 2010 end-page: 1383 ident: bb0120 article-title: When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies publication-title: NeuroImage – year: 2010 ident: bb0185 article-title: A novel variational Bayesian method for spatiotemporal decomposition of resting-state fMRI – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: bb0055 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 60 start-page: 189 year: 2012 end-page: 203 ident: bb0070 article-title: Task-driven ICA feature generation for accurate and interpretable prediction using fMRI publication-title: NeuroImage – volume: 106 start-page: 7209 year: 2009 end-page: 7214 ident: bb0080 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2 start-page: 499 year: 2007 end-page: 503 ident: bb0250 article-title: Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics publication-title: Nat. Protoc. – year: 1987 ident: bb0020 article-title: Beck Depression Inventory Scoring Manual – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bb0130 article-title: “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. – volume: 18 start-page: 1735 year: 2007 end-page: 1739 ident: bb0160 article-title: Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging publication-title: Neuroreport – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: bb0105 article-title: Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage – volume: 5 start-page: 162 year: 1993 end-page: 176 ident: bb0050 article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach publication-title: J. Cogn. Neurosci. – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: bb0085 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bb0245 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: bb0135 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage – volume: 18 start-page: 67 year: 2009 end-page: 76 ident: bb0155 article-title: Development and aging of the healthy human brain uncinate fasciculus across the lifespan using diffusion tensor tractography publication-title: Brain Res. – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bb0235 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 26 start-page: 55 year: 2000 end-page: 67 ident: bb0045 article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron – volume: 20 start-page: 2055 year: 2010 end-page: 2068 ident: bb0290 article-title: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry publication-title: Cereb. Cortex – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: bb0040 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: NeuroImage – volume: 48 start-page: 21 year: 2009 end-page: 28 ident: bb0210 article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast publication-title: NeuroImage – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bb0030 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging – volume: 31 start-page: 1487 year: 2006 end-page: 1505 ident: bb0240 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage – volume: 60 start-page: 340 year: 2012 end-page: 352 ident: bb0180 article-title: Diffusion tensor imaging of white matter tract evolution over the lifespan publication-title: NeuroImage – volume: 45 start-page: S173 year: 2009 end-page: S186 ident: bb0305 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage – volume: 130 start-page: 2375 year: 2007 end-page: 2386 ident: bb0065 article-title: Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia publication-title: Brain – volume: 20 start-page: 70 year: 2001 end-page: 80 ident: bb0090 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans. Med. Imaging – volume: 60 start-page: 1686 year: 2012 end-page: 1695 ident: bb0200 article-title: Genetic and environmental influences of white and gray matter signal contrast: A new phenotype for imaging genetics? publication-title: NeuroImage – volume: 15 start-page: 528 year: 2012 end-page: 536 ident: bb0315 article-title: Plasticity in gray and white: neuroimaging changes in brain structure during learning publication-title: Nat. Neurosci. – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bb0015 article-title: Voxel-based morphometry—the methods publication-title: NeuroImage – year: 2011 ident: bb0320 article-title: Brain structural trajectories over the adult lifespan publication-title: Hum. Brain Mapp. – volume: 29 start-page: 11772 year: 2009 end-page: 11782 ident: bb0325 article-title: Heterogeneity in subcortical brain development: a structural MRI study of brain maturation from 8–30 years publication-title: J. Neurosci. – volume: 54 start-page: 2198 year: 2011 end-page: 2217 ident: bb0150 article-title: Linked independent component analysis for multimodal data fusion publication-title: NeuroImage – volume: 8 start-page: 272 year: 1999 end-page: 284 ident: bb0110 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. – year: 2011 ident: bb0340 article-title: Independent component analysis of DTI reveals multivariate microstructural correlations of white matter in the human brain publication-title: Hum. Brain Mapp. – year: 2007 ident: bb0335 – year: 2007 ident: bb0330 article-title: Non-linear optimisation – volume: 357 start-page: 1821 year: 2007 end-page: 1828 ident: bb9000 article-title: Incidental findings on brain MRI in the general population publication-title: N. Engl. J. Med. – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: bb0100 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 55 start-page: 136 year: 2006 end-page: 146 ident: bb0075 article-title: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images publication-title: Magn. Reson. Med. – volume: 42 start-page: 1654 year: 2008 end-page: 1668 ident: bb0125 article-title: The relationship between diffusion tensor imaging and volumetry as measures of white matter properties publication-title: NeuroImage – volume: 18 start-page: 1973 year: 2008 end-page: 1980 ident: bb0095 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb. Cortex – volume: 6 start-page: e23437 year: 2011 ident: bb0165 article-title: Differential development of human brain white matter tracts publication-title: PLoS One – volume: 12 start-page: 1370 year: 2009 end-page: 1371 ident: bb0215 article-title: Training induces changes in white-matter architecture publication-title: Nat. Neurosci. – volume: 32 start-page: 1507 year: 2012 end-page: 1512 ident: bb0220 article-title: The frequency of visually induced gamma-band oscillations depends on the size of early human visual cortex publication-title: J. Neurosci. – year: 2012 ident: bb0195 article-title: The Dimensionality of Between-Person Differences in White Matter Microstructure in Old age publication-title: Hum. Brain Mapp. – volume: 47 start-page: 1545 year: 2009 end-page: 1557 ident: bb0295 article-title: Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study publication-title: NeuroImage – volume: 23 start-page: 724 year: 2004 end-page: 738 ident: bb0035 article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume publication-title: NeuroImage – volume: 20 start-page: 534 year: 2010 end-page: 548 ident: bb0260 article-title: Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure publication-title: Cereb. Cortex – volume: 49 start-page: 177 year: 2003 end-page: 182 ident: bb9005 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. – volume: 62 start-page: 42 year: 2009 end-page: 52 ident: bb0230 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron – volume: 19 start-page: 293 year: 2009 end-page: 304 ident: bb0280 article-title: Error-related negativity is mediated by fractional anisotropy in the posterior cingulate gyrus — a study combining diffusion tensor imaging and electrophysiology in healthy adults publication-title: Cereb. Cortex – volume: 14 start-page: 21 year: 2001 end-page: 36 ident: bb0140 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage – volume: 32 start-page: 916 year: 2011 end-page: 932 ident: bb0270 article-title: Consistent neuroanatomical age-related volume differences across multiple samples publication-title: Neurobiol. Aging – volume: 2 start-page: 183 year: 1995 end-page: 194 ident: bb0310 article-title: Tests for distributed, nonfocal brain activations publication-title: NeuroImage – volume: 45 start-page: 1199 year: 2009 end-page: 1211 ident: bb0145 article-title: Identifying reliable independent components via split-half comparisons publication-title: NeuroImage – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bb0170 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 21 start-page: 1732 year: 2004 end-page: 1747 ident: bb0300 article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference publication-title: NeuroImage – volume: 52 start-page: 172 year: 2010 end-page: 185 ident: bb0285 article-title: Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity publication-title: NeuroImage – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: bb0115 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex – volume: 30 start-page: 7569 year: 2010 end-page: 7574 ident: bb0205 article-title: A general factor of brain white matter integrity predicts information processing speed in healthy older people publication-title: J. Neurosci. – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bb0345 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bb0025 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 55 start-page: 880 year: 2011 end-page: 890 ident: bb0060 article-title: DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease publication-title: NeuroImage – volume: 14 start-page: 28 year: 2011 end-page: 30 ident: bb0225 article-title: The surface area of human V1 predicts the subjective experience of object size publication-title: Nat. Neurosci. – volume: 29 start-page: 137 year: 2001 end-page: 152 ident: bb0175 article-title: On the distribution of the largest eigenvalue in principal components analysis publication-title: Ann. Stat. – year: 1999 ident: bb0275 article-title: Wechsler Abbreviated Scale of Intelligence – volume: 15 start-page: 528 year: 2012 ident: 10.1016/j.neuroimage.2012.06.038_bb0315 article-title: Plasticity in gray and white: neuroimaging changes in brain structure during learning publication-title: Nat. Neurosci. doi: 10.1038/nn.3045 – volume: 19 start-page: 293 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0280 article-title: Error-related negativity is mediated by fractional anisotropy in the posterior cingulate gyrus — a study combining diffusion tensor imaging and electrophysiology in healthy adults publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn084 – volume: 18 start-page: 67 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0155 article-title: Development and aging of the healthy human brain uncinate fasciculus across the lifespan using diffusion tensor tractography publication-title: Brain Res. doi: 10.1016/j.brainres.2009.04.025 – volume: 23 start-page: 137 year: 2004 ident: 10.1016/j.neuroimage.2012.06.038_bb0030 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroimage.2012.06.038_bb0235 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – ident: 10.1016/j.neuroimage.2012.06.038_bb0335 – year: 2012 ident: 10.1016/j.neuroimage.2012.06.038_bb0195 article-title: The Dimensionality of Between-Person Differences in White Matter Microstructure in Old age publication-title: Hum. Brain Mapp. – volume: 23 start-page: S208 issue: Suppl. 1 year: 2004 ident: 10.1016/j.neuroimage.2012.06.038_bb0245 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 20 start-page: 70 year: 2001 ident: 10.1016/j.neuroimage.2012.06.038_bb0090 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906426 – volume: 20 start-page: 2055 year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0290 article-title: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp280 – volume: 50 start-page: 883 year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0135 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 29 start-page: 137 year: 2001 ident: 10.1016/j.neuroimage.2012.06.038_bb0175 article-title: On the distribution of the largest eigenvalue in principal components analysis publication-title: Ann. Stat. doi: 10.1214/aos/1009210544 – volume: 8 start-page: 272 year: 1999 ident: 10.1016/j.neuroimage.2012.06.038_bb0110 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 18 start-page: 1735 year: 2007 ident: 10.1016/j.neuroimage.2012.06.038_bb0160 article-title: Development and organization of the human brain tissue compartments across the lifespan using diffusion tensor imaging publication-title: Neuroreport doi: 10.1097/WNR.0b013e3282f0d40c – volume: 9 start-page: 195 year: 1999 ident: 10.1016/j.neuroimage.2012.06.038_bb0105 article-title: Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system publication-title: NeuroImage doi: 10.1006/nimg.1998.0396 – volume: 32 start-page: 1507 year: 2012 ident: 10.1016/j.neuroimage.2012.06.038_bb0220 article-title: The frequency of visually induced gamma-band oscillations depends on the size of early human visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4771-11.2012 – volume: 18 start-page: 1973 year: 2008 ident: 10.1016/j.neuroimage.2012.06.038_bb0095 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm225 – volume: 32 start-page: 916 year: 2011 ident: 10.1016/j.neuroimage.2012.06.038_bb0270 article-title: Consistent neuroanatomical age-related volume differences across multiple samples publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.05.013 – volume: 2 start-page: 183 year: 1995 ident: 10.1016/j.neuroimage.2012.06.038_bb0310 article-title: Tests for distributed, nonfocal brain activations publication-title: NeuroImage doi: 10.1006/nimg.1995.1024 – year: 1999 ident: 10.1016/j.neuroimage.2012.06.038_bb0275 – volume: 30 start-page: 7569 year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0205 article-title: A general factor of brain white matter integrity predicts information processing speed in healthy older people publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1553-10.2010 – volume: 48 start-page: 21 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0210 article-title: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.06.074 – volume: 11 start-page: 805 year: 2000 ident: 10.1016/j.neuroimage.2012.06.038_bb0015 article-title: Voxel-based morphometry—the methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 31 start-page: 1487 year: 2006 ident: 10.1016/j.neuroimage.2012.06.038_bb0240 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.02.024 – volume: 33 start-page: 341 year: 2002 ident: 10.1016/j.neuroimage.2012.06.038_bb0100 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 45 start-page: 1199 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0145 article-title: Identifying reliable independent components via split-half comparisons publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.038 – volume: 60 start-page: 1686 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2012.06.038_bb0200 article-title: Genetic and environmental influences of white and gray matter signal contrast: A new phenotype for imaging genetics? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.122 – volume: 49 start-page: 177 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2012.06.038_bb9005 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10308 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroimage.2012.06.038_bb0170 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 130 start-page: 2375 year: 2007 ident: 10.1016/j.neuroimage.2012.06.038_bb0065 article-title: Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia publication-title: Brain doi: 10.1093/brain/awm184 – volume: 5 start-page: 162 year: 1993 ident: 10.1016/j.neuroimage.2012.06.038_bb0050 article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1993.5.2.162 – volume: 14 start-page: 28 year: 2011 ident: 10.1016/j.neuroimage.2012.06.038_bb0225 article-title: The surface area of human V1 predicts the subjective experience of object size publication-title: Nat. Neurosci. doi: 10.1038/nn.2706 – volume: 55 start-page: 136 year: 2006 ident: 10.1016/j.neuroimage.2012.06.038_bb0075 article-title: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20741 – volume: 106 start-page: 7209 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0080 article-title: Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0811879106 – volume: 12 start-page: 189 year: 1975 ident: 10.1016/j.neuroimage.2012.06.038_bb0130 article-title: “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 – year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0185 – year: 2011 ident: 10.1016/j.neuroimage.2012.06.038_bb0340 article-title: Independent component analysis of DTI reveals multivariate microstructural correlations of white matter in the human brain publication-title: Hum. Brain Mapp. – volume: 97 start-page: 11050 year: 2000 ident: 10.1016/j.neuroimage.2012.06.038_bb0085 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.200033797 – volume: 29 start-page: 11772 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0325 article-title: Heterogeneity in subcortical brain development: a structural MRI study of brain maturation from 8–30 years publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1242-09.2009 – volume: 20 start-page: 534 year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0260 article-title: Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp118 – volume: 12 start-page: 1370 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0215 article-title: Training induces changes in white-matter architecture publication-title: Nat. Neurosci. doi: 10.1038/nn.2412 – volume: 357 start-page: 1821 year: 2007 ident: 10.1016/j.neuroimage.2012.06.038_bb9000 article-title: Incidental findings on brain MRI in the general population publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa070972 – volume: 62 start-page: 42 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0230 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – volume: 45 start-page: S173 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0305 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.055 – volume: 360 start-page: 1001 year: 2005 ident: 10.1016/j.neuroimage.2012.06.038_bb0025 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 60 start-page: 340 year: 2012 ident: 10.1016/j.neuroimage.2012.06.038_bb0180 article-title: Diffusion tensor imaging of white matter tract evolution over the lifespan publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.094 – volume: 47 start-page: 1545 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0295 article-title: Increased sensitivity to effects of normal aging and Alzheimer's disease on cortical thickness by adjustment for local variability in gray/white contrast: a multi-sample MRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.084 – volume: 60 start-page: 189 year: 2012 ident: 10.1016/j.neuroimage.2012.06.038_bb0070 article-title: Task-driven ICA feature generation for accurate and interpretable prediction using fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.12.053 – year: 2011 ident: 10.1016/j.neuroimage.2012.06.038_bb0320 article-title: Brain structural trajectories over the adult lifespan publication-title: Hum. Brain Mapp. – volume: 51 start-page: 531 year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0265 article-title: Microstructural correlations of white matter tracts in the human brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.072 – volume: 42 start-page: 1654 year: 2008 ident: 10.1016/j.neuroimage.2012.06.038_bb0125 article-title: The relationship between diffusion tensor imaging and volumetry as measures of white matter properties publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.06.005 – volume: 329 start-page: 1358 year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0055 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 10.1016/j.neuroimage.2012.06.038_bb0345 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0905267106 – volume: 54 start-page: 2198 year: 2011 ident: 10.1016/j.neuroimage.2012.06.038_bb0150 article-title: Linked independent component analysis for multimodal data fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.073 – volume: 21 start-page: 1732 year: 2004 ident: 10.1016/j.neuroimage.2012.06.038_bb0300 article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.12.023 – volume: 23 start-page: 724 year: 2004 ident: 10.1016/j.neuroimage.2012.06.038_bb0035 article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.06.018 – volume: 9 start-page: 179 year: 1999 ident: 10.1016/j.neuroimage.2012.06.038_bb0040 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: NeuroImage doi: 10.1006/nimg.1998.0395 – volume: 55 start-page: 880 year: 2011 ident: 10.1016/j.neuroimage.2012.06.038_bb0060 article-title: DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.008 – ident: 10.1016/j.neuroimage.2012.06.038_bb0330 – volume: 2 start-page: 499 year: 2007 ident: 10.1016/j.neuroimage.2012.06.038_bb0250 article-title: Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.45 – volume: 14 start-page: 21 year: 2001 ident: 10.1016/j.neuroimage.2012.06.038_bb0140 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: NeuroImage doi: 10.1006/nimg.2001.0786 – volume: 14 start-page: 11 year: 2004 ident: 10.1016/j.neuroimage.2012.06.038_bb0115 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 50 start-page: 1376 year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0120 article-title: When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.061 – volume: 52 start-page: 172 year: 2010 ident: 10.1016/j.neuroimage.2012.06.038_bb0285 article-title: Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.056 – year: 1987 ident: 10.1016/j.neuroimage.2012.06.038_bb0020 – volume: 26 start-page: 55 year: 2000 ident: 10.1016/j.neuroimage.2012.06.038_bb0045 article-title: Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron doi: 10.1016/S0896-6273(00)81138-1 – volume: 6 start-page: e23437 year: 2011 ident: 10.1016/j.neuroimage.2012.06.038_bb0165 article-title: Differential development of human brain white matter tracts publication-title: PLoS One doi: 10.1371/journal.pone.0023437 |
SSID | ssj0009148 |
Score | 2.4078553 |
Snippet | Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 365 |
SubjectTerms | Adolescent Adult Age Aged Aged, 80 and over Aging Aging - pathology Bayesian modeling Brain Brain research Child Cognition & reasoning Data fusion Data processing Databases, Factual Diffusion tensor imaging Disease Female Humans Independent component analysis Longevity Magnetic Resonance Imaging - methods Male Medical imaging Microstructure Middle Aged Nerve Fibers, Myelinated - ultrastructure Random variables Reproducibility of Results Sensitivity and Specificity Studies Subtraction Technique Surface-based morphometry Voxel-based morphometry Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgSIjLxG86BjISV4smcWIbDtNATBNinJjUm2U7tlS0JKVJN-1P4r_kPcdpLzD1UlWNXxL12e99fv78mZD3nhe2qKuSzaUSjNfwAfMsyyyHUW5r41yk_F_8qM4v-bdFuUgFtz7RKqeYGAN13TmskX9AJTyJalTzk9VvhqdG4epqOkLjPnmA0mVI6RILsRPdzfi4Fa4smIQGickz8ruiXuSygVGLBK88qnjiLpV_p6f_wc-Yhs4ek8OEH-np6PAn5J5vn5KHF2mF_Bn58xmCV1gOPe0CjWxB1nQ1WIQN1sWoSSIkFL_TK-SBsx785ClyRXs_fKTflwF-gyhBV1F8s433Ql2JNes3Fgs39Bqm2KPC9y1coTCFjTVx2nTgt67xw_oWHlXTG1yloE28D22Q_DcK1m7W_jm5PPv688s5S8cxMFeWcmDCcavCXIRMutIEJUOuagcAQUASdJjYTMgsBwwhXVEpZWVVcIRIgBBd5kzxghy0XetfESqUzXNjKhE4IIpMSWkkWBqUF6vyupoRMXlBu6RVjkdmXOmJlPZL7_yn0X8a-XmFnJFsa7ka9Tr2sFGTo_W0HxUiqIaksoftp61twiwjFtnT-njqVzrFjl7vevqMvNtehlGPSzmm9d0G2gDwkEIBXr2zjaxizJ2Rl2Of3f4lOcr6w-T_6O4XeE0e4dtirs7KY3IAPcS_ARA22LdxpP0FBrUz_Q priority: 102 providerName: ProQuest |
Title | Benefits of multi-modal fusion analysis on a large-scale dataset: Life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912006532 https://dx.doi.org/10.1016/j.neuroimage.2012.06.038 https://www.ncbi.nlm.nih.gov/pubmed/22750721 https://www.proquest.com/docview/1506881010 https://www.proquest.com/docview/1036879256 https://www.proquest.com/docview/1038605101 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLWmISFeEN8UxmQkXk2bxIlteNqqTQW2ahpM6ltkO7EUtCRV04L2wv_hX3Kv43RCAlSJl6RJfNMo17732D4-IeRNyROTFFnKJlIJxgvYQD_LMMOhlZtCW-sp_-fzbHbFPy7SxR6ZDmthkFYZYn8f0320DmfG4W2Ol1U1_gzIANIN9DdiL7CKcZhzgbX87Y9bmoeKeL8cLk0Ylg5snp7j5TUjqxpaLpK8Yq_kiStV_pyi_gZBfSo6fUDuBwxJj_rHfEj2yuYRuXseZskfk5_HEMBcte5o66hnDLK6LcDCbXBsjOogRELxN71GLjjrwFclRb5oV67f0bPKwTmIFHTpBTgbfy_UllixbmNw8IZ-g252r_J9A1codGP9uDitW_BdW5fr1Q38VUG_40wFrf19aI0EwF60drMqn5Cr05Mv0xkLn2RgNk3lmgnLjXIT4SJpU-2UdLEqLIAEAYnQYnLTLjIccIS0SaaUkVnCESYBSrSR1clTst-0TfmcUKFMHGudCccBVURKSi3BUqPEWBYX2YiIwQu5DXrl-NmM63wgpn3Nb_2Xo_9y5OglckSireWy1-zYwUYNjs6HNakQRXNILDvYvt_a_lZ3d7Q-GOpVHuJHl6Puo0TttcmIvN5ehpaP0zm6KdsNlAHwIYUCzPrPMjLzcXdEnvV1dvtKYpT2F3H04r8e_yW5h0eYzqP0gOxDBSpfAU5bm0PfEGErFuKQ3DmaXp5d4P7Dp9kc9scn84vLX50yRRI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgJeEL8pDDASPFo0iZPYIIQYbOpYWyG0SXvLHMeRipakNC1T_yRe-Bu5c5L2Baa-7KWqmpwT9c7fne3PnwFeWxGkQRaFfCBVzEWGHzjOSnkqsJenmTbGUf7Hk2h4Kr6ehWc78KfbC0O0yg4THVBnlaE58rekhCdJjWrwcfaT06lRtLraHaHRhMWxXV3ikK3-cPQF_fvG9w8PTj4PeXuqADdhKBc8NiJV-SDOPWlCnSuZ-yozmOdixHJD-KxzLxWYCqUJIqVSGQWCMj0WOsYzOsB2b8CuCHAo04Pd_YPJt-8bmV9PNJvvwoBLz1Mtd6hhlDmFymmBOEGUMt_phtK-mH8nxP8VvC7xHd6FO23Fyj41IXYPdmx5H26O2zX5B_B7H-Eyny5qVuXM8RN5UWVokS9pJo7pVvaE0Xd2QcxzXmNkWEbs1Nou3rHRNMffEJfYzMl9lq4tUrKY83qZ0lQR-4WD-kZTfIVXGA6a3Sw8KyqMlKqwi_kKH5WxS1oXYYVrhxVEN2wkcpdz-xBOr8VVj6BXVqV9AixWqe9rHcW5wBrGU1JqiZaaBM0iP4v6EHdeSEyrjk6HdFwkHQ3uR7LxX0L-S4gRGMg-eGvLWaMQsoWN6hyddDtgEbMTTGNb2L5f27ZVUlP9bGm918VV0qJVnWz6Vh9erS8jztDikS5ttcR7sNSRscIK-cp7ZORQvg-Pm5hd_yU-HSQQ-97Tq1_gJdwanoxHyehocvwMbtObU6XghXvQw2ixz7EEXKQv2n7H4Py6u_pf5bJwNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHfKBhgJHq3VudkGIQSMamMX8cCkvpnYsaWiJemalqk_ib_Ar-McJ2lfYOrLXqqqyXGinqvtz98h5LVLYhMXWcqGUgmWFPAB8yzDTAJeborc2gD5Pz3LDs-Tr-N0vEX-9GdhEFbZx8QQqIva4hr5PjLhSWSjGu77Dhbx7WD0YXrJsIMU7rT27TRaEzl2yyuYvjXvjw5A12-iaPTl--dD1nUYYDZN5ZwJmxjlh8JzadPcK-kjVVjIeQLiusVYnXtuEkiL0saZUkZmcYJZH4oey20ew7i3yG0Rpxx9TIzFmvCXJ-0xvDRmknPVoYhabFngqpyUEDEQXBYFBlE8IfPv1Pi_0jekwNE9crerXenH1tjuky1XPSA7p93u_EPy-xMETj-ZN7T2NCAVWVkXIOEXuCZH844AheJ3eoEYdNaAjTiKONXGzd_Sk4mH3yBC0Wkg_qzCWMhpMWPNwuCiEf0F0_uWXXwJVyhMn8N6PC1rsJm6dPPZEh5V0CvcIaFlGIeWCDxsyXIXM_eInN-Ioh6T7aqu3FNChTJRlOeZ8AlUM1xJmUuQzJHaLIuKbEBErwVtO550bNdxoXtA3E-91p9G_WnEBsZyQPhKctpyhWwgo3pF6_4sLERvDQltA9l3K9muXmrroA2l93q70l3cavTaywbk1eoyRBzcRsorVy_gHih6pFBQK197j8xCvB-QJ63Nrv6SCFsKiIg_u_4FXpIdcHB9cnR2vEvu4ItjycDTPbINxuKeQy04Ny-C01Hy46a9_C_RzHMG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benefits+of+multi-modal+fusion+analysis+on+a+large-scale+dataset%3A+Life-span+patterns+of+inter-subject+variability+in+cortical+morphometry+and+white+matter+microstructure&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Groves%2C+Adrian+R&rft.au=Smith%2C+Stephen+M&rft.au=Fjell%2C+Anders+M&rft.au=Tamnes%2C+Christian+K&rft.date=2012-10-15&rft.issn=1053-8119&rft.volume=63&rft.issue=1&rft.spage=365&rft.epage=380&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.06.038&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |